1
|
Tanneur I, Dervyn E, Guérin C, Kon Kam King G, Jules M, Nicolas P. The mutational landscape of Bacillus subtilis conditional hypermutators shows how proofreading skews DNA polymerase error rates. Nucleic Acids Res 2025; 53:gkaf147. [PMID: 40057377 PMCID: PMC11890065 DOI: 10.1093/nar/gkaf147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
Polymerase errors during DNA replication are a major source of point mutations in genomes. The spontaneous mutation rate also depends on the counteracting activity of DNA repair mechanisms, with mutator phenotypes appearing constantly and allowing for periods of rapid evolution in nature and in the laboratory. Here, we use the Gram-positive model bacterium Bacillus subtilis to disentangle the contributions of DNA polymerase initial nucleotide selectivity, DNA polymerase proofreading, and mismatch repair (MMR) to the mutation rate. To achieve this, we constructed several conditional hypermutators with a proofreading-deficient allele of polC and/or a deficient allele of mutL and performed mutation accumulation experiments. These conditional hypermutators enrich the B. subtilis synthetic biology toolbox for directed evolution. Using mathematical models, we investigated how to interpret the apparent probabilities with which errors escape MMR and proofreading, highlighting the difficulties of working with counts that aggregate potentially heterogeneous mutations and with unknowns about the pathways leading to mutations in the wild-type. Aware of these difficulties, the analysis shows that proofreading prevents partial saturation of the MMR in B. subtilis and that an inherent drawback of proofreading is to skew the net polymerase error rates by amplifying intrinsic biases in nucleotide selectivity.
Collapse
Affiliation(s)
- Ira Tanneur
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Cyprien Guérin
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| | | | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
| |
Collapse
|
2
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Kockler ZW, Gordenin DA. From RNA World to SARS-CoV-2: The Edited Story of RNA Viral Evolution. Cells 2021; 10:1557. [PMID: 34202997 PMCID: PMC8234929 DOI: 10.3390/cells10061557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The current SARS-CoV-2 pandemic underscores the importance of understanding the evolution of RNA genomes. While RNA is subject to the formation of similar lesions as DNA, the evolutionary and physiological impacts RNA lesions have on viral genomes are yet to be characterized. Lesions that may drive the evolution of RNA genomes can induce breaks that are repaired by recombination or can cause base substitution mutagenesis, also known as base editing. Over the past decade or so, base editing mutagenesis of DNA genomes has been subject to many studies, revealing that exposure of ssDNA is subject to hypermutation that is involved in the etiology of cancer. However, base editing of RNA genomes has not been studied to the same extent. Recently hypermutation of single-stranded RNA viral genomes have also been documented though its role in evolution and population dynamics. Here, we will summarize the current knowledge of key mechanisms and causes of RNA genome instability covering areas from the RNA world theory to the SARS-CoV-2 pandemic of today. We will also highlight the key questions that remain as it pertains to RNA genome instability, mutations accumulation, and experimental strategies for addressing these questions.
Collapse
Affiliation(s)
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA;
| |
Collapse
|
4
|
Kapoor I, Varshney U. Diverse roles of nucleoside diphosphate kinase in genome stability and growth fitness. Curr Genet 2020; 66:671-682. [PMID: 32249353 DOI: 10.1007/s00294-020-01073-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023]
Abstract
Nucleoside diphosphate kinase (NDK), a ubiquitous enzyme, catalyses reversible transfer of the γ phosphate from nucleoside triphosphates to nucleoside diphosphates and functions to maintain the pools of ribonucleotides and deoxyribonucleotides in the cell. As even a minor imbalance in the nucleotide pools can be mutagenic, NDK plays an antimutator role in maintaining genome integrity. However, the mechanism of the antimutator roles of NDK is not completely understood. In addition, NDKs play important roles in the host-pathogen interactions, metastasis, gene regulation, and various cellular metabolic processes. To add to these diverse roles of NDK in cells, a recent study now reveals that NDK may even confer mutator phenotypes to the cell by acting on the damaged deoxyribonucleoside diphosphates that may be formed during the oxidative stress. In this review, we discuss the roles of NDK in homeostasis of the nucleotide pools and genome integrity, and its possible implications in conferring growth/survival fitness to the organisms in the changing environmental niches.
Collapse
Affiliation(s)
- Indu Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India. .,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
5
|
Spohn R, Daruka L, Lázár V, Martins A, Vidovics F, Grézal G, Méhi O, Kintses B, Számel M, Jangir PK, Csörgő B, Györkei Á, Bódi Z, Faragó A, Bodai L, Földesi I, Kata D, Maróti G, Pap B, Wirth R, Papp B, Pál C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun 2019; 10:4538. [PMID: 31586049 PMCID: PMC6778101 DOI: 10.1038/s41467-019-12364-6] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system.
Collapse
Affiliation(s)
- Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Fanni Vidovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Pramod K Jangir
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- University of California, San Francisco, Department of Microbiology and Immunology, San Francisco, CA, USA
| | - Ádám Györkei
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Zoltán Bódi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Anikó Faragó
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Diána Kata
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bernadett Pap
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
6
|
Predicting the evolution of Escherichia coli by a data-driven approach. Nat Commun 2018; 9:3562. [PMID: 30177705 PMCID: PMC6120903 DOI: 10.1038/s41467-018-05807-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
A tantalizing question in evolutionary biology is whether evolution can be predicted from past experiences. To address this question, we created a coherent compendium of more than 15,000 mutation events for the bacterium Escherichia coli under 178 distinct environmental settings. Compendium analysis provides a comprehensive view of the explored environments, mutation hotspots and mutation co-occurrence. While the mutations shared across all replicates decrease with the number of replicates, our results argue that the pairwise overlapping ratio remains the same, regardless of the number of replicates. An ensemble of predictors trained on the mutation compendium and tested in forward validation over 35 evolution replicates achieves a 49.2 ± 5.8% (mean ± std) precision and 34.5 ± 5.7% recall in predicting mutation targets. This work demonstrates how integrated datasets can be harnessed to create predictive models of evolution at a gene level and elucidate the effect of evolutionary processes in well-defined environments. How reproducible evolutionary processes are remains an important question in evolutionary biology. Here, the authors compile a compendium of more than 15,000 mutation events for Escherichia coli under 178 distinct environmental settings, and develop an ensemble of predictors to predict evolution at a gene level.
Collapse
|
7
|
The Spectrum of Replication Errors in the Absence of Error Correction Assayed Across the Whole Genome of Escherichia coli. Genetics 2018; 209:1043-1054. [PMID: 29907648 DOI: 10.1534/genetics.117.300515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/14/2018] [Indexed: 11/18/2022] Open
Abstract
When the DNA polymerase that replicates the Escherichia coli chromosome, DNA polymerase III, makes an error, there are two primary defenses against mutation: proofreading by the ϵ subunit of the holoenzyme and mismatch repair. In proofreading-deficient strains, mismatch repair is partially saturated and the cell's response to DNA damage, the SOS response, may be partially induced. To investigate the nature of replication errors, we used mutation accumulation experiments and whole-genome sequencing to determine mutation rates and mutational spectra across the entire chromosome of strains deficient in proofreading, mismatch repair, and the SOS response. We report that a proofreading-deficient strain has a mutation rate 4000-fold greater than wild-type strains. While the SOS response may be induced in these cells, it does not contribute to the mutational load. Inactivating mismatch repair in a proofreading-deficient strain increases the mutation rate another 1.5-fold. DNA polymerase has a bias for converting G:C to A:T base pairs, but proofreading reduces the impact of these mutations, helping to maintain the genomic G:C content. These findings give an unprecedented view of how polymerase and error-correction pathways work together to maintain E. coli's low mutation rate of 1 per 1000 generations.
Collapse
|
8
|
Construction and evolution of an Escherichia coli strain relying on nonoxidative glycolysis for sugar catabolism. Proc Natl Acad Sci U S A 2018; 115:3538-3546. [PMID: 29555759 PMCID: PMC5889684 DOI: 10.1073/pnas.1802191115] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We constructed an Escherichia coli strain that does not use glycolysis for sugar catabolism. Instead, it uses the synthetic nonoxidative glycolysis cycle to directly synthesize stoichiometric amounts of the two-carbon building block (acetyl-CoA), which is then converted to three-carbon metabolites to support growth. The resulting strain grows aerobically in glucose minimal medium and can achieve near-complete carbon conservation in the production of acetyl-CoA–derived products during anaerobic fermentation. This strain improves the theoretical carbon yield from 66.7% to 100% in acetyl-CoA–derived product formation. The Embden–Meyerhoff–Parnas (EMP) pathway, commonly known as glycolysis, represents the fundamental biochemical infrastructure for sugar catabolism in almost all organisms, as it provides key components for biosynthesis, energy metabolism, and global regulation. EMP-based metabolism synthesizes three-carbon (C3) metabolites before two-carbon (C2) metabolites and must emit one CO2 in the synthesis of the C2 building block, acetyl-CoA, a precursor for many industrially important products. Using rational design, genome editing, and evolution, here we replaced the native glycolytic pathways in Escherichia coli with the previously designed nonoxidative glycolysis (NOG), which bypasses initial C3 formation and directly generates stoichiometric amounts of C2 metabolites. The resulting strain, which contains 11 gene overexpressions, 10 gene deletions by design, and more than 50 genomic mutations (including 3 global regulators) through evolution, grows aerobically in glucose minimal medium but can ferment anaerobically to products with nearly complete carbon conservation. We confirmed that the strain metabolizes glucose through NOG by 13C tracer experiments. This redesigned E. coli strain represents a different approach for carbon catabolism and may serve as a useful platform for bioproduction.
