1
|
Gall CM, Le AA, Lynch G. Contributions of site- and sex-specific LTPs to everyday memory. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230223. [PMID: 38853551 PMCID: PMC11343211 DOI: 10.1098/rstb.2023.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 06/11/2024] Open
Abstract
Commentaries about long-term potentiation (LTP) generally proceed with an implicit assumption that largely the same physiological effect is sampled across different experiments. However, this is clearly not the case. We illustrate the point by comparing LTP in the CA3 projections to CA1 with the different forms of potentiation in the dentate gyrus. These studies lead to the hypothesis that specialized properties of CA1-LTP are adaptations for encoding unsupervised learning and episodic memory, whereas the dentate gyrus variants subserve learning that requires multiple trials and separation of overlapping bodies of information. Recent work has added sex as a second and somewhat surprising dimension along which LTP is also differentiated. Triggering events for CA1-LTP differ between the sexes and the adult induction threshold is significantly higher in females; these findings help explain why males have an advantage in spatial learning. Remarkably, the converse is true before puberty: Females have the lower LTP threshold and are better at spatial memory problems. A mechanism has been identified for the loss-of-function in females but not for the gain-of-function in males. We propose that the many and disparate demands of natural environments, with different processing requirements across ages and between sexes, led to the emergence of multiple LTPs. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA92697, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA92697, USA
- Department of Psychiatry and Human Behavior, University of California at Irvine, Irvine, CA92868, USA
| |
Collapse
|
2
|
Weisend JE, Carlson AP, Shuttleworth CW. Spreading Depolarization Induces a Transient Potentiation of Excitatory Synaptic Transmission. Neuroscience 2024; 551:323-332. [PMID: 38821241 PMCID: PMC11246225 DOI: 10.1016/j.neuroscience.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Spreading depolarization (SD) is a slowly propagating wave of prolonged activation followed by a period of synaptic suppression. Some prior reports have shown potentiation of synaptic transmission after recovery from synaptic suppression and noted similarities with the phenomenon of long-term potentiation (LTP). Since SD is increasingly recognized as participating in diverse neurological disorders, it is of interest to determine whether SD indeed leads to a generalized and sustained long-term strengthening of synaptic connections. We performed a characterization of SD-induced potentiation, and tested whether distinctive features of SD, including adenosine accumulation and swelling, contribute to reports of SD-induced plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the hippocampal CA1 subregion of murine brain slices, and SD elicited using focal microinjection of KCl. A single SD was sufficient to induce a consistent potentiation of slope and amplitude of fEPSPs. Both AMPA- and NMDA-receptor mediated components were enhanced. Potentiation peaked ∼20 min after SD recovery and was sustained for ∼30 min. However, fEPSP amplitude and slope decayed over an extended 2-hour recording period and was estimated to reach baseline after ∼3 h. Potentiation was saturated after a single SD and adenosine A1 receptor activation did not mask additional potentiation. Induction of LTP with theta-burst stimulation was not altered by prior induction of SD and molecular mediators known to block LTP induction did not block SD-induced potentiation. Together, these results indicate an intermediate duration potentiation that is distinct from hippocampal LTP and may have implications for circuit function for 1-2 h following SD.
Collapse
Affiliation(s)
- Jordan E Weisend
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
3
|
Asim M, Wang H, Chen X. Shedding light on cholecystokinin's role in hippocampal neuroplasticity and memory formation. Neurosci Biobehav Rev 2024; 159:105615. [PMID: 38437975 DOI: 10.1016/j.neubiorev.2024.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The hippocampus is a crucial brain region involved in the process of forming and consolidating memories. Memories are consolidated in the brain through synaptic plasticity, and a key mechanism underlying this process is called long-term potentiation (LTP). Recent research has shown that cholecystokinin (CCK) plays a role in facilitating the formation of LTP, as well as learning and memory consolidation. However, the specific mechanisms by which CCK is involved in hippocampal neuroplasticity and memory formation are complicated or poorly understood. This literature review aims to explore the role of LTP in memory formation, particularly in relation to hippocampal memory, and to discuss the implications of CCK and its receptors in the formation of hippocampal memories. Additionally, we will examine the circuitry of CCK in the hippocampus and propose potential CCK-dependent mechanisms of synaptic plasticity that contribute to memory formation.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong.
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong
| |
Collapse
|
4
|
Quintanilla J, Jia Y, Pruess BS, Chavez J, Gall CM, Lynch G, Gunn BG. Pre- versus Post-synaptic Forms of LTP in Two Branches of the Same Hippocampal Afferent. J Neurosci 2024; 44:e1449232024. [PMID: 38326038 PMCID: PMC10919254 DOI: 10.1523/jneurosci.1449-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
There has been considerable controversy about pre- versus postsynaptic expression of memory-related long-term potentiation (LTP), with corresponding disputes about underlying mechanisms. We report here an instance in male mice, in which both types of potentiation are expressed but in separate branches of the same hippocampal afferent. Induction of LTP in the dentate gyrus (DG) branch of the lateral perforant path (LPP) reduces paired-pulse facilitation, is blocked by antagonism of cannabinoid receptor type 1, and is not affected by suppression of postsynaptic actin polymerization. These observations are consistent with presynaptic expression. The opposite pattern of results was obtained in the LPP branch that innervates the distal dendrites of CA3: LTP did not reduce paired-pulse facilitation, was unaffected by the cannabinoid receptor blocker, and required postsynaptic actin filament assembly. Differences in the two LPP termination sites were also noted for frequency facilitation of synaptic responses, an effect that was reproduced in a two-step simulation by small adjustments to vesicle release dynamics. These results indicate that different types of glutamatergic neurons impose different forms of filtering and synaptic plasticity on their afferents. They also suggest that inputs are routed to, and encoded by, different sites within the hippocampus depending upon the pattern of activity arriving over the parent axon.
Collapse
Affiliation(s)
- J Quintanilla
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - Y Jia
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - B S Pruess
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - J Chavez
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| | - C M Gall
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
- Neurobiology & Behavior, University of California, Irvine, California 92697
| | - G Lynch
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
- Psychiatry & Human Behavior, University of California, Irvine, California 92697
| | - B G Gunn
- Department of Anatomy & Neurobiology, University of California, Irvine, California 92697
| |
Collapse
|
5
|
Alharbi KS, Almalki WH, Alzarea SI, Kazmi I, Al-Abbasi FA, Afzal O, Altamimi ASA, Albratty M, Najmi A, Gupta G. Anaesthesia-induced Changes in Genomic Expression Leading to Neurodegeneration. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:411-419. [PMID: 37157197 DOI: 10.2174/1871527322666230508123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 05/10/2023]
Abstract
General anaesthetics (GA) have been in continuous clinical use for more than 170 years, with millions of young and elderly populations exposed to GA to relieve perioperative discomfort and carry out invasive examinations. Preclinical studies have shown that neonatal rodents with acute and chronic exposure to GA suffer from memory and learning deficits, likely due to an imbalance between excitatory and inhibitory neurotransmitters, which has been linked to neurodevelopmental disorders. However, the mechanisms behind anaesthesia-induced alterations in late postnatal mice have yet to be established. In this narrative review, we present the current state of knowledge on early life anaesthesia exposure-mediated alterations of genetic expression, focusing on insights gathered on propofol, ketamine, and isoflurane, as well as the relationship between network effects and subsequent biochemical changes that lead to long-term neurocognitive abnormalities. Our review provides strong evidence and a clear picture of anaesthetic agents' pathological events and associated transcriptional changes, which will provide new insights for researchers to elucidate the core ideas and gain an in-depth understanding of molecular and genetic mechanisms. These findings are also helpful in generating more evidence for understanding the exacerbated neuropathology, impaired cognition, and LTP due to acute and chronic exposure to anaesthetics, which will be beneficial for the prevention and treatment of many diseases, such as Alzheimer's disease. Given the many procedures in medical practice that require continuous or multiple exposures to anaesthetics, our review will provide great insight into the possible adverse impact of these substances on the human brain and cognition.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, 302017, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
6
|
Andreska T, Lüningschrör P, Wolf D, McFleder RL, Ayon-Olivas M, Rattka M, Drechsler C, Perschin V, Blum R, Aufmkolk S, Granado N, Moratalla R, Sauer M, Monoranu C, Volkmann J, Ip CW, Stigloher C, Sendtner M. DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons. Cell Rep 2023; 42:112575. [PMID: 37252844 DOI: 10.1016/j.celrep.2023.112575] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 03/09/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Disturbed motor control is a hallmark of Parkinson's disease (PD). Cortico-striatal synapses play a central role in motor learning and adaption, and brain-derived neurotrophic factor (BDNF) from cortico-striatal afferents modulates their plasticity via TrkB in striatal medium spiny projection neurons (SPNs). We studied the role of dopamine in modulating the sensitivity of direct pathway SPNs (dSPNs) to BDNF in cultures of fluorescence-activated cell sorting (FACS)-enriched D1-expressing SPNs and 6-hydroxydopamine (6-OHDA)-treated rats. DRD1 activation causes enhanced TrkB translocation to the cell surface and increased sensitivity for BDNF. In contrast, dopamine depletion in cultured dSPN neurons, 6-OHDA-treated rats, and postmortem brain of patients with PD reduces BDNF responsiveness and causes formation of intracellular TrkB clusters. These clusters associate with sortilin related VPS10 domain containing receptor 2 (SORCS-2) in multivesicular-like structures, which apparently protects them from lysosomal degradation. Thus, impaired TrkB processing might contribute to disturbed motor function in PD.
