1
|
Calin-Jageman RJ, Gonzalez Delgadillo B, Gamino E, Juarez Z, Kurkowski A, Musajeva N, Valdez L, Wittrock D, Wilsterman T, Zarate Torres J, Calin-Jageman IE. Evidence of Active-Forgetting Mechanisms? Blocking Arachidonic Acid Release May Slow Forgetting of Sensitization in Aplysia. eNeuro 2024; 11:ENEURO.0516-23.2024. [PMID: 38538086 PMCID: PMC10999730 DOI: 10.1523/eneuro.0516-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 02/02/2024] [Indexed: 04/07/2024] Open
Abstract
Long-term sensitization in Aplysia is accompanied by a persistent up-regulation of mRNA encoding the peptide neurotransmitter Phe-Met-Arg-Phe-amide (FMRFa), a neuromodulator that opposes the expression of sensitization through activation of the arachidonic acid second-messenger pathway. We completed a preregistered test of the hypothesis that FMRFa plays a critical role in the forgetting of sensitization. Aplysia received long-term sensitization training and were then given whole-body injections of vehicle (N = 27), FMRFa (N = 26), or 4-bromophenacylbromide (4-BPB; N = 31), a phospholipase inhibitor that prevents the release of arachidonic acid. FMRFa produced no changes in forgetting. 4-BPB decreased forgetting measured 6 d after training [d s = 0.55 95% CI(0.01, 1.09)], though the estimated effect size is uncertain. Our results provide preliminary evidence that forgetting of sensitization may be a regulated, active process in Aplysia, but could also indicate a role for arachidonic acid in stabilizing the induction of sensitization.
Collapse
Affiliation(s)
| | | | - Elise Gamino
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Zayra Juarez
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Anna Kurkowski
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Nelly Musajeva
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Leslie Valdez
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Diana Wittrock
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Theresa Wilsterman
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | | | | |
Collapse
|
2
|
Sensitized by a sea slug: site-specific short-term and general long-term sensitization in Aplysia following Navanax attack. Neurobiol Learn Mem 2021; 187:107542. [PMID: 34748927 DOI: 10.1016/j.nlm.2021.107542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022]
Abstract
Neurobiological studies of the model species, Aplysia californica (Mollusca, Gastropoda, Euopisthobranchia), have helped advance our knowledge of the neural bases of different forms of learning, including sensitization, a non-associative increase in withdrawal behaviors in response to mild innocuous stimuli However, our understanding of the natural context for this learning has lagged behind the mechanistic studies. Because previous studies of sensitization used electric shock, or other artificial stimulus to produce sensitization, they left unaddressed the question of what stimuli in nature might cause sensitization, until our laboratory demonstrated short and long-term sensitization after predatory attack by spiny lobsters. In the present study, we tested for sensitization after attack by a very different predator, the predacious sea-slug, Navanax inermis (Mollusca, Gastropoda, Euopisthobranchia). Unlike the biting and prodding action of lobster attack, Navanax uses a rapid strike that sucks and squeezes its prey in an attempt to swallow it whole. We found that Navanax attack to the head of Aplysia caused strong immediate sensitization of head withdrawal, and weaker, delayed, sensitization of tail-mantle withdrawal. By contrast, attack to the tail of Aplysia resulted in no sensitization of either reflex. We also developed an artificial attack stimulus that allowed us to mimick a more consistently strong attack. This artificial attack produced stronger but qualitatively similar sensitization: Strong immediate sensitization of head withdrawal and weaker sensitization of tail-mantle withdrawal after head attack, immediate sensitization in tail-mantle withdrawal, but no sensitization of head withdrawal after tail attack. We conclude that Navanax attack causes robust site-specific sensitization (enhanced sensitization near the site of attack), and weaker general sensitization (sensitization of responses to stimuli distal to the attack site). We also tested for long-term sensitization (lasting longer than 24 hours) after temporally-spaced delivery of four natural Navanax attacks to the head of subject Aplysia. Surprisingly, these head attacks, any one of which strongly sensitizes head withdrawal in the short term, failed to sensitize head-withdrawal in the long term. Paradoxically, these repeated head attacks produced long-term sensitization in tail-mantle withdrawal. These experiments and observations confirm that Navanax attack causes short, and long-term sensitization of withdrawal reflexes of Aplysia. Together with the observation of sensitization after lobster attack, they strongly support the premise that sensitization in Aplysia is an adaptive response to sub-lethal predator attack. They also add site-specific sensitization to the list of naturally induced learning phenotypes, as well as paradoxical long-term sensitization of tail-mantle withdrawal (but not head withdrawal) after multiple head attacks.
Collapse
|
3
|
Rolón-Martínez S, Habib MR, Mansour TA, Díaz-Ríos M, Rosenthal JJC, Zhou XN, Croll RP, Miller MW. FMRF-NH 2 -related neuropeptides in Biomphalaria spp., intermediate hosts for schistosomiasis: Precursor organization and immunohistochemical localization. J Comp Neurol 2021; 529:3336-3358. [PMID: 34041754 PMCID: PMC8273141 DOI: 10.1002/cne.25195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022]
Abstract
Freshwater snails of the genus Biomphalaria serve as intermediate hosts for the digenetic trematode Schistosoma mansoni, the etiological agent for the most widespread form of intestinal schistosomiasis. As neuropeptide signaling in host snails can be altered by trematode infection, a neural transcriptomics approach was undertaken to identify peptide precursors in Biomphalaria glabrata, the major intermediate host for S. mansoni in the Western Hemisphere. Three transcripts that encode peptides belonging to the FMRF-NH2 -related peptide (FaRP) family were identified in B. glabrata. One transcript encoded a precursor polypeptide (Bgl-FaRP1; 292 amino acids) that included eight copies of the tetrapeptide FMRF-NH2 and single copies of FIRF-NH2 , FLRF-NH2 , and pQFYRI-NH2 . The second transcript encoded a precursor (Bgl-FaRP2; 347 amino acids) that comprised 14 copies of the heptapeptide GDPFLRF-NH2 and 1 copy of SKPYMRF-NH2 . The precursor encoded by the third transcript (Bgl-FaRP3; 287 amino acids) recapitulated Bgl-FaRP2 but lacked the full SKPYMRF-NH2 peptide. The three precursors shared a common signal peptide, suggesting a genomic organization described previously in gastropods. Immunohistochemical studies were performed on the nervous systems of B. glabrata and B. alexandrina, a major intermediate host for S. mansoni in Egypt. FMRF-NH2 -like immunoreactive (FMRF-NH2 -li) neurons were located in regions of the central nervous system associated with reproduction, feeding, and cardiorespiration. Antisera raised against non-FMRF-NH2 peptides present in the tetrapeptide and heptapeptide precursors labeled independent subsets of the FMRF-NH2 -li neurons. This study supports the participation of FMRF-NH2 -related neuropeptides in the regulation of vital physiological and behavioral systems that are altered by parasitism in Biomphalaria.
Collapse
Affiliation(s)
- Solymar Rolón-Martínez
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Mohamed R Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Tamer A Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Clinical Pathology, School of Medicine, University of Mansoura, Mansoura, Egypt
| | | | | | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark W Miller
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
4
|
Rosiles T, Nguyen M, Duron M, Garcia A, Garcia G, Gordon H, Juarez L, Calin-Jageman IE, Calin-Jageman RJ. Registered Report: Transcriptional Analysis of Savings Memory Suggests Forgetting is Due to Retrieval Failure. eNeuro 2020; 7:ENEURO.0313-19.2020. [PMID: 32928882 PMCID: PMC7665899 DOI: 10.1523/eneuro.0313-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
There is fundamental debate about the nature of forgetting: some have argued that it represents the decay of the memory trace, others that the memory trace persists but becomes inaccessible because of retrieval failure. These different accounts of forgetting lead to different predictions about savings memory, the rapid re-learning of seemingly forgotten information. If forgetting is because of decay, then savings requires re-encoding and should thus involve the same mechanisms as initial learning. If forgetting is because of retrieval failure, then savings should be mechanistically distinct from encoding. In this registered report, we conducted a preregistered and rigorous test between these accounts of forgetting. Specifically, we used microarray to characterize the transcriptional correlates of a new memory (1 d after training), a forgotten memory (8 d after training), and a savings memory (8 d after training but with a reminder on day 7 to evoke a long-term savings memory) for sensitization in Aplysia californica (n = 8 samples/group). We found that the reactivation of sensitization during savings does not involve a substantial transcriptional response. Thus, savings is transcriptionally distinct relative to a newer (1-d-old) memory, with no coregulated transcripts, negligible similarity in regulation-ranked ordering of transcripts, and a negligible correlation in training-induced changes in gene expression (r = 0.04 95% confidence interval (CI) [-0.12, 0.20]). Overall, our results suggest that forgetting of sensitization memory represents retrieval failure.
Collapse
Affiliation(s)
- Tania Rosiles
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Melissa Nguyen
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Monica Duron
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Annette Garcia
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - George Garcia
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Hannah Gordon
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Lorena Juarez
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | | | | |
Collapse
|
5
|
Patel U, Perez L, Farrell S, Steck D, Jacob A, Rosiles T, Krause E, Nguyen M, Calin-Jageman RJ, Calin-Jageman IE. Transcriptional changes before and after forgetting of a long-term sensitization memory in Aplysia californica. Neurobiol Learn Mem 2018; 155:474-485. [PMID: 30243850 PMCID: PMC6365195 DOI: 10.1016/j.nlm.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/06/2023]
Abstract
Most long-term memories are forgotten, becoming progressively less likely to be recalled. Still, some memory fragments may persist, as savings memory (easier relearning) can be detected long after recall has become impossible. What happens to a memory trace during forgetting that makes it inaccessible for recall and yet still effective to spark easier re-learning? We are addressing this question by tracking the transcriptional changes that accompany learning and then forgetting of a long-term sensitization memory in the tail-elicited siphon withdrawal reflex of Aplysia californica. First, we tracked savings memory. We found that even though recall of sensitization fades completely within 1 week of training, savings memory is still detectable at 2 weeks post training. Next, we tracked the time-course of regulation of 11 transcripts we previously identified as potentially being regulated after recall has become impossible. Remarkably, 3 transcripts still show strong regulation 2 weeks after training and an additional 4 are regulated for at least 1 week. These long-lasting changes in gene expression always begin early in the memory process, within 1 day of training. We present a synthesis of our results tracking gene expression changes accompanying sensitization and provide a testable model of how sensitization memory is forgotten.