Collapse
|
9
|
Mutation accumulation under UV radiation in Escherichia coli. Sci Rep 2017; 7:14531. [PMID: 29109412 PMCID: PMC5674018 DOI: 10.1038/s41598-017-15008-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/19/2017] [Indexed: 12/02/2022] Open
Abstract
Mutations are induced by not only intrinsic factors such as inherent molecular errors but also by extrinsic mutagenic factors such as UV radiation. Therefore, identifying the mutational properties for both factors is necessary to achieve a comprehensive understanding of evolutionary processes both in nature and in artificial situations. Although there have been extensive studies on intrinsic factors, the mutational profiles of extrinsic factors are poorly understood on a genomic scale. Here, we explored the mutation profiles of UV radiation, a ubiquitous mutagen, in Escherichia coli on the genomic scale. We performed an evolution experiment under periodic UV radiation for 28 days. The accumulation speed of the mutations was found to increase so that it exceeded that of a typical mutator strain with deficient mismatch repair processes. The huge contribution of the extrinsic factors to all mutations consequently increased the risk of the destruction of inherent error correction systems. The spectrum of the UV-induced mutations was broader than that of the spontaneous mutations in the mutator. The broad spectrum and high upper limit of the frequency of occurrence suggested ubiquitous roles for UV radiation in accelerating the evolutionary process.
Collapse
|
10
|
Zheng X, Xing XH, Zhang C. Targeted mutagenesis: A sniper-like diversity generator in microbial engineering. Synth Syst Biotechnol 2017; 2:75-86. [PMID: 29062964 PMCID: PMC5636951 DOI: 10.1016/j.synbio.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Mutations, serving as the raw materials of evolution, have been extensively utilized to increase the chances of engineering molecules or microbes with tailor-made functions. Global and targeted mutagenesis are two main methods of obtaining various mutations, distinguished by the range of action they can cover. While the former one stresses the mining of novel genetic loci within the whole genomic background, targeted mutagenesis performs in a more straightforward manner, bringing evolutionary escape and error catastrophe under control. In this review, we classify the existing techniques of targeted mutagenesis into two categories in terms of whether the diversity is generated in vitro or in vivo, and briefly introduce the mechanisms and applications of them separately. The inherent connections and development trends of the two classes are also discussed to provide an insight into the next generation evolution research.
Collapse
Key Words
- 3′-LTR, 3’-long terminal repeat
- 5-FOA, 5-fluoro-orotic acid
- CRISPR/Cas9, clustered regularly interspaced short palindromic repeats and associated protein 9
- DNA Pol III, DNA polymerase III
- DNA PolI, DNA polymerase I
- DSB, double strand break
- Evolution
- FLASH, fast ligation-based automatable solid-phase high-throughput
- HDR, homology-directed repair
- HIV, human immunodeficiency virus
- ICE, in vivo continuous evolution
- LIC, ligation-independent cloning
- MAGE, multiplex automated genome engineering
- MMEJ, microhomology-mediated end-joining
- Mutations
- NHEJ, error-prone non-homologous end-joining
- ORF, open reading frame
- PAM, protospacer-adjacent motif
- RVD, repeat variable di-residue
- Synthetic biology
- TALE, transcription activator-like effector
- TALEN, transcription activator-like effector nuclease
- TP, terminal protein
- TP-DNAP, TP-DNA polymerase fusion
- TaGTEAM, targeting glycosylase to embedded arrays for mutagenesis
- Targeted mutagenesis
- YOGE, yeast oligo-mediated genome engineering
- ZF, zinc-finger protein
- ZFN, zinc-finger nuclease
- dCas9, catalytically dead Cas9
- dNTP, deoxy-ribonucleoside triphosphate
- dsDNA, double-stranded DNA
- error-prone PCR, error-prone polymerase chain reaction
- non-GMO, non-genetically modified organism
- pre-crRNA, pre-CRISPR RNA
- sctetR, single chain tetR
- sgRNA, single-guide RNA
- ssDNA, single-stranded DNA
- tracrRNA, trans-encoded RNA
Collapse
Affiliation(s)
| | | | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Wang R, Gu X, Zhuang Z, Zhong Y, Yang H, Wang S. Screening and Molecular Evolution of a Single Chain Variable Fragment Antibody (scFv) against Citreoviridin Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7640-7648. [PMID: 27622814 DOI: 10.1021/acs.jafc.6b02637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Citreoviridin (CIT), a small food-borne mycotoxin produced by Penicillium citreonigrum, is generally distributed in various cereal grains and farm crop products around the world and has caused cytotoxicity as an uncompetitive inhibitor of ATP hydrolysis. A high affinity single chain variable fragment (scFv) antibody that can detect the citreoviridin in samples is still not available; therefore, it is very urgent to prepare an antibody for CIT detection and therapy. In this study, an amplified and assembled scFv from hybridoma was used to construct the mutant phage library by error-prone PCR, generating a 2 × 108 capacity mutated phage display library. After six rounds of biopanning, the selected scFv-5A10 displayed higher affinity and specificity to CIT antigen, with an increased affinity of 13.25-fold (Kaff = 5.7 × 109 L/mol) compared to that of the original wild-type scFv. Two critical amino acids (P100 and T151) distributed in H-CDR3 and L-FR regions that were responsible for scFv-5A10 to CIT were found and verified by oligonucleotide-directed mutagenesis, and the resulting three mutants except for the mutant (P100K) lost binding activity significantly against CIT, as predicated. Indirect competitive ELISA (ic-ELISA) indicated that the linear range to detect CIT was 25-562 ng/mL with IC50 at 120 ng/mL. The limit of detection was 14.7 ng/mL, and the recovery average was (90.612 ± 3.889)%. Hence, the expressed and purified anti-CIT MBP-linker-scFv can be used to detect CIT in corn and related samples.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Xiaosong Gu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Zhenghong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Yanfang Zhong
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Hang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou 350002, China
| |
Collapse
|
12
|
Tse L, Kang TM, Yuan J, Mihora D, Becket E, Maslowska KH, Schaaper RM, Miller JH. Extreme dNTP pool changes and hypermutability in dcd ndk strains. Mutat Res 2015; 784-785:16-24. [PMID: 26789486 DOI: 10.1016/j.mrfmmm.2015.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022]
Abstract
Cells lacking deoxycytidine deaminase (DCD) have been shown to have imbalances in the normal dNTP pools that lead to multiple phenotypes, including increased mutagenesis, increased sensitivity to oxidizing agents, and to a number of antibiotics. In particular, there is an increased dCTP pool, often accompanied by a decreased dTTP pool. In the work presented here, we show that double mutants of Escherichia coli lacking both DCD and NDK (nucleoside diphosphate kinase) have even more extreme imbalances of dNTPs than mutants lacking only one or the other of these enzymes. In particular, the dCTP pool rises to very high levels, exceeding even the cellular ATP level by several-fold. This increased level of dCTP, coupled with more modest changes in other dNTPs, results in exceptionally high mutation levels. The high mutation levels are attenuated by the addition of thymidine. The results corroborate the critical importance of controlling DNA precursor levels for promoting genome stability. We also show that the addition of certain exogenous nucleosides can influence replication errors in DCD-proficient strains that are deficient in mismatch repair.