Collapse
Affiliation(s)
- Thomas Andreska
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Daniel Wolf
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Rhonda L McFleder
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Maurilyn Ayon-Olivas
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Marta Rattka
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Christine Drechsler
- Department of Microbiology, Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Veronika Perschin
- Imaging Core Facility of the Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Sarah Aufmkolk
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Camelia Monoranu
- Department for Neuropathology, Julius-Maximilians-University Wuerzburg, 97080 Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany.
| |
Collapse
|
7
|
Gall CM, Le AA, Lynch G. Sex differences in synaptic plasticity underlying learning. J Neurosci Res 2023; 101:764-782. [PMID: 33847004 PMCID: PMC10337639 DOI: 10.1002/jnr.24844] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
8
|
Le AA, Quintanilla J, Amani M, Piomelli D, Lynch G, Gall CM. Persistent sexually dimorphic effects of adolescent THC exposure on hippocampal synaptic plasticity and episodic memory in rodents. Neurobiol Dis 2022; 162:105565. [PMID: 34838664 DOI: 10.1016/j.nbd.2021.105565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
There is evidence that cannabis use during adolescence leads to memory and cognitive problems in young adulthood but little is known about effects of early life cannabis exposure on synaptic operations that are critical for encoding and organizing information. We report here that a 14-day course of daily Δ9-tetrahydrocannabinol treatments administered to adolescent rats and mice (aTHC) leads to profound but selective deficits in synaptic plasticity in two axonal systems in female, and to lesser extent male, hippocampus as assessed in adulthood. Adolescent-THC exposure did not alter basic synaptic transmission (input/output curves) and had only modest effects on frequency facilitation. Nevertheless, aTHC severely impaired the endocannabinoid-dependent long-term potentiation in the lateral perforant path in females of both species, and in male mice; this was reliably associated with impaired acquisition of a component of episodic memory that depends on lateral perforant path function. Potentiation in the Schaffer-commissural (S-C) projection to field CA1 was disrupted by aTHC treatment in females only and this was associated with both a deficit in estrogen effects on S-C synaptic responses and impairments to CA1-dependent spatial (object location) memory. In all the results demonstrate sexually dimorphic and projection system-specific effects of aTHC exposure that could underlie discrete effects of early life cannabinoid usage on adult cognitive function. Moreover they suggest that some of the enduring, sexually dimorphic effects of cannabis use reflect changes in synaptic estrogen action.
Collapse
Affiliation(s)
- Aliza A Le
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Julian Quintanilla
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Mohammad Amani
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Daniele Piomelli
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Gary Lynch
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America; Departments of Psychiatry & Human Behavior, University of California, Irvine, CA 92868, United States of America.
| | - Christine M Gall
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America; Departments of Neurobiology & Behavior, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
9
|
Foster TC. Senescent neurophysiology: Ca 2+ signaling from the membrane to the nucleus. Neurobiol Learn Mem 2019; 164:107064. [PMID: 31394200 DOI: 10.1016/j.nlm.2019.107064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 12/16/2022]
Abstract
The current review provides a historical perspective on the evolution of hypothesized mechanisms for senescent neurophysiology, focused on the CA1 region of the hippocampus, and the relationship of senescent neurophysiology to impaired hippocampal-dependent memory. Senescent neurophysiology involves processes linked to calcium (Ca2+) signaling including an increase in the Ca2+-dependent afterhyperpolarization (AHP), decreasing pyramidal cell excitability, hyporesponsiveness of N-methyl-D-aspartate (NMDA) receptor function, and a shift in Ca2+-dependent synaptic plasticity. Dysregulation of intracellular Ca2+ and downstream signaling of kinase and phosphatase activity lies at the core of senescent neurophysiology. Ca2+-dysregulation involves a decrease in Ca2+ influx through NMDA receptors and an increase release of Ca2+ from internal Ca2+ stores. Recent work has identified changes in redox signaling, arising in middle-age, as an initiating factor for senescent neurophysiology. The shift in redox state links processes of aging, oxidative stress and inflammation, with functional changes in mechanisms required for episodic memory. The link between age-related changes in Ca2+ signaling, epigenetics and gene expression is an exciting area of research. Pharmacological and behavioral intervention, initiated in middle-age, can promote memory function by initiating transcription of neuroprotective genes and rejuvenating neurophysiology. However, with more advanced age, or under conditions of neurodegenerative disease, epigenetic changes may weaken the link between environmental influences and transcription, decreasing resilience of memory function.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience and Genetics and Genomics Program, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
10
|
Kumar A, Thinschmidt JS, Foster TC. Subunit contribution to NMDA receptor hypofunction and redox sensitivity of hippocampal synaptic transmission during aging. Aging (Albany NY) 2019; 11:5140-5157. [PMID: 31339863 PMCID: PMC6682512 DOI: 10.18632/aging.102108] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/14/2019] [Indexed: 11/25/2022]
Abstract
We examined the contribution of N-methyl-D-aspartate receptor (NMDAR) subunits in the redox-mediated decline in NMDAR function during aging. GluN2A and GluN2B selective antagonists decreased peak NMDAR currents to a similar extent in young and aged animals, indicating that a shift in diheteromeric GluN2 subunits does not underlie the age-related decrease in the NMDAR synaptic function. Application of dithiothreitol (DTT) in aged animals, increased peak NMDAR synaptic currents, prolonged the decay time, and increased the sensitivity of the synaptic response to the GluN2B antagonist, ifenprodil, indicating that DTT increased the contribution of GluN2B subunits to the synaptic response. The DTT-mediated increase in NMDAR function was inhibited by partial blockade of NMDARs, and this inhibition was rescued by increasing Ca2+ concentration in the recording medium. The results indicate that DTT-mediated potentiation requires Ca2+ influx through NMDAR activity. Finally, redox regulation of NMDAR function depends on the activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII). The results indicate that activity-dependent NMDAR synaptic plasticity is suppressed by redox-mediated inhibition of CaMKII activation during aging. The redox regulation of NMDARs represents a suppression of a metaplasticity mechanism, which can disrupt synaptic plasticity and cognition associated with neurological or psychiatric diseases, and aging.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey S. Thinschmidt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
- Genetics and Genomics Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Tanimura A, Du Y, Kondapalli J, Wokosin DL, Surmeier DJ. Cholinergic Interneurons Amplify Thalamostriatal Excitation of Striatal Indirect Pathway Neurons in Parkinson’s Disease Models. Neuron 2019; 101:444-458.e6. [DOI: 10.1016/j.neuron.2018.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 09/13/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
|
12
|
Unconventional NMDA Receptor Signaling. J Neurosci 2017; 37:10800-10807. [PMID: 29118208 DOI: 10.1523/jneurosci.1825-17.2017] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 11/21/2022] Open
Abstract
In the classical view, NMDA receptors (NMDARs) are stably expressed at the postsynaptic membrane, where they act via Ca2+ to signal coincidence detection in Hebbian plasticity. More recently, it has been established that NMDAR-mediated transmission can be dynamically regulated by neural activity. In addition, NMDARs have been found presynaptically, where they cannot act as conventional coincidence detectors. Unexpectedly, NMDARs have also been shown to signal metabotropically, without the need for Ca2+ This review highlights novel findings concerning these unconventional modes of NMDAR action.