Collapse
Affiliation(s)
- Ushma Patel
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Leticia Perez
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Steven Farrell
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Derek Steck
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Athira Jacob
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Tania Rosiles
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Everett Krause
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Melissa Nguyen
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Robert J Calin-Jageman
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | - Irina E Calin-Jageman
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States.
| |
Collapse
|
6
|
Walters ET. Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. Front Physiol 2018; 9:1049. [PMID: 30123137 PMCID: PMC6085516 DOI: 10.3389/fphys.2018.01049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023] Open
Abstract
Important insights into the selection pressures and core molecular modules contributing to the evolution of pain-related processes have come from studies of nociceptive systems in several molluscan and arthropod species. These phyla, and the chordates that include humans, last shared a common ancestor approximately 550 million years ago. Since then, animals in these phyla have continued to be subject to traumatic injury, often from predators, which has led to similar adaptive behaviors (e.g., withdrawal, escape, recuperative behavior) and physiological responses to injury in each group. Comparisons across these taxa provide clues about the contributions of convergent evolution and of conservation of ancient adaptive mechanisms to general nociceptive and pain-related functions. Primary nociceptors have been investigated extensively in a few molluscan and arthropod species, with studies of long-lasting nociceptive sensitization in the gastropod, Aplysia, and the insect, Drosophila, being especially fruitful. In Aplysia, nociceptive sensitization has been investigated as a model for aversive memory and for hyperalgesia. Neuromodulator-induced, activity-dependent, and axotomy-induced plasticity mechanisms have been defined in synapses, cell bodies, and axons of Aplysia primary nociceptors. Studies of nociceptive sensitization in Drosophila larvae have revealed numerous molecular contributors in primary nociceptors and interacting cells. Interestingly, molecular contributors examined thus far in Aplysia and Drosophila are largely different, but both sets overlap extensively with those in mammalian pain-related pathways. In contrast to results from Aplysia and Drosophila, nociceptive sensitization examined in moth larvae (Manduca) disclosed central hyperactivity but no obvious peripheral sensitization of nociceptive responses. Squid (Doryteuthis) show injury-induced sensitization manifested as behavioral hypersensitivity to tactile and especially visual stimuli, and as hypersensitivity and spontaneous activity in nociceptor terminals. Temporary blockade of nociceptor activity during injury subsequently increased mortality when injured squid were exposed to fish predators, providing the first demonstration in any animal of the adaptiveness of nociceptive sensitization. Immediate responses to noxious stimulation and nociceptive sensitization have also been examined behaviorally and physiologically in a snail (Helix), octopus (Adopus), crayfish (Astacus), hermit crab (Pagurus), and shore crab (Hemigrapsus). Molluscs and arthropods have systems that suppress nociceptive responses, but whether opioid systems play antinociceptive roles in these phyla is uncertain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
7
|
Conte C, Herdegen S, Kamal S, Patel J, Patel U, Perez L, Rivota M, Calin-Jageman RJ, Calin-Jageman IE. Transcriptional correlates of memory maintenance following long-term sensitization of Aplysia californica. Learn Mem 2017; 24:502-515. [PMID: 28916625 PMCID: PMC5602346 DOI: 10.1101/lm.045450.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
We characterized the transcriptional response accompanying maintenance of long-term sensitization (LTS) memory in the pleural ganglia of Aplysia californica using microarray (N = 8) and qPCR (N = 11 additional samples). We found that 24 h after memory induction there is strong regulation of 1198 transcripts (748 up and 450 down) in a pattern that is almost completely distinct from what is observed during memory encoding (1 h after training). There is widespread up-regulation of transcripts related to all levels of protein production, from transcription (e.g., subunits of transcription initiation factors) to translation (e.g., subunits of eIF1, eIF2, eIF3, eIF4, eIF5, and eIF2B) to activation of components of the unfolded protein response (e.g., CREB3/Luman, BiP, AATF). In addition, there are widespread changes in transcripts related to cytoskeleton function, synaptic targeting, synaptic function, neurotransmitter regulation, and neuronal signaling. Many of the transcripts identified have previously been linked to memory and plasticity (e.g., Egr, menin, TOB1, IGF2 mRNA binding protein 1/ZBP-1), though the majority are novel and/or uncharacterized. Interestingly, there is regulation that could contribute to metaplasticity potentially opposing or even eroding LTS memory (down-regulation of adenylate cyclase and a putative serotonin receptor, up-regulation of FMRFa and a FMRFa receptor). This study reveals that maintenance of a "simple" nonassociative memory is accompanied by an astonishingly complex transcriptional response.
Collapse
Affiliation(s)
- Catherine Conte
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Samantha Herdegen
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Saman Kamal
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Jency Patel
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Ushma Patel
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Leticia Perez
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | - Marissa Rivota
- Neuroscience Program, Dominican University, River Forest, Illinois 60305, USA
| | | | | |
Collapse
|
8
|
Wolfe KD, Wainwright ML, Smee DL, Mozzachiodi R. Eat or be eaten? Modifications of Aplysia californica feeding behaviour in response to natural aversive stimuli. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Transcriptional analysis of a whole-body form of long-term habituation in Aplysia californica. ACTA ACUST UNITED AC 2014; 22:11-23. [PMID: 25512573 PMCID: PMC4274328 DOI: 10.1101/lm.036970.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Habituation is the simplest form of learning, but we know little about the transcriptional mechanisms that encode long-term habituation memory. A key obstacle is that habituation is relatively stimulus-specific and is thus encoded in small sets of neurons, providing poor signal/noise ratios for transcriptional analysis. To overcome this obstacle, we have developed a protocol for producing whole-body long-term habituation of the siphon-withdrawal reflex (SWR) of Aplysia californica. Specifically, we constructed a computer-controlled brushing apparatus to apply low-intensity tactile stimulation over the entire dorsal surface of Aplysia at regular intervals. We found that 3 d of training (10 rounds of stimulation/day; each round = 15 min brushing at a 10-sec ISI; 15-min rest between rounds) produces habituation with several characteristics favorable for mechanistic investigation. First, habituation is widespread, with SWR durations reduced whether the reflex is evoked by tactile stimulation to the head, tail, or the siphon. Second, long-term habituation is sensitive to the pattern of training, occurring only when brushing sessions are spaced out over 3 d rather than massed into a single session. Using a custom-designed microarray and quantitative PCR, we show that long-term habituation produces long-term up-regulation of an apparent Aplysia homolog of cornichon, a protein important for glutamate receptor trafficking. Our training paradigm provides a promising starting point for characterizing the transcriptional mechanisms of long-term habituation memory.
Collapse
|
10
|
Herdegen S, Conte C, Kamal S, Calin-Jageman RJ, Calin-Jageman IE. Immediate and persistent transcriptional correlates of long-term sensitization training at different CNS loci in Aplysia californica. PLoS One 2014; 9:e114481. [PMID: 25486125 PMCID: PMC4259342 DOI: 10.1371/journal.pone.0114481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
Repeated noxious stimulation produces long-term sensitization of defensive withdrawal reflexes in Aplysia californica, a form of long-term memory that requires changes in both transcription and translation. Previous work has identified 10 transcripts which are rapidly up-regulated after long-term sensitization training in the pleural ganglia. Here we use quantitative PCR to begin examining how these transcriptional changes are expressed in different CNS loci related to defensive withdrawal reflexes at 1 and 24 hours after long-term sensitization training. Specifically, we sample from a) the sensory wedge of the pleural ganglia, which exclusively contains the VC nociceptor cell bodies that help mediate input to defensive withdrawal circuits, b) the remaining pleural ganglia, which contain withdrawal interneurons, and c) the pedal ganglia, which contain many motor neurons. Results from the VC cluster show different temporal patterns of regulation: 1) rapid but transient up-regulation of Aplysia homologs of C/EBP, C/EBPγ, and CREB1, 2) delayed but sustained up-regulation of BiP, Tolloid/BMP-1, and sensorin, 3) rapid and sustained up-regulation of Egr, GlyT2, VPS36, and an uncharacterized protein (LOC101862095), and 4) an unexpected lack of regulation of Aplysia homologs of calmodulin (CaM) and reductase-related protein (RRP). Changes in the remaining pleural ganglia mirror those found in the VC cluster at 1 hour but with an attenuated level of regulation. Because these samples had almost no expression of the VC-specific transcript sensorin, our data suggests that sensitization training likely induces transcriptional changes in either defensive withdrawal interneurons or neurons unrelated to defensive withdrawal. In the pedal ganglia, we observed only a rapid but transient increase in Egr expression, indicating that long-term sensitization training is likely to induce transcriptional changes in motor neurons but raising the possibility of different transcriptional endpoints in this cell type.
Collapse
Affiliation(s)
- Samantha Herdegen
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
| | - Catherine Conte
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
| | - Saman Kamal
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
| | - Robert J. Calin-Jageman
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
- * E-mail: (RC-J); (IC-J)
| | - Irina E. Calin-Jageman
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
- * E-mail: (RC-J); (IC-J)
| |
Collapse
|
11
|
Herdegen S, Holmes G, Cyriac A, Calin-Jageman IE, Calin-Jageman RJ. Characterization of the rapid transcriptional response to long-term sensitization training in Aplysia californica. Neurobiol Learn Mem 2014; 116:27-35. [PMID: 25117657 DOI: 10.1016/j.nlm.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022]
Abstract
We used a custom-designed microarray and quantitative PCR to characterize the rapid transcriptional response to long-term sensitization training in the marine mollusk Aplysia californica. Aplysia were exposed to repeated noxious shocks to one side of the body, a procedure known to induce a long-lasting, transcription-dependent increase in reflex responsiveness that is restricted to the side of training. One hour after training, pleural ganglia from the trained and untrained sides of the body were harvested; these ganglia contain the sensory nociceptors which help mediate the expression of long-term sensitization memory. Microarray analysis from 8 biological replicates suggests that long-term sensitization training rapidly regulates at least 81 transcripts. We used qPCR to test a subset of these transcripts and found that 83% were confirmed in the same samples, and 86% of these were again confirmed in an independent sample. Thus, our new microarray design shows strong convergent and predictive validity for analyzing the transcriptional correlates of memory in Aplysia. Fully validated transcripts include some previously identified as regulated in this paradigm (ApC/EBP and ApEgr) but also include novel findings. Specifically, we show that long-term sensitization training rapidly up-regulates the expression of transcripts which may encode Aplysia homologs of a C/EBPγ transcription factor, a glycine transporter (GlyT2), and a vacuolar-protein-sorting-associated protein (VPS36).
Collapse
Affiliation(s)
- Samantha Herdegen
- Neuroscience Program, Dominican University, River Forest, IL, United States
| | - Geraldine Holmes
- Neuroscience Program, Dominican University, River Forest, IL, United States
| | - Ashly Cyriac
- Neuroscience Program, Dominican University, River Forest, IL, United States
| | | | | |
Collapse
|
12
|
Mason MJ, Watkins AJ, Wakabayashi J, Buechler J, Pepino C, Brown M, Wright WG. Connecting model species to nature: predator-induced long-term sensitization in Aplysia californica. ACTA ACUST UNITED AC 2014; 21:363-7. [PMID: 25028394 PMCID: PMC4105716 DOI: 10.1101/lm.034330.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous research on sensitization in Aplysia was based entirely on unnatural noxious stimuli, usually electric shock, until our laboratory found that a natural noxious stimulus, a single sublethal lobster attack, causes short-term sensitization. We here extend that finding by demonstrating that multiple lobster attacks induce long-term sensitization (≥24 h) as well as similar, although not identical, neuronal correlates as observed after electric shock. Together these findings establish long- and short-term sensitization caused by sublethal predator attack as a natural equivalent to sensitization caused by artificial stimuli.