Collapse
Affiliation(s)
- Lawrence Tse
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Tina Manzhu Kang
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Jessica Yuan
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Danielle Mihora
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Elinne Becket
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Katarzyna H Maslowska
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States.
| |
Collapse
|
13
|
High-Frequency Variation of Purine Biosynthesis Genes Is a Mechanism of Success in Campylobacter jejuni. mBio 2015; 6:e00612-15. [PMID: 26419875 PMCID: PMC4611032 DOI: 10.1128/mbio.00612-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Phenotypic variation is prevalent in the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity enhances the survival and adaptive malleability of bacterial populations because variable phenotypes may allow some cells to be protected against future stress. Exposure to hyperosmotic stress previously revealed prevalent differences in growth between C. jejuni strain 81-176 colonies due to resistant or sensitive phenotypes, and these isolated colonies continued to produce progeny with differential phenotypes. In this study, whole-genome sequencing of isolated colonies identified allelic variants of two purine biosynthesis genes, purF and apt, encoding phosphoribosyltransferases that utilize a shared substrate. Genetic analyses determined that purF was essential for fitness, while apt was critical. Traditional and high-depth amplicon-sequencing analyses confirmed extensive intrapopulation genetic variation of purF and apt that resulted in viable strains bearing alleles with in-frame insertion duplications, deletions, or missense polymorphisms. Different purF and apt alleles were associated with various stress survival capabilities under several niche-relevant conditions and contributed to differential intracellular survival in an epithelial cell infection model. Amplicon sequencing revealed that intracellular survival selected for stress-fit purF and apt alleles, as did exposure to oxygen and hyperosmotic stress. Putative protein recognition direct repeat sequences were identified in purF and apt, and a DNA-protein affinity screen captured a predicted exonuclease that promoted the global spontaneous mutation rate. This work illustrates the adaptive properties of high-frequency genetic variation in two housekeeping genes, which influences C. jejuni survival under stress and promotes its success as a pathogen. IMPORTANCE C. jejuni is an important cause of bacterial diarrheal illness. Bacterial populations have many strategies for stress survival, but phenotypic variation due to genetic diversity has a powerful advantage: no matter how swift the change in environment, a fraction of the population already expresses the survival trait. Nonclonality is thus increasingly viewed as a mechanism of population success. Our previous work identified prominent resistant/sensitive colonial variation in C. jejuni bacteria in response to hyperosmotic stress; in the work presented here, we attribute that to high-frequency genetic variation in two purine biosynthesis genes, purF and apt. We demonstrated selective pressure for nonlethal mutant alleles of both genes, showed that single-cell variants had the capacity to give rise to diverse purF and apt populations, and determined that stress exposure selected for desirable alleles. Thus, a novel C. jejuni adaptive strategy was identified, which was, unusually, reliant on prevalent genetic variation in two housekeeping genes.
Collapse
|
14
|
Tsuru S, Ishizawa Y, Shibai A, Takahashi Y, Motooka D, Nakamura S, Yomo T. Genomic confirmation of nutrient-dependent mutability of mutators in Escherichia coli. Genes Cells 2015; 20:972-81. [PMID: 26414389 DOI: 10.1111/gtc.12300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/18/2015] [Indexed: 12/01/2022]
Abstract
Mutators with increased mutation rates are prevalent in various environments and have important roles in accelerating adaptive evolution. Previous studies on mutator strains of microorganisms have shown that some mutators have constant mutation rates, whereas others exhibit switchable mutation rates depending on nutritional conditions. This suggests that the contributions of mutators on evolution vary with fluctuating nutritional conditions. However, such conditional mutability has been unclear at the genomic level. In addition, it is still unknown why mutation rates change with nutritional condition. Here, we used two mutator strains of Escherichia coli to explore the nutrient dependence of mutation rates at the genomic level. These strains were transferred repeatedly under different nutritional conditions for hundreds of generations to accumulate mutations. Whole-genome sequencing of the offspring showed that the nutrient dependence of the mutation rates was pervasive at the genomic scale. Neutrality in the mutation accumulation processes and constancy in the mutational bias suggested that nutrient dependence was not derived from conditional selective purges or from shifts of mutational bias. Some mutators could simply switch their mutation rates for both transitions and transversions in response to nutritional shifts.
Collapse
Affiliation(s)
- Saburo Tsuru
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuuka Ishizawa
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Shibai
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Takahashi
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Suita, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Mutations that Separate the Functions of the Proofreading Subunit of the Escherichia coli Replicase. G3-GENES GENOMES GENETICS 2015; 5:1301-11. [PMID: 25878065 PMCID: PMC4478557 DOI: 10.1534/g3.115.017285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The dnaQ gene of Escherichia coli encodes the ε subunit of DNA polymerase III, which provides the 3′ → 5′ exonuclease proofreading activity of the replicative polymerase. Prior studies have shown that loss of ε leads to high mutation frequency, partially constitutive SOS, and poor growth. In addition, a previous study from our laboratory identified dnaQ knockout mutants in a screen for mutants specifically defective in the SOS response after quinolone (nalidixic acid) treatment. To explain these results, we propose a model whereby, in addition to proofreading, ε plays a distinct role in replisome disassembly and/or processing of stalled replication forks. To explore this model, we generated a pentapeptide insertion mutant library of the dnaQ gene, along with site-directed mutants, and screened for separation of function mutants. We report the identification of separation of function mutants from this screen, showing that proofreading function can be uncoupled from SOS phenotypes (partially constitutive SOS and the nalidixic acid SOS defect). Surprisingly, the two SOS phenotypes also appear to be separable from each other. These findings support the hypothesis that ε has additional roles aside from proofreading. Identification of these mutants, especially those with normal proofreading but SOS phenotype(s), also facilitates the study of the role of ε in SOS processes without the confounding results of high mutator activity associated with dnaQ knockout mutants.
Collapse
|
16
|
Ishizawa Y, Ying BW, Tsuru S, Yomo T. Nutrient-dependent growth defects and mutability of mutators in Escherichia coli. Genes Cells 2014; 20:68-76. [PMID: 25378049 DOI: 10.1111/gtc.12199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/04/2014] [Indexed: 11/28/2022]
Abstract
So-called mutators emerge when mismatch repair and proofreading mechanisms are defective. Mutators not only accelerate the accumulation of mutations that are beneficial for adaptation but also cause a large number of deleterious mutations that are disadvantageous for cell growth. However, such growth defects may be compensated by nutrient availability. How the growth burden is associated with high mutability in relation to nutritional variation is an intriguing question. To address this question, we constructed a variety of Escherichia coli mutator strains through combinatorial deletions of mismatch repair and proofreading genes and quantitatively evaluated their growth and mutation rates under different nutritional conditions. Growth defects caused by high mutation rates were commonly observed in all mutators, and these defects were alleviated by nutrient supplementation in most mutators. In addition, the mutation rates of the mutators fluctuated greatly in response to nutritional conditions, in contrast to the nearly constant mutation rate of the wild-type strain under varying nutritional conditions. The results showed conditional growth defects and nutrition-sensitive mutability as general features of mutators. This study indicates the importance of modulating mutability in response to changing nutrient conditions to minimize the risk of extinction due to genetic load.
Collapse
Affiliation(s)
- Yuuka Ishizawa
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | |
Collapse
|
17
|
Mutagenesis in the lacI gene target of E. coli: improved analysis for lacI(d) and lacO mutants. Mutat Res 2014; 770:79-84. [PMID: 25771873 DOI: 10.1016/j.mrfmmm.2014.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 11/23/2022]
Abstract
The lacI gene of Escherichia coli has been a highly useful target for studies of mutagenesis, particularly for analysis of the specificity (spectrum) of mutations generated under a variety of conditions and in various genetic backgrounds. The gene encodes the repressor of the lac operon, and lacI-defective mutants displaying constitutive expression of the operon are readily selected. DNA sequencing of the lacI mutants has often been confined to the N-terminal region of the protein, as it presents a conveniently short target with a high density of detectably mutable sites. Mutants in this region are easily selected due to their dominance in a genetic complementation test (lacI(d) mutants). A potential complication in these studies is that constitutive expression of lac may also arise due to mutations in the lac operator (lacO mutants). Under some conditions, for example when analyzing spontaneous mutations, lacO mutants can comprise a very high fraction of the constitutive mutants due to a strong base-substitution hotspot in the lac operator. Such mutational hot spots diminish the return of the sequencing effort and do not yield significant new information. For this reason, a procedure to eliminate the lacO mutants prior to DNA sequencing is desirable. Here, we report a simple method that allows screening out of lacO mutants. This method is based on the lack of resistance of lacO mutants to kanamycin under conditions when the kan gene is expressed from a plasmid under control of the lac promoter-operator (lacPO). We show data validating the new approach with sets of known lacI(d) and lacO mutants, and further apply it to the generation of a new collection of spontaneous mutations, where lacO mutants have historically been a significant contributor.
Collapse
|
18
|
Hypermutability and error catastrophe due to defects in ribonucleotide reductase. Proc Natl Acad Sci U S A 2013; 110:18596-601. [PMID: 24167285 DOI: 10.1073/pnas.1310849110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The enzyme ribonucleotide reductase (RNR) plays a critical role in the production of deoxynucleoside-5'-triphosphates (dNTPs), the building blocks for DNA synthesis and replication. The levels of the cellular dNTPs are tightly controlled, in large part through allosteric control of RNR. One important reason for controlling the dNTPs relates to their ability to affect the fidelity of DNA replication and, hence, the cellular mutation rate. We have previously isolated a set of mutants of Escherichia coli RNR that are characterized by altered dNTP pools and increased mutation rates (mutator mutants). Here, we show that one particular set of RNR mutants, carrying alterations at the enzyme's allosteric specificity site, is characterized by relatively modest dNTP pool deviations but exceptionally strong mutator phenotypes, when measured in a mutational forward assay (>1,000-fold increases). We provide evidence indicating that this high mutability is due to a saturation of the DNA mismatch repair system, leading to hypermutability and error catastrophe. The results indicate that, surprisingly, even modest deviations of the cellular dNTP pools, particularly when the pool deviations promote particular types of replication errors, can have dramatic consequences for mutation rates.