Collapse
|
13
|
Almonte AG, Ewin SE, Mauterer MI, Morgan JW, Carter ES, Weiner JL. Enhanced ventral hippocampal synaptic transmission and impaired synaptic plasticity in a rodent model of alcohol addiction vulnerability. Sci Rep 2017; 7:12300. [PMID: 28951619 PMCID: PMC5615051 DOI: 10.1038/s41598-017-12531-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
It has long been appreciated that adolescence represents a uniquely vulnerable period when chronic exposure to stressors can precipitate the onset of a broad spectrum of psychiatric disorders and addiction in adulthood. However, the neurobiological substrates and the full repertoire of adaptations within these substrates making adolescence a particularly susceptible developmental stage are not well understood. Prior work has demonstrated that a rodent model of adolescent social isolation (aSI) produces robust and persistent increases in phenotypes relevant to anxiety/stressor disorders and alcohol addiction, including anxiogenesis, deficits in fear extinction, and increased ethanol consumption. Here, we used extracellular field recordings in hippocampal slices to investigate adaptations in synaptic function and synaptic plasticity arising from aSI. We demonstrate that this early life stressor leads to enhanced excitatory synaptic transmission and decreased levels of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Further, these changes were largely confined to the ventral hippocampus. As the ventral hippocampus is integral to neurocircuitry that mediates emotional behaviors, our results add to mounting evidence that aSI has profound effects on brain areas that regulate affective states. These studies also lend additional support to our recent proposal of the aSI model as a valid model of alcohol addiction vulnerability.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Sarah E Ewin
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Madelyn I Mauterer
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - James W Morgan
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Eugenia S Carter
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
14
|
Compans B, Choquet D, Hosy E. Review on the role of AMPA receptor nano-organization and dynamic in the properties of synaptic transmission. NEUROPHOTONICS 2016; 3:041811. [PMID: 27981061 PMCID: PMC5109202 DOI: 10.1117/1.nph.3.4.041811] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Receptor trafficking and its regulation have appeared in the last two decades to be a major controller of basal synaptic transmission and its activity-dependent plasticity. More recently, considerable advances in super-resolution microscopy have begun deciphering the subdiffraction organization of synaptic elements and their functional roles. In particular, the dynamic nanoscale organization of neurotransmitter receptors in the postsynaptic membrane has recently been suggested to play a major role in various aspects of synapstic function. We here review the recent advances in our understanding of alpha-amino-3-hydroxy-5-méthyl-4-isoxazolepropionic acid subtype glutamate receptors subsynaptic organization and their role in short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Benjamin Compans
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
- University of Bordeaux, Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, France
| | - Eric Hosy
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux F-33000, France
- Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux F-33000, France
| |
Collapse
|
15
|
State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines. Sci Rep 2016; 6:32897. [PMID: 27595610 PMCID: PMC5011767 DOI: 10.1038/srep32897] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
Abstract
Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression.
Collapse
|
16
|
A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation. eNeuro 2016; 3:eN-NWR-0160-16. [PMID: 27517090 PMCID: PMC4976302 DOI: 10.1523/eneuro.0160-16.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 02/03/2023] Open
Abstract
The endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), a key modulator of synaptic transmission in mammalian brain, is produced in dendritic spines and then crosses the synaptic junction to depress neurotransmitter release. Here we report that 2-AG-dependent retrograde signaling also mediates an enduring enhancement of glutamate release, as assessed with independent tests, in the lateral perforant path (LPP), one of two cortical inputs to the granule cells of the dentate gyrus. Induction of this form of long-term potentiation (LTP) involved two types of glutamate receptors, changes in postsynaptic calcium, and the postsynaptic enzyme that synthesizes 2-AG. Stochastic optical reconstruction microscopy confirmed that CB1 cannabinoid receptors are localized presynaptically to LPP terminals, while the inhibition or knockout of the receptors eliminated LPP-LTP. Suppressing the enzyme that degrades 2-AG dramatically enhanced LPP potentiation, while overexpressing it produced the opposite effect. Priming with a CB1 agonist markedly reduced the threshold for LTP. Latrunculin A, which prevents actin polymerization, blocked LPP-LTP when applied extracellularly but had no effect when infused postsynaptically into granule cells, indicating that critical actin remodeling resides in the presynaptic compartment. Importantly, there was no evidence for the LPP form of potentiation in the Schaffer-commissural innervation of field CA1 or in the medial perforant path. Peripheral injections of compounds that block or enhance LPP-LTP had corresponding effects on the formation of long-term memory for cues conveyed to the dentate gyrus by the LPP. Together, these results indicate that the encoding of information carried by a principal hippocampal afferent involves an unusual, regionally differentiated form of plasticity.
Collapse
|
17
|
Fauth M, Tetzlaff C. Opposing Effects of Neuronal Activity on Structural Plasticity. Front Neuroanat 2016; 10:75. [PMID: 27445713 PMCID: PMC4923203 DOI: 10.3389/fnana.2016.00075] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
The connectivity of the brain is continuously adjusted to new environmental influences by several activity-dependent adaptive processes. The most investigated adaptive mechanism is activity-dependent functional or synaptic plasticity regulating the transmission efficacy of existing synapses. Another important but less prominently discussed adaptive process is structural plasticity, which changes the connectivity by the formation and deletion of synapses. In this review, we show, based on experimental evidence, that structural plasticity can be classified similar to synaptic plasticity into two categories: (i) Hebbian structural plasticity, which leads to an increase (decrease) of the number of synapses during phases of high (low) neuronal activity and (ii) homeostatic structural plasticity, which balances these changes by removing and adding synapses. Furthermore, based on experimental and theoretical insights, we argue that each type of structural plasticity fulfills a different function. While Hebbian structural changes enhance memory lifetime, storage capacity, and memory robustness, homeostatic structural plasticity self-organizes the connectivity of the neural network to assure stability. However, the link between functional synaptic and structural plasticity as well as the detailed interactions between Hebbian and homeostatic structural plasticity are more complex. This implies even richer dynamics requiring further experimental and theoretical investigations.
Collapse
Affiliation(s)
- Michael Fauth
- Department of Computational Neuroscience, Third Institute of Physics - Biophysics, Georg-August UniversityGöttingen, Germany; Bernstein Center for Computational NeuroscienceGöttingen, Germany
| | - Christian Tetzlaff
- Bernstein Center for Computational NeuroscienceGöttingen, Germany; Max Planck Institute for Dynamics and Self-OrganizationGöttingen, Germany
| |
Collapse
|
18
|
Dupuis JP, Ladépêche L, Seth H, Bard L, Varela J, Mikasova L, Bouchet D, Rogemond V, Honnorat J, Hanse E, Groc L. Surface dynamics of GluN2B-NMDA receptors controls plasticity of maturing glutamate synapses. EMBO J 2014; 33:842-61. [PMID: 24591565 DOI: 10.1002/embj.201386356] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
NMDA-type glutamate receptors (NMDAR) are central actors in the plasticity of excitatory synapses. During adaptive processes, the number and composition of synaptic NMDAR can be rapidly modified, as in neonatal hippocampal synapses where a switch from predominant GluN2B- to GluN2A-containing receptors is observed after the induction of long-term potentiation (LTP). However, the cellular pathways by which surface NMDAR subtypes are dynamically regulated during activity-dependent synaptic adaptations remain poorly understood. Using a combination of high-resolution single nanoparticle imaging and electrophysiology, we show here that GluN2B-NMDAR are dynamically redistributed away from glutamate synapses through increased lateral diffusion during LTP in immature neurons. Strikingly, preventing this activity-dependent GluN2B-NMDAR surface redistribution through cross-linking, either with commercial or with autoimmune anti-NMDA antibodies from patient with neuropsychiatric symptoms, affects the dynamics and spine accumulation of CaMKII and impairs LTP. Interestingly, the same impairments are observed when expressing a mutant of GluN2B-NMDAR unable to bind CaMKII. We thus uncover a non-canonical mechanism by which GluN2B-NMDAR surface dynamics plays a critical role in the plasticity of maturing synapses through a direct interplay with CaMKII.
Collapse
Affiliation(s)
- Julien P Dupuis
- Interdisciplinary Institute for Neuroscience University de Bordeaux UMR 5297, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Park P, Volianskis A, Sanderson TM, Bortolotto ZA, Jane DE, Zhuo M, Kaang BK, Collingridge GL. NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130131. [PMID: 24298134 PMCID: PMC3843864 DOI: 10.1098/rstb.2013.0131] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) is extensively studied since it is believed to use the same molecular mechanisms that are required for many forms of learning and memory. Unfortunately, many controversies exist, not least the seemingly simple issue concerning the locus of expression of LTP. Here, we review our recent work and some of the extensive literature on this topic and present new data that collectively suggest that LTP can be explained, during its first few hours, by the coexistence of at least three mechanistically distinct processes that are all triggered by the synaptic activation of NMDARs.
