1
|
Vollen K, Zhao C, Alonso JM, Stepanova AN. Sourcing DNA parts for synthetic biology applications in plants. Curr Opin Biotechnol 2024; 87:103140. [PMID: 38723389 DOI: 10.1016/j.copbio.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Transgenic approaches are now standard in plant biology research aiming to characterize gene function or improve crops. Recent advances in DNA synthesis and assembly make constructing transgenes a routine task. What remains nontrivial is the selection of the DNA parts and optimization of the transgene design. Early career researchers and seasoned molecular biologists alike often face difficult decisions on what promoter or terminator to use, what tag to include, and where to place it. This review aims to inform about the current approaches being employed to identify and characterize DNA parts with the desired functionalities and give general advice on basic construct design. Furthermore, we hope to share the excitement about new experimental and computational tools being developed in this field.
Collapse
Affiliation(s)
- Katie Vollen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Xu C, Chang P, Guo S, Yang X, Liu X, Sui B, Yu D, Xin W, Hu Y. Transcriptional activation by WRKY23 and derepression by removal of bHLH041 coordinately establish callus pluripotency in Arabidopsis regeneration. THE PLANT CELL 2023; 36:158-173. [PMID: 37804093 PMCID: PMC10734573 DOI: 10.1093/plcell/koad255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Induction of the pluripotent cell mass termed callus from detached organs or tissues is an initial step in typical in vitro plant regeneration, during which auxin-induced ectopic activation of root stem cell factors is required for subsequent de novo shoot regeneration. While Arabidopsis (Arabidopsis thaliana) AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 and their downstream transcription factors LATERAL ORGAN BOUNDARIES DOMAIN (LBD) are known to play key roles in directing callus formation, the molecules responsible for activation of root stem cell factors and thus establishment of callus pluripotency are unclear. Here, we identified Arabidopsis WRKY23 and BASIC HELIX-LOOP-HELIX 041 (bHLH041) as a transcriptional activator and repressor, respectively, of root stem cell factors during establishment of auxin-induced callus pluripotency. We show that auxin-induced WRKY23 downstream of ARF7 and ARF19 directly activates the transcription of PLETHORA 3 (PLT3) and PLT7 and thus that of the downstream genes PLT1, PLT2, and WUSCHEL-RELATED HOMEOBOX 5 (WOX5), while LBD-induced removal of bHLH041 derepresses the transcription of PLT1, PLT2, and WOX5. We provide evidence that transcriptional activation by WRKY23 and loss of bHLH041-imposed repression act synergistically in conferring shoot-regenerating capability on callus cells. Our findings thus disclose a transcriptional mechanism underlying auxin-induced cellular reprogramming, which, together with previous studies, outlines the molecular framework of auxin-induced pluripotent callus formation for in vitro plant regeneration programs.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
| | - Pengjie Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaona Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinchun Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofeng Sui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxue Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, China National Botanical Garden, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
| |
Collapse
|
3
|
Zhong V, Archibald BN, Brophy JAN. Transcriptional and post-transcriptional controls for tuning gene expression in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102315. [PMID: 36462457 PMCID: PMC12061055 DOI: 10.1016/j.pbi.2022.102315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Plant biotechnologists seek to modify plants through genetic reprogramming, but our ability to precisely control gene expression in plants is still limited. Here, we review transcription and translation in the model plants Arabidopsis thaliana and Nicotiana benthamiana with an eye toward control points that may be used to predictably modify gene expression. We highlight differences in gene expression requirements between these plants and other species, and discuss the ways in which our understanding of gene expression has been used to engineer plants. This review is intended to serve as a resource for plant scientists looking to achieve precise control over gene expression.
Collapse
Affiliation(s)
- Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
4
|
Kassaw TK, Paton AJ, Peers G. Episome-Based Gene Expression Modulation Platform in the Model Diatom Phaeodactylum tricornutum. ACS Synth Biol 2022; 11:191-204. [PMID: 35015507 DOI: 10.1021/acssynbio.1c00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemically inducible gene expression systems have been an integral part of the advanced synthetic genetic circuit design and are employed for precise dynamic control over genetically engineered traits. However, the current systems for controlling transgene expression in most algae are limited to endogenous promoters that respond to different environmental factors. We developed a highly efficient, tunable, and reversible episome-based transcriptional control system in the model diatom alga, Phaeodactylum tricornutum. We assessed the time- and dose-response dynamics of each expression system using a reporter protein (eYFP) as a readout. Using our circuit configuration, we found two inducible expression systems with a high dynamic range and confirmed the suitability of an episome expression platform for synthetic biological applications in diatoms. These systems are controlled by the presence of β-estradiol and digoxin. Addition of either chemical to transgenic strains activates transcription with a dynamic range of up to ∼180-fold and ∼90-fold, respectively. We demonstrated that our episome-based transcriptional control systems are tunable and reversible in a dose- and time-dependent manner. Using droplet digital polymerase chain reaction (PCR), we also confirmed that inducer-dependent transcriptional activation starts within minutes of inducer application without any detectable transcript in the uninduced controls. The system described here expands the molecular and synthetic biology toolkits in algae and will facilitate future gene discovery and metabolic engineering efforts.