Collapse
|
19
|
Chou HH, Keasling JD. Programming adaptive control to evolve increased metabolite production. Nat Commun 2013; 4:2595. [DOI: 10.1038/ncomms3595] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 09/11/2013] [Indexed: 11/09/2022] Open
|
20
|
Luan G, Cai Z, Li Y, Ma Y. Genome replication engineering assisted continuous evolution (GREACE) to improve microbial tolerance for biofuels production. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:137. [PMID: 24070173 PMCID: PMC3856464 DOI: 10.1186/1754-6834-6-137] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Microbial production of biofuels requires robust cell growth and metabolism under tough conditions. Conventionally, such tolerance phenotypes were engineered through evolutionary engineering using the principle of "Mutagenesis followed-by Selection". The iterative rounds of mutagenesis-selection and frequent manual interventions resulted in discontinuous and inefficient strain improvement processes. This work aimed to develop a more continuous and efficient evolutionary engineering method termed as "Genome Replication Engineering Assisted Continuous Evolution" (GREACE) using "Mutagenesis coupled-with Selection" as its core principle. RESULTS The core design of GREACE is to introduce an in vivo continuous mutagenesis mechanism into microbial cells by introducing a group of genetically modified proofreading elements of the DNA polymerase complex to accelerate the evolution process under stressful conditions. The genotype stability and phenotype heritability can be stably maintained once the genetically modified proofreading element is removed, thus scarless mutants with desired phenotypes can be obtained.Kanamycin resistance of E. coli was rapidly improved to confirm the concept and feasibility of GREACE. Intrinsic mechanism analysis revealed that during the continuous evolution process, the accumulation of genetically modified proofreading elements with mutator activities endowed the host cells with enhanced adaptation advantages. We further showed that GREACE can also be applied to engineer n-butanol and acetate tolerances. In less than a month, an E. coli strain capable of growing under an n-butanol concentration of 1.25% was isolated. As for acetate tolerance, cell growth of the evolved E. coli strain increased by 8-fold under 0.1% of acetate. In addition, we discovered that adaptation to specific stresses prefers accumulation of genetically modified elements with specific mutator strengths. CONCLUSIONS We developed a novel GREACE method using "Mutagenesis coupled-with Selection" as core principle. Successful isolation of E. coli strains with improved n-butanol and acetate tolerances demonstrated the potential of GREACE as a promising method for strain improvement in biofuels production.
Collapse
Affiliation(s)
- Guodong Luan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Reduction of dNTP levels enhances DNA replication fidelity in vivo. DNA Repair (Amst) 2013; 12:300-5. [PMID: 23433812 DOI: 10.1016/j.dnarep.2013.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/25/2013] [Accepted: 01/31/2013] [Indexed: 11/23/2022]
Abstract
ATP is the most important energy source for the maintenance and growth of living cells. Here we report that the impairment of the aerobic respiratory chain by inactivation of the ndh gene, or the inhibition of glycolysis with arsenate, both of which reduce intracellular ATP, result in a significant decrease in spontaneous mutagenesis in Escherichia coli. The genetic analyses and mutation spectra in the ndh strain revealed that the decrease in spontaneous mutagenesis resulted from an enhanced accuracy of the replicative DNA polymerase. Quantification of the dNTP content in the ndh mutant cells and in the arsenate-treated cells showed reduction of the dNTP pool, which could explain the observed broad antimutator effects. In conclusion, our work indicates that the cellular energy supply could affect spontaneous mutation rates and that a reduction of the dNTP levels can be antimutagenic.
Collapse
|
22
|
Schaaper RM, Mathews CK. Mutational consequences of dNTP pool imbalances in E. coli. DNA Repair (Amst) 2012; 12:73-9. [PMID: 23218950 DOI: 10.1016/j.dnarep.2012.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
The accuracy of DNA synthesis depends on the accuracy of the polymerase as well as the quality and concentration(s) of the available 5'-deoxynucleoside-triphosphate DNA precursors (dNTPs). The relationships between dNTPs and error rates have been studied in vitro, but only limited insights exist into these correlations during in vivo replication. We have investigated this issue in the bacterium Escherichia coli by analyzing the mutational properties of dcd and ndk strains. These strains, defective in dCTP deaminase and nucleoside diphosphate kinase, respectively, are characterized by both disturbances of dNTP pools and a mutator phenotype. ndk strains have been studied before, but were included in this study, as controversies exist regarding the source of its mutator phenotype. We show that dcd strains suffer from increased intracellular levels of dCTP (4-fold) and reduced levels of dGTP (2-fold), while displaying, as measured using a set of lacZ reversion markers in a mismatch-repair defective (mutL) background, a strong mutator effect for G·C→T·A and A·T→T·A transversions (27- and 42-fold enhancement, respectively). In contrast, ndk strains possess a lowered dATP level (4-fold) and modestly enhanced dCTP level (2-fold), while its mutator effect is specific for just the A·T→T·A transversions. The two strains also display differential mutability for rifampicin-resistant mutants. Overall, our analysis reveals for both strains a satisfactory correlation between dNTP pool alterations and the replication error rates, and also suggests that a minimal explanation for the ndk mutator does not require assumptions beyond the predicted effect of the dNTP pools.
Collapse
Affiliation(s)
- Roel M Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
23
|
Sanjuán R, Lázaro E, Vignuzzi M. Biomedical implications of viral mutation and evolution. Future Virol 2012. [DOI: 10.2217/fvl.12.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mutation rates vary hugely across viruses and strongly determine their evolution. In addition, viral mutation and evolution are biomedically relevant because they can determine pathogenesis, vaccine efficacy and antiviral resistance. We review experimental methods for estimating viral mutation rates and how these estimates vary across viral groups, paying special attention to the more general trends. Recent advances positing a direct association between viral mutation rates and virulence, or the use of high-fidelity variants as attenuated vaccines, are also discussed. Finally, we review the implications of viral mutation and evolution for the design of rational antiviral therapies and for efficient epidemiological surveillance.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Ester Lázaro
- Centro de Astrobiología, CSIC-INTA, Madrid, Spain
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations & Pathogenesis Laboratory, Paris, France
| |
Collapse
|
24
|
Abstract
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these 'antimutagenic' changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient 'mutator' derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.
Collapse
Affiliation(s)
- Alan J Herr
- Department of Pathology, University of Washington, Seattle, USA
| | | | | |
Collapse
|
25
|
Treangen TJ, Abraham AL, Touchon M, Rocha EPC. Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiol Rev 2009; 33:539-71. [PMID: 19396957 DOI: 10.1111/j.1574-6976.2009.00169.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repeats are causes and consequences of genome plasticity. Repeats are created by intrachromosomal recombination or horizontal transfer. They are targeted by recombination processes leading to amplifications, deletions and rearrangements of genetic material. The identification and analysis of repeats in nearly 700 genomes of bacteria and archaea is facilitated by the existence of sequence data and adequate bioinformatic tools. These have revealed the immense diversity of repeats in genomes, from those created by selfish elements to the ones used for protection against selfish elements, from those arising from transient gene amplifications to the ones leading to stable duplications. Experimental works have shown that some repeats do not carry any adaptive value, while others allow functional diversification and increased expression. All repeats carry some potential to disorganize and destabilize genomes. Because recombination and selection for repeats vary between genomes, the number and types of repeats are also quite diverse and in line with ecological variables, such as host-dependent associations or population sizes, and with genetic variables, such as the recombination machinery. From an evolutionary point of view, repeats represent both opportunities and problems. We describe how repeats are created and how they can be found in genomes. We then focus on the functional and genomic consequences of repeats that dictate their fate.
Collapse
|
26
|
Galanis M, Irving RA, Hudson PJ. Bacteriophage library construction and selection of recombinant antibodies. ACTA ACUST UNITED AC 2008; Chapter 17:17.1.1-17.1.48. [PMID: 18432742 DOI: 10.1002/0471142735.im1701s34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit describes the use of E. coli and bacteriophages to display a diverse library of antibody fragments equivalent in complexity to the mammalian immune repertoire, and subsequent screening of the library for antibody fragments with specific binding affinities. The methods are also used for affinity enhancement (maturation), through the display and selection of improved affinity mutants derived from a single parent antibody. This unit discusses the following key components needed in library construction technology: a repertoire of antibody genes, typically amplified by polymerase chain reaction (PCR) technology; construction of scFv genes by PCR assembly; a method for producing a stable library, using bacteriophage that can both display individual antibodies on the viral surface and carry the gene encoding the antibody; a method of growing phage for selection; a method of selecting the highest-affinity antibody from the phage library; a method for monitoring progress of phage selection; an affinity-enhancement strategy for improving and manipulating the selected antibody; and expression of affinity-enhanced antibodies.
Collapse
Affiliation(s)
- M Galanis
- Cooperative Research Center for Diagnostic Technologies at CSIRO Molecular Science, Parkville, Victoria, Australia
| | | | | |
Collapse
|
27
|
JT George A, Epenetos AA. Section Review Biologicals & Immunologicals: Advances in antibody engineering. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.6.5.441] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Abstract
It has recently become clear that the classical notion of the random nature of mutation does not hold for the distribution of mutations among genes: most collections of mutants contain more isolates with two or more mutations than predicted by the mutant frequency on the assumption of a random distribution of mutations. Excesses of multiples are seen in a wide range of organisms, including riboviruses, DNA viruses, prokaryotes, yeasts, and higher eukaryotic cell lines and tissues. In addition, such excesses are produced by DNA polymerases in vitro. These "multiples" appear to be generated by transient, localized hypermutation rather than by heritable mutator mutations. The components of multiples are sometimes scattered at random and sometimes display an excess of smaller distances between mutations. As yet, almost nothing is known about the mechanisms that generate multiples, but such mutations have the capacity to accelerate those evolutionary pathways that require multiple mutations where the individual mutations are neutral or deleterious. Examples that impinge on human health may include carcinogenesis and the adaptation of microbial pathogens as they move between individual hosts.