Collapse
Affiliation(s)
- Maria J Mason
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - Amanda J Watkins
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - Jordann Wakabayashi
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - Jennifer Buechler
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - Christine Pepino
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - Michelle Brown
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| | - William G Wright
- Schmid College of Science, Chapman University, Orange, California 92866, USA
| |
Collapse
|
13
|
Chen X, Peterson J, Nachman RJ, Ganetzky B. Drosulfakinin activates CCKLR-17D1 and promotes larval locomotion and escape response in Drosophila. Fly (Austin) 2012; 6:290-7. [PMID: 22885328 DOI: 10.4161/fly.21534] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuropeptides are ubiquitous in both mammals and invertebrates and play essential roles in regulation and modulation of many developmental and physiological processes through activation of G-protein-coupled-receptors (GPCRs). However, the mechanisms by which many of the neuropeptides regulate specific neural function and behaviors remain undefined. Here we investigate the functions of Drosulfakinin (DSK), the Drosophila homolog of vertebrate neuropeptide cholecystokinin (CCK), which is the most abundant neuropeptide in the central nervous system. We provide biochemical evidence that sulfated DSK-1 and DSK-2 activate the CCKLR-17D1 receptor in a cell culture assay. We further examine the role of DSK and CCKLR-17D1 in the regulation of larval locomotion, both in a semi-intact larval preparation and in intact larvae under intense light exposure. Our results suggest that DSK/CCKLR-17D1 signaling promote larval body wall muscle contraction and is necessary for mediating locomotor behavior in stress-induced escape response.
Collapse
Affiliation(s)
- Xu Chen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
14
|
Tanaka Y. Recent topics on the regulatory mechanism of ecdysteroidogenesis by the prothoracic glands in insects. Front Endocrinol (Lausanne) 2011; 2:107. [PMID: 22645515 PMCID: PMC3355830 DOI: 10.3389/fendo.2011.00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/06/2011] [Indexed: 11/30/2022] Open
Abstract
Molting and metamorphosis are strictly regulated by steroid hormones known as ecdysteroids. It is now widely recognized that ecdysteroid biosynthesis (ecdysteroidogenesis) in the prothoracic gland (PG) is regulated by the tropic factor prothoracicotropic hormone (PTTH). However, the importance of PTTH in the induction of molting and metamorphosis remains unclear, and other mechanisms are thought to be involved in the regulation of ecdysteroidogenesis by the PG. Recently, new regulatory mechanisms, prothoracicostatic factors, and neural regulation have been explored using the silkworm, Bombyx mori, and two circulating prothoracicostatic factors, prothoracicostatic peptide (PTSP) and Bommo-myosuppressin (BMS), have been identified. Whereas PTTH and BMS are secreted from the brain, PTSP is secreted from the peripheral neurosecretory system - the epiproctodeal gland - during the molting stage. The molecular basis of neural regulation of ecdysteroidogenesis has been revealed for the first time in B. mori. The innervating neurons supply both Bommo-FMRF related peptide (BRFa) and orcokinin to maintain low levels of ecdysteroids during the feeding stage. These complex regulatory mechanisms - involving tropic and static factors, peripheral neurosecretory cells as well as the central neuroendocrine system, and neural regulation in addition to circulating factors collaborate to regulate ecdysteroidogenesis. Thus, together they create the finely tuned fluctuations in ecdysteroid titers needed in the hemolymph during insect development.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Insect Growth Regulation Research Unit, Division of Insect Science, National Institute of Agrobiological SciencesTsukuba, Japan
| |
Collapse
|
15
|
Peptide-induced modulation of synaptic transmission and escape response in Drosophila requires two G-protein-coupled receptors. J Neurosci 2010; 30:14724-34. [PMID: 21048131 DOI: 10.1523/jneurosci.3612-10.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptides are found in both mammals and invertebrates and can modulate neural function through activation of G-protein-coupled receptors (GPCRS). The precise mechanisms by which many of these GPCRs modulate specific signaling cascades to regulate neural function are not well defined. We used Drosophila melanogaster as a model to examine both the cellular and behavioral effects of DPKQDFMRFamide, the most abundant peptide encoded by the dFMRF gene. We show that DPKQDFMRFamide enhanced synaptic transmission through activation of two G-protein-coupled receptors, Fmrf Receptor (FR) and Dromyosupressin Receptor-2 (DmsR-2). The peptide increased both the presynaptic Ca(2+) response and the quantal content of released transmitter. Peptide-induced modulation of synaptic function could be abrogated by depleting intracellular Ca(2+) stores or by interfering with Ca(2+) release from the endoplasmic reticulum through disruption of either the ryanodine receptor or the inositol 1,4,5-trisphosphate receptor. The peptide also altered behavior. Exogenous DPKQDFMRFamide enhanced fictive locomotion; this required both the FR and DmsR-2. Likewise, both receptors were required for an escape response to intense light exposure. Thus, coincident detection of a peptide by two GPCRs modulates synaptic function through effects of Ca(2+)-induced Ca(2+) release, and we hypothesize that these mechanisms are involved in behavioral responses to environmental stress.
Collapse
|
16
|
Presynaptic and postsynaptic mechanisms of synaptic plasticity and metaplasticity during intermediate-term memory formation in Aplysia. J Neurosci 2010; 30:5781-91. [PMID: 20410130 DOI: 10.1523/jneurosci.4947-09.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic plasticity and learning involve different mechanisms depending on the following: (1) the stage of plasticity and (2) the history of plasticity, or metaplasticity. However, little is known about how these two factors are related. We have addressed that question by examining mechanisms of synaptic plasticity during short-term and intermediate-term behavioral sensitization and dishabituation in a semi-intact preparation of the Aplysia siphon-withdrawal reflex. Dishabituation differs from sensitization in that it is preceded by habituation, and is thus a paradigm for metaplasticity. We find that whereas facilitation during short-term sensitization by one tail shock involves presynaptic covalent modifications by protein kinase A (PKA) and CamKII, facilitation during intermediate-term sensitization by four shocks involves both presynaptic (PKA, CaMKII) and postsynaptic (Ca(2+), CaMKII) covalent modifications, as well as both presynaptic and postsynaptic protein synthesis. The facilitation also involves presynaptic spike broadening 2.5 min after either one or four shocks, but not at later times. Dishabituation by four shocks differs from sensitization in several ways. First, it does not involve PKA or CaMKII, but rather involves presynaptic PKC. In addition, unlike sensitization with the same shock, dishabituation by four shocks does not involve protein synthesis or presynaptic spike broadening, and it also does not involve postsynaptic Ca(2+). These results demonstrate that not only the mechanisms but also the site of plasticity depend on both the stage of plasticity and metaplasticity during memory formation.
Collapse
|
17
|
Zapara TA, Proskura AL, Ratushnyak AS, Shtark MB, Epstein OI. Substances in subthreshold concentrations under stress conditions can act as conditioned stimuli and trigger defense reactions. Bull Exp Biol Med 2009; 147:42-4. [PMID: 19526127 DOI: 10.1007/s10517-009-0454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The capacity of living systems to perceive low-intensity stimuli sometimes inducing protective reactions is still little studied. Incubation of neurons under conditions increasing the content of cAMP and Ca(2+) increases the amplitude of their responses to lidocaine (10(-3) M). After cell preconditioning with low concentrations of lidocaine (10(-15) M) under these conditions, the protective effects of "ineffective" concentrations were detected, because the response amplitude did not decrease. It was hypothesized that the basic amplitude responses retrieved by lidocaine in a concentration of 10(-3) M are memory traces about the effects of this compound in subthreshold concentrations.
Collapse
Affiliation(s)
- T A Zapara
- Engineering and Design Institute of Computer Science, Siberian Division of Russian Academy of Sciences, Russia.
| | | | | | | | | |
Collapse
|
18
|
Wang DO, Kim SM, Zhao Y, Hwang H, Miura SK, Sossin WS, Martin KC. Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science 2009; 324:1536-40. [PMID: 19443737 PMCID: PMC2821090 DOI: 10.1126/science.1173205] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long-term memory and synaptic plasticity require changes in gene expression and yet can occur in a synapse-specific manner. Messenger RNA localization and regulated translation at synapses are thus critical for establishing synapse specificity. Using live-cell microscopy of photoconvertible fluorescent protein translational reporters, we directly visualized local translation at synapses during long-term facilitation of Aplysia sensory-motor synapses. Translation of the reporter required multiple applications of serotonin, was spatially restricted to stimulated synapses, was transcript- and stimulus-specific, and occurred during long-term facilitation but not during long-term depression of sensory-motor synapses. Translational regulation only occurred in the presence of a chemical synapse and required calcium signaling in the postsynaptic motor neuron. Thus, highly regulated local translation occurs at synapses during long-term plasticity and requires trans-synaptic signals.
Collapse
Affiliation(s)
- Dan Ohtan Wang
- Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles (UCLA), BSRB 390B, 615 Charles E. Young Drive South, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Fioravante D, Liu RY, Byrne JH. The ubiquitin-proteasome system is necessary for long-term synaptic depression in Aplysia. J Neurosci 2008; 28:10245-56. [PMID: 18842884 PMCID: PMC2571080 DOI: 10.1523/jneurosci.2139-08.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/20/2008] [Accepted: 08/05/2008] [Indexed: 01/24/2023] Open
Abstract
The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.
Collapse
Affiliation(s)
- Diasinou Fioravante
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030
| | - Rong-Yu Liu
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030
| | - John H. Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030
| |
Collapse
|
20
|
Glanzman DL. New tricks for an old slug: the critical role of postsynaptic mechanisms in learning and memory in Aplysia. PROGRESS IN BRAIN RESEARCH 2008; 169:277-92. [PMID: 18394481 PMCID: PMC2855241 DOI: 10.1016/s0079-6123(07)00017-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The marine snail Aplysia has served for more than four decades as an important model system for neurobiological analyses of learning and memory. Until recently, it has been believed that learning and memory in Aplysia were due predominately, if not exclusively, to presynaptic mechanisms. For example, two nonassociative forms of learning exhibited by Aplysia, sensitization and dishabituation of its defensive withdrawal reflex, have been previously ascribed to presynaptic facilitation of the connections between sensory and motor neurons that mediate the reflex. Recent evidence, however, indicates that postsynaptic mechanisms play a far more important role in learning and memory in Aplysia than formerly appreciated. In particular, dishabituation and sensitization depend on a rise in intracellular Ca(2+) in the postsynaptic motor neuron, postsynaptic exocytosis, and modulation of the functional expression of postsynaptic AMPA-type glutamate receptors. In addition, the expression of the persistent presynaptic changes that occur during intermediate- and long-term dishabituation and sensitization appears to require retrograde signals that are triggered by elevated postsynaptic Ca(2+). The model for learning-related synaptic plasticity proposed here for Aplysia is similar to current mammalian models. This similarity suggests that the cellular mechanisms of learning and memory have been highly conserved during evolution.