Collapse
Affiliation(s)
- Pojeong Park
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, , Seoul 151-746, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
MacDougall MJ, Fine A. The expression of long-term potentiation: reconciling the preists and the postivists. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130135. [PMID: 24298138 DOI: 10.1098/rstb.2013.0135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Long-term potentiation (LTP) of excitatory synaptic transmission in the hippocampus has been investigated in great detail over the past 40 years. Where and how LTP is actually expressed, however, remain controversial issues. Considerable evidence has been offered to support both pre- and postsynaptic contributions to LTP expression. Though it is widely held that postsynaptic expression mechanisms are the primary contributors to LTP expression, evidence for that conclusion is amenable to alternative explanations. Here, we briefly review some key contributions to the 'locus' debate and describe data that support a dominant role for presynaptic mechanisms. Recognition of the state-dependency of expression mechanisms, and consideration of the consequences of the spatial relationship between postsynaptic glutamate receptors and presynaptic vesicular release sites, lead to a model that may reconcile views from both sides of the synapse.
Collapse
Affiliation(s)
- Matthew J MacDougall
- Department of Physiology and Biophysics, Dalhousie University Faculty of Medicine, , Halifax, Nova Scotia, Canada , B3H 4R2
| | | |
Collapse
|
21
|
Padamsey Z, Emptage N. Two sides to long-term potentiation: a view towards reconciliation. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130154. [PMID: 24298155 DOI: 10.1098/rstb.2013.0154] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Almost since the discovery of long-term potentiation (LTP) in the hippocampus, its locus of expression has been debated. Throughout the years, convincing evidence has accumulated to suggest that LTP can be supported either presynaptically, by an increase in transmitter release, or postsynaptically, by an increase in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor number. However, whereas postsynaptic enhancement appears to be consistently obtained across studies following LTP induction, presynaptic enhancement is not as reliably observed. Such discrepancies, along with the failure to convincingly identify a retrograde messenger required for presynaptic change, have led to the general view that LTP is mainly supported postsynaptically, and certainly, research within the field for the past decade has been heavily focused on the postsynaptic locus. Here, we argue that LTP can be expressed at either synaptic locus, but that pre- and postsynaptic forms of LTP are dissociable phenomena mediated by distinct mechanistic processes, which are sensitive to different patterns of neuronal activity. This view of LTP helps to reconcile discrepancies across the literature and may put to rest a decades-long debate.
Collapse
Affiliation(s)
- Zahid Padamsey
- Department of Pharmacology, University of Oxford, , Oxford OX1 3QT, UK
| | | |
Collapse
|
22
|
Bourne JN, Chirillo MA, Harris KM. Presynaptic ultrastructural plasticity along CA3→CA1 axons during long-term potentiation in mature hippocampus. J Comp Neurol 2013; 521:3898-912. [PMID: 23784793 PMCID: PMC3838200 DOI: 10.1002/cne.23384] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/30/2013] [Accepted: 06/07/2013] [Indexed: 11/12/2022]
Abstract
In area CA1 of the mature hippocampus, synaptogenesis occurs within 30 minutes after the induction of long-term potentiation (LTP); however, by 2 hours many small dendritic spines are lost, and those remaining have larger synapses. Little is known, however, about associated changes in presynaptic vesicles and axonal boutons. Axons in CA1 stratum radiatum were evaluated with 3D reconstructions from serial section electron microscopy at 30 minutes and 2 hours after induction of LTP by theta-burst stimulation (TBS). The frequency of axonal boutons with a single postsynaptic partner was decreased by 33% at 2 hours, corresponding perfectly to the 33% loss specifically of small dendritic spines (head diameters <0.45 μm). Docked vesicles were reduced at 30 minutes and then returned to control levels by 2 hours following induction of LTP. By 2 hours there were fewer small synaptic vesicles overall in the presynaptic vesicle pool. Clathrin-mediated endocytosis was used as a marker of local activity, and axonal boutons containing clathrin-coated pits showed a more pronounced decrease in presynaptic vesicles at both 30 minutes and 2 hours after induction of LTP relative to control values. Putative transport packets, identified as a cluster of less than 10 axonal vesicles occurring between synaptic boutons, were stable at 30 minutes but markedly reduced by 2 hours after the induction of LTP. APV blocked these effects, suggesting that the loss of axonal boutons and presynaptic vesicles was dependent on N-methyl-D-aspartic acid (NMDA) receptor activation during LTP. These findings show that specific presynaptic ultrastructural changes complement postsynaptic ultrastructural plasticity during LTP.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Center for Learning and Memory, Section of Neurobiology, Institute for Neuroscience, University of Texas, Austin, Texas, 78712; Department of Physiology and Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045
| | | | | |
Collapse
|
23
|
Ladépêche L, Dupuis JP, Groc L. Surface trafficking of NMDA receptors: gathering from a partner to another. Semin Cell Dev Biol 2013; 27:3-13. [PMID: 24177014 DOI: 10.1016/j.semcdb.2013.10.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 10/11/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
Understanding the molecular and cellular pathways by which neurons integrate signals from different neurotransmitter systems has been among the major challenges of modern neuroscience. The ionotropic glutamate NMDA receptor plays a key role in the maturation and plasticity of glutamate synapses, both in physiology and pathology. It recently appeared that the surface distribution of NMDA receptors is dynamically regulated through lateral diffusion, providing for instance a powerful way to rapidly affect the content and composition of synaptic receptors. The ability of various neuromodulators to regulate NMDA receptor signaling revealed that this receptor can also serve as a molecular integrator of the ambient neuronal environment. Although still in its infancy, we here review our current understanding of the cellular regulation of NMDA receptor surface dynamics. We specifically discuss the roles of well-known modulators, such as dopamine, and membrane interactors in these regulatory processes, exemplifying the recent evidence that the direct interaction between NMDAR and dopamine receptors regulates their surface diffusion and distribution. In addition to the well-established modulation of NMDA receptor signaling by intracellular pathways, the surface dynamics of the receptor is now emerging as the first level of regulation, opening new pathophysiological perspectives for innovative therapeutical strategies.
Collapse
Affiliation(s)
- Laurent Ladépêche
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France
| | - Julien Pierre Dupuis
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France
| | - Laurent Groc
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France.
| |
Collapse
|
24
|
Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013; 14:383-400. [DOI: 10.1038/nrn3504] [Citation(s) in RCA: 1861] [Impact Index Per Article: 155.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Bliss TVP, Collingridge GL. Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 2013; 6:5. [PMID: 23339575 PMCID: PMC3562207 DOI: 10.1186/1756-6606-6-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 12/27/2012] [Indexed: 12/17/2022] Open
Abstract
A consensus has famously yet to emerge on the locus and mechanisms underlying the expression of the canonical NMDA receptor-dependent form of LTP. An objective assessment of the evidence leads us to conclude that both presynaptic and postsynaptic expression mechanisms contribute to this type of synaptic plasticity.
Collapse
Affiliation(s)
- Tim V P Bliss
- Division of Neurophysiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
26
|
Almonte AG, Qadri LH, Sultan FA, Watson JA, Mount DJ, Rumbaugh G, Sweatt JD. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem 2012; 124:109-22. [PMID: 23113835 DOI: 10.1111/jnc.12075] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/21/2012] [Accepted: 10/22/2012] [Indexed: 11/28/2022]
Abstract
Protease-activated receptor-1 (PAR1) is an unusual G-protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1-/- mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1-/- mice have deficits in hippocampus-dependent memory. We also show that while PAR1-/- mice have normal baseline synaptic transmission at Schaffer collateral-CA1 synapses, they exhibit severe deficits in N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR-mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR-dependent processes subserving memory formation and synaptic plasticity.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Hunt DL, Castillo PE. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol 2012; 22:496-508. [PMID: 22325859 DOI: 10.1016/j.conb.2012.01.007] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/09/2011] [Accepted: 01/19/2012] [Indexed: 12/11/2022]
Abstract
Beyond their well-established role as triggers for LTP and LTD of fast synaptic transmission mediated by AMPA receptors, an expanding body of evidence indicates that NMDA receptors (NMDARs) themselves are also dynamically regulated and subject to activity-dependent long-term plasticity. NMDARs can significantly contribute to information transfer at synapses particularly during periods of repetitive activity. It is also increasingly recognized that NMDARs participate in dendritic synaptic integration and are critical for generating persistent activity of neural assemblies. Here we review recent advances on the mechanisms and functional consequences of NMDAR plasticity. Given the unique biophysical properties of NMDARs, synaptic plasticity of NMDAR-mediated transmission emerges as a particularly powerful mechanism for the fine tuning of information encoding and storage throughout the brain.