Collapse
Affiliation(s)
- John W Drake
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709-2233, USA.
| |
Collapse
|
29
|
Yip ES, Geszvain K, DeLoney-Marino CR, Visick KL. The symbiosis regulator rscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol Microbiol 2007; 62:1586-600. [PMID: 17087775 PMCID: PMC1852533 DOI: 10.1111/j.1365-2958.2006.05475.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Successful colonization of a eukaryotic host by a microbe involves complex microbe-microbe and microbe-host interactions. Previously, we identified in Vibrio fischeri a putative sensor kinase, RscS, required for initiating symbiotic colonization of its squid host Euprymna scolopes. Here, we analysed the role of rscS by isolating an allele, rscS1, with increased activity. Multicopy rscS1 activated transcription of genes within the recently identified symbiosis polysaccharide (syp) cluster. Wild-type cells carrying rscS1 induced aggregation phenotypes in culture, including the formation of pellicles and wrinkled colonies, in a syp-dependent manner. Colonies formed by rscSl-expressing cells produced a matrix not found in control colonies and largely lost in an rscSl-expressing sypN mutant. Finally, multicopy rscS1 provided a colonization advantage over control cells and substantially enhanced the ability of wild-type cells to aggregate on the surface of the symbiotic organ of E. scolopes; this latter phenotype similarly depended upon an intact syp locus. These results suggest that transcription induced by RscS-mediated signal transduction plays, a key role in colonization at the aggregation stage by modifying the cell surface and increasing the ability of the cells to adhere to one another and/or to squid-secreted mucus.
Collapse
Affiliation(s)
- Emily S Yip
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | | | | | | |
Collapse
|
30
|
Yang H, To KH, Aguila SJ, Miller JH. Metagenomic DNA fragments that affect Escherichia coli mutational pathways. Mol Microbiol 2006; 61:960-77. [PMID: 16879649 DOI: 10.1111/j.1365-2958.2006.05268.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multicopy cloning approach was used to search for metagenomic DNA fragments that affect Escherichia coli mutational pathways. Soil metagenomic expression libraries were constructed with DNA samples prepared directly from soil samples collected from the UCLA Botanical Garden. Using frameshift mutator screening, we obtained a total of 26 unique metagenomic fragments that stimulate frameshift rates in an E. coli wild-type host. Mutational enhancer strains such as an ndk-deficient strain and a temperature sensitive mutS strain (mutS60) were used to further verify the mutator phenotype. We found that the presence of multiple copies of certain types of metagenomic DNA sequence repeats cause general genome instability in the wild-type E. coli host and the effect can be suppressed by overproducing a DNA mismatch component MutL. In addition, we identified nine metagenomic mutator genes (designated as smu genes) that encode proteins that have not been linked to mutator phenotypes prior to this study including a putative RNA methyltransferase Smu10A. The strain overproducing Smu10A displays one prominent base substitution hotspot in the rpoB gene, which coincides with the base substitution hotspot we have observed in cells that are partially deficient in the proofreading function carried out by the DNA polymerase III epsilon subunit. Based on the structural conservation of DNA replication/recombination/repair machineries among microorganisms, this approach would allow us to both identify new mutational pathways in E. coli and to find genes involved in DNA replication, recombination or DNA repair from vast unculturable microbes.
Collapse
Affiliation(s)
- Hanjing Yang
- Department of Microbiology, Immunology and Molecular Genetics, and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
31
|
Park SG, Jung YJ, Lee YY, Yang CM, Kim IJ, Chung JH, Kim IS, Lee YJ, Park SJ, Lee JN, Seo SK, Park YH, Choi IH. Improvement of Neutralizing Activity of Human scFv Antibodies Against Hepatitis B Virus Binding Using CDR3 VHMutant Library. Viral Immunol 2006; 19:115-23. [PMID: 16553557 DOI: 10.1089/vim.2006.19.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CDR3 of the heavy-chain variable region of immunoglobulin is a region in which somatic mutation occurs heavily after secondary antibody response, resulting in an affinity maturation of antibodies in vivo. The aim of this study was to improve the affinity of a human single-chain variable fragment (scFv) specific for pre-S1 of hepatitis B virus (HBV) by introducing random mutagenesis in CDR3 variable region of heavy chain (V(H)) of the parental scFv clone 1E4. By using a BIAcore for panning and screening, we have selected three clones (A9, B2, and B9) with lower highest affinity (K(D)) than 1E4. Affinities of selected clones ranged from 1.7 x 10(7) mol/L to 6.3 x 10(8) mol/L, which were increased by factors of 1.4 to 4.0, respectively, compared to the parental clone. Binding inhibition assay using flow cytometry and polymerase chain reaction revealed that B2 (6.4 x 10(8) mol/L) had a higher neutralizing activity against pre-S1 or HBV virion binding to liver cell line. This anti-pre-S1 scFv can be considered as a potential therapeutic tool for a passive immunotherapy for HBV infection.
Collapse
Affiliation(s)
- Sae-Gwang Park
- Department of Microbiology, College of Medicine and Center for Viral Disease Research, Inje University, Pusan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pham PT, Zhao W, Schaaper RM. Mutator mutants of Escherichia coli carrying a defect in the DNA polymerase III tau subunit. Mol Microbiol 2006; 59:1149-61. [PMID: 16430690 DOI: 10.1111/j.1365-2958.2005.05011.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the possible role of accessory subunits of Escherichia coli DNA polymerase III holoenzyme (HE) in determining chromosomal replication fidelity, we have investigated the role of the dnaX gene. This gene encodes both the tau and gamma subunits of HE, which play a central role in the organization and functioning of HE at the replication fork. We find that a classical, temperature-sensitive dnaX allele, dnaX36, displays a pronounced mutator effect, characterized by an unusual specificity: preferential enhancement of transversions and -1 frameshifts. The latter occur predominantly at non-run sequences. The dnaX36 defect does not affect the gamma subunit, but produces a tau subunit carrying a missense substitution (E601K) in its C-terminal domain (domain V) that is involved in interaction with the Pol III alpha subunit. A search for new mutators in the dnaX region of the chromosome yielded six additional dnaX mutators, all carrying a specific tau subunit defect. The new mutators displayed phenotypes similar to dnaX36: strong enhancement of transversions and frameshifts and only weak enhancement for transitions. The combined findings suggest that the tau subunit of HE plays an important role in determining the fidelity of the chromosomal replication, specifically in the avoidance of transversions and frameshift mutations.
Collapse
Affiliation(s)
- Phuong T Pham
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
33
|
Imai M, Tago YI, Endo K, Ohnishi G, Nagata Y, Nunoshiba T, Yamamoto K. Spontaneous Mutagenesis in Escherichia coli and Saccharomyces cerevisiae. Genes Environ 2006. [DOI: 10.3123/jemsge.28.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Miller JH. Perspective on mutagenesis and repair: the standard model and alternate modes of mutagenesis. Crit Rev Biochem Mol Biol 2005; 40:155-79. [PMID: 15917398 DOI: 10.1080/10409230590954153] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The basic ideas of replication, mutagenesis, and repair have outlined a picture of how point mutations occur that has provided a valuable framework for theory and experiment, much as the Standard Model of particle physics has done for our concept of fundamental particles. However, alternative modes of mutagenesis are being defined that are changing our perspective of the "Standard Model" of mutagenesis, requiring an expanded model. The genome is now envisioned as being in dynamic equilibrium between a multitude of forces for mutational change and forces that counteract such change. By maintaining a delicate balance between these forces, cells avoid unwanted or excessive mutations. Yet, cells allow mutagenesis to occur under certain conditions. We can define an emerging paradigm. Namely, mechanisms exist that can direct point mutations to specific designated genes or regions of genes. In some cases, this is achieved by specific enzymes, and in other cases high mutability is programmed into the sequence of certain genes to help generate diversity. In yet additional cases, general mutability is increased under stress, and selective forces allow the recovery of favorable mutants.