Collapse
Affiliation(s)
- David L Glanzman
- Department of Physiological Science, UCLA College, Los Angeles, CA 90095-1606, USA.
| |
Collapse
|
21
|
Jami SA, Wright WG, Glanzman DL. Differential classical conditioning of the gill-withdrawal reflex in Aplysia recruits both NMDA receptor-dependent enhancement and NMDA receptor-dependent depression of the reflex. J Neurosci 2007; 27:3064-8. [PMID: 17376967 PMCID: PMC6672468 DOI: 10.1523/jneurosci.2581-06.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Differential classical conditioning of the gill-withdrawal response (GWR) in Aplysia can be elicited by training in which a conditioned stimulus (CS) delivered to one side of the siphon (the CS+) is paired with a noxious unconditioned stimulus (US; tail shock), while a second conditioned stimulus (the CS-), delivered to a different siphon site, is unpaired with the US. NMDA receptor (NMDAR) activation has been shown previously to be critical for nondifferential classical conditioning in Aplysia. Here, we used a semi-intact preparation to test whether differential classical conditioning of the GWR also depends on activation of NMDARs. Differential training produced conditioned enhancement of the reflexive response to the CS+ and a reduction in the response to the CS-. Comparison of the results after differential training with those after training in which only the two CSs were presented (CS-alone experiments) indicated that the decrement in the response to CS- after differential training was not caused by habituation. Surprisingly, differential training in the NMDAR antagonist APV (DL-2-amino-5-phosphonovalerate) blocked not only the conditioned enhancement of the GWR, but also the conditioning-induced depression of the GWR. We suggest that differential conditioning involves an NMDAR-dependent, competitive interaction between the separate neural pathways activated by the CS+ and CS-.
Collapse
Affiliation(s)
- Shekib A. Jami
- Department of Physiological Science, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1606
| | - William G. Wright
- Department of Physiological Science, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1606
- Biological Sciences, Chapman University, Orange, California 92866, and
| | - David L. Glanzman
- Department of Physiological Science, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1606
- Department of Neurobiology and the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1761
| |
Collapse
|
22
|
Antzoulatos EG, Byrne JH. Long-term sensitization training produces spike narrowing in Aplysia sensory neurons. J Neurosci 2007; 27:676-83. [PMID: 17234599 PMCID: PMC6672787 DOI: 10.1523/jneurosci.4025-06.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Both short- and long-term sensitization of withdrawal reflexes of Aplysia are attributable at least in part to facilitation of the sensorimotor synapse. Previously, short-term synaptic facilitation has been associated with spike broadening and no change in temporal dynamics of burst transmission. In the present study, we examined whether long-term sensitization (LTS) is also associated with spike broadening and whether long-term synaptic facilitation is accompanied by changes in temporal dynamics. The results indicate that the temporal dynamics of the sensorimotor synapse are preserved after long-term facilitation. However, in contrast to short-term sensitization, LTS was accompanied by spike narrowing. The spike narrowing was observed both in centrally triggered spikes in isolated ganglia and in peripherally triggered spikes in reduced tail preparations. In addition, in reduced tail preparations, fewer spike failures in the afferent discharge of sensory neurons occurred in response to tail stimulation after ipsilateral LTS. Collectively, the results reveal that long-term sensitization affects the spike waveform of sensory neurons and enhances the sensory neuron responses to peripheral stimuli, but does not modify the synaptic dynamics of homosynaptic depression.
Collapse
Affiliation(s)
- Evangelos G. Antzoulatos
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030
| | - John H. Byrne
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030
| |
Collapse
|
23
|
Hoover BA, Nguyen H, Thompson L, Wright WG. Associative memory in three aplysiids: correlation with heterosynaptic modulation. Learn Mem 2007; 13:820-6. [PMID: 17142308 PMCID: PMC1783637 DOI: 10.1101/lm.284006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Much recent research on mechanisms of learning and memory focuses on the role of heterosynaptic neuromodulatory signaling. Such neuromodulation appears to stabilize Hebbian synaptic changes underlying associative learning, thereby extending memory. Previous comparisons of three related sea-hares (Mollusca, Opisthobranchia) uncovered interspecific variation in neuromodulatory signaling: strong in Aplysia californica, immeasureable in Dolabrifera dolabrifera, and intermediate in Phyllaplysia taylori. The present study addressed whether this interspecific variation in neuromodulation is correlated with memory of associative (classical conditioning) learning. We differentially conditioned the tail-mantle withdrawal reflex of each of the three species: Mild touch to one side of the tail was paired with a noxious electrical stimulus to the neck. Mild touch to the other side served as an internal control. Post-training reflex amplitudes were tested 15-30 min after training and compared with pre-test amplitudes. All three species showed conditioning: training increased the paired reflex more than the unpaired reflex. However, the temporal pattern of conditioning varied between species. Aplysia showed modest conditioning that grew across the post-test period. Dolabrifera showed distinctly short-lived conditioning, present only on the first post-test. The time course of memory in Phyllaplysia was intermediate, although not statistically distinguishable from the other two species. Taken together, these experiments suggest that evolutionary changes in nonassociative heterosynaptic modulation may contribute to evolutionary changes in the stability of the memory of classical conditioning.
Collapse
Affiliation(s)
- Brian A. Hoover
- Department of Biology, Chapman University, Orange, California 92866, USA
| | - Hoang Nguyen
- Department of Biology, Chapman University, Orange, California 92866, USA
| | - Laura Thompson
- Department of Pathology, Colorado State University, Fort Collins, Colorado 80521, USA
| | - William G. Wright
- Department of Biology, Chapman University, Orange, California 92866, USA
- Corresponding author.E-mail ; fax (714) 532-6048
| |
Collapse
|
24
|
Hawkins RD, Cohen TE, Kandel ER. Dishabituation in Aplysia can involve either reversal of habituation or superimposed sensitization. Learn Mem 2006; 13:397-403. [PMID: 16705138 PMCID: PMC1475823 DOI: 10.1101/lm.49706] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 01/27/2006] [Indexed: 11/25/2022]
Abstract
Dishabituation has been thought to be due either to reversal of the process of habituation or to a second process equivalent to sensitization superimposed on habituation. One way to address this question is by testing whether dishabituation and sensitization can be dissociated. Previous studies using this approach in Aplysia have come to different conclusions about the nature of dishabituation, perhaps because those studies differed in many respects, including (1) whether they also observed transient behavioral inhibition, and (2) whether they used test stimuli that activated the LE siphon sensory neurons or as yet unidentified sensory neurons. To attempt to resolve the apparent contradictions between the previous studies, we have explored the importance of these two factors by performing a parametric study of dishabituation and sensitization of gill withdrawal in a simplified preparation that does not exhibit transient behavioral inhibition, using two different test stimuli that are known to activate the LE (Touch) or unidentified (Not Touch) sensory neurons. We find that dishabituation and sensitization in this preparation have similar time courses and generally similar functions of shock intensity. However, under one condition, with the Not Touch stimulus 2.5 min after the shock, dishabituation has a reverse effect of shock intensity. Additional analyses suggest that dishabituation with the Not Touch stimulus 2.5 min after the shock is due to reversal of habituation, whereas 12.5 min after the shock, dishabituation is due to superimposed sensitization. These results thus suggest that dishabituation may involve either process in the same preparation, and begin to define the conditions that favor one or the other.
Collapse
Affiliation(s)
- Robert D Hawkins
- Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
25
|
Li Q, Roberts AC, Glanzman DL. Synaptic facilitation and behavioral dishabituation in Aplysia: dependence on release of Ca2+ from postsynaptic intracellular stores, postsynaptic exocytosis, and modulation of postsynaptic AMPA receptor efficacy. J Neurosci 2006; 25:5623-37. [PMID: 15944390 PMCID: PMC6724986 DOI: 10.1523/jneurosci.5305-04.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensitization and dishabituation of the defensive withdrawal reflex in Aplysia have been ascribed to presynaptic mechanisms, particularly presynaptic facilitation of transmission at sensorimotor synapses in the CNS of Aplysia. Here, we show that facilitation of sensorimotor synapses in cell culture during and after serotonin (5-HT) exposure depends on a rise in postsynaptic intracellular Ca(2+) and release of Ca(2+) from postsynaptic stores. We also provide support for the idea that postsynaptic AMPA receptor insertion mediates a component of synaptic facilitation by showing that facilitation after 5-HT offset is blocked by injecting botulinum toxin, an exocytotic inhibitor, into motor neurons before application of 5-HT. Using a reduced preparation, we extend our results to synaptic facilitation in the abdominal ganglion. We show that tail nerve shock-induced facilitation of siphon sensorimotor synapses also depends on elevated postsynaptic Ca(2+) and release of Ca(2+) from postsynaptic stores and recruits a late phase of facilitation that involves selective enhancement of the AMPA receptor-mediated synaptic response. To examine the potential role of postsynaptic exocytosis of AMPA receptors in learning in Aplysia, we test the effect of injecting botulinum toxin into siphon motor neurons on dishabituation of the siphon-withdrawal reflex. We find that postsynaptic injections of the toxin block dishabituation resulting from tail shock. Our results indicate that postsynaptic mechanisms, particularly Ca(2+)-dependent modulation of AMPA receptor trafficking, play a critical role in synaptic facilitation as well as in dishabituation and sensitization in Aplysia.