Collapse
Affiliation(s)
- David L Hunt
- Dominick P. Purpura, Department of Neuroscience, Albert Einstein College of Medicine, Kennedy Center, Room 703, Bronx, NY 10461, United States
| | | |
Collapse
|
28
|
Seo S, Liu P, Leitch B. Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminals. Neuroscience 2011; 192:28-36. [PMID: 21777660 DOI: 10.1016/j.neuroscience.2011.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/01/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Agmatine, the decarboxylated metabolite of l-arginine, is considered to be a novel putative neurotransmitter. Recent studies have demonstrated that endogenous agmatine may directly participate in the processes of spatial learning and memory. Agmatine-immunoreactivity has been observed within synaptic terminals of asymmetric excitatory synapses in the hippocampal CA1 stratum radiatum (SR), suggesting that agmatine may be colocalized with glutamate. In the present study we demonstrate, using immunofluorescence confocal microscopy, that agmatine is colocalized with glutamate within CA1-CA3 hippocampal pyramidal cell bodies, in young Sprague-Dawley rats. Subcellular investigation, using postembedding electron microscopy-immunogold cytochemistry, has also revealed that agmatine is colocalized with glutamate in most synaptic terminals in the SR region of CA1. Ninety-seven percent of all agmatinergic profiles were found to contain glutamate, and 92% of all glutamatergic profiles contained agmatine (n=6; 300 terminals). Alterations in colocalized agmatine and glutamate levels in the SR synaptic terminals, following 4 days Morris water maze training, were also investigated. Compared with swim only control rats, water maze-trained rats had statistically significant increases in both agmatine (78%; P<0.01) and glutamate (41%; P<0.05) levels within SR terminals synapsing onto CA1 dendrites. These findings provide the first evidence that agmatine and glutamate are colocalized in synaptic terminals in the hippocampal CA1 region, and may co-participate in spatial learning and memory processing.
Collapse
Affiliation(s)
- S Seo
- Department of Anatomy & Structural Biology, Otago School of Medical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
29
|
Jia Y, Gall CM, Lynch G. Presynaptic BDNF promotes postsynaptic long-term potentiation in the dorsal striatum. J Neurosci 2010; 30:14440-5. [PMID: 20980601 PMCID: PMC2972744 DOI: 10.1523/jneurosci.3310-10.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/03/2010] [Accepted: 08/28/2010] [Indexed: 01/04/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) facilitates the formation of long-term potentiation (LTP) in hippocampus, but whether this involves release from presynaptic versus postsynaptic pools is unclear. We therefore tested whether BDNF is essential for LTP in dorsal striatum, a structure in which the neurotrophin is present only in afferent terminals. Whole-cell recordings were collected from medium spiny neurons in striatal slices prepared from adult mice. High-frequency stimulation (HFS) of neocortical afferents produced a rapid and stable NMDA receptor-dependent potentiation. The ratio of AMPA to NMDA receptor-mediated components of the EPSPs was substantially increased after inducing potentiation, suggesting that the response enhancement involved postsynaptic changes. In accord with this, paired-pulse response ratios, a measure of transmitter release kinetics, were reduced by elevated calcium but not by LTP. Infusion of the BDNF scavenger TrkB-Fc blocked the formation of potentiation, beginning with the second minute after HFS, without reducing responses to HFS. These results suggest that presynaptic pools of BDNF can act within 2 min of HFS to support the formation of a postsynaptic form of LTP in striatum.
Collapse
Affiliation(s)
| | - Christine M. Gall
- Departments of Anatomy and Neurobiology
- Neurobiology and Behavior, and
| | - Gary Lynch
- Departments of Anatomy and Neurobiology
- Psychiatry and Human Behavior, University of California, Irvine, California 92697
| |
Collapse
|
30
|
Li HB, Jackson MF, Yang K, Trepanier C, Salter MW, Orser BA, Macdonald JF. Plasticity of synaptic GluN receptors is required for the Src-dependent induction of long-term potentiation at CA3-CA1 synapses. Hippocampus 2010; 21:1053-61. [PMID: 20865743 DOI: 10.1002/hipo.20818] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2010] [Indexed: 11/09/2022]
Abstract
The induction of long-term potentiation (LTP) of CA3-CA1 synapses requires activation of postsynaptic N-methyl-D-aspartate receptors (GluNRs). At resting potential, the contribution of GluNRs is limited by their voltage-dependent block by extracellular Mg(2+). High-frequency afferent stimulation is required to cause sufficient summation of excitatory synaptic potentials (EPSPs) to relieve this block and to permit an influx of Ca(2+). It has been assumed that this relief of Mg(2+) block is sufficient for induction. We postulated that the induction of LTP also requires a Src-dependent plasticity of GluNRs. Using whole-cell recordings, LTP (GluARs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors-EPSCS was induced by pairing postsynaptic depolarization with presynaptic stimulation. This LTP was both GluNR and Src-dependent, being sensitive to AP-5, a GluNR selective antagonist, or to SU6656, a Src-selective inhibitor. When CNQX was used to block all GluARs, we observed a long-lasting potentiation of GluNR-mediated EPSCs. This plasticity was prevented by transiently blocking GluNRs during the induction protocol or by chelating intracellular Ca(2+). GluNRs plasticity was also prevented by bath applications of SU6656 or intracellular applications of the Src-selective inhibitory peptide, Src(40-58). It was also blocked by preventing activation of protein kinase C, a kinase that is upstream of Src-kinase-dependent regulation of GluNRs. Both GluN2A and GluN2B receptors were found to contribute to the plasticity of GluNRs. The contribution of GluNRs and, in particular, their plasticity to the maintenance of LTP was explored using AP5 and SU6656, respectively. When applied >20 min after induction neither drug influenced the magnitude of LTP. However, when applied immediately after induction, treatment with either drug caused the initial magnitude of LTP to progressively decrease to a sustained phase of reduced amplitude. Collectively, our findings suggest that GluNR plasticity, although not strictly required for induction, is necessary for the maintenance of a nondecrementing component of LTP.
Collapse
Affiliation(s)
- Hong-Bin Li
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, Ontario
| | | | | | | | | | | | | |
Collapse
|
31
|
Bidirectional synaptic plasticity in response to single or paired pulse activation of NMDA receptors. Neurosci Res 2010; 67:108-16. [PMID: 20170690 DOI: 10.1016/j.neures.2010.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
Abstract
It is still incompletely known how NMDA receptors (NMDA-R) regulate bidirectional synaptic plasticity. We examined this issue by an experimental protocol in which paired pulse stimulation (PPS) with 50ms interstimulus interval and basal frequency of 0.1Hz was applied to CA1 area of rat hippocampal slices during low Mg(2+) perfusion. Under blockade of NMDA-Rs by AP5, PPS for 12-60min led to only a minor depression. In contrast, when PPS was applied in the absence of AP5, there was a prominent short-term potentiation (STP), mainly of AMPA-R mediated responses, with peak at 1min and lasting 10-15min. The STP was followed by a slowly developing long-term depression (LTD). Applying AP5 during the STP, converted it to a stable increase relative to the control pathway. Following peak STP, plasticity was controlled in a composite manner. Whereas the initial decay was counteracted by NMDA-R activation, the following LTD was dependent on such activation. Our data suggest that synaptic changes do not only depend on the instantaneous, NMDA-dependent Ca(2+) concentration in the dendritic spine, but are also influenced by prior induction events. In addition to NMDA-R driven processes, passive relaxation contributes to the synaptic plasticity and in some cases outbalances the active control.
Collapse
|
32
|
Abstract
Activity-dependent, bidirectional control of synaptic efficacy is thought to contribute to many forms of experience-dependent plasticity, including learning and memory. Although most excitatory synapses contain both AMPA and N-methyl-d-aspartate receptors (AMPARs and NMDARs), most studies have focused on the plasticity of synaptic AMPARs, and on the pivotal role of NMDA receptors for its induction. Here we review evidence that synaptic NMDARs themselves are subject to long-term activity-dependent changes by mechanisms that may differ from that of synaptic AMPARs. The bidirectional modulation of NMDAR-mediated synaptic responses is likely to have important functional implications for NMDAR-dependent forms of synaptic plasticity.
Collapse
Affiliation(s)
- Nelson Rebola
- Laboratoire Physiologie Cellulaire de la Synapse, CNRS, Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux Cedex, France
| | | | | |
Collapse
|
33
|
Abstract
Silent synapses abound in the young brain, representing an early step in the pathway of experience-dependent synaptic development. Discovered amidst the debate over whether long-term potentiation reflects a presynaptic or a postsynaptic modification, silent synapses--which in the hippocampal CA1 subfield are characterized by the presence of NMDA receptors but not AMPA receptors--have stirred some mechanistic controversy of their own. Out of this literature has emerged a model for synapse unsilencing that highlights the central role for postsynaptic AMPA-receptor trafficking in the expression of excitatory synaptic plasticity.