Collapse
Affiliation(s)
- Tessema K. Kassaw
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew J. Paton
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
5
|
Eeda SK, Werr W. Transcription of the WUSCHEL-RELATED HOMEOBOX 4 gene in Arabidopsis thaliana. Gene Expr Patterns 2020; 38:119150. [PMID: 33065216 DOI: 10.1016/j.gep.2020.119150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/13/2020] [Accepted: 10/08/2020] [Indexed: 11/29/2022]
Abstract
Phylogenetic shadowing and chromatin accessibility data suggested that essential regulatory elements are absent in the 2.9 kb immediate upstream region of the published WOX4pro::YFP cambium marker. Inclusion of an additional 6.3 kb of upstream promoter sequence and confocal imaging with different fluorophores in transgenic Arabidopsis lines revealed a much wider cell-type-specific expression pattern in parenchymous cells of the aerial plant body. The previously demonstrated activity of the WOX4pro::YFP marker in the cambium of vascular strands in the young Arabidopsis inflorescence stem depicts only sectors of a circular subcortical layer of parenchymous AtWOX4-positive cells. Transcription starts in subepidermal cells within the inflorescence apex in a phyllotactic pattern and extends into successively branching lateral organs, which are connected via small tube-like domains of AtWOX4-expressing cells with the circular subcortical parenchymal layer that extends basipetally down the stem. AtWOX4 expression is most dynamic in leaves, where promoter activity is observed transiently at the adaxial side of the lamina and remains detectable later in the palisade parenchyma, although at a weaker level than in the vasculature. In the root the extended AtWOX4 promoter is active through the proximal root meristem, i.e. in the quiescent centre (QC) and its surrounding initials, a pattern that is broader than transcription of its stem cell promoting relative AtWOX5 in the QC. Outside the proximal meristem AtWOX4 transcription is observed in upper cell layers of the columella root cap beneath or above within the stele in proto- and metaxylem cells, in a ribbon-type pattern which divides the central cylinder in two equal halves. This xylem-specific expression it the root stele relates to established AtWOX4 activity in xylem parenchyma specificity within vascular bundles of the stem.
Collapse
Affiliation(s)
- Satish Kumar Eeda
- Developmental Biology, Department of Biology, Biocenter, University of Cologne, Zülpicher Str. 47b, D-50674, Cologne, Germany
| | - Wolfgang Werr
- Developmental Biology, Department of Biology, Biocenter, University of Cologne, Zülpicher Str. 47b, D-50674, Cologne, Germany.
| |
Collapse
|
6
|
Peng F, Zhang W, Zeng W, Zhu J, Miki D. Gene targeting in Arabidopsis via an all-in-one strategy that uses a translational enhancer to aid Cas9 expression. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:892-894. [PMID: 31553828 PMCID: PMC7061861 DOI: 10.1111/pbi.13265] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/03/2019] [Accepted: 09/22/2019] [Indexed: 05/03/2023]
Affiliation(s)
- Fangnan Peng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenxin Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian‐Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
7
|
Erdayani E, Nagarajan R, Grant NP, Gill KS. Genome-wide analysis of the HSP101/CLPB gene family for heat tolerance in hexaploid wheat. Sci Rep 2020; 10:3948. [PMID: 32127546 PMCID: PMC7054433 DOI: 10.1038/s41598-020-60673-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Heat Shock Protein 101 (HSP101), the homolog of Caseinolytic Protease B (CLPB) proteins, has functional conservation across species to play roles in heat acclimation and plant development. In wheat, several TaHSP101/CLPB genes were identified, but have not been comprehensively characterized. Given the complexity of a polyploid genome with its phenomena of homoeologous expression bias, detailed analysis on the whole TaCLPB family members is important to understand the genetic basis of heat tolerance in hexaploid wheat. In this study, a genome-wide analysis revealed thirteen members of TaCLPB gene family and their expression patterns in various tissues, developmental stages, and stress conditions. Detailed characterization of TaCLPB gene and protein structures suggested potential variations of the sub-cellular localization and their functional regulations. We revealed homoeologous specific variations among TaCLPB gene copies that have not been reported earlier. A study of the Chromosome 1 TaCLPB in four wheat genotypes demonstrated unique patterns of the homoeologous gene expression under moderate and extreme heat treatments. The results give insight into the strategies to improve heat tolerance by targeting one or some of the TaCLPB genes in wheat.
Collapse
Affiliation(s)
- Eva Erdayani
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA., USA
- Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, Jawa Barat, Indonesia
| | - Ragupathi Nagarajan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA., USA
| | - Nathan P Grant
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA., USA
| | - Kulvinder S Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA., USA.
| |
Collapse
|
8
|
Xu C, Cao H, Zhang Q, Wang H, Xin W, Xu E, Zhang S, Yu R, Yu D, Hu Y. Control of auxin-induced callus formation by bZIP59-LBD complex in Arabidopsis regeneration. NATURE PLANTS 2018; 4:108-115. [PMID: 29358751 DOI: 10.1038/s41477-017-0095-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/20/2017] [Indexed: 05/18/2023]
Abstract
Induction of pluripotent cells termed callus by auxin represents a typical cell fate change required for plant in vitro regeneration; however, the molecular control of auxin-induced callus formation is largely elusive. We previously identified four Arabidopsis auxin-inducible Lateral Organ Boundaries Domain (LBD) transcription factors that govern callus formation. Here, we report that Arabidopsis basic region/leucine zipper motif 59 (AtbZIP59) transcription factor forms complexes with LBDs to direct auxin-induced callus formation. We show that auxin stabilizes AtbZIP59 and enhances its interaction with LBD, and that disruption of AtbZIP59 dampens auxin-induced callus formation whereas overexpression of AtbZIP59 triggers autonomous callus formation. AtbZIP59-LBD16 directly targets a FAD-binding Berberine (FAD-BD) gene and promotes its transcription, which contributes to callus formation. These findings define the AtbZIP59-LBD complex as a critical regulator of auxin-induced cell fate change during callus formation, which provides a new insight into the molecular regulation of plant regeneration and possible developmental programs.