Collapse
MESH Headings
- Animals
- Aplysia/physiology
- Behavior, Animal/physiology
- Calcium/metabolism
- Calcium Channels/physiology
- Cells, Cultured
- Excitatory Postsynaptic Potentials
- Exocytosis
- Ganglia, Invertebrate/cytology
- Ganglia, Invertebrate/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Intracellular Space/metabolism
- Motor Neurons/physiology
- Motor Neurons/ultrastructure
- Neurons, Afferent/physiology
- Neurons, Afferent/ultrastructure
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/physiology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, N-Methyl-D-Aspartate/physiology
- Ryanodine Receptor Calcium Release Channel/physiology
- Serotonin/physiology
- Synapses/physiology
- Tail/innervation
Collapse
Affiliation(s)
- Quan Li
- Department of Physiological Science, University of California Los Angeles, 90095-1606, USA
| | | | | |
Collapse
|
26
|
Scuri R, Mozzachiodi R, Brunelli M. Role for calcium signaling and arachidonic acid metabolites in the activity-dependent increase of AHP amplitude in leech T sensory neurons. J Neurophysiol 2005; 94:1066-73. [PMID: 15872070 DOI: 10.1152/jn.00075.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have revealed a new form of activity-dependent modulation of the afterhyperpolarization (AHP) in tactile (T) neurons of the leech Hirudo medicinalis. The firing of T cells is characterized by an AHP, which is mainly due to the activity of the Na+/K+ ATPase. Low-frequency repetitive stimulation of T neurons leads to a robust increment of the AHP amplitude, which is correlated with a synaptic depression between T neuron and follower cells. In the present study, we explored the molecular cascades underlying the AHP increase. We tested the hypothesis that this activity-dependent phenomenon was triggered by calcium influx during neural activity by applying blockers of voltage-dependent Ca2+ channels. We report that AHP increase requires calcium influx that, in turn, induces release of calcium from intracellular stores so sustaining the enhancement of AHP. An elevation of the intracellular calcium can activate the cytosolic isoforms of the phosholipase A2 (PLA2). Therefore we analyzed the role of PLA2 in the increase of the AHP, and we provide evidence that not only PLA2 but also the recruitment of arachidonic acid metabolites generated by the 5-lipoxygenase pathway are necessary for the induction of AHP increase. These data indicate that a sophisticated cascade of intracellular signals links the repetitive discharge of T neurons to the activation of molecular pathways, which finally may alter the activity of critical enzymes such as the Na+/K+ ATPase, that sustains the generation of the AHP and its increase during repetitive stimulation. These results also suggest the potential importance of the poorly studied 5-lipoxygenase pathway in forms of neuronal plasticity.
Collapse
Affiliation(s)
- Rossana Scuri
- Department of Physiology and Biochemistry G. Moruzzi, University of Pisa, Pisa, Italy.
| | | | | |
Collapse
|
27
|
Yamanaka N, Hua YJ, Mizoguchi A, Watanabe K, Niwa R, Tanaka Y, Kataoka H. Identification of a novel prothoracicostatic hormone and its receptor in the silkworm Bombyx mori. J Biol Chem 2005; 280:14684-90. [PMID: 15701625 DOI: 10.1074/jbc.m500308200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insect brain regulates the activity of the prothoracic glands to secrete ecdysteroids, which affect growth, molting, and metamorphosis. Here we report the identification of a novel prothoracicostatic factor and its receptor in the silkworm Bombyx mori. The prothoracicostatic factor purified from pupal brains of B. mori is a decapeptide with the conserved structure of an insect myosuppressin and thus named Bommo-myosuppressin. Bommo-myosuppressin dose dependently suppressed the cAMP level and inhibited ecdysteroidogenesis in the larval prothoracic glands at much lower concentrations than the prothoracicostatic peptide, the other prothoracicostatic factor reported previously. In vitro analyses using a prothoracic gland incubation method revealed that Bommo-myosuppressin and prothoracicostatic peptide regulate the prothoracic gland activity via different receptors. In situ hybridization and immunohistochemistry revealed the existence of Bommo-myosuppressin in the brain neurosecretory cells projecting to neurohemal organs in which it is stored. We also identified and functionally characterized a specific receptor for Bommo-myosuppressin and showed its high expression in the prothoracic glands. All these results suggest that Bommo-myosuppressin functions as a prothoracicostatic hormone and plays an important role in controlling insect development.
Collapse
Affiliation(s)
- Naoki Yamanaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Marinesco S, Kolkman KE, Carew TJ. Serotonergic Modulation in Aplysia. I. Distributed Serotonergic Network Persistently Activated by Sensitizing Stimuli. J Neurophysiol 2004; 92:2468-86. [PMID: 15140903 DOI: 10.1152/jn.00209.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A common feature of arousing stimuli used as reinforcement in animal models of learning is that they promote memory formation through widespread effects in the CNS. In the marine mollusk Aplysia, sensitization is typically induced by tail-shock, an aversive reinforcer that triggers a state of defensive arousal characterized by escape locomotion and increased heart rate. Serotonin (5-HT) contributes importantly to sensitization of defensive reflexes as well as to the regulation of locomotion and heart rate. Although specific serotonergic neurons increase their firing after tail-shock, it remains unclear whether this effect is restricted to these neurons or whether tail-shock recruits a more global serotonergic system. In this study, we recorded from serotonergic neurons throughout the CNS, which were prelabeled with 5,7-dihydroxytryptamine, during an in vitro analog of sensitization training, tail-nerve shock. We found that most of the serotonergic neurons that we recorded from (80%) increased their firing rate for several minutes after nerve shock. Most serotonergic neurons in the pedal and abdominal ganglion were also excited by 5-HT and by intracellular activation of the two serotonergic neurons CB1/CC3. This interconnectivity between serotonergic neurons might contribute to spread excitation within a large proportion of the serotonergic system during sensitization training. It is also possible that serotonergic neurons could be activated by 5-HT present in the hemolymph via a neuro-humoral positive feedback mechanism. Overall, these data indicate that sensitization training activates a large proportion of Aplysia serotonergic neurons and that this form of learning occurs in a context of increased serotonergic tone.
Collapse
Affiliation(s)
- Stéphane Marinesco
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine California 92697-4550, USA
| | | | | |
Collapse
|
29
|
Marinesco S, Wickremasinghe N, Kolkman KE, Carew TJ. Serotonergic Modulation in Aplysia. II. Cellular and Behavioral Consequences of Increased Serotonergic Tone. J Neurophysiol 2004; 92:2487-96. [PMID: 15140904 DOI: 10.1152/jn.00210.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT) plays an important role in sensitization of defensive reflexes in Aplysia and is also involved in several aspects of arousal, such as the control of locomotion and of cardiovascular tone. In the preceding paper, we showed that tail-nerve shock, a noxious stimulus that readily induces sensitization, increases the firing rate of a large number of serotonergic neurons throughout the CNS. However, the functional consequences of such an increase in serotonergic tone are still poorly understood. In this study, we examined this question by using the 5-HT precursor 5-hydroxytryptophan (5-HTP) to specifically increase 5-HT release in the CNS. Increased tonic 5-HT release after 5-HTP treatment was manifested by facilitation of sensorimotor (SN-MN) synapses, increased firing rate of serotonergic neurons in the pedal and abdominal ganglia, and enhanced 5-HT release evoked by tail-nerve shock. When 5-HTP was administered to freely moving animals, it produced a strong arousal response characterized by increased locomotion and heart rate, which was reminiscent of the defensive arousal reaction triggered by noxious stimulation such as tail-shock. In contrast, 5-HTP actually inhibited the tail-induced siphon-withdrawal reflex. It is possible that 5-HT-induced facilitation of SN-MN synapses was counteracted by inhibition of polysynaptic reflex pathways between SNs and MNs, resulting in transient behavioral inhibition of the reflex, which could favor escape locomotion and/or respiration shortly after an aversive stimulus. We conclude that a major function associated with the activation of the Aplysia serotonergic system evoked by noxious stimuli is the triggering of a defensive arousal response. It is known that tail-shock-induced serotonergic activation contributes to memory encoding at least in part by facilitating SN-MN synapses. However, this effect in isolation might not be sufficient for the behavioral expression of sensitization.
Collapse
Affiliation(s)
- Stéphane Marinesco
- Department of Neurobiology and Behavior, CNLM, University of California, Irvine, CA 92697-4550, USA
| | | | | | | |
Collapse
|
30
|
Kim K, Li C. Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 2004; 475:540-50. [PMID: 15236235 DOI: 10.1002/cne.20189] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides (FaRPs) have been found throughout the animal kingdom, where they are involved in many behaviors. We previously identified 22 genes comprising the flp gene family that encodes FaRPs in Caenorhabditis elegans; in this paper we report the identification of another flp gene, flp-23. As a first step toward determining their functional roles in C. elegans, we examined the cell-specific expression pattern of the flp gene family. Of the 19 flp genes examined, each gene is expressed in a distinct set of cells; these cells include interneurons, motor neurons, and sensory neurons that are involved in multiple behaviors, as well as supporting cells, muscle cells, and epidermal cells. Several flp genes show sex-specific expression patterns. Furthermore, we find that expression of two flp genes changes in response to the developmental state of the animal. Many neurons express multiple flp genes. To investigate how flp genes are regulated in different neuronal subtypes, we examined flp expression in a small, well-defined subset of neurons, the mechanosensory neurons. Mutations in the unc-86 and mec-3 genes, which are necessary for the production and differentiation of the mechanosensory neurons, result in the complete loss of flp-4, flp-8, and flp-20 expression in mechanosensory neurons. Collectively, these data indicate that members of the flp gene family are likely to influence multiple behaviors and that their regulation can be dependent on the developmental state of the organism.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
31
|
Cohen-Armon M, Visochek L, Katzoff A, Levitan D, Susswein AJ, Klein R, Valbrun M, Schwartz JH. Long-Term Memory Requires PolyADP-ribosylation. Science 2004; 304:1820-2. [PMID: 15205535 DOI: 10.1126/science.1096775] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PolyADP-ribose-polymerase 1 is activated in neurons that mediate several forms of long-term memory in Aplysia. Because polyADP-ribosylation of nuclear proteins is a response to DNA damage in virtually all eukaryotic cells, it is surprising that activation of the polymerase occurs during learning and is required for long-term memory. We suggest that fast and transient decondensation of chromatin structure by polyADP-ribosylation enables the transcription needed to form long-term memory without strand breaks in DNA.
Collapse
Affiliation(s)
- Malka Cohen-Armon
- Neufeld Cardiac Research Institute, Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Barbas D, DesGroseillers L, Castellucci VF, Carew TJ, Marinesco S. Multiple serotonergic mechanisms contributing to sensitization in aplysia: evidence of diverse serotonin receptor subtypes. Learn Mem 2003; 10:373-86. [PMID: 14557610 PMCID: PMC218003 DOI: 10.1101/lm.66103] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The neurotransmitter serotonin (5-HT) plays an important role in memory encoding in Aplysia. Early evidence showed that during sensitization, 5-HT activates a cyclic AMP-protein kinase A (cAMP-PKA)-dependent pathway within specific sensory neurons (SNs), which increases their excitability and facilitates synaptic transmission onto their follower motor neurons (MNs). However, recent data suggest that serotonergic modulation during sensitization is more complex and diverse. The neuronal circuits mediating defensive reflexes contain a number of interneurons that respond to 5-HT in ways opposite to those of the SNs, showing a decrease in excitability and/or synaptic depression. Moreover, in addition to acting through a cAMP-PKA pathway within SNs, 5-HT is also capable of activating a variety of other protein kinases such as protein kinase C, extracellular signal-regulated kinases, and tyrosine kinases. This diversity of 5-HT responses during sensitization suggests the presence of multiple 5-HT receptor subtypes within the Aplysia central nervous system. Four 5-HT receptors have been cloned and characterized to date. Although several others probably remain to be characterized in molecular terms, especially the Gs-coupled 5-HT receptor capable of activating cAMP-PKA pathways, the multiplicity of serotonergic mechanisms recruited into action during learning in Aplysia can now be addressed from a molecular point of view.