Collapse
Affiliation(s)
- Geoffrey A Kerchner
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, California 94143-2140, USA
| | | |
Collapse
|
34
|
Kwon HB, Castillo PE. Long-term potentiation selectively expressed by NMDA receptors at hippocampal mossy fiber synapses. Neuron 2008; 57:108-20. [PMID: 18184568 PMCID: PMC2390917 DOI: 10.1016/j.neuron.2007.11.024] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/28/2007] [Accepted: 11/21/2007] [Indexed: 11/20/2022]
Abstract
The mossy fiber to CA3 pyramidal cell synapse (mf-CA3) provides a major source of excitation to the hippocampus. Thus far, these glutamatergic synapses are well recognized for showing a presynaptic, NMDA receptor-independent form of LTP that is expressed as a long-lasting increase of transmitter release. Here, we show that in addition to this "classical" LTP, mf-CA3 synapses can undergo a form of LTP characterized by a selective enhancement of NMDA receptor-mediated transmission. This potentiation requires coactivation of NMDA and mGlu5 receptors and a postsynaptic calcium rise. Unlike classical LTP, expression of this mossy fiber LTP is due to a PKC-dependent recruitment of NMDA receptors specifically to the mf-CA3 synapse via a SNARE-dependent process. Having two mechanistically different forms of LTP may allow mf-CA3 synapses to respond with more flexibility to the changing demands of the hippocampal network.
Collapse
Affiliation(s)
- Hyung-Bae Kwon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
35
|
Morishita W, Malenka RC. Mechanisms Underlying Dedepression of Synaptic NMDA Receptors in the Hippocampus. J Neurophysiol 2008; 99:254-63. [DOI: 10.1152/jn.01011.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-Methyl-d-aspartate receptor (NMDAR)–mediated synaptic responses in hippocampal CA1 pyramidal cells are depressed during NMDAR-dependent long-term depression (LTD) due to mechanisms, in part, distinct from those underlying LTD of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)–mediated synaptic responses. The mechanisms underlying dedepression of synaptic NMDARs, however, are not known. We find that dedepression of NMDAR-mediated synaptic responses in the CA1 region of the rat hippocampus is input specific and does not require synaptic stimulation to be maintained. The induction of dedepression does not require activation of metabotropic glutamate receptors, L-type Ca2+ channels, or release of Ca2+ from intracellular stores. It does, however, rely on activation of NMDARs. In contrast to the dedepression of AMPAR-mediated synaptic responses, dedepression of NMDAR-mediated synaptic responses does not depend on activation of calcium/calmodulin-dependent protein kinase II, protein kinase C, cAMP-dependent protein kinase, or Src kinases. However, dedepression of synaptic NMDARs is significantly impaired by inhibitors of mitogen-activated protein kinase signaling. Specifically, inhibitors of extracellular signal-regulated kinase 1/2 prevented normal dedepression of synaptic NMDARs by a mechanism that did not require protein synthesis. These results provide further evidence that synaptic NMDARs can be bidirectionally modified by activity but by mechanisms distinct from those responsible for the activity-dependent, bidirectional modulation of synaptic AMPARs.
Collapse
|
36
|
Kanju PM, Parameshwaran K, Vaithianathan T, Sims CM, Huggins K, Bendiske J, Ryzhikov S, Bahr BA, Suppiramaniam V. Lysosomal dysfunction produces distinct alterations in synaptic alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid and N-methyl-D-aspartate receptor currents in hippocampus. J Neuropathol Exp Neurol 2007; 66:779-88. [PMID: 17805008 DOI: 10.1097/nen.0b013e3181461ae7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The early processes that lead to synaptic dysfunction during aging are not clearly understood. Dysregulation of alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors may cause age-related cognitive decline. Using hippocampal slice cultures exhibiting lysosomal dysfunction, an early marker of brain aging that is linked to protein accumulation, we identified alterations to AMPA and NMDA receptor-mediated synaptic currents. The miniature and spontaneous excitatory postsynaptic currents that were examined after 3, 6, and 9 days of lysosomal disruption showed progressive changes in amplitude, frequency, and rise and decay kinetics. To investigate whether modifications in specific channel properties of single synaptic receptors contributed to changes in the amplitude and time course of synaptic currents, we examined the single channel properties of synaptic AMPA and NMDA receptors. The channel open probability and the mean open times showed decreases in both receptor populations, whereas the closed times were increased without any change in the channel conductance. The Western blot analysis revealed a progressive decline in synaptic markers including glutamate receptor subunits. These results indicate that lysosomal dysfunction leads to progressive functional perturbation of AMPA and NMDA receptors in this slice model of protein accumulation, suggesting that age-related cognitive decline could result from altered glutamate receptor function before reductions in synaptic density.
Collapse
Affiliation(s)
- Patrick M Kanju
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang J, Hessler NA. Coordination of presynaptic and postsynaptic maturation in a zebra finch forebrain motor control nucleus during song learning. Eur J Neurosci 2007; 24:2859-69. [PMID: 17156210 DOI: 10.1111/j.1460-9568.2006.05173.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
While some species of birds retain the ability to learn new songs as adults, many species can only learn during a restricted period when young. Previous studies have suggested that one potential mechanism of such a limited learning period, an alteration in the composition of postsynaptic NMDA receptors, does not competely block further song learning. Here, we examined whether presynaptic function could play a role in the regulation of learning capacity. We first showed that the participation of NMDA receptor NR2B subunits in synaptic currents in the robust nucleus of the arcopallium (RA), a critical location for integration of signals during song learning by young birds, decreases from young birds to adults. Using release-dependent block of postsynaptic NMDA receptors by an open-channel antagonist to assay presynaptic function, we showed that transmitter release at RA synapses from both HVC and the lateral magnocellular nucleus of the anterior nidopallium systematically decreases during the period of song learning, and in adults is about half that of juveniles. Further, activation of postsynaptic NMDA receptors could induce an acute depression of transmitter release, while lack of exposure to a normal learning environment could delay the developmental reduction in transmitter release. These results suggest that regulation of learning capacity may occur in part by coordination of presynaptic and postsynaptic function.
Collapse
Affiliation(s)
- Jian Wang
- Laboratory for Vocal Behaviour Mechanisms, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | |
Collapse
|
38
|
Lynch G, Rex CS, Gall CM. LTP consolidation: Substrates, explanatory power, and functional significance. Neuropharmacology 2007; 52:12-23. [PMID: 16949110 DOI: 10.1016/j.neuropharm.2006.07.027] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/05/2006] [Accepted: 07/17/2006] [Indexed: 12/18/2022]
Abstract
Long-term potentiation (LTP) resembles memory in that it is initially unstable and then, over about 30 min, becomes increasingly resistant to disruption. Here we present an hypothesis to account for this initial consolidation effect and consider implications that follow from it. Anatomical studies indicate that LTP is accompanied by changes in spine morphology and therefore likely involves cytoskeletal changes. Accordingly, theta bursts initiate calpain-mediated proteolysis of the actin cross-linking protein spectrin and trigger actin polymerization in spine heads, two effects indicative of cytoskeletal reorganization. Polymerization occurs within 2 min, has the same threshold as LTP, is dependent on integrins, and becomes resistant to disruption over 30 min. We propose that the stabilization of the new cytoskeletal organization, and thus of a new spine morphology, underlies the initial phase of LTP consolidation. This hypothesis helps explain the diverse array of proteins and signaling cascades implicated in LTP, as well as the often-contradictory results about contributions of particular molecules. It also provides a novel explanation for why LTP is potently modulated by factors likely to be released during theta trains (e.g., BDNF). Finally, building on evidence that normal patterns of activity reverse LTP, we suggest that consolidation provides a delay that allows brain networks to sculpt newly formed memories.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, Gillespie Neuroscience Research Facility, University of California, Irvine, CA 92697-4292, USA.