Collapse
Affiliation(s)
- Chongyi Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huifen Cao
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hongzhe Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei Xin
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Enjun Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiqi Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruixue Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxue Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- National Center for Plant Gene Research, Beijing, China.
| |
Collapse
|
9
|
Miras M, Miller WA, Truniger V, Aranda MA. Non-canonical Translation in Plant RNA Viruses. FRONTIERS IN PLANT SCIENCE 2017; 8:494. [PMID: 28428795 PMCID: PMC5382211 DOI: 10.3389/fpls.2017.00494] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
Viral protein synthesis is completely dependent upon the host cell's translational machinery. Canonical translation of host mRNAs depends on structural elements such as the 5' cap structure and/or the 3' poly(A) tail of the mRNAs. Although many viral mRNAs are devoid of one or both of these structures, they can still translate efficiently using non-canonical mechanisms. Here, we review the tools utilized by positive-sense single-stranded (+ss) RNA plant viruses to initiate non-canonical translation, focusing on cis-acting sequences present in viral mRNAs. We highlight how these elements may interact with host translation factors and speculate on their contribution for achieving translational control. We also describe other translation strategies used by plant viruses to optimize the usage of the coding capacity of their very compact genomes, including leaky scanning initiation, ribosomal frameshifting and stop-codon readthrough. Finally, future research perspectives on the unusual translational strategies of +ssRNA viruses are discussed, including parallelisms between viral and host mRNAs mechanisms of translation, particularly for host mRNAs which are translated under stress conditions.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State UniversityAmes, IA, USA
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
- *Correspondence: Miguel A. Aranda
| |
Collapse
|
10
|
Yusibov V, Kushnir N, Streatfield SJ. Antibody Production in Plants and Green Algae. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:669-701. [PMID: 26905655 DOI: 10.1146/annurev-arplant-043015-111812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | | |
Collapse
|
11
|
Marusic C, Novelli F, Salzano AM, Scaloni A, Benvenuto E, Pioli C, Donini M. Production of an active anti-CD20-hIL-2 immunocytokine in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:240-51. [PMID: 25879373 PMCID: PMC11388813 DOI: 10.1111/pbi.12378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/27/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Anti-CD20 murine or chimeric antibodies (Abs) have been used to treat non-Hodgkin lymphomas (NHLs) and other diseases characterized by overactive or dysfunctional B cells. Anti-CD20 Abs demonstrated to be effective in inducing regression of B-cell lymphomas, although in many cases patients relapse following treatment. A promising approach to improve the outcome of mAb therapy is the use of anti-CD20 antibodies to deliver cytokines to the tumour microenvironment. In particular, IL-2-based immunocytokines have shown enhanced antitumour activity in several preclinical studies. Here, we report on the engineering of an anti-CD20-human interleukin-2 (hIL-2) immunocytokine (2B8-Fc-hIL2) based on the C2B8 mAb (Rituximab) and the resulting ectopic expression in Nicotiana benthamiana. The scFv-Fc-engineered immunocytokine is fully assembled in plants with minor degradation products as assessed by SDS-PAGE and gel filtration. Purification yields using protein-A affinity chromatography were in the range of 15-20 mg/kg of fresh leaf weight (FW). Glycopeptide analysis confirmed the presence of a highly homogeneous plant-type glycosylation. 2B8-Fc-hIL2 and the cognate 2B8-Fc antibody, devoid of hIL-2, were assayed by flow cytometry on Daudi cells revealing a CD20 binding activity comparable to that of Rituximab and were effective in eliciting antibody-dependent cell-mediated cytotoxicity of human PBMC versus Daudi cells, demonstrating their functional integrity. In 2B8-Fc-hIL2, IL-2 accessibility and biological activity were verified by flow cytometry and cell proliferation assay. To our knowledge, this is the first example of a recombinant immunocytokine based on the therapeutic Rituximab antibody scaffold, whose expression in plants may be a valuable tool for NHLs treatment.