Collapse
Affiliation(s)
- Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Tago YI, Imai M, Ihara M, Atofuji H, Nagata Y, Yamamoto K. Escherichia coli mutator (Delta)polA is defective in base mismatch correction: the nature of in vivo DNA replication errors. J Mol Biol 2005; 351:299-308. [PMID: 16005896 DOI: 10.1016/j.jmb.2005.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/07/2005] [Accepted: 06/09/2005] [Indexed: 10/25/2022]
Abstract
We constructed a set of Escherichia coli strains containing deletions in genes encoding three SOS polymerases, and defective in MutS and DNA polymerase I (PolI) mismatch repair, and estimated the rate and specificity of spontaneous endogenous tonB(+)-->tonB- mutations. The rate and specificity of mutations in strains proficient or deficient in three SOS polymerases was compared and found that there was no contribution of SOS polymerases to the chromosomal tonB mutations. MutS-deficient strains displayed elevated spontaneous mutation rates, consisting of dominantly minus frameshifts and transitions. Minus frameshifts are dominated by warm spots at run-bases. Among 57 transitions (both G:C-->A:T and A:T-->G:C), 35 occurred at two hotspot sites. PolI-deficient strains possessed an increased rate of deletions and frameshifts, because of a deficiency in postreplicative deletion and frameshift mismatch corrections. Frameshifts in PolI-deficient strains occurred within the entire tonB gene at non-run and run sequences. MutS and PolI double deficiency indicated a synergistic increase in the rate of deletions, frameshifts and transitions. In this case, mutS-specific hotspots for frameshifts and transitions disappeared. The results suggested that, unlike the case previously known pertaining to postreplicative MutS mismatch repair for frameshifts and transitions and PolI mismatch repair for frameshifts and deletions, PolI can recognize and correct transition mismatches. Possible mechanisms for distinct MutS and PolI mismatch repair are discussed. A strain containing deficiencies in three SOS polymerases, MutS mismatch repair and PolI mismatch repair was also constructed. The spectrum of spontaneous mutations in this strain is considered to represent the spectrum of in vivo DNA polymerase III replication errors. The mutation rate of this strain was 219x10(-8), about a 100-fold increase relative to the wild-type strain. Uncorrected polymerase III replication errors were predominantly frameshifts and base substitutions followed by deletions.
Collapse
Affiliation(s)
- Yu-ichiro Tago
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Drake JW, Bebenek A, Kissling GE, Peddada S. Clusters of mutations from transient hypermutability. Proc Natl Acad Sci U S A 2005; 102:12849-54. [PMID: 16118275 PMCID: PMC1200270 DOI: 10.1073/pnas.0503009102] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Indexed: 11/18/2022] Open
Abstract
Collections of mutants usually contain more mutants bearing multiple mutations than expected from the mutant frequency and a random distribution of mutations. This excess is seen in a variety of organisms and also after DNA synthesis in vitro. The excess is unlikely to originate in mutator mutants but rather from transient hypermutability resulting from a perturbation of one of the many transactions that maintain genetic fidelity. The multiple mutations are sometimes clustered and sometimes randomly distributed. We model some spectra as populations comprising a majority with a low mutation frequency and a minority with a high mutation frequency. In the case of mutants produced in vitro by a bacteriophage RB69 mutator DNA polymerase, mutants with two mutations are in approximately 10-fold excess and mutants with three mutations are in even greater excess. However, phenotypically undetectable mutations seen only as hitchhikers with detectable mutations are approximately 5-fold more frequent than mutants bearing detectable mutations, indicating that they arose in a subpopulation with a higher mutation frequency. Excess multiple mutations may contribute critically to carcinogenesis and to adaptive mutation, including the adaptations of pathogens as they move from host to host. In the case of the rapidly mutating riboviruses, the viral population appears to be composed of a majority with a mutation frequency substantially lower than the average and a minority with a huge mutational load.
Collapse
Affiliation(s)
- John W Drake
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
37
|
Franke B, Galloway TS, Wilkin TJ. Developments in the prediction of type 1 diabetes mellitus, with special reference to insulin autoantibodies. Diabetes Metab Res Rev 2005; 21:395-415. [PMID: 15895384 DOI: 10.1002/dmrr.554] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prodromal phase of type 1 diabetes is characterised by the appearance of multiple islet-cell related autoantibodies (Aab). The major target antigens are islet-cell antigen, glutamic acid decarboxylase (GAD), protein-tyrosine phosphatase-2 (IA-2) and insulin. Insulin autoantibodies (IAA), in contrast to the other autoimmune markers, are the only beta-cell specific antibodies. There is general consensus that the presence of multiple Aab (> or = 3) is associated with a high risk of developing diabetes, where the presence of a single islet-cell-related Aab has usually a low predictive value. The most commonly used assay format for the detection of Aab to GAD, IA-2 and insulin is the fluid-phase radiobinding assay. The RBA does not identify or measure Aab, but merely detects its presence. However, on the basis of molecular studies, disease-specific constructs of GAD and IA-2 have been employed leading to somewhat improved sensitivity and specificity of the RBA. Serological studies have shown epitope restriction of IAA that can differentiate diabetes-related from unrelated IAA, but current assays do not distinguish between disease-predictive and non-predictive IAA or between IAA and insulin antibodies (IA). More recently, phage display technology has been successful in identifying disease-specific anti-idiotopes of insulin. In addition, phage display has facilitated the in vitro production of antibodies with high affinity. Identification of disease-specific anti-idiotopes of insulin should enable the production of a high affinity reagent against the same anti-idiotope. Such a development would form the basis of a disease-specific radioimmunoassay able to identify and measure particular idiotypes, rather than merely detect and titrate IAA.
Collapse
Affiliation(s)
- Bernd Franke
- Department of Diabetes/Endocrinology Level D, Rotherham General Hospital, UK.
| | | | | |
Collapse
|
38
|
Park SG, Jeong YJ, Lee YY, Kim IJ, Seo SK, Kim EJ, Jung HC, Pan JG, Park SJ, Lee YJ, Kim IS, Choi IH. Hepatitis B virus-neutralizing anti-pre-S1 human antibody fragments from large naïve antibody phage library. Antiviral Res 2005; 68:109-15. [PMID: 16290278 DOI: 10.1016/j.antiviral.2005.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 06/24/2005] [Accepted: 06/27/2005] [Indexed: 12/16/2022]
Abstract
We report the construction of a large nonimmunized human phage antibody library in single-chain variable region fragment (scFv) format, which allowed the selection of antibodies that neutralize hepatitis B virus (HBV) in vitro. We generated 1.1 x 10(10) independent scFv clones using the cDNA of functional variable (V) gene segments of heavy and light chains purified from the peripheral blood mononuclear cells of 50 nonimmunized human donors. Using BIAcore, we selected two clones that recognized pre-S1 and neutralized pre-S1 and HBV binding to Chang liver cells. Clone G10 had the highest affinity (K(D)=1.69 x 10(-7)M), which was higher than that of clone 1E4 that was generated previously from a heavy chain-shuffled immune library. The off-rates of clones were within 10(-3)s(-1) as determined by BIAcore and were comparable to those of antibodies derived from a normal secondary immune response. In the inhibition assays of pre-S1 and virus binding to Chang liver cells using flow cytometry and the polymerase chain reaction, G10 had better neutralizing activity than 1E4. The new phage library may be a valuable source of antibodies with reasonable affinities to different targets, and the anti-pre-S1 G10 may be a good candidate for immunoprophylaxis against HBV infection.
Collapse
Affiliation(s)
- Sae-Gwang Park
- Department of Microbiology, College of Medicine and Center for Viral Disease Research, Inje University, Jin-Gu, Busan 614-735, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chikova AK, Schaaper RM. The bacteriophage P1 hot gene product can substitute for the Escherichia coli DNA polymerase III {theta} subunit. J Bacteriol 2005; 187:5528-36. [PMID: 16077097 PMCID: PMC1196078 DOI: 10.1128/jb.187.16.5528-5536.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 05/20/2005] [Indexed: 11/20/2022] Open
Abstract
The theta subunit (holE gene product) of Escherichia coli DNA polymerase (Pol) III holoenzyme is a tightly bound component of the polymerase core. Within the core (alpha-epsilon-theta), the alpha and epsilon subunits carry the DNA polymerase and 3' proofreading functions, respectively, while the precise function of theta is unclear. holE homologs are present in genomes of other enterobacteriae, suggestive of a conserved function. Putative homologs have also been found in the genomes of bacteriophage P1 and of certain conjugative plasmids. The presence of these homologs is of interest, because these genomes are fully dependent on the host replication machinery and contribute few, if any, replication factors themselves. To study the role of these theta homologs, we have constructed an E. coli strain in which holE is replaced by the P1 homolog, hot. We show that hot is capable of substituting for holE when it is assayed for its antimutagenic action on the proofreading-impaired dnaQ49 mutator, which carries a temperature-sensitive epsilon subunit. The ability of hot to substitute for holE was also observed with other, although not all, dnaQ mutator alleles tested. The data suggest that the P1 hot gene product can substitute for the theta subunit and is likely incorporated in the Pol III complex. We also show that overexpression of either theta or Hot further suppresses the dnaQ49 mutator phenotype. This suggests that the complexing of dnaQ49-epsilon with theta is rate limiting for its ability to proofread DNA replication errors. The possible role of hot for bacteriophage P1 is discussed.