| | | | | |
Collapse
|
39
|
Thiagarajan TC, Lindskog M, Malgaroli A, Tsien RW. LTP and adaptation to inactivity: Overlapping mechanisms and implications for metaplasticity. Neuropharmacology 2007; 52:156-75. [PMID: 16949624 DOI: 10.1016/j.neuropharm.2006.07.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 11/16/2022]
Abstract
LTP and other rapidly induced forms of synaptic modification tune individual synaptic weights, whereas slower forms of plasticity such as adaptation to inactivity are thought to keep neurons within their firing limits and preserve their capability for information processing. Here we describe progress in understanding the relationship between LTP and adaptation to inactivity. A prevailing view is that adaptation to inactivity is purely postsynaptic, scales synaptic strength uniformly across all synapses, and thus preserves relative synaptic weights without interfering with signatures of prior LTP or the relative capacity for future LTP. However, recent evidence in hippocampal neurons indicates that, like LTP, adaptation to AMPA receptor blockade can draw upon a repertoire of synaptic expression mechanisms including enhancement of presynaptic vesicular turnover and increased quantal amplitude mediated by recruitment of homomeric GluR1 AMPA receptors. These pre- and postsynaptic changes appeared coordinated and preferentially expressed at subset of synapses, thereby increasing the variability of miniature EPSCs. In contrast to the NMDA receptor-, Ca2+ entry-dependent induction of LTP, adaptation to inactivity may be mediated by attenuation of voltage-sensitive L-type Ca2+ channel function. The associated intracellular signaling involves elevation of betaCaMKII, which in turn downregulates alphaCaMKII, a key player in LTP. Thus, adaptation to inactivity and LTP are not strictly independent with regard to mechanisms of signaling and expression. Indeed, we and others have found that responses to LTP-inducing stimuli can be sharply altered by prior inactivity, suggesting that the slow adaptation changes the rules of plasticity-an interesting example of "metaplasticity".
Collapse
Affiliation(s)
- Tara C Thiagarajan
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, B105 Beckman Center, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
40
|
Ward B, McGuinness L, Akerman CJ, Fine A, Bliss TVP, Emptage NJ. State-dependent mechanisms of LTP expression revealed by optical quantal analysis. Neuron 2006; 52:649-61. [PMID: 17114049 DOI: 10.1016/j.neuron.2006.10.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/07/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
The expression mechanism of long-term potentiation (LTP) remains controversial. Here we combine electrophysiology and Ca(2+) imaging to examine the role of silent synapses in LTP expression. Induction of LTP fails to change p(r) at these synapses but instead mediates an unmasking process that is sensitive to the inhibition of postsynaptic membrane fusion. Once unmasked, however, further potentiation of formerly silent synapses leads to an increase in p(r). The state of the synapse thus determines how LTP is expressed.
Collapse
Affiliation(s)
- Bonnie Ward
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Dozmorov M, Li R, Abbas AK, Hellberg F, Farre C, Huang FS, Jilderos B, Wigström H. Contribution of AMPA and NMDA receptors to early and late phases of LTP in hippocampal slices. Neurosci Res 2006; 55:182-8. [PMID: 16678928 DOI: 10.1016/j.neures.2006.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 02/27/2006] [Accepted: 03/01/2006] [Indexed: 11/29/2022]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor mediated responses were investigated in rat hippocampal slices under 4h of long-term potentiation (LTP) expression. A modified medium containing the NMDA receptor antagonist AP5 and low concentration of Mg(2+) was used to monitor isolated AMPA responses. NMDA components were determined from composite excitatory postsynaptic potentials (EPSPs) under brief (15-20 min) wash-out of AP5. LTP was induced in a medium with low concentration of AP5, resulting in an about two-fold larger increase of the AMPA component than of the NMDA component at both 1h and 4h after induction. Similar results were obtained if LTP was induced in "normal Mg(2+)" and the NMDA components were assessed at the end of experiment, from either composite or isolated NMDA EPSPs, with or without blockade of GABAergic inhibition. It is generally believed that LTP undergoes biochemical and/or structural conversions during the first few hours. Our study, however, shows constant expression of LTP, at least in terms of AMPA versus NMDA components, during this time. The data support the notion that LTP initiates as a predominant amplification of AMPA receptors and remains so for at least 4h.
Collapse
Affiliation(s)
- Mikhail Dozmorov
- Department of Medical Biophysics, Institute of Neuroscience and Physiology, Göteborg University, Box 433, 405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Swant J, Wagner JJ. Dopamine transporter blockade increases LTP in the CA1 region of the rat hippocampus via activation of the D3 dopamine receptor. Learn Mem 2006; 13:161-7. [PMID: 16585791 PMCID: PMC1409827 DOI: 10.1101/lm.63806] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 12/20/2005] [Indexed: 11/25/2022]
Abstract
Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic potentials recorded in the CA1 region of the rat hippocampal slice preparation. Application of the DAT-specific blocker GBR 12,935 produced a significant enhancement in LTP of Schaffer collateral synapses in the CA1 at concentrations as low as 100 nM. A selective D1/D5 dopamine receptor antagonist (SCH 23,390, 1 microM) did not affect the ability of GBR 12,935 to enhance LTP, whereas application of the D3 dopamine receptor antagonist U 99,194 (1 microM) blocked the GBR 12,935-induced enhancement in LTP. In addition, a D3 dopamine receptor agonist (7-OH-DPAT, 1 microM) caused a significant increase in LTP, an effect that was also blocked by U 99,194 (3 microM). These results suggest that either endogenously released dopamine (facilitated by DAT blockade) or exogenously applied dopamine agonist can act to increase LTP in the CA1 of the hippocampus via activation of the D3 subtype of dopamine receptor.
Collapse
Affiliation(s)
- Jarod Swant
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, USA
| | | |
Collapse
|
43
|
Goebel SM, Alvestad RM, Coultrap SJ, Browning MD. Tyrosine phosphorylation of the N-methyl-d-aspartate receptor is enhanced in synaptic membrane fractions of the adult rat hippocampus. ACTA ACUST UNITED AC 2005; 142:65-79. [PMID: 16257472 DOI: 10.1016/j.molbrainres.2005.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 09/01/2005] [Accepted: 09/18/2005] [Indexed: 11/30/2022]
Abstract
Hippocampal N-methyl-D-aspartate receptors (NMDARs) contribute to the expression of certain types of synaptic plasticity, such as long-term potentiation (LTP). It is well documented that tyrosine kinases increase NMDAR phosphorylation and potentiate NMDAR function. However, it is unclear how these phosphorylation changes result in enhanced NMDAR activity. We previously reported that NMDAR surface expression can be increased by LTP-inducing stimulation via tyrosine kinase-dependent mechanisms in the adult hippocampus [D.R. Grosshans, D.A. Clayton, S.J. Coultrap, M.D. Browning, Nat. Neurosci., 5 (2002) 27-33]. We therefore hypothesized that tyrosine phosphorylation of the NMDAR may enhance the trafficking of the receptor to the synaptic membrane. Here, we show that the stoichiometry of NR2A and NR2B tyrosine phosphorylation is significantly higher in synaptosomal membranes than intracellular microsomal/light membranes. Interestingly, NR2B tyrosine-1472, but not NR1 serine-896 or -897, phosphorylation is significantly higher in synaptosomal membranes than intracellular microsomal/light membranes. Furthermore, treatment of hippocampal slices with either a tyrosine phosphatase inhibitor or a tyrosine kinase inhibitor alters NMDAR tyrosine phosphorylation and produces a corresponding change in the concentration of NMDARs in the synaptosomal membrane fraction. Taken together, these data support the hypothesis that tyrosine phosphorylation may enhance NMDAR activity by increasing the number of NMDARs at the synaptic membrane.
Collapse
Affiliation(s)
- Susan M Goebel
- Neuroscience Program, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
44
|
Bernard-Trifilo JA, Kramár EA, Torp R, Lin CY, Pineda EA, Lynch G, Gall CM. Integrin signaling cascades are operational in adult hippocampal synapses and modulate NMDA receptor physiology. J Neurochem 2005; 93:834-49. [PMID: 15857387 DOI: 10.1111/j.1471-4159.2005.03062.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Integrin class adhesion proteins are concentrated at adult brain synapses. Whether synaptic integrins engage kinase signaling cascades has not been determined, but is a question of importance to ideas about integrin involvement in functional synaptic plasticity. Accordingly, synaptoneurosomes from adult rat brain were used to test if matrix ligands activate integrin-associated tyrosine kinases, and if integrin signaling targets include NMDA-class glutamate neurotransmitter receptors. The integrin ligand peptide Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) induced rapid (within 5 min) and robust increases in tyrosine phosphorylation of focal adhesion kinase, proline-rich tyrosine kinase 2 and Src family kinases. Increases were similarly induced by the native ligand fibronectin, blocked with neutralizing antibodies to beta1 integrin, and not obtained with control peptides, indicating that kinase activation was integrin-mediated. Both GRGDSP and fibronectin caused rapid Src kinase-dependent increases in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in synaptoneurosomes and acute hippocampal slices. Tests of the physiological significance of the latter result showed that ligand treatment caused a rapid and beta1 integrin-dependent increase in NMDA receptor-mediated synaptic responses. These results provide the first evidence that, in adult brain, synaptic integrins activate local kinase cascades with potent effects on the operation of nearby neurotransmitter receptors implicated in synaptic plasticity.