Collapse
Affiliation(s)
- Carla Marusic
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| | - Flavia Novelli
- Laboratory of Radiation Biology and Biomedicine, ENEA Research Center Casaccia, Rome, Italy
| | - Anna M Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - Eugenio Benvenuto
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| | - Claudio Pioli
- Laboratory of Radiation Biology and Biomedicine, ENEA Research Center Casaccia, Rome, Italy
| | - Marcello Donini
- Laboratory of Biotechnology, ENEA Research Center Casaccia, Rome, Italy
| |
Collapse
|
12
|
Takahashi S, Furusawa H, Ueda T, Okahata Y. Translation enhancer improves the ribosome liberation from translation initiation. J Am Chem Soc 2013; 135:13096-106. [PMID: 23927491 DOI: 10.1021/ja405967h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For translation initiation in bacteria, the Shine-Dalgarno (SD) and anti-SD sequence of the 30S subunit play key roles for specific interactions between ribosomes and mRNAs to determine the exact position of the translation initiation region. However, ribosomes also must dissociate from the translation initiation region to slide toward the downstream sequence during mRNA translation. Translation enhancers upstream of the SD sequences of mRNAs, which likely contribute to a direct interaction with ribosome protein S1, enhance the yields of protein biosynthesis. Nevertheless, the mechanism of the effect of translation enhancers to initiate the translation is still unknown. In this paper, we investigated the effects of the SD and enhancer sequences on the binding kinetics of the 30S ribosomal subunits to mRNAs and their translation efficiencies. mRNAs with both the SD and translation enhancers promoted the amount of protein synthesis but destabilized the interaction between the 30S subunit and mRNA by increasing the dissociation rate constant (koff) of the 30S subunit. Based on a model for kinetic parameters, a 16-fold translation efficiency could be achieved by introducing a tandem repeat of adenine sequences (A20) between the SD and translation enhancer sequences. Considering the results of this study, translation enhancers with an SD sequence regulate ribosomal liberation from translation initiation to determine the translation efficiency of the downstream coding region.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology, B-53, 4259 Nagatsuda, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
13
|
Abstract
The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.
Collapse
|
14
|
Abstract
In the past decade, in vitro evolution techniques have been used to improve the performance or alter the activity of a number of different enzymes and have generated enzymes de novo. In this review, we provide an overview of the available in vitro methods, their application, and some general considerations for enzyme engineering in vitro. We discuss the advantages of in vitro over in vivo approaches and focus on ribosome display, mRNA display, DNA display technologies, and in vitro compartmentalization (IVC) methods. This review aims to help researchers determine which approach is best suited for their own experimental needs and to highlight that in vitro methods offer a promising route for enzyme engineering.
Collapse
Affiliation(s)
- Misha V Golynskiy
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN, USA
| | | | | | | | | |
Collapse
|
15
|
Villani ME, Morgun B, Brunetti P, Marusic C, Lombardi R, Pisoni I, Bacci C, Desiderio A, Benvenuto E, Donini M. Plant pharming of a full-sized, tumour-targeting antibody using different expression strategies. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:59-72. [PMID: 18793269 DOI: 10.1111/j.1467-7652.2008.00371.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aims of this work were to obtain a human antibody against the tumour-associated antigen tenascin-C (TNC) and to compare the yield and quality of plant-produced antibody in either stable transgenics or using a transient expression system. To this end, the characterization of a full-sized human immunoglobulin G (IgG) [monoclonal antibody H10 (mAb H10)], derived from a selected single-chain variable fragment (scFv) and produced in plants, is presented. The human mAb gene was engineered for plant expression, and Nicotiana tabacum transgenic lines expressing both heavy (HC) and light (LC) chain were obtained and evaluated for antibody expression levels, in vivo assembly and functionality. Affinity-purified H10 from transgenics (yield, 0.6-1.1 mg/kg fresh weight) revealed that more than 90% of HC was specifically degraded, leading to the formation of functional antigen-binding fragments (Fab). Consequently, H10 was transiently expressed in Nicotiana benthamiana plants through an Agrobacterium-mediated gene-transfer system. Moreover, the use of the p19 silencing suppressor gene from artichoke mottled crinkle virus raised antibody expression levels by an order of magnitude (yields of purified H10, 50-100 mg/kg fresh weight). Approximately 75% of purified protein consisted of full-sized antibody functionally binding to TNC (K(D) = 14 nm), and immunohistochemical analysis on tumour tissues revealed specific accumulation around tumour blood vessels. The data indicate that the purification yields of mAb H10, using a transient expression system boosted by the p19 silencing suppressor, are exceptionally high when compared with the results reported previously, providing a technique for the over-expression of anticancer mAbs by a rapid, cost-effective, molecular farming approach.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neoplasm/biosynthesis
- Antibodies, Neoplasm/genetics
- Antibodies, Neoplasm/immunology
- Gene Expression
- Humans
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Mice
- Molecular Sequence Data
- Neoplasms, Experimental/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Protein Engineering
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Tenascin/antagonists & inhibitors
- Nicotiana/genetics
- Nicotiana/metabolism
- Transformation, Genetic
Collapse
Affiliation(s)
- Maria Elena Villani
- ENEA, Dipartimento BAS, Sezione Genetica e Genomica Vegetale, C.R. Casaccia, Via Anguillarese 301, I-00123, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:579-90. [PMID: 17524049 DOI: 10.1111/j.1467-7652.2007.00263.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gaucher's disease, a lysosomal storage disorder caused by mutations in the gene encoding glucocerebrosidase (GCD), is currently treated by enzyme replacement therapy using recombinant GCD (Cerezyme) expressed in Chinese hamster ovary (CHO) cells. As complex glycans in mammalian cells do not terminate in mannose residues, which are essential for the biological uptake of GCD via macrophage mannose receptors in human patients with Gaucher's disease, an in vitro glycan modification is required in order to expose the mannose residues on the glycans of Cerezyme. In this report, the production of a recombinant human GCD in a carrot cell suspension culture is described. The recombinant plant-derived GCD (prGCD) is targeted to the storage vacuoles, using a plant-specific C-terminal sorting signal. Notably, the recombinant human GCD expressed in the carrot cells naturally contains terminal mannose residues on its complex glycans, apparently as a result of the activity of a special vacuolar enzyme that modifies complex glycans. Hence, the plant-produced recombinant human GCD does not require exposure of mannose residues in vitro, which is a requirement for the production of Cerezyme. prGCD also displays a level of biological activity similar to that of Cerezyme produced in CHO cells, as well as a highly homologous high-resolution three-dimensional structure, determined by X-ray crystallography. A single-dose toxicity study with prGCD in mice demonstrated the absence of treatment-related adverse reactions or clinical findings, indicating the potential safety of prGCD. prGCD is currently undergoing clinical studies, and may offer a new and alternative therapeutic option for Gaucher's disease.