Collapse
Affiliation(s)
- Demian Barbas
- Département de biochimie, Université de Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
33
|
Marqués G, Haerry TE, Crotty ML, Xue M, Zhang B, O'Connor MB. Retrograde Gbb signaling through the Bmp type 2 receptor wishful thinking regulates systemic FMRFa expression in Drosophila. Development 2003; 130:5457-70. [PMID: 14507784 DOI: 10.1242/dev.00772] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amidated neuropeptides of the FMRFamide class regulate numerous physiological processes including synaptic efficacy at the Drosophila neuromuscular junction (NMJ). We demonstrate here that mutations in wishful thinking (wit) a gene encoding a Drosophila Bmp type 2 receptor that is required for proper neurotransmitter release at the neuromuscular junction, also eliminates expression of FMRFa in that subset of neuroendocrine cells (Tv neurons) which provide the systemic supply of FMRFa peptides. We show that Gbb, a Bmp ligand expressed in the neurohemal organ provides a retrograde signal that helps specify the peptidergic phenotype of the Tv neurons. Finally, we show that supplying FMRFa in neurosecretory cells partially rescues the wit lethal phenotype without rescuing the primary morphological or electrophysiological defects of wit mutants. We propose that Wit and Gbb globally regulate NMJ function by controlling both the growth and transmitter release properties of the synapse as well as the expression of systemic modulators of NMJ synaptic activity.
Collapse
Affiliation(s)
- Guillermo Marqués
- Department of Genetics, Cell Biology and Development, Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN55455, USA
| | | | | | | | | | | |
Collapse
|
34
|
Marinesco S, Duran KL, Wright WG. Evolution of learning in three aplysiid species: differences in heterosynaptic plasticity contrast with conservation in serotonergic pathways. J Physiol 2003; 550:241-53. [PMID: 12740422 PMCID: PMC2343019 DOI: 10.1113/jphysiol.2003.038356] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We investigated the neurobiological basis of variation in sensitization between three aplysiid species: Aplysia californica, Phyllaplysia taylori and Dolabrifera dolabrifera. We tested two different forms of sensitization induced by a noxious tail shock: local sensitization, expressed near the site of shock, and general sensitization, tested at remote sites. Aplysia showed both local and general sensitization, whereas Phyllaplysia demonstrated only local sensitization, and Dolabrifera lacked both forms of learning. We then investigated a neurobiological correlate of sensitization, heterosynaptic modulation of sensory neuron excitability by tail-nerve stimulation. We found (1) an increase in sensory neuron (SN) excitability after both ipsilateral and contralateral nerve stimulation in Aplysia, (2) a smaller and shorter-lasting increase in Phyllaplysia, and (3) no effect in Dolabrifera. Because sensitization in Aplysia is strongly correlated with serotonergic (5-HT) neuromodulation, we hypothesized that the observed interspecific variation in sensitization and SN neuromodulation might be correlated with variation in the anatomy and/or functional response of the serotonergic system. However, using immunohistochemistry, we found that all three species showed a similar pattern of 5-HT innervation. Furthermore, they also showed comparable 5-HT release evoked by tail-nerve shock, as measured with chronoamperometry. These observations indicate that interspecific variation in learning is correlated with differences in SN heterosynaptic plasticity within a background of evolutionary conservation in the 5-HT neuromodulatory pathway. We thus hypothesize that evolutionary changes in learning phenotype do not involve modifications of the 5-HT pathway per se, but rather, changes in the response of SNs to the activation of this or other neuromodulatory pathways upon noxious stimulation.
Collapse
Affiliation(s)
- Stéphane Marinesco
- Department of Neurobiology, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
35
|
Morishita F, Nakanishi Y, Sasaki K, Kanemaru K, Furukawa Y, Matsushima O. Distribution of the Aplysia cardioexcitatory peptide, NdWFamide, in the central and peripheral nervous systems of Aplysia. Cell Tissue Res 2003; 312:95-111. [PMID: 12712320 DOI: 10.1007/s00441-003-0707-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Accepted: 01/28/2003] [Indexed: 10/25/2022]
Abstract
NdWFamide is an Aplysia cardioexcitatory tri-peptide containing D-tryptophan. To investigate the roles of this peptide, we examined the immunohistochemical distribution of NdWFamide-positive neurons in Aplysia tissues. All the ganglia of the central nervous system (CNS) contained NdWFamide-positive neurons. In particular, two left upper quadrant cells in the abdominal ganglion, and the anterior cells in the pleural ganglion showed extensive positive signals. NdWFamide-positive processes were observed in peripheral tissues, such as those of the cardio-vascular system, digestive tract, and sex-accessory organs, and in the connectives or neuropils in the CNS. NdWFamide-positive neurons were abundant in peripheral plexuses, such as the stomatogastric ring. To examine the NdWFamide contents of tissues, we fractionated peptidic extracts from the respective tissues by reversed-phase high-pressure liquid chromatography and then assayed the fractions by competitive enzyme-linked immunosorbent assay. A fraction corresponding to the retention time of synthetic NdWFamide contained the most immunoreactivity, indicating that the tissues contained NdWFamide. The prevalence of the NdWFamide content was roughly in the order: abdominal ganglion >heart >gill >blood vessels >digestive tract. In most of the tissues containing NdWFamide-positive nerves, NdWFamide modulated the motile activities of the tissues. Thus, NdWFamide seems to be a versatile neurotransmitter/modulator of Aplysia and probably regulates the physiological activities of this animal.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Antonov I, Antonova I, Kandel ER, Hawkins RD. Activity-dependent presynaptic facilitation and hebbian LTP are both required and interact during classical conditioning in Aplysia. Neuron 2003; 37:135-47. [PMID: 12526779 DOI: 10.1016/s0896-6273(02)01129-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using a simplified preparation of the Aplysia siphon-withdrawal reflex, we previously found that associative plasticity at synapses between sensory neurons and motor neurons contributes importantly to classical conditioning of the reflex. We have now tested the roles in that plasticity of two associative cellular mechanisms: activity-dependent enhancement of presynaptic facilitation and postsynaptically induced long-term potentiation. By perturbing molecular signaling pathways in individual neurons, we have provided the most direct evidence to date that each of these mechanisms contributes to behavioral learning. In addition, our results suggest that the two mechanisms are not independent but rather interact through retrograde signaling.
Collapse
Affiliation(s)
- Igor Antonov
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | |
Collapse
|
37
|
Meeusen T, Mertens I, Clynen E, Baggerman G, Nichols R, Nachman RJ, Huybrechts R, De Loof A, Schoofs L. Identification in Drosophila melanogaster of the invertebrate G protein-coupled FMRFamide receptor. Proc Natl Acad Sci U S A 2002; 99:15363-8. [PMID: 12438685 PMCID: PMC137722 DOI: 10.1073/pnas.252339599] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We here describe the cloning and characterization of the functionally active Drosophila melanogaster (Drm) FMRFamide receptor, which we designated as DrmFMRFa-R. The full-length ORF of a D. melanogaster orphan receptor, CG 2114 (Berkeley Drosophila Genome Project), was cloned from genomic DNA. This receptor is distantly related to mammalian thyroid-stimulating hormone-releasing hormone receptors and to a set of Caenorhabditis elegans orphan receptors. An extract of 5,000 central nervous systems from the related but bigger flesh fly, Neobellieria bullata (Neb), was used to screen cells expressing the orphan receptor. Successive purification steps, followed by MS, revealed the sequence of two previously uncharacterized endogenous peptides, APPQPSDNFIRFamide (Neb-FIRFamide) and pQPSQDFMRFamide (Neb-FMRFamide). These are reminiscent of other insect FMRFamide peptides, having neurohormonal as well as neurotransmitter functions. Nanomolar concentrations of the Drm FMRFamides (DPKQDFMRFamide, TPAEDFMRFamide, SDNFMRFamide, SPKQDFMRFamide, and PDNFMRFamide) activated the cognate receptor in a dose-dependent manner. To our knowledge, the cloned DrmFMRFa-R is the first functionally active FMRFamide G protein-coupled receptor described in invertebrates to date.
Collapse
Affiliation(s)
- Tom Meeusen
- Laboratory of Developmental Physiology and Molecular Biology, Katholieke Universiteit Leuven, Naamsestraat 59, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Narusuye K, Nagahama T. Cerebral CBM1 neuron contributes to synaptic modulation appearing during rejection of seaweed in Aplysia kurodai. J Neurophysiol 2002; 88:2778-95. [PMID: 12424312 DOI: 10.1152/jn.00757.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Japanese species Aplysia kurodai feeds well on Ulva but rejects Gelidium with distinctive rhythmic patterned movements of the jaws and radula. We have previously shown that the patterned jaw movements during the rejection of Gelidium might be caused by long-lasting suppression of the monosynaptic transmission from the multiaction MA neurons to the jaw-closing (JC) motor neurons in the buccal ganglia and that the modulation might be directly produced by some cerebral neurons. In the present paper, we have identified a pair of catecholaminergic neurons (CBM1) in bilateral cerebral M clusters. The CBM1, probably equivalent to CBI-1 in A. californica, simultaneously produced monosynaptic excitatory postsynaptic potentials (EPSPs) in the MA and JC neurons. Firing of the CBM1 reduced the size of the inhibitory postsynaptic currents (IPSCs) in the JC neuron, evoked by the MA spikes, for >100 s. Moreover, the application of dopamine mimicked the CBM1 modulatory effects and pretreatment with a D1 antagonist, SCH23390, blocked the modulatory effects induced by dopamine. It could also largely block the modulatory effects induced by the CBM1 firing. These results suggest that the CBM1 may directly modulate the synaptic transmission by releasing dopamine. Moreover, we explored the CBM1 spike activity induced by taste stimulation of the animal lips with seaweed extracts by the use of calcium imaging. The calcium-sensitive dye, Calcium Green-1, was iontophoretically loaded into a cell body of the CBM1 using a microelectrode. Application of either Ulva or Gelidium extract to the lips increased the fluorescence intensity, but the Gelidium extract always induced a larger change in fluorescence compared with the Ulva extract, although the solution used induced the maximum spike responses of the CBM1 for each of the seaweed extracts. When the firing frequency of the CBM1 activity after taste stimulation was estimated, the Gelidium extract induced a spike activity of ~30 spikes/s while the Ulva extract induced an activity of ~20 spikes/s, consistent with the effective firing frequency (>25 spikes/s) for the synaptic modulation. These results suggest that the CBM1 may be one of the cerebral neurons contributing to the modulation of the basic feeding circuits for rejection induced by the taste of seaweeds such as Gelidium.