Collapse
|
45
|
Plasticity of neocortical synapses enables transitions between rate and temporal coding. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/3-540-61510-5_77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
|
46
|
Xia Z, Storm DR. The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 2005; 6:267-76. [PMID: 15803158 DOI: 10.1038/nrn1647] [Citation(s) in RCA: 329] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Excitatory synapses in the brain show several forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), which are initiated by increases in intracellular Ca(2+) that are generated through NMDA (N-methyl-D-aspartate) receptors or voltage-sensitive Ca(2+) channels. LTP depends on the coordinated regulation of an ensemble of enzymes, including Ca(2+)/calmodulin-dependent protein kinase II, adenylyl cyclase 1 and 8, and calcineurin, all of which are stimulated by calmodulin, a Ca(2+)-binding protein. In this review, we discuss the hypothesis that calmodulin is a central integrator of synaptic plasticity and that its unique regulatory properties allow the integration of several forms of signal transduction that are required for LTP and LTD.
Collapse
Affiliation(s)
- Zhengui Xia
- Department of Pharmacology and Program in Neuroscience, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
47
|
Massicotte G, Baudry M. Brain plasticity and remodeling of AMPA receptor properties by calcium-dependent enzymes. GENETIC ENGINEERING 2004; 26:239-54. [PMID: 15387300 DOI: 10.1007/978-0-306-48573-2_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two experimental models of synaptic plasticity that have been studied extensively in the last 25 years, as they may represent basic mechanisms to store certain types of information in neuronal networks. In several brain regions, these two forms of synaptic plasticity require dendritic depolarization, and the amplitude and duration of the depolarization-induced calcium signal are crucial parameters for the generation of either LTP or LTD. The rise in calcium concentration mediated by activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors has been proposed to stimulate various calcium-dependent processes that could convert the induction signal into long-lasting changes in synaptic structure and function. According to several lines of experimental evidence, alterations in synaptic function observed with LTP and LTD are thought to be the result of modifications of postsynaptic currents mediated by the a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtype of glutamate receptors. The question of which type(s) of receptor changes constitutes the basis for the expression of synaptic plasticity is still very much open. Here, we review data relevant to the issue of selective modulation of AMPA receptor properties occurring after learning and memory, environmental enrichment, and synaptic plasticity. We also discuss potential cellular mechanisms whereby calcium-dependent enzymes might regulate AMPA receptor properties during LTP and LTD, focusing on protein kinases, proteases and lipases.
Collapse
Affiliation(s)
- Guy Massicotte
- Départment de chimie-biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | |
Collapse
|
48
|
Abstract
Long-term, activity-driven synaptic plasticity allows neuronal networks to constantly and durably adjust synaptic gains between synaptic partners. These processes have been proposed to serve as a substrate for learning and memory. Long-term synaptic potentiation (LTP) has been observed at many central excitatory synapses and perhaps most extensively studied at Schaffer collaterals synapses onto hippocampal CA1 neurons. Multiple contradictory models were proposed to account for this form of LTP. However, recent evidence suggests that some synapses are initially devoid of functional AMPA receptors which can be incorporated during LTP. This new model appears to account for most, but not all, properties of this form of plasticity. Indeed, several mechanisms seem to act in parallel to specifically enhance AMPA-receptor mediated synaptic transmission.
Collapse
Affiliation(s)
- Jean Christophe Poncer
- INSERM EMI 0224, Cortex & Epilepsie, CHU Pitié-Salpétrière, 105 blvd de l'Hôpital, Paris 75013, France.
| |
Collapse
|
49
|
Dozmorov M, Li R, Xu HP, Jilderos B, Wigström H. Slowly developing depression of N-methyl-D-aspartate receptor mediated responses in young rat hippocampi. BMC Neurosci 2004; 5:26. [PMID: 15285786 PMCID: PMC517399 DOI: 10.1186/1471-2202-5-26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 08/03/2004] [Indexed: 12/05/2022] Open
Abstract
Background Activation of N-methyl-D-aspartate (NMDA) type glutamate receptors is essential in triggering various forms of synaptic plasticity. A critical issue is to what extent such plasticity involves persistent changes of glutamate receptor subtypes and many prior studies have suggested a main role for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in mediating the effect. Our previous work in hippocampal slices revealed that, under pharmacological unblocking of NMDA receptors, both AMPA and NMDA receptor mediated responses undergo a slowly developing depression. In the present study we have further adressed this phenomenon, focusing on the contribution via NMDA receptors. Pharmacologically isolated NMDA receptor mediated excitatory postsynaptic potentials (EPSPs) were recorded for two independent synaptic pathways in CA1 area using perfusion with low Mg2+ (0.1 mM) to unblock NMDA receptors. Results Following unblocking of NMDA receptors, there was a gradual decline of NMDA receptor mediated EPSPs for 2–3 hours towards a stable level of ca. 60–70 % of the maximal size. If such an experimental session was repeated twice in the same pathway with a period of NMDA receptor blockade in between, the depression attained in the first session was still evident in the second one and no further decay occurred. The persistency of the depression was also validated by comparison between pathways. It was found that the responses of a control pathway, unstimulated in the first session of receptor unblocking, behaved as novel responses when tested in association with the depressed pathway under the second session. In similar experiments, but with AP5 present during the first session, there was no subsequent difference between NMDA EPSPs. Conclusions Our findings show that merely evoking NMDA receptor mediated responses results in a depression which is input specific, induced via NMDA receptor activation, and is maintained for several hours through periods of receptor blockade. The similarity to key features of long-term depression and long-term potentiation suggests a possible relation to these phenomena. Additionally, a short term potentiation and decay (<5 min) were observed during sudden start of NMDA receptor activation supporting the idea that NMDA receptor mediated responses are highly plastic.
Collapse
Affiliation(s)
- Mikhail Dozmorov
- Department of Medical Biophysics, Institute of Physiology and Pharmacology, Göteborg University, Box 433, SE 405 30 Göteborg, Sweden
| | - Rui Li
- Department of Medical Biophysics, Institute of Physiology and Pharmacology, Göteborg University, Box 433, SE 405 30 Göteborg, Sweden
| | - Hui-Ping Xu
- Department of Medical Biophysics, Institute of Physiology and Pharmacology, Göteborg University, Box 433, SE 405 30 Göteborg, Sweden
| | - Barbro Jilderos
- Department of Medical Biophysics, Institute of Physiology and Pharmacology, Göteborg University, Box 433, SE 405 30 Göteborg, Sweden
| | - Holger Wigström
- Department of Medical Biophysics, Institute of Physiology and Pharmacology, Göteborg University, Box 433, SE 405 30 Göteborg, Sweden
| |
Collapse
|
50
|
Koh S, Tibayan FD, Simpson JN, Jensen FE. NBQX or topiramate treatment after perinatal hypoxia-induced seizures prevents later increases in seizure-induced neuronal injury. Epilepsia 2004; 45:569-75. [PMID: 15144420 DOI: 10.1111/j.0013-9580.2004.69103.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To evaluate the efficacy of NBQX (2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f) quinoxaline-2,3-dione) and topiramate (TPM) given after hypoxia-induced seizures in preventing the delayed effect of hypoxia on subsequent susceptibility to seizures and neuronal injury. METHODS We used "two-hit" rodent seizure model to study the long-term effect of perinatal hypoxia on later kainate (KA) seizure-induced neuronal damage and investigated the therapeutic efficacy of a postseizure treatment protocol in reversing the conditioning effect of early-life seizures. RESULTS Hypoxia at P10 induces seizures without cell death but causes an increase in susceptibility to second seizures induced by KA as early as 96 h after hypoxia, and this lowered seizure threshold persists to adulthood. Furthermore, perinatal hypoxia increases KA-induced neuronal injury at postnatal day (P)21 and 28/30. Repeated doses of NBQX (20 mg/kg) or TPM (30 mg/kg) given for 48 h after hypoxia-induced seizures prevent the increase in susceptibility to KA seizure-induced hippocampal neuronal injury at P28/30. CONCLUSIONS Our results suggest that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor blockade after hypoxia prevents the priming effect of perinatal hypoxia-induced seizures and that this protection occurs independent of its anticonvulsant action.
Collapse
Affiliation(s)
- Sookyong Koh
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|