1
|
Xu M, Liu H, Zhang J, Xu M, Zhao X, Wang J. Functionalized zeolite regulates bone metabolic microenvironment. Mater Today Bio 2025; 31:101558. [PMID: 40034985 PMCID: PMC11874869 DOI: 10.1016/j.mtbio.2025.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
The regulation of bone metabolic microenvironment imbalances in diseases such as osteoporosis, bone defects, infections, and tumors remains a significant challenge in orthopedics. Therefore, it has become urgent to develop biomaterials with effective bone metabolic microenvironmental regulatory functions. Zeolites, as advanced biomedical materials, possess distinctive physicochemical properties such as multi-level pore structures, adjustable frameworks, easily modifiable surfaces, and excellent adsorption capabilities. These advantageous characteristics give zeolites broad application prospects in regulating the bone metabolic microenvironment. Therefore, this paper first classifies zeolites used to regulate the bone metabolic microenvironment based on their topological structures and compositional frameworks. Subsequently, it provides a detailed description of modification strategies for zeolite materials aimed at regulating this microenvironment. Next, a comprehensive summary was provided on the preparation strategies for zeolite materials aimed at regulating the bone metabolic microenvironment. Additionally, the paper focuses on the specific applications of zeolite materials in conditions of bone metabolic imbalance, such as osteoporosis, bone defects, orthopedic infections, and bone tumors, highlighting their potential in enhancing osteogenic microenvironments, controlling infections, and treating bone tumors. Finally, it outlines the prospects and challenges associated with the application of zeolites in regulating the bone metabolic microenvironment. This review comprehensively summarizes zeolites used for bone metabolic regulation, aiming to provide guidance for future research and application development.
Collapse
Affiliation(s)
| | | | - Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Meng Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| |
Collapse
|
2
|
de Lima VMF, Hanke W. Macroscopic Self-Organized Electrochemical Patterns in Excitable Tissue and Irreversible Thermodynamics. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojbiphy.2016.64011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Heine M. Surface traffic in synaptic membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:197-219. [PMID: 22351057 DOI: 10.1007/978-3-7091-0932-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The precision of signal transmission in chemical synapses is highly dependent on the structural alignment between pre- and postsynaptic components. The thermal agitation of transmembrane signaling molecules by surrounding lipid molecules and activity-driven changes in the local protein interaction affinities indicate a dynamic molecular traffic of molecules within synapses. The observation of local protein surface dynamics starts to be a useful tool to determine the contribution of intracellular and extracellular structures in organizing a plastic synapse. Local rearrangements by lateral diffusion in the synaptic and perisynaptic membrane induce fast density changes of signaling molecules and enable the synapse to change efficacy in short time scales. The degree of lateral mobility is restricted by many passive and active interactions inside and outside the membrane. AMPAR at the glutamatergic synapse are the best explored receptors in this respect and reviewed here as an example molecule. In addition, transsynaptic adhesion molecule complexes also appear highly dynamically in the synapse and do further support the importance of local surface traffic in subcellular compartments like synapses.
Collapse
Affiliation(s)
- Martin Heine
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
| |
Collapse
|
4
|
Fromherz P, Müller JU. Planar Membrane-Cable: Voltage-Profile Recorded by Fluorescent Dye. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19930970902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Hilt M, Zimmermann W. Hexagonal, square, and stripe patterns of the ion channel density in biomembranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:016202. [PMID: 17358230 DOI: 10.1103/physreve.75.016202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Indexed: 05/14/2023]
Abstract
Transmembrane ion flow through channel proteins undergoing density fluctuations may cause lateral gradients of the electrical potential across the membrane giving rise to electrophoresis of charged channels. A model for the dynamics of the channel density and the voltage drop across the membrane (cable equation) coupled to a binding-release reaction with the cell skeleton [P. Fromherz and W. Zimmerman, Phys. Rev. E 51, R1659 (1995)] is analyzed in one and two spatial dimensions. Due to the binding release reaction spatially periodic modulations of the channel density with a finite wave number are favored at the onset of pattern formation, whereby the wave number decreases with the kinetic rate of the binding-release reaction. In a two-dimensional extended membrane hexagonal modulations of the ion channel density are preferred in a large range of parameters. The stability diagrams of the periodic patterns near threshold are calculated and in addition the equations of motion in the limit of a slow binding-release kinetics are derived.
Collapse
Affiliation(s)
- Markus Hilt
- Theoretische Physik, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | |
Collapse
|
6
|
Peter R, Zimmermann W. Traveling ion channel density waves affected by a conservation law. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:016206. [PMID: 16907176 DOI: 10.1103/physreve.74.016206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Indexed: 05/11/2023]
Abstract
A model of mobile, charged ion channels embedded in a biomembrane is investigated. The ion channels fluctuate between an opened and a closed state according to a simple two-state reaction scheme whereas the total number of ion channels is a conserved quantity. Local transport mechanisms suggest that the ion channel densities are governed by electrodiffusionlike equations that have to be supplemented by a cable-type equation describing the dynamics of the transmembrane voltage. It is shown that the homogeneous distribution of ion channels may become unstable to either a stationary or an oscillatory instability. The nonlinear behavior immediately above threshold of an oscillatory bifurcation occurring at finite wave number is analyzed in terms of amplitude equations. Due to the conservation law imposed on ion channels, large-scale modes couple to the finite-wave-number instability and have thus to be included in the asymptotic analysis near the onset of pattern formation. A modified Ginzburg-Landau equation extended by long-wavelength stationary excitations is established, and it is highlighted how the global conservation law affects the stability of traveling ion channel density waves.
Collapse
Affiliation(s)
- Ronny Peter
- Theoretische Physik, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | |
Collapse
|
7
|
Leonetti M, Nuebler J, Homble F. Parity-breaking bifurcation and global oscillation in patterns of ion channels. PHYSICAL REVIEW LETTERS 2006; 96:218101. [PMID: 16803275 DOI: 10.1103/physrevlett.96.218101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Indexed: 05/10/2023]
Abstract
Stationary spatiotemporal pattern formation emerging from the electric activity of biological membranes is widespread in cells and tissues. A known key instability comes from the self-aggregation of membrane channels. In a two-dimensional geometry, we show that the primary pattern undergoes four secondary instabilities: Eckhaus-like, period-halving, drift instabilities, and a global oscillation. The stability diagram is determined. The parity-breaking (drift) bifurcation of channel density is characterized analytically and numerically.
Collapse
Affiliation(s)
- Marc Leonetti
- IRPHE, Universités Aix-Marseille I and II, UMR CNRS 6594, Technopôle de Château-Gombert, 13384 Marseille Cedex 13, France
| | | | | |
Collapse
|
8
|
Leonetti M, Marcq P, Nuebler J, Homble F. Cotransport-induced instability of membrane voltage in tip-growing cells. PHYSICAL REVIEW LETTERS 2005; 95:208105. [PMID: 16384105 DOI: 10.1103/physrevlett.95.208105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Indexed: 05/05/2023]
Abstract
A salient feature of stationary patterns in tip-growing cells is the key role played by the symports and antiports, membrane proteins that translocate two ionic species at the same time. It is shown that these cotransporters destabilize generically the membrane voltage if the two translocated ions diffuse differently and carry a charge of opposite (same) sign for symports (antiports). The orders of magnitude obtained for the time and length scale are in agreement with experiments. A weakly nonlinear analysis characterizes the bifurcation.
Collapse
Affiliation(s)
- M Leonetti
- IRPHE, Universités Aix-Marseille I and II, UMR CNRS 6594, Technopôle de Château-Gombert, 13384 Marseille Cedex 13, France
| | | | | | | |
Collapse
|
9
|
Balint E, Grimley PM, Gan Y, Zoon KC, Aszalos A. Plasma membrane biophysical properties linked to the antiproliferative effect of interferon-alpha. Acta Microbiol Immunol Hung 2005; 52:407-32. [PMID: 16400880 DOI: 10.1556/amicr.52.2005.3-4.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The relationship of plasma membrane biophysical properties to the anti-proliferative effect of interferon-alpha (IFN-alpha) was investigated in Daudi lymphoblasts cell lines with sensitivity to growth inhibition, parallel clonal variants selected for resistance, and one revertant subclone. Lateral mobility of surface differentiation antigens (I2, CD19, CD20, and sIgM-kappa) were measured by fluorescence recovery after photobleaching (FRAP). The mean diffusion coefficients, D, values for two clones of IFN-alpha resistant Daudi cells were significantly higher (D = 8.1-11 x 10(-10) cm2/sec) than for parental sensitive cells (D = 4.9-7.4 x 10(-10) cm2/sec). Microviscosity of the plasma membranes were probed by electron spin resonance (ESR) spectrometry. These results also indicate a greater degree of molecular motional freedom in resistant cells. Treatment of sensitive lymphoblasts with IFN-alpha (100-400 U/10(6) cells) for 5-30 min consistently increased mean values of D and the degree of spin-probe motional freedom, whereas no significant differences were detected in resistant cells. The effect of IFN-alpha on the membrane potential (Em) of Daudi cells was quantitated by flow cytometry using a voltage-sensitive oxonol dye. Membrane potential of all clones was similar (-50 to -56 mV). Treatment with IFN-alpha for 8-10 min caused hyperpolarization in the sensitive cells (deltaEm up to 45 mV), but only minimal hyperpolarization in the resistant ones (deltaEm up to 7 mV). We concluded that sensitivity to IFN-alpha and treatment with IFN-alpha are related to the biophysical status of plasma membranes.
Collapse
Affiliation(s)
- Elisabeth Balint
- Department of Optics and Quantum Electronics, University of Szeged, Hungary.
| | | | | | | | | |
Collapse
|
10
|
Léonetti M, Dubois-Violette E, Homblé F. Pattern formation of stationary transcellular ionic currents in Fucus. Proc Natl Acad Sci U S A 2004; 101:10243-8. [PMID: 15232004 PMCID: PMC478558 DOI: 10.1073/pnas.0402335101] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Indexed: 11/18/2022] Open
Abstract
Stationary and nonstationary spatiotemporal pattern formations emerging from the cellular electric activity are a common feature of biological cells and tissues. The nonstationary ones are well explained in the framework of the cable model. Inversely, the formation of the widespread self-organized stationary patterns of transcellular ionic currents remains elusive, despite their importance in cell polarization, apical growth, and morphogenesis. For example, the nature of the breaking symmetry in the Fucus zygote, a model organism for the experimental investigation of embryonic pattern formation, is still an open question. Using an electrodiffusive model, we report here an unexpected property of the cellular electric activity: a phase-space domain that gives rise to stationary patterns of transcellular ionic currents at finite wavelength. The cable model cannot predict this instability. In agreement with experiments, the characteristic time is an ionic diffusive one (<2 min). The critical radius is of the same order of magnitude as the cell radius (30 microm). The generic salient features are a global positive differential conductance, a negative differential conductance for one ion, and a difference between the diffusive coefficients. Although different, this mechanism is reminiscent of Turing instability.
Collapse
Affiliation(s)
- M Léonetti
- Institut de Recherche sur les Phénomènes Hors Equilibre, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6594 and Universités Aix-Marseille I and II, Technopôle de Château-Gombert, Marseille, France.
| | | | | |
Collapse
|
11
|
Vereb G, Szöllősi J, Matkó J, Nagy P, Farkas T, Vígh L, Mátyus L, Waldmann TA, Damjanovich S. Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci U S A 2003; 100:8053-8. [PMID: 12832616 PMCID: PMC166180 DOI: 10.1073/pnas.1332550100] [Citation(s) in RCA: 361] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The fluid mosaic membrane model proved to be a very useful hypothesis in explaining many, but certainly not all, phenomena taking place in biological membranes. New experimental data show that the compartmentalization of membrane components can be as important for effective signal transduction as is the fluidity of the membrane. In this work, we pay tribute to the Singer-Nicolson model, which is near its 30th anniversary, honoring its basic features, "mosaicism" and "diffusion," which predict the interspersion of proteins and lipids and their ability to undergo dynamic rearrangement via Brownian motion. At the same time, modifications based on quantitative data are proposed, highlighting the often genetically predestined, yet flexible, multilevel structure implementing a vast complexity of cellular functions. This new "dynamically structured mosaic model" bears the following characteristics: emphasis is shifted from fluidity to mosaicism, which, in our interpretation, means nonrandom codistribution patterns of specific kinds of membrane proteins forming small-scale clusters at the molecular level and large-scale clusters (groups of clusters, islands) at the submicrometer level. The cohesive forces, which maintain these assemblies as principal elements of the membranes, originate from within a microdomain structure, where lipid-lipid, protein-protein, and protein-lipid interactions, as well as sub- and supramembrane (cytoskeletal, extracellular matrix, other cell) effectors, many of them genetically predestined, play equally important roles. The concept of fluidity in the original model now is interpreted as permissiveness of the architecture to continuous, dynamic restructuring of the molecular- and higher-level clusters according to the needs of the cell and as evoked by the environment.
Collapse
Affiliation(s)
- G. Vereb
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - J. Szöllősi
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - J. Matkó
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - P. Nagy
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - T. Farkas
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - L. Vígh
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - L. Mátyus
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - T. A. Waldmann
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - S. Damjanovich
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
- To whom correspondence should be sent at the * address. E-mail:
| |
Collapse
|
12
|
Bulychev AA, Polezhaev AA, Zykov SV, Rubin AB, Jantoss W, Zykov VS, Müller SC. Light-triggered pH banding profile in Chara cells revealed with a scanning pH microprobe and its relation to self-organization phenomena. J Theor Biol 2001; 212:275-94. [PMID: 11829350 DOI: 10.1006/jtbi.2001.2375] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When exposed to light, Characean cells develop a pattern of alternating alkaline and acid bands along the cell length. The bands were identified with a tip-sensitive antimony pH microelectrode positioned near one end of Chara internode at a distance of 50-100 microm from the cell wall. The stage with Chara cell was moved along its longitudinal axis at a computer-controlled speed (100 or 200 microm s(-1)) relative to the pH probe over a distance of 50 mm. Under sufficient uniform illumination of the cell (from 100 to 2.5 Wm(-2)), the homogeneous pH distribution becomes unstable and a banding pattern is formed, the spatial scale of which decreases with the light intensity. If the cell is locally illuminated, bands are formed only in the region of illumination. It is shown that the inhibition of cyclosis by cytochalasin B leads to the disappearance of the banding pattern. The addition of ammonium (weak base) inhibited the banding pattern, whereas acetate (weak acid) alleviated the inhibitory effect of ammonium and restored the pH banding. A model explaining the observed phenomena is formulated in terms of proton concentration outside and bicarbonate concentration inside the cell. It contains two diffusion equations for the corresponding ions with nonlinear boundary conditions determined by ion transport processes across the cell membrane. The model qualitatively explains most of the experimental observations. It describes the dependence of the pattern characteristics on the light intensity and reveals the role of cyclosis in this phenomenon.
Collapse
Affiliation(s)
- A A Bulychev
- Faculty of Biology, Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
We evaluated the ability of both static electric and static magnetic fields to enhance the in vivo action of a chemotherapeutic agent, adriamycin, against transplanted mammary tumors in mice. Female B6C3F1 mice with transplanted mammary adenocarcinoma were divided into four randomized groups and injected with 10 mg/kg adriamycin on day 7 of the study. Three of the groups were then exposed to nonuniform static electric or static magnetic fields. The resulting tumor regression in each group was measured four times during the remaining 13 days of the 20 day study. Two-sided statistical tests revealed all of the static field exposed groups achieved significantly greater (P </=.05) tumor regression than the group treated with adriamycin only, with P-values in a range as low as. 0001. There is an almost universal need in disease treatment to increase the efficacy and delivery of bioactive agents against target cells. The technology demonstrated here may result in improved use of therapeutic materials ranging from drugs to genetic agents. In addition, our findings point to possible hazards from the in vivo enhancing action of static fields on administered or environmentally encountered chemicals.
Collapse
Affiliation(s)
- J R Gray
- Conundrum, Little Rock, Arkansas, USA
| | | | | |
Collapse
|
14
|
Abstract
We analysed physical forces that act on synaptic receptor-channels following the release of neurotransmitter. These forces are: 1) electrostatic interaction between receptors, 2) stochastic Brownian diffusion in the membrane, 3) transient electric field force generated by currents through open channels, 4) viscous drag force elicited by the flowing molecules and 5) strong in-membrane friction. By considering alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type receptors, we show that, depending on the size and electrophoretic charge of the extracellular receptor domain, release of an excitatory neurotransmitter (glutamate) can induce receptor clustering towards the release site on a fast time scale (8-100 ms). This clustering progresses whenever repetitive synaptic activation exceeds a critical frequency (20-100 s(-1), depending on the currents through individual channels). As a result, a higher proportion of the receptors is exposed to higher glutamate levels. This should increase by 50-100% the peak synaptic current induced by the same amount of released neurotransmitter. In order for this mechanism to contribute to long-term changes of synaptic efficacy, we consider the possibility that the in-membrane motility of the AMPA receptors is transiently increased during synaptic activity, e. g., through the breakage of receptor anchors in the postsynaptic membrane due to activation of N-methyl-d-aspartic acid receptors.
Collapse
Affiliation(s)
- L P Savtchenko
- Laboratory of Biophysics and Bioelectronics, Dnepropetrovsk State University and International Center for Molecular Physiology, National Academy of Sciences of Ukraine, Dnepropetrovsk, Ukraine
| | | | | |
Collapse
|
15
|
Meinhardt H. Orientation of chemotactic cells and growth cones: models and mechanisms. J Cell Sci 1999; 112 ( Pt 17):2867-74. [PMID: 10444381 DOI: 10.1242/jcs.112.17.2867] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A model is proposed for an amplification step in chemotactically sensitive cells or growth cones that accounts for their extraordinary directional sensitivity. It is assumed that cells have an intrinsic pattern forming system that generates the signals for extension of filopods and lamellipods. An external signal such as a graded cue is assumed to impose some directional preference onto the pattern formed. According to the model, a saturating, self-enhancing reaction is coupled with two antagonistic reactions. One antagonist equilibrates rapidly over the whole cell, causing competition between different surface elements of the cell cortex for activation. It will be won by those cortical regions of the cell that are exposed to the highest concentrations of the external graded cues. The second antagonistic reaction is assumed to act more locally and has a longer time constant. It causes a destabilization of peaks after they have formed. While the total activated area on the cell surface is maintained, the disappearance of some hot spots allows the formation of new ones, preferentially at positions specified by the actual external guiding signal. Computer simulations show that the model accounts for the highly dynamic behaviour of chemotactic cells and growth cones. In the absence of external signals, maxima of the internal signals emerge at random positions and disappear after some time. Travelling waves or oscillations in counter phase can emerge on the cell cortex, in agreement with observations reported in the literature. In other ranges of parameters, the model accounts for the generation of a stable cell polarity.
Collapse
Affiliation(s)
- H Meinhardt
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstr. 35, D-72076 Tübingen, Germany.
| |
Collapse
|
16
|
Vereb G, Mátyus L, Bene L, Panyi G, Bacsó Z, Balázs M, Matkó J, Szöllösi J, Gáspár R, Damjanovich S. Plasma-membrane-bound macromolecules are dynamically aggregated to form non-random codistribution patterns of selected functional elements. Do pattern recognition processes govern antigen presentation and intercellular interactions? J Mol Recognit 1995; 8:237-46. [PMID: 8588941 DOI: 10.1002/jmr.300080402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Molecular recognition processes between cell surface elements are discussed with special reference to cell surface pattern formation of membrane-bound integral proteins. The existence, as detected by flow cytometric resonance energy transfer (Appendix), and significance of cell surface patterns involving the interleukin-2 receptor, the T-cell receptor-CD3 system, the intercellular adhesion molecule ICAM-1, and the major histocompatibility complex class I and class II molecules in the plasma membrane of lymphocytes are described. The modulation of antigen presentation by transmembrane potential changes is discussed, and a general role of transmembrane potential changes, and therefore of ion channel activities, adduced as one of the major regulatory mechanisms of cell-cell communication. A general role in the mediation and regulation of intercellular interactions is suggested for cell-surface macromolecular patterns. The dynamic pattern of protein and lipid molecules in the plasma membrane is generated by the genetic code, but has a remarkable flexibility and may be one of the major instruments of accommodation and recognition processes at the cellular level.
Collapse
Affiliation(s)
- G Vereb
- Department of Biophysics, University Medical School of Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fromherz P, Zimmermann W. Stable spatially periodic patterns of ion channels in biomembranes. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1995; 51:R1659-R1662. [PMID: 9962950 DOI: 10.1103/physreve.51.r1659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
18
|
Damjanovich S, Vereb G, Schaper A, Jenei A, Matkó J, Starink JP, Fox GQ, Arndt-Jovin DJ, Jovin TM. Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc Natl Acad Sci U S A 1995; 92:1122-6. [PMID: 7862646 PMCID: PMC42650 DOI: 10.1073/pnas.92.4.1122] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Major histocompatibility complex (MHC) class I antigens in the plasma membranes of human T (HUT-102B2) and B (JY) lymphoma cells were probed by immunochemical reagents using fluorescence, transmission electron, and scanning force microscopies. Fluorescent labels were attached to monoclonal antibodies W6/32 or KE-2 directed against the heavy chain of HLA class I (A, B, C) and L368 or HB28 against the beta 2-microglobulin light chain. The topological distribution in the nanometer range was studied by photobleaching fluorescence resonance energy transfer (pbFRET) on single cells. A nonrandom codistribution pattern of MHC class I molecules was observed over distances of 2-10 nm. A second, nonrandom, and larger-scale topological organization of the MHC class I antigens was detected by indirect immunogold labeling and imaging by transmission electron microscopy (TEM) and scanning force microscopy (SFM). Although some differences in antigen distribution between the B- and T-cell lines were detected by pbFRET, both cell lines exhibited similar clustering patterns by TEM and SFM. Such defined molecular distributions on the surfaces of cells of the immune system may reflect an underlying specialization of membrane lipid domains and fulfill important functional roles in cell-cell contacts and signal transduction.
Collapse
Affiliation(s)
- S Damjanovich
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Benke TA, Jones OT, Collingridge GL, Angelides KJ. N-Methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons. Proc Natl Acad Sci U S A 1993; 90:7819-23. [PMID: 7689230 PMCID: PMC47234 DOI: 10.1073/pnas.90.16.7819] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The response of nerve cells to synaptic inputs and the propagation of this activation is critically dependent on the cell-surface distribution of ion channels. In the hippocampus, Ca2+ influx through N-methyl-D-aspartate receptors (NMDAR) and/or voltage-dependent calcium channels on dendrites is thought to be critically involved in long-term potentiation, neurite outgrowth, epileptogenesis, synaptogenesis, and cell death. We report that conantokin-G (CntxG), a peptide from Conus geographus venom, competitively blocked with high affinity and specificity NMDAR-mediated currents in hippocampal neurons and is a reliable probe for exploring NMDAR distribution. Fluorescent derivatives of CntxG were prepared and used to directly determine NMDAR distribution on living hippocampal neurons by digital imaging and confocal fluorescence microscopy. In hippocampal slices, the CA1 dendritic subfield was strongly labeled by CntxG, whereas the CA3 mossy fiber region was not. On CA1 hippocampal neurons in culture, dendritic CntkG-sensitive NMDAR were clustered at sites of synaptic contacts, whereas somatic NMDAR were distributed diffusely and in patches. NMDAR distribution differed from the distribution of voltage-dependent calcium channels. A significant fraction of labeled NMDAR on somata and dendrites was found to be highly mobile: rates were consistent with the possible rapid recruitment of NMDAR to specific synaptic locations. The localization of NMDAR and modulation of this distribution demonstrated here may have important implications for the events that underlie neuronal processing and synaptic remodeling during associative synaptic modification.
Collapse
Affiliation(s)
- T A Benke
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | |
Collapse
|
20
|
Abstract
This paper proposes that neurodynamic system theory may be used to connect structural and functional aspects of neural organization. The paper claims that generalized causal dynamic models are proper tools for describing the self-organizing mechanism of the nervous system. In particular, it is pointed out that ontogeny, development, normal performance, learning, and plasticity, can be treated by coherent concepts and formalism. Taking into account the self-referential character of the brain, autopoiesis, endophysics and hermeneutics are offered as elements of a poststructuralist brain (-mind-computer) theory.
Collapse
Affiliation(s)
- P Erdi
- KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, Budapest
| |
Collapse
|
21
|
Damjanovich S, Mátyus L, Balázs M, Gáspár R, Krasznai Z, Pieri C, Szöllösi J, Trón L. Dynamic physical interactions of plasma membrane molecules generate cell surface patterns and regulate cell activation processes. Immunobiology 1992; 185:337-49. [PMID: 1452209 DOI: 10.1016/s0171-2985(11)80651-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular interaction and transmembrane signal transducing events generate a very dynamic and ever changing "pattern" in the plasma membranes. Lymphocytes, the key functional elements of the immune system, are eminently suited to be the primary targets to investigate these proximity, mobility, or other physical-chemical changes in their plasma membranes. Recently, a number of experiments suggested that processed peptides from antigens can bind specific components of MHC molecules (Elliott et al., 1991). This is certainly a way to alter their structure. Cell surface patterns of topological nature, assembly and disassembly of oligomeric receptor structure like the IL-2 receptor have been investigated by sophisticated biophysical techniques. The dynamic changes in the two-dimensional cell surface pattern and intramolecular conformational changes within this "larger" macro-pattern may have a strong regulatory role in signal transducing and intercellular recognition processes. Recent data on these problems are presented together with brief and critical discussions.
Collapse
Affiliation(s)
- S Damjanovich
- Department of Biophysics, Medical University School, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Orientation of Cortical Microtubules in Interphase Plant Cells. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0074-7696(08)60511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
23
|
Glaser R. The influence of membrane electric field on cellular functions. SPRINGER SERIES IN BIOPHYSICS 1990. [DOI: 10.1007/978-3-642-74471-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
24
|
|
25
|
Rapp B, de Boisfleury-Chevance A, Gruler H. Galvanotaxis of human granulocytes. Dose-response curve. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1988; 16:313-9. [PMID: 3240758 DOI: 10.1007/bf00254068] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The galvanotactic response of human granulocytes was investigated theoretically and experimentally. The basic results are: (i) The granulocytes move towards the anode. (ii) The directed movement has been quantified by two different polar order parameters--the McCutcheon index and the average of cos phi. (iii) The polar order parameters are a function of the applied electric field (= dose-response curve). (iv) The inverse of the galvanotactic constant of migrating cells (analogous to the Michaelis-Menten constant) has a value of -0.2 +/- 0.03 V/mm. (v) The galvanotactic response of granulocytes is a non-cooperative process with a cooperativity coefficient of 1 +/- 0.2. (vi) The galvanotactic constant is a function of pH. (vii) The protein essential for the galvanotactic response is very likely a G-protein.
Collapse
Affiliation(s)
- B Rapp
- Abteilung für Biophysik, Universität Ulm, Federal Republic of Germany
| | | | | |
Collapse
|