Collapse
Affiliation(s)
- Kenji Narusuye
- Department of Biology, Faculty of Science, Kobe University, Kobe 657-8501, Japan
| | | |
Collapse
|
39
|
Lovell P, McMahon B, Syed NI. Synaptic precedence during synapse formation between reciprocally connected neurons involves transmitter-receptor interactions and AA metabolites. J Neurophysiol 2002; 88:1328-38. [PMID: 12205154 DOI: 10.1152/jn.2002.88.3.1328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular mechanisms that determine specificity of synaptic connections between mutually connected neurons in the nervous system have not yet been fully examined in vertebrate and invertebrate species. Here we report on a novel form of synaptic interaction during early stages of synapse formation between reciprocally connected Lymnaea neurons. Specifically, using soma-soma synapses between an identified dopaminergic neuron (also known as the giant dopamine cell), right pedal dorsal 1 (RPeD1), and a FMRFamidergic neuron, visceral dorsal 4 (VD4), we demonstrate that although reciprocal inhibitory synapses re-form between the somata after 24-36 h of pairing, VD4 is, however, the first cell to establish synaptic contacts with RPeD1 (within 12-18 h). We show that VD4 "captures" RPeD1 first as a postsynaptic cell by suppressing its transmitter secretory machinery during early stages of cell-cell pairing. The VD4-induced suppression of transmitter release from RPeD1 was transient, and it required transcription and de novo protein synthesis dependent step in VD4 but not in RPeD1. The VD4-induced effects on RPeD1 were mimicked by a FMRFamide-like peptide. Perturbation of FMRFamide-activated metabolites of the arachidonic acid pathway in RPeD1 not only prevented FMRFamide-induced suppression of transmitter release from the giant dopamine cell but also shifted the synaptic balance in favor of RPeD1, thus making it the first cell to begin synaptic transmission with VD4 within 12-18 h. A single RPeD1 that had developed dopamine secretory capabilities overnight and was subsequently paired with VD4 for 12-18 h was, however, immune to VD4-induced suppression of transmitter release. Under these experimental conditions, both cells developed mutual inhibitory synapses concurrently. Taken together, our data provide evidence for novel synaptic interaction between reciprocally connected neurons and underscore the importance of transmitter-receptor interplay in regulating the timing of synapse formation in the nervous system.
Collapse
Affiliation(s)
- P Lovell
- Department of Cell Biology and Anatomy and Biological Sciences, Respiratory and Neuroscience Research Groups, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
40
|
McDearmid JR, Brezina V, Weiss KR. AMRP peptides modulate a novel K(+) current in pleural sensory neurons of Aplysia. J Neurophysiol 2002; 88:323-32. [PMID: 12091557 DOI: 10.1152/jn.2002.88.1.323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulation of Aplysia mechanosensory neurons is thought to underlie plasticity of defensive behaviors that are mediated by these neurons. In the past, identification of modulators that act on the sensory neurons and characterization of their actions has been instrumental in providing insight into the functional role of the sensory neurons in the defensive behaviors. Motivated by this precedent and a recent report of the presence of Aplysia Mytilus inhibitory peptide-related (AMRP) neuropeptides in the neuropile and neurons of the pleural ganglia, we sought to determine whether and how pleural sensory neurons respond to the AMRPs. In cultured pleural sensory neurons under voltage clamp, AMRPs elicited a relatively rapidly developing, then partially desensitizing, outward current. The current exhibited outward rectification; in normal 10 mM K(+), it was outward at membrane potentials more positive than -80 mV but disappeared without reversing at more negative potentials. When external K(+) was elevated to 100 mM, the AMRP-elicited current reversed around -25 mV; the shift in reversal potential was as expected for a current carried primarily by K(+). In the high-K(+) solution, the reversed current began to decrease at potentials more negative than -60 mV, creating a region of negative slope resistance in the I-V relationship. The AMRP-elicited K(+) current was blocked by extremely low concentrations of 4-aminopyridine (4-AP; IC(50) = 1.7 x 10(-7) M) but was not very sensitive to TEA. In cell-attached patches, AMRPs applied outside the patch-thus presumably through a diffusible messenger-increased the activity of a K(+) channel that very likely underlies the macroscopic current. The single-channel current exhibited outward rectification, and the open probability of the channel decreased with hyperpolarization; together, these two factors accounted for the outward rectification of the macroscopic current. Submicromolar 4-AP included in the patch pipette blocked the channel by reducing its open probability without altering the single-channel current. Based on the characteristics of the AMRP-modulated K(+) current, we conclude that it is a novel current that has not been previously described in Aplysia mechanosensory neurons. In addition to this current, two other AMRP-elicited currents, a slow, 4-AP-resistant outward current and a Na(+)-dependent inward current, were occasionally observed in the cultured sensory neurons. Responses consistent with all three currents were observed in sensory neurons in situ in intact pleural ganglia.
Collapse
Affiliation(s)
- Jonathan R McDearmid
- Department of Physiology and Biophysics and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029
| | | | | |
Collapse
|
41
|
Abstract
Biophysical, biochemical, and morphological studies have implicated sensory neurons as key sites of plasticity in the formation and retention of the memory of long-term sensitization in Aplysia californica. This study examined the effects of different sensitization training protocols on the structure of sensory neurons mediating the tail-siphon withdrawal reflex. A 4 d training period produced a robust localized outgrowth in these sensory neurons observed 24 hr after the end of training. These changes are consistent with previous results in siphon sensory neurons (Bailey and Chen, 1988a). In contrast, 1 d of sensitization training, which has been shown to effectively induce long-term behavioral sensitization and synaptic facilitation (Frost et al., 1985; Cleary et al., 1998), is not associated with morphological changes in tail sensory neurons at either 24 hr or 4 d after training. Similarly, a single treatment with the growth factor TGF-beta, which also induced facilitation, did not alter sensory neuron morphology. The different effectiveness of the two protocols was not simply a reflection of the number of stimuli presented, because a 1 d massed training protocol did not produce sensitization 24 hr after training, nor did it induce neuronal outgrowth. These results suggest that extensive sensitization training is required to induce neuronal outgrowth in tail sensory neurons, indicating that the memory of long-term sensitization induced by 1 d of training is mechanistically different from that induced by 4 d of training. Moreover, the induction of a form of long-term sensitization associated with neuronal outgrowth does not appear to be a function of the amount of stimulation but does appear to be dependent on the temporal spacing of the stimulation over multiple days.
Collapse
|
42
|
Combined effects of intrinsic facilitation and modulatory inhibition of identified interneurons in the siphon withdrawal circuitry of Aplysia. J Neurosci 2001. [PMID: 11698609 DOI: 10.1523/jneurosci.21-22-08990.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic plasticity can be induced through mechanisms intrinsic to a synapse or through extrinsic modulatory mechanisms. In this study, we investigated the relationship between these two forms of plasticity at the excitatory synapse between L29 interneurons and siphon motor neurons (MNs) in Aplysia. Using isolated ganglia, we confirmed that the L29-MN synapses exhibit a form of intrinsic facilitation: post-tetanic potentiation (PTP). We also found that L29-MN synapses are modulated by exogenous application of 5-HT: they are depressed after 5-HT exposure. We next investigated the functional relationship between an intrinsic facilitatory process (PTP) and extrinsic inhibitory modulation (5-HT-induced depression). First, we found that application of 5-HT just before L29 activation results in a reduction of PTP. Second, using semi-intact preparations, we found that tail shock (TS) mimics the effect of 5-HT by both depressing L29 synaptic transmission and by reducing L29 PTP. Third, we observed a significant correlation between L29 activity during TS and subsequent synaptic change: low-responding L29s showed synaptic depression after TS, whereas high-responding L29s showed synaptic facilitation. Finally, we found that we could directly manipulate the sign and magnitude of TS-induced synaptic plasticity by controlling L29 activity during TS. Collectively, our results show that the L29-MN synapses exhibit intrinsic facilitation and extrinsic modulation and that the sign and magnitude of L29-MN plasticity induced by TS is governed by the combined effects of these two processes. This circuit architecture, which combines network inhibition with cell-specific facilitation, can enhance the signal value of a specific stimulus within a neural network.
Collapse
|
43
|
Bristol AS, Fischer TM, Carew TJ. Combined effects of intrinsic facilitation and modulatory inhibition of identified interneurons in the siphon withdrawal circuitry of Aplysia. J Neurosci 2001; 21:8990-9000. [PMID: 11698609 PMCID: PMC6762296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Synaptic plasticity can be induced through mechanisms intrinsic to a synapse or through extrinsic modulatory mechanisms. In this study, we investigated the relationship between these two forms of plasticity at the excitatory synapse between L29 interneurons and siphon motor neurons (MNs) in Aplysia. Using isolated ganglia, we confirmed that the L29-MN synapses exhibit a form of intrinsic facilitation: post-tetanic potentiation (PTP). We also found that L29-MN synapses are modulated by exogenous application of 5-HT: they are depressed after 5-HT exposure. We next investigated the functional relationship between an intrinsic facilitatory process (PTP) and extrinsic inhibitory modulation (5-HT-induced depression). First, we found that application of 5-HT just before L29 activation results in a reduction of PTP. Second, using semi-intact preparations, we found that tail shock (TS) mimics the effect of 5-HT by both depressing L29 synaptic transmission and by reducing L29 PTP. Third, we observed a significant correlation between L29 activity during TS and subsequent synaptic change: low-responding L29s showed synaptic depression after TS, whereas high-responding L29s showed synaptic facilitation. Finally, we found that we could directly manipulate the sign and magnitude of TS-induced synaptic plasticity by controlling L29 activity during TS. Collectively, our results show that the L29-MN synapses exhibit intrinsic facilitation and extrinsic modulation and that the sign and magnitude of L29-MN plasticity induced by TS is governed by the combined effects of these two processes. This circuit architecture, which combines network inhibition with cell-specific facilitation, can enhance the signal value of a specific stimulus within a neural network.
Collapse
Affiliation(s)
- A S Bristol
- Department of Psychology, Yale University, New Haven, Connecticut 06520-8205, USA
| | | | | |
Collapse
|
44
|
Fischer TM, Yuan JW, Carew TJ. Dynamic regulation of the siphon withdrawal reflex of Aplysia californica in response to changes in the ambient tactile environment. Behav Neurosci 2000; 114:1209-22. [PMID: 11142653 DOI: 10.1037/0735-7044.114.6.1209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The state of an animal's environment can be viewed as a source of information that can be used to regulate both ongoing and future behavior. The present work examined how the ambient environment can regulate the Aplysia siphon withdrawal reflex (SWR) by changing the environment between calm and turbulent. Results indicate that the SWR is dynamically regulated on the basis of variations in external conditions, so that responsiveness (measured as both reflex duration and threshold) is matched to the state of the environment. Prior exposure to a noxious stimulus (tailshock) has selective effects on this regulation, suggesting the existence of multiple regulatory mechanisms. Further, neurophysiological correlates to behavioral observations were measured in sensory and motor neurons. This will allow for a detailed cellular analysis of environmental information-processing in this system.