Collapse
Affiliation(s)
- Anna K Chikova
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
40
|
Korabiowska M, Cordon-Cardo C, Jaenckel F, Stachura J, Fischer G, Brinck U. Application of in situ hybridization probes for MLH-1 and MSH-2 in tissue microarrays of paraffin-embedded malignant melanomas: correlation with immunohistochemistry and tumor stage. Hum Pathol 2005; 35:1543-8. [PMID: 15619215 DOI: 10.1016/j.humpath.2004.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Defects in DNA mismatch-repair genes MLH1 and MSH2 reported primarily in hereditary nonpolyposis colorectal carcinoma are present in many sporadic tumors, including malignant melanomas. The main aim of this study was to investigate the expression of these genes in malignant melanomas in relation to tumor stage. An experiment was performed on paraffin-embedded tissue microarrays of malignant melanomas applying in situ hybridization with probes produced by our research group and immunohistochemical techniques. In situ hybridization demonstrated MLH1 expression in 45 of 59 melanomas and MSH2 expression in 51 of 59 melanomas. Immunohistochemistry detected MLH1 expression in 46 of 59 melanomas and MSH2 expression in 50 of 59 melanomas. Down-regulation of expression of both DNA mismatch repair genes in malignant melanomas was observed. The findings obtained by in situ hybridization and immunohistochemistry correlated significantly. Our study demonstrates the suitability of in situ hybridization with MLH1 and MSH2 probes for paraffin-embedded tissue. Tissue microarrays can be used successfully in both in situ hybridization and immunohistochemistry to analyze the expression of DNA mismatch-repair genes.
Collapse
Affiliation(s)
- Monika Korabiowska
- Department of Pathology, Reinhard Nieter Hospital, Wilhelmshaven, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Lehtinen D, Perrino F. Dysfunctional proofreading in the Escherichia coli DNA polymerase III core. Biochem J 2004; 384:337-48. [PMID: 15352874 PMCID: PMC1134117 DOI: 10.1042/bj20040660] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/23/2004] [Accepted: 09/07/2004] [Indexed: 11/17/2022]
Abstract
The epsilon-subunit contains the catalytic site for the 3'-->5' proofreading exonuclease that functions in the DNA pol III (DNA polymerase III) core to edit nucleotides misinserted by the alpha-subunit DNA pol. A novel mutagenesis strategy was used to identify 23 dnaQ alleles that exhibit a mutator phenotype in vivo. Fourteen of the epsilon mutants were purified, and these proteins exhibited 3'-->5' exonuclease activities that ranged from 32% to 155% of the activity exhibited by the wild-type epsilon protein, in contrast with the 2% activity exhibited by purified MutD5 protein. DNA pol III core enzymes constituted with 11 of the 14 epsilon mutants exhibited an increased error rate during in vitro DNA synthesis using a forward mutation assay. Interactions of the purified epsilon mutants with the alpha- and theta;-subunits were examined by gel filtration chromatography and exonuclease stimulation assays, and by measuring polymerase/exonuclease ratios to identify the catalytically active epsilon511 (I170T/V215A) mutant with dysfunctional proofreading in the DNA pol III core. The epsilon511 mutant associated tightly with the alpha-subunit, but the exonuclease activity of epsilon511 was not stimulated in the alpha-epsilon511 complex. Addition of the theta;-subunit to generate the alpha-epsilon511-theta; DNA pol III core partially restored stimulation of the epsilon511 exonuclease, indicating a role for the theta;-subunit in co-ordinating the alpha-epsilon polymerase-exonuclease interaction. The alpha-epsilon511-theta; DNA pol III core exhibited a 3.5-fold higher polymerase/exonuclease ratio relative to the wild-type DNA pol III core, further indicating dysfunctional proofreading in the alpha-epsilon511-theta; complex. Thus the epsilon511 mutant has wild-type 3'-->5' exonuclease activity and associates physically with the alpha- and theta;-subunits to generate a proofreading-defective DNA pol III enzyme.
Collapse
Affiliation(s)
- Duane A. Lehtinen
- Wake Forest University Health Sciences, Department of Biochemistry, Winston-Salem, NC 27157, U.S.A
| | - Fred W. Perrino
- Wake Forest University Health Sciences, Department of Biochemistry, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
42
|
Sun ZW, Wang S, Du WS, Yu WY. In vitro maturation of humanized single-chain Fv 25 against hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2004; 12:2568-2571. [DOI: 10.11569/wcjd.v12.i11.2568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To improve the affinity of humanized single-chain Fv (hscFv25) against hepatocellular carcinoma (HCC).
METHODS: HscFv25 mutant antibody library was constructed, from which mutant antibodies with higher affinity were competitively selected. Then the selected antibodies were expressed in E coli under the induction of isopropylthio-β-D- galactoside (IPTG), and Cell ELISA and immunohistochemical staining methods were used to detect the activities of the mutant antibodies.
RESULTS: Three strains of mutant antibodies were obtained, and all of them could be solubly and effectively expressed in E coli. One strain of the three mutant antibodies possessed the activity of its parental antibody and the affinity was about 60 times higher than its parental antibody.
CONCLUSION: The affinity of HscFv25 mutant antibody against HCC can be successfully improved after screening.
Collapse
Affiliation(s)
- Zhi-Wei Sun
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shuang Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei-Shi Du
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei-Yuan Yu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
43
|
Lovett ST. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 2004; 52:1243-53. [PMID: 15165229 DOI: 10.1111/j.1365-2958.2004.04076.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations and rearrangements that occur by misalignment during DNA replication are frequent sources of genetic variation in bacteria. Dislocations between a replicating strand and its template at repetitive DNA sequences underlie the mechanism of these genetic events. Such misalignments can be transient or stable and can involve intramolecular or intermolecular DNA mispairing, even pairing across a replication fork. Paradoxically, these replication 'slippage' events both create and destroy repetitive sequences in bacterial genomes. This review catalogues several types of slippage errors, presents the cellular processes that act to limit them and discusses the consequences of this class of genetic events on the evolution of bacterial genomes and physiology.
Collapse
Affiliation(s)
- Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
44
|
Taft-Benz SA, Schaaper RM. The theta subunit of Escherichia coli DNA polymerase III: a role in stabilizing the epsilon proofreading subunit. J Bacteriol 2004; 186:2774-80. [PMID: 15090519 PMCID: PMC387820 DOI: 10.1128/jb.186.9.2774-2780.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 01/16/2004] [Indexed: 11/20/2022] Open
Abstract
The function of the theta subunit of Escherichia coli DNA polymerase III holoenzyme is not well established. theta is a tightly bound component of the DNA polymerase III core, which contains the alpha subunit (polymerase), the epsilon subunit (3'-->5' exonuclease), and the theta subunit, in the linear order alpha-epsilon-theta. Previous studies have shown that the theta subunit is not essential, as strains carrying a deletion of the holE gene (which encodes theta) proved fully viable. No significant phenotypic effects of the holE deletion could be detected, as the strain displayed normal cell health, morphology, and mutation rates. On the other hand, in vitro experiments have indicated the efficiency of the 3'-exonuclease activity of epsilon to be modestly enhanced by the presence of theta. Here, we report a series of genetic experiments that suggest that theta has a stabilizing role for the epsilon proofreading subunit. The observations include (i) defined DeltaholE mutator effects in mismatch-repair-defective mutL backgrounds, (ii) strong DeltaholE mutator effects in certain proofreading-impaired dnaQ strains, and (iii) yeast two- and three-hybrid experiments demonstrating enhancement of alpha-epsilon interactions by the presence of theta. theta appears conserved among gram-negative organisms which have an exonuclease subunit that exists as a separate protein (i.e., not part of the polymerase polypeptide), and the presence of theta might be uniquely beneficial in those instances where the proofreading 3'-exonuclease is not part of the polymerase polypeptide.
Collapse
Affiliation(s)
- Sharon A Taft-Benz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
45
|
Balashov S, Humayun MZ. Specificity of spontaneous mutations induced in mutA mutator cells. Mutat Res 2004; 548:9-18. [PMID: 15063131 DOI: 10.1016/j.mrfmmm.2003.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 12/16/2003] [Accepted: 12/17/2003] [Indexed: 04/29/2023]
Abstract
Escherichia coli cells expressing the mutA allele of a glyV (glycine tRNA) gene express a strong mutator phenotype. The mutA allele differs from the wild type glyV gene by a base substitution in the anticodon such that the resulting tRNA misreads certain aspartate codons as glycine, resulting in random, low-level Asp-->Gly substitutions in proteins. Subsequent work showed that many types of mistranslation can lead to a very similar phenotype, named TSM for translational stress-induced mutagenesis. Here, we have determined the specificity of forward mutations occurring in the lacI gene in mutA cells as well as in wild type cells. Our results show that in comparison to wild type cells, base substitutions are elevated 23-fold in mutA cells, as against a eight-fold increase in insertions and a five-fold increase in deletions. Among base substitutions, transitions are elevated 13-fold, with both G:C-->A:T and A:T-->G:C mutations showing roughly similar increases. Transversions are elevated 35-fold, with G:C-->T:A, G:C-->C:G and A:T-->C:G elevated 28-, 13- and 27-fold, respectively. A:T-->T:A mutations increase a striking 348-fold over parental cells, with most occurring at two hotspot sequences that share the G:C-rich sequence 5'-CCGCGTGG. The increase in transversion mutations is similar to that observed in cells defective for dnaQ, the gene encoding the proofreading function of DNA polymerase III. In particular, the relative proportions and sites of occurrence of A:T-->T:A transversions are similar in mutA and mutD5 (an allele of dnaQ) cells. Interestingly, transversions are also the predominant base substitutions induced in dnaE173 cells in which a missense mutation in the alpha subunit of polymerase III abolishes proofreading without affecting the 3'-->5' exonuclease activity of the epsilon subunit.
Collapse
Affiliation(s)
- Sergey Balashov
- Department of Microbiology and Molecular Genetics, International Center for Public Health, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07101-1709, USA
| | | |
Collapse
|
46
|
Nowosielska A, Janion C, Grzesiuk E. Effect of deletion of SOS-induced polymerases, pol II, IV, and V, on spontaneous mutagenesis in Escherichia coli mutD5. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 43:226-234. [PMID: 15141361 DOI: 10.1002/em.20019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The E. coli dnaQ gene encodes the epsilon subunit of DNA polymerase III (pol III) responsible for the proofreading activity of this polymerase. The mutD5 mutant of dnaQ chronically expresses the SOS response and exhibits a mutator phenotype. In this study we have constructed a set of E. coli AB1157 mutD5 derivatives deleted in genes encoding SOS-induced DNA polymerases, pol II, pol IV, and pol V, and estimated the frequency and specificity of spontaneous argE3-->Arg(+) reversion in exponentially growing and stationary-phase cells of these strains. We found that pol II exerts a profound effect on the specificity of spontaneous mutation in exponentially growing cells. Analysis of growth-dependent Arg(+) revertants in mutD5 polB(+) strains revealed that Arg(+) revertants were due to tRNA suppressor formation, whereas those in mutD5 DeltapolB strains arose by back mutation at the argE3 ochre site. In stationary-phase bacteria, Arg(+)revertants arose mainly by back mutation, regardless of whether they were proficient or deficient in pol II. Our results also indicate that in a mutD5 background, the absence of pol II led to increased frequency of Arg(+) growth-dependent revertants, whereas the lack of pol V caused its dramatic decrease, especially in mutD5 DeltaumuDC and mutD5 DeltaumuDC DeltapolB strains. In contrast, the rate of stationary-phase Arg(+)revertants increased in the absence of pol IV in the mutD5 DeltadinB strain. We postulate that the proofreading activity of pol II excises DNA lesions in exponentially growing cells, whereas pol V and pol IV are more active in stationary-phase cultures.
Collapse
Affiliation(s)
- Anetta Nowosielska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
47
|
Gonsalvez GB, Lehmann KA, Ho DK, Stanitsa ES, Williamson JR, Long RM. RNA-protein interactions promote asymmetric sorting of the ASH1 mRNA ribonucleoprotein complex. RNA (NEW YORK, N.Y.) 2003; 9:1383-99. [PMID: 14561888 PMCID: PMC1287060 DOI: 10.1261/rna.5120803] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 08/11/2003] [Indexed: 05/18/2023]
Abstract
In Saccharomyces cerevisiae, ASH1 mRNA is localized to the tip of daughter cells during anaphase of the cell cycle. ASH1 mRNA localization is dependent on four cis-acting localization elements as well as Myo4p, She2p, and She3p. Myo4p, She2p, and She3p are hypothesized to form a heterotrimeric protein complex that directly transports ASH1 mRNA to daughter cells. She2p is an RNA-binding protein that directly interacts with ASH1 cis-acting localization elements and associates with She3p. Here we report the identification of seven She2p mutants-N36S, R43A, R44A, R52A, R52K, R63A, and R63K-that result in the delocalization of ASH1 mRNA. These mutants are defective for RNA-binding activity but retain the ability to interact with She3p, indicating that a functional She2p RNA-binding domain is not a prerequisite for association with She3p. Furthermore, the nuclear/cytoplasmic distribution for the N36S and R63K She2p mutants is not altered, indicating that nuclear/cytoplasmic trafficking of She2p is independent of RNA-binding activity. Using the N36S and R63K She2p mutants, we observed that in the absence of She2p RNA-binding activity, neither Myo4p nor She3p is asymmetrically sorted to daughter cells. However, in the absence of She2p, Myo4p and She3p can be asymmetrically segregated to daughter cells by artificially tethering mRNA to She3p, implying that the transport and/or anchoring of the Myo4p/She3p complex is dependent on the presence of associated mRNA.
Collapse
Affiliation(s)
- Graydon B Gonsalvez
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
48
|
Collins AM, Sewell WA, Edwards MR. Immunoglobulin gene rearrangement, repertoire diversity, and the allergic response. Pharmacol Ther 2003; 100:157-70. [PMID: 14609718 DOI: 10.1016/j.pharmthera.2003.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immunoglobulin repertoire arises as a consequence of combinatorial diversity, junctional diversity, and the process of somatic point mutation. Each of these processes involves biases that limit and shape the available immunoglobulin repertoire. The expressed repertoire is further shaped by selection, to the extent that biased gene usage can become apparent in many disease states. The study of rearranged immunoglobulin genes therefore may not only provide insights into the molecular processes involved in the generation of antibody diversity but also inform us of pathogenic processes and perhaps identify particular lymphocyte clones as therapeutic targets. Partly as a consequence of the low numbers of circulating IgE-committed B-cells, studies of rearranged IgE genes in allergic individuals have commenced relatively recently. In this review, recent advances in our understanding of the processes of immunoglobulin gene rearrangement and somatic point mutation are described, and biases inherent to these processes are discussed. The evidence that some diseases may be associated with particular gene rearrangements is then considered, with a particular focus on allergic disease. Reviewed data suggest that an important contribution to the IgE response may come from cells that use relatively rare heavy chain V (V(H)) segment genes, which display little somatic point mutation. Some IgE antibodies also seem to display polyreactive binding. In other contexts, these 3 characteristics have been associated with antibodies of the B-1 B-cell subset, and the possibility that B-1 B-cells contribute to the allergic response is therefore considered.
Collapse
Affiliation(s)
- A M Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
49
|
Rogozin IB, Pavlov YI. Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat Res 2003; 544:65-85. [PMID: 12888108 DOI: 10.1016/s1383-5742(03)00032-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutation frequencies vary significantly along nucleotide sequences such that mutations often concentrate at certain positions called hotspots. Mutation hotspots in DNA reflect intrinsic properties of the mutation process, such as sequence specificity, that manifests itself at the level of interaction between mutagens, DNA, and the action of the repair and replication machineries. The hotspots might also reflect structural and functional features of the respective DNA sequences. When mutations in a gene are identified using a particular experimental system, resulting hotspots could reflect the properties of the gene product and the mutant selection scheme. Analysis of the nucleotide sequence context of hotspots can provide information on the molecular mechanisms of mutagenesis. However, the determinants of mutation frequency and specificity are complex, and there are many analytical methods for their study. Here we review computational approaches for analyzing mutation spectra (distribution of mutations along the target genes) that include many mutable (detectable) positions. The following methods are reviewed: derivation of a consensus sequence, application of regression approaches to correlate nucleotide sequence features with mutation frequency, mutation hotspot prediction, analysis of oligonucleotide composition of regions containing mutations, pairwise comparison of mutation spectra, analysis of multiple spectra, and analysis of "context-free" characteristics. The advantages and pitfalls of these methods are discussed and illustrated by examples from the literature. The most reliable analyses were obtained when several methods were combined and information from theoretical analysis and experimental observations was considered simultaneously. Simple, robust approaches should be used with small samples of mutations, whereas combinations of simple and complex approaches may be required for large samples. We discuss several well-documented studies where analysis of mutation spectra has substantially contributed to the current understanding of molecular mechanisms of mutagenesis. The nucleotide sequence context of mutational hotspots is a fingerprint of interactions between DNA and DNA repair, replication, and modification enzymes, and the analysis of hotspot context provides evidence of such interactions.
Collapse
Affiliation(s)
- Igor B Rogozin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
50
|
Chander M, Raducha-Grace L, Demple B. Transcription-defective soxR mutants of Escherichia coli: isolation and in vivo characterization. J Bacteriol 2003; 185:2441-50. [PMID: 12670967 PMCID: PMC152623 DOI: 10.1128/jb.185.8.2441-2450.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The soxRS regulon protects Escherichia coli from superoxide and nitric oxide stress. SoxR protein, a transcription factor that senses oxidative stress via its [2Fe-2S] centers, transduces the signal to the soxS promoter to stimulate RNA polymerase. Here we describe 29 mutant alleles of soxR that cause defects in the activation of soxS transcription in response to paraquat, a superoxide stress agent. Owing to the selection and screen used in their isolation, most of these mutant alleles encode proteins that retained specific binding activity for the soxS promoter in vivo. The mutations were found throughout the SoxR polypeptide, although those closer to the N terminus typically exhibited greater defects in DNA binding. The degree of the defect in the transcriptional response to superoxide caused by each mutation was closely paralleled by its impaired response to nitric oxide. This work begins the general identification of the residues in the SoxR polypeptide that are critical for transducing oxidative stress signals into gene activation.
Collapse
Affiliation(s)
- Monica Chander
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|