Collapse
Affiliation(s)
- Yoseph Shaaltiel
- Protalix Biotherapeutics, 2 Snunit Street, Science Park, Carmiel 20100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 555] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Golshani A, Krogan NJ, Xu J, Pacal M, Yang XC, Ivanov I, Providenti MA, Ganoza MC, Ivanov IG, AbouHaidar MG. Escherichia coli mRNAs with strong Shine/Dalgarno sequences also contain 5' end sequences complementary to domain # 17 on the 16S ribosomal RNA. Biochem Biophys Res Commun 2004; 316:978-83. [PMID: 15044080 DOI: 10.1016/j.bbrc.2004.02.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Indexed: 11/20/2022]
Abstract
A well-established feature of the translation initiation region, which attracts the ribosomes to the prokaryotic mRNAs, is a purine rich area called Shine/Dalgarno sequence (SD). There are examples of various other sequences, which despite having no similarity to an SD sequence are capable of enhancing and/or initiating translation. The mechanisms by which these sequences affect translation remain unclear, but a base pairing between mRNA and 16S ribosomal RNA (rRNA) is proposed to be the likely mechanism. In this study, using a computational approach, we identified a non-SD signal found specifically in the translation initiation regions of Escherichia coli mRNAs, which contain super strong SD sequences. Nine of the 11 E. coli translation initiation regions, which were previously identified for having super strong SD sequences, also contained six or more nucleotides complementary to box-17 on the 16S rRNA (nucleotides 418-554). Mutational analyses of those initiation sequences indicated that when complementarity to box-17 was eliminated, the efficiency of the examined sequences to mediate the translation of chloramphenicol acetyltransferase (CAT) mRNA was reduced. The results suggest that mRNA sequences with complementarity to box-17 of 16S rRNA may function as enhancers for translation in E. coli.
Collapse
Affiliation(s)
- Ashkan Golshani
- Department of Biology, College of Natural Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Komarova TV, Skulachev MV, Ivanov PA, Klyushin AG, Dorokhov YL, Atabekov JG. Internal ribosome entry site from crucifer tobamovirus promotes initiation of translation in Escherichia coli. DOKL BIOCHEM BIOPHYS 2003; 389:118-21. [PMID: 12856419 DOI: 10.1023/a:1023644408333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- T V Komarova
- Moscow State University, Vorob'evy gory, Moscow, 117234 Russia
| | | | | | | | | | | |
Collapse
|
21
|
Komarova AV, Tchufistova LS, Supina EV, Boni IV. Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation. RNA (NEW YORK, N.Y.) 2002; 8:1137-1147. [PMID: 12358433 PMCID: PMC1370328 DOI: 10.1017/s1355838202029990] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
There are two major components of Escherichia coli ribosomes directly involved in selection and binding of mRNA during initiation of protein synthesis-the highly conserved 3' end of 16S rRNA (aSD) complementary to the Shine-Dalgarno (SD) domain of mRNA, and the ribosomal protein S1. A contribution of the SD-aSD and S1-mRNA interactions to translation yield in vivo has been evaluated in a genetic system developed to compare efficiencies of various ribosome-binding sites (RBS) in driving beta-galactosidase synthesis from the single-copy (chromosomal) lacZ gene. The in vivo experiments have been supplemented by in vitro toeprinting and gel-mobility shift assays. A shortening of a potential SD-aSD duplex from 10 to 8 and to 6 bp increased the beta-galactosidase yield (four- and sixfold, respectively) suggesting that an extended SD-aSD duplex adversely affects translation, most likely due to its redundant stability causing ribosome stalling at the initiation step. Translation yields were significantly increased upon insertion of the A/U-rich S1 binding targets upstream of the SD region, but the longest SD remained relatively less efficient. In contrast to complete 30S ribosomes, the S1-depleted 30S particles have been able to form an extended SD-aSD duplex, but not the true ternary initiation complex. Taken together, the in vivo and in vitro data allow us to conclude that S1 plays two roles in translation initiation: It forms an essential part of the mRNA-binding track even when mRNA bears a long SD sequence, and through the binding to the 5' untranslated region, it can ensure a substantial enhancing effect on translation.