Collapse
Affiliation(s)
- T M Fischer
- Department of Psychology, Yale University, USA.
| | | | | |
Collapse
|
45
|
Li C, Nelson LS, Kim K, Nathoo A, Hart AC. Neuropeptide gene families in the nematode Caenorhabditis elegans. Ann N Y Acad Sci 2000; 897:239-52. [PMID: 10676452 DOI: 10.1111/j.1749-6632.1999.tb07895.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuropeptides have diverse roles in the function and development of the nervous system. With the completion of the sequencing of the C. elegans genome, rapid identification of nematode neuropeptide genes is possible. To date, 41 C. elegans neuropeptide genes have been identified. Of these genes, 20 genes, named flp (FMRFamide-like peptide) genes, encode FMRFamide-related proteins (FaRPs). Deletion of one of the flp genes, flp-1, results in several behavioral defects, suggesting that at least one flp gene is not functionally redundant with other flp genes. Twenty-one genes, named neuropeptide-like protein (nlp) genes, encode peptides distinct from the FaRP family. The predicted nlp-1 and nlp-2 neuropeptides have modest similarity to buccalin and myomodulin, respectively. Cellular expression patterns and genetic analysis of flp and nlp genes suggest that neuropeptides in nematodes also have widespread and varied roles in nervous system function.
Collapse
Affiliation(s)
- C Li
- Department of Biology, Boston University, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
46
|
The contribution of facilitation of monosynaptic PSPs to dishabituation and sensitization of the Aplysia siphon withdrawal reflex. J Neurosci 1999. [PMID: 10575041 DOI: 10.1523/jneurosci.19-23-10438.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To examine the relationship between synaptic plasticity and learning and memory as directly as possible, we have developed a new simplified preparation for studying the siphon-withdrawal reflex of Aplysia in which it is relatively easy to record synaptic connections between individual identified neurons during simple forms of learning. We estimated that monosynaptic EPSPs from LE siphon sensory neurons to LFS siphon motor neurons mediate approximately one-third of the reflex response measured in this preparation, which corresponds to siphon flaring in the intact animal. To investigate cellular mechanisms contributing to dishabituation and sensitization, we recorded evoked firing of LFS neurons, the siphon withdrawal produced by stimulation of an LFS neuron, the complex PSP in an LFS neuron, and the monosynaptic PSP from an "on-field" or "off-field" LE neuron to an LFS neuron during behavioral training. Unlike the simplified gill-withdrawal preparation (Cohen et al., 1997; Frost et al., 1997), in the siphon-withdrawal preparation we found no qualitative differences between the major cellular mechanisms contributing to dishabituation and sensitization, suggesting that dissociations that have been observed previously may be attributable to transient inhibition that does not occur for this component of the reflex. Furthermore, in the siphon-withdrawal preparation, all of the various cellular measures, including monosynaptic PSPs from either on-field or off-field LE neurons, changed approximately in parallel with changes in the behavior. These results provide the most direct evidence so far available that both dishabituation and sensitization involve multiple mechanisms, including heterosynaptic facilitation of sensory neuron-motor neuron PSPs.
Collapse
|
47
|
Cellular analog of differential classical conditioning in Aplysia: disruption by the NMDA receptor antagonist DL-2-amino-5-phosphonovalerate. J Neurosci 1999. [PMID: 10575055 DOI: 10.1523/jneurosci.19-23-10595.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We previously showed that the associative enhancement of Aplysia siphon sensorimotor synapses in a cellular analog of classical conditioning is disrupted by infusing the Ca(2+) chelator 1, 2-bis(2-aminophenoxy)ethane-N,N-N',N'-tetraacetic acid into the postsynaptic motor neuron before training or by training in the presence of the NMDA receptor antagonist DL-2-amino-5-phosphonovalerate (APV). Our earlier experiments with APV used a nondifferential training protocol, in which different preparations were used for associative and nonassociative training. In the present experiments we extended our investigation of the role of NMDA receptor type potentiation in learning in Aplysia to differential conditioning. A cellular analog of differential conditioning was performed with a reduced preparation that consisted of the CNS plus two pedal nerves. A siphon motor neuron and two siphon sensory neurons, both of which were presynaptically connected to the motor neuron, were impaled with sharp microelectrodes. One sensorimotor synapse received paired stimulation with a conditioned stimulus (brief activation of a single sensory neuron) and an unconditioned stimulus (pedal nerve shock), whereas the other sensorimotor synapse received unpaired stimulation. Training in normal artificial seawater (ASW) resulted in significant differential enhancement of synapses that received the paired stimulation. Training in APV blocked this differential synaptic enhancement. A comparison of the present data with the data from earlier experiments that used nondifferential training is consistent with the possibility that differential training comprises competition between the presynaptic sensory neurons. Synaptic competition may contribute significantly to the associative effect of paired stimulation in the differential training paradigm.
Collapse
|
48
|
Liao X, Brou CG, Walters ET. Limited contributions of serotonin to long-term hyperexcitability of Aplysia sensory neurons. J Neurophysiol 1999; 82:3223-35. [PMID: 10601456 DOI: 10.1152/jn.1999.82.6.3223] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT) has provided a useful tool to study plasticity of nociceptive sensory neurons in Aplysia. Because noxious stimulation causes release of 5-HT and long-term hyperexcitability (LTH) of sensory neuron somata and because 5-HT treatment can induce long-term synaptic facilitation of sensory neuron synapses, a plausible hypothesis is that 5-HT also induces LTH of the sensory neuron soma. Prolonged or repeated exposure of excised ganglia to 5-HT produced immediate hyperexcitability of sensory neurons that showed little desensitization, but the hyperexcitability decayed within minutes of washing out the 5-HT. Prolonged or repeated treatment of either excised ganglia or dissociated sensory neurons with various concentrations of 5-HT failed to induce significant LTH even when long-term synaptic facilitation was induced in the same preparations. Use of a high-divalent cation solution to reduce interneuron activity during 5-HT treatment failed to enable the induction of LTH in excised ganglia. Pairing 5-HT application with nerve shock failed to enhance LTH produced by nerve shock or to reveal covert LTH produced by 5-HT. The induction of LTH by nerve stimulation was enhanced rather than inhibited by treatment with methiothepin, a 5-HT antagonist reported to block various 5-HT receptors and 5-HT-induced adenylyl cyclase activation. This suggests that endogenous 5-HT may have inhibitory effects on the induction of LTH by noxious stimulation. Methiothepin blocked immediate hyperexcitability produced by exogenous 5-HT and also inhibited the expression of LTH induced by nerve stimulation when applied during testing 1 day afterward. At higher concentrations, methiothepin reduced basal excitability of sensory neurons by mechanisms that may be independent of its antagonism of 5-HT receptors. Several observations suggest that early release of 5-HT and consequent cAMP synthesis in sensory neurons is not important for the induction of LTH by noxious stimulation, whereas later release of 5-HT from persistently activated modulatory neurons, with consequent elevation of cAMP synthesis, may contribute to the maintenance of LTH.
Collapse
Affiliation(s)
- X Liao
- Department of Integrative Biology, Pharmacology and Physiology, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
49
|
Murphy GG, Glanzman DL. Cellular analog of differential classical conditioning in Aplysia: disruption by the NMDA receptor antagonist DL-2-amino-5-phosphonovalerate. J Neurosci 1999; 19:10595-602. [PMID: 10575055 PMCID: PMC6782409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
We previously showed that the associative enhancement of Aplysia siphon sensorimotor synapses in a cellular analog of classical conditioning is disrupted by infusing the Ca(2+) chelator 1, 2-bis(2-aminophenoxy)ethane-N,N-N',N'-tetraacetic acid into the postsynaptic motor neuron before training or by training in the presence of the NMDA receptor antagonist DL-2-amino-5-phosphonovalerate (APV). Our earlier experiments with APV used a nondifferential training protocol, in which different preparations were used for associative and nonassociative training. In the present experiments we extended our investigation of the role of NMDA receptor type potentiation in learning in Aplysia to differential conditioning. A cellular analog of differential conditioning was performed with a reduced preparation that consisted of the CNS plus two pedal nerves. A siphon motor neuron and two siphon sensory neurons, both of which were presynaptically connected to the motor neuron, were impaled with sharp microelectrodes. One sensorimotor synapse received paired stimulation with a conditioned stimulus (brief activation of a single sensory neuron) and an unconditioned stimulus (pedal nerve shock), whereas the other sensorimotor synapse received unpaired stimulation. Training in normal artificial seawater (ASW) resulted in significant differential enhancement of synapses that received the paired stimulation. Training in APV blocked this differential synaptic enhancement. A comparison of the present data with the data from earlier experiments that used nondifferential training is consistent with the possibility that differential training comprises competition between the presynaptic sensory neurons. Synaptic competition may contribute significantly to the associative effect of paired stimulation in the differential training paradigm.
Collapse
Affiliation(s)
- G G Murphy
- Interdepartmental Graduate Program in Neuroscience, School of Medicine, University of California, Los Angeles, California 90095-1761, USA
| | | |
Collapse
|
50
|
Antonov I, Kandel ER, Hawkins RD. The contribution of facilitation of monosynaptic PSPs to dishabituation and sensitization of the Aplysia siphon withdrawal reflex. J Neurosci 1999; 19:10438-50. [PMID: 10575041 PMCID: PMC6782414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
To examine the relationship between synaptic plasticity and learning and memory as directly as possible, we have developed a new simplified preparation for studying the siphon-withdrawal reflex of Aplysia in which it is relatively easy to record synaptic connections between individual identified neurons during simple forms of learning. We estimated that monosynaptic EPSPs from LE siphon sensory neurons to LFS siphon motor neurons mediate approximately one-third of the reflex response measured in this preparation, which corresponds to siphon flaring in the intact animal. To investigate cellular mechanisms contributing to dishabituation and sensitization, we recorded evoked firing of LFS neurons, the siphon withdrawal produced by stimulation of an LFS neuron, the complex PSP in an LFS neuron, and the monosynaptic PSP from an "on-field" or "off-field" LE neuron to an LFS neuron during behavioral training. Unlike the simplified gill-withdrawal preparation (Cohen et al., 1997; Frost et al., 1997), in the siphon-withdrawal preparation we found no qualitative differences between the major cellular mechanisms contributing to dishabituation and sensitization, suggesting that dissociations that have been observed previously may be attributable to transient inhibition that does not occur for this component of the reflex. Furthermore, in the siphon-withdrawal preparation, all of the various cellular measures, including monosynaptic PSPs from either on-field or off-field LE neurons, changed approximately in parallel with changes in the behavior. These results provide the most direct evidence so far available that both dishabituation and sensitization involve multiple mechanisms, including heterosynaptic facilitation of sensory neuron-motor neuron PSPs.
Collapse
Affiliation(s)
- I Antonov
- Center for Neurobiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|