Collapse
Affiliation(s)
- Anastassia V Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
22
|
Golshani A, Kolev V, Mironova R, AbouHaidar MG, Ivanov IG. Enhancing activity of epsilon in Escherichia coli and Agrobacterium tumefaciens cells. Biochem Biophys Res Commun 2000; 269:508-12. [PMID: 10708584 DOI: 10.1006/bbrc.2000.2327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epsilon (epsilon) sequence is a bacterial enhancer of translation found in the bacteriophage T7 gene 10. It is believed that its enhancing effect of epsilon is due to a base-pairing with the nucleotides 458-467 from the helical domain 17 of Escherichia coli 16S rRNA. To prove this we have taken advantage of the difference of this domain in Agrobacterium tumefaciens and E. coli. To evaluate the significance of nucleotide complementarity for the enhancing activity of epsilon, a series of nucleotide sequences matching either E. coli or A. tumefaciens domain 17 are cloned in a binary expression vector in front of the chloramphenicol acetyltransferase (CAT) gene. The CAT assay shows that: (i) the epsilon in combination with an SD consensus sequence increases the yield of CAT in both microorganisms over that obtained with the SD alone; (ii) the epsilon sequence complementary to the A. tumefaciens domain 17 leads to a 2.71-fold increase in the yield of CAT in homologous cells but not in E. coli cells; (iii) the yield of CAT correlates with the free energy of base-pairing with the helical domain 17 in both microorganisms.
Collapse
Affiliation(s)
- A Golshani
- Department of Botany, Virology Group, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | | | | | | | | |
Collapse
|
23
|
Houston P, White BP, Campbell CJ, Braddock M. Delivery and expression of fluid shear stress-inducible promoters to the vessel wall: applications for cardiovascular gene therapy. Hum Gene Ther 1999; 10:3031-44. [PMID: 10609662 DOI: 10.1089/10430349950016429] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In atherosclerosis, endothelial cells at sites of stenosis experience elevated levels of shear stress. We have constructed a series of shear stress-inducible transcription units (SITUs) expressing the luciferase reporter gene and determined their activation by fluid shear stress in transfected endothelial cells. Chimeric promoters were constructed that comprised basal transcription factor-binding sites coupled to a shear stress response element (SSRE). We have used consensus binding sites for transcription factors NF-kappaB, Ap1, Sp1, Oct1, and Egr-1/Sp1 in either the presence or absence of the previously defined "GAGACC" SSRE. The response of the promoters to shear stress was determined after transfection into human umbilical vein endothelial cells (HUVECs). After transient transfection into HUVECs, fluid shear stress activated the promoters by between two- and eightfold. The most responsive SITUs comprised an overlapping Sp1/Egr-1-binding site linked to a TATA box with (SP5) or without (SP7) the GAGACC SSRE. Instillation of SP5 DNA in vivo into the left carotid artery of rabbit and subsequent generation of a stenosis using a mechanical wire occluder caused a 10-fold upregulation of luciferase reporter gene expression at the site of vessel occlusion. These vectors show promise for therapeutic gene expression at sites of occlusive vascular disease.
Collapse
Affiliation(s)
- P Houston
- Endothelial Cell Gene Expression Group, Vascular Diseases Unit, Glaxo Wellcome Medicines Research Centre, Stevenage, Herts, England
| | | | | | | |
Collapse
|
24
|
O'Connor M, Asai T, Squires CL, Dahlberg AE. Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA. Proc Natl Acad Sci U S A 1999; 96:8973-8. [PMID: 10430880 PMCID: PMC17717 DOI: 10.1073/pnas.96.16.8973] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The downstream box (DB) is a sequence element that enhances translation of several bacterial and phage mRNAs. It has been proposed that the DB enhances translation by base pairing transiently to bases 1469-1483 of 16S rRNA, the so-called anti-DB, during the initiation phase of translation. We have tested this model of enhancer action by constructing mutations in the anti-DB that alter its mRNA base-pairing potential and examining expression of a variety of DB-containing mRNAs in strains expressing the mutant anti-DB 16S rRNA. We found that the rRNA mutant was viable and that expression of all tested DB-containing mRNAs was completely unaffected by radical alterations in the proposed anti-DB. These findings lead us to conclude that enhancement of translation by the DB does not involve mRNA-rRNA base pairing.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Pairing
- Base Sequence
- Enhancer Elements, Genetic
- Escherichia coli/genetics
- Heat-Shock Proteins/genetics
- Models, Molecular
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Plasmids
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sigma Factor
- Transcription Factors/genetics
Collapse
Affiliation(s)
- M O'Connor
- J. W. Wilson Laboratory, Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI 02912, USA. Michael_O'
| | | | | | | |
Collapse
|
25
|
Abstract
The mechanisms whereby ribosomes engage a messenger RNA and select the start site for translation differ between prokaryotes and eukaryotes. Initiation sites in polycistronic prokaryotic mRNAs are usually selected via base pairing with ribosomal RNA. That straightforward mechanism is made complicated and interesting by cis- and trans-acting elements employed to regulate translation. Initiation sites in eukaryotic mRNAs are reached via a scanning mechanism which predicts that translation should start at the AUG codon nearest the 5' end of the mRNA. Interest has focused on mechanisms that occasionally allow escape from this first-AUG rule. With natural mRNAs, three escape mechanisms - context-dependent leaky scanning, reinitiation, and possibly direct internal initiation - allow access to AUG codons which, although not first, are still close to the 5' end of the mRNA. This constraint on the initiation step of translation in eukaryotes dictates the location of transcriptional promoters and may have contributed to the evolution of splicing.The binding of Met-tRNA to ribosomes is mediated by a GTP-binding protein in both prokaryotes and eukaryotes, but the more complex structure of the eukaryotic factor (eIF-2) and its association with other proteins underlie some aspects of initiation unique to eukaryotes. Modulation of GTP hydrolysis by eIF-2 is important during the scanning phase of initiation, while modulating the release of GDP from eIF-2 is a key mechanism for regulating translation in eukaryotes. Our understanding of how some other protein factors participate in the initiation phase of translation is in flux. Genetic tests suggest that some proteins conventionally counted as eukaryotic initiation factors may not be required for translation, while other tests have uncovered interesting new candidates. Some popular ideas about the initiation pathway are predicated on static interactions between isolated factors and mRNA. The need for functional testing of these complexes is discussed. Interspersed with these theoretical topics are some practical points concerning the interpretation of cDNA sequences and the use of in vitro translation systems. Some human diseases resulting from defects in the initiation step of translation are also discussed.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
26
|
Fuentes-RamıÌrez LE, Caballero-Mellado J, Sepúlveda J, MartıÌnez-Romero E. Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00603.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Odjakova M, Golshani A, Ivanov G, Abou Haidar M, Ivanov I. The low level expression of chloramphenicol acetyltransferase (CAT) mRNA in Escherichia coli is not dependent on either Shine-Dalgarno or the downstream boxes in the CAT gene. Microbiol Res 1998; 153:173-8. [PMID: 9760750 DOI: 10.1016/s0944-5013(98)80037-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent studies have shown that the canonical Shine-Dalgarno (SD)-anti-SD interaction is dispensable for the initiation of translation of certain mRNAs in Escherichia coli. Alternative non-SD sequences (located upstream from the initiation codon) and also downstream sequences ("downstream boxes") complementary to 16S rRNA were found to be involved in the initiation of translation of mRNAs devoid of either SD or any leader sequences. In this study the chloramphenicol acetyltransferase (CAT) gene was modified to remove the 5' terminal non-translated region and/or the two potential downstream boxes in the CAT gene. Thus a series of ten CAT gene constructs was created and expressed in E. coli under a strong constitutive promoter. The results showed that CAT mRNAs devoid of both leader sequence nucleotides and the two downstream boxes in the CAT gene remained active in vivo and produced CAT protein in sufficient amounts for survival of the transformed cells at chloramphenicol concentrations up to 20-30 micrograms/ml.
Collapse
Affiliation(s)
- M Odjakova
- Department of Biochemistry, Faculty of Biology, University of Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
28
|
Kaloyanova D, Xu J, Ivanov IG, Abouhaidar MG. Gene expression evidence indicates that nucleotides 507-513 and 1434-1440 in 16S rRNA are organized in close proximity on the Escherichia coli 30S ribosomal subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:10-4. [PMID: 9310353 DOI: 10.1111/j.1432-1033.1997.00010.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A non-Shine-Dalgamo translational initiator is identified in Escherichia coli. The nucleotide sequence ACCUACUCGAGUUAG, designated as PL, is capable of initiating translation of pokeweed antiviral protein (PAP) and human calcitonin (hCT) mRNAs in E. coli cells. The yield of recombinant protein was double that obtained with the consensus Shine-Dalgarno-sequence-(SD)-driven translation. The PL sequence is composed of two heptanucleotides (ACCUACU, box I and GAGUUAG, box II) which are complementary to nucleotides 1434-1440 and 507-513, respectively, in 16S rRNA. Mutational analysis shows that the translation initiation efficiency with either box alone is much lower than that obtained with the entire PL sequence, indicating that the boxes interact simultaneously with both complementary regions in 16S rRNA during the translation initiation step. Based on these results, we propose that the two widely separated regions 507-513 (part of helical domain 18) and 1434-1440 (belonging to helical domain 44) are organized in close proximity to each other and to the ribosome decoding center on the surface of the E. coli 30S ribosomal subunit.
Collapse
MESH Headings
- Base Sequence
- Calcitonin/biosynthesis
- Calcitonin/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genes, Reporter
- Genetic Vectors
- Humans
- Molecular Sequence Data
- N-Glycosyl Hydrolases
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Ribosome Inactivating Proteins, Type 1
- Ribosomes/chemistry
- Ribosomes/genetics
Collapse
Affiliation(s)
- D Kaloyanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia
| | | | | | | |
Collapse
|
29
|
Strizhov N, Keller M, Mathur J, Koncz-Kálmán Z, Bosch D, Prudovsky E, Schell J, Sneh B, Koncz C, Zilberstein A. A synthetic cryIC gene, encoding a Bacillus thuringiensis delta-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci U S A 1996; 93:15012-7. [PMID: 8986755 PMCID: PMC26347 DOI: 10.1073/pnas.93.26.15012] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/1996] [Indexed: 02/03/2023] Open
Abstract
Spodoptera species, representing widespread polyphagous insect pests, are resistant to Bacillus thuringiensis delta-endotoxins used thus far as insecticides in transgenic plants. Here we describe the chemical synthesis of a cryIC gene by a novel template directed ligation-PCR method. This simple and economical method to construct large synthetic genes can be used when routine resynthesis of genes is required. Chemically phosphorylated adjacent oligonucleotides of the gene to be synthesized are assembled and ligated on a single-stranded, partially homologous template derived from a wild-type gene (cryIC in our case) by a thermostable pfu DNA ligase using repeated cycles of melting, annealing, and ligation. The resulting synthetic DNA strands are selectively amplified by PCR with short specific flanking primers that are complementary only to the new synthetic DNA. Optimized expression of the synthetic cryIC gene in alfalfa and tobacco results in the production of 0.01-0.2% of total soluble proteins as CryIC toxin and provides protection against the Egyptian cotton leafworm (Spodoptera littoralis) and the beet armyworm (Spodoptera exigua). To facilitate selection and breeding of Spodoptera-resistant plants, the cryIC gene was linked to a pat gene, conferring resistance to the herbicide BASTA.
Collapse
Affiliation(s)
- N Strizhov
- Max-Planck-Institut für Züchtungsforschung, Köin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Translation processes in plants are very similar to those in other eukaryotic organisms and can in general be explained with the scanning model. Particularly among plant viruses, unconventional mRNAs are frequent, which use modulated translation processes for their expression: leaky scanning, translational stop codon readthrough or frameshifting, and transactivation by virus-encoded proteins are used to translate polycistronic mRNAs; leader and trailer sequences confer (cap-independent) efficient ribosome binding, usually in an end-dependent mechanism, but true internal ribosome entry may occur as well; in a ribosome shunt, sequences within an RNA can be bypassed by scanning ribosomes. Translation in plant cells is regulated under conditions of stress and during development, but the underlying molecular mechanisms have not yet been determined. Only a small number of plant mRNAs, whose structure suggests that they might require some unusual translation mechanisms, have been described.
Collapse
Affiliation(s)
- J Fütterer
- Institute of Plant Sciences, ETHZ, Zürich, Switzerland
| | | |
Collapse
|
31
|
Tanguay RL, Gallie DR. Isolation and characterization of the 102-kilodalton RNA-binding protein that binds to the 5' and 3' translational enhancers of tobacco mosaic virus RNA. J Biol Chem 1996; 271:14316-22. [PMID: 8663059 DOI: 10.1074/jbc.271.24.14316] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tobacco mosaic virus (TMV) is a positive-sense, single-stranded RNA virus the genome of which acts as a mRNA in the cytoplasm. On infection, TMV mRNA is efficiently and selectively translated by the host translation machinery despite the lack of a poly(A) tail, which is normally required for efficient translation. Both the 68-base 5' leader (Omega) and the 205-base 3' untranslated region of TMV promote efficient translation. A 25-base poly(CAA) region within Omega and the upstream pseudoknot domain, a 72-base region composed of three RNA pseudoknots, are responsible for the translational regulation. We have identified, purified, and characterized a 102-kDa RNA-binding protein (p102) from wheat that binds specifically to the poly(CAA) region within Omega and the upstream pseudoknot domain within the TMV 3' untranslated region. Polyclonal antibodies raised against wheat p102 were used to demonstrate that p102 is widely conserved in plant species. Moreover, specific RNA binding activity was detected in all plant species tested. Addition of anti-p102 antibodies to an in vitro translation lysate derived from wheat germ repressed translation, which was subsequently reversed by supplementing the lysate with p102. These findings suggest that this protein may play an important role in determining translational efficiency in plants.
Collapse
Affiliation(s)
- R L Tanguay
- Department of Biochemistry, University of California, Riverside, California 92521-0129, USA
| | | |
Collapse
|
32
|
Sprengart ML, Fuchs E, Porter AG. The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J 1996; 15:665-74. [PMID: 8599950 PMCID: PMC449985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The downstream box (DB) was originally described as a translational enhancer of several Escherichia coli and bacteriophage mRNAs located just downstream of the initiation codon. Here, we introduced nucleotide substitutions into the DB and Shine-Dalgarno (SD) region of the highly active bacteriophage T7 gene 10 ribosome binding site (RBS) to examine the possibility that the DB has an independent and functionally important role. Eradication of the SD sequence in the absence of a DB abolished the translational activity of RBS fragments that were fused to a dihydrofolate reductase reporter gene. In contrast, an optimized DB at various positions downstream of the initiation codon promoted highly efficient protein synthesis despite the lack of a SD region. The DB was not functional when shifted upstream of the initiation codon to the position of the SD sequence. Nucleotides 1469-1483 of 16S rRNA ('anti-downstream box') are complementary to the DB, and optimizing this complementarity strongly enhanced translation in the absence and presence of a SD region. We propose that the stimulatory interaction between the DB and the anti-DB places the start codon in close contact with the decoding region of 16S rRNA, thereby mediating independent and efficient initiation of translation.
Collapse
MESH Headings
- Bacteriophage T7/genetics
- Base Sequence
- Binding Sites/genetics
- Codon, Initiator/genetics
- Enhancer Elements, Genetic
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genes, Reporter
- Genes, Viral
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Ribosomal, 16S/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- M L Sprengart
- Institute of Molecular and Cell Biology, National University of Singapore, Republic of Singapore
| | | | | |
Collapse
|
33
|
Abstract
Viruses have developed successful strategies for propagation at the expense of their host cells. Efficient gene expression, genome multiplication, and invasion of the host are enabled by virus-encoded genetic elements, many of which are well characterized. Sequences derived from plant DNA and RNA viruses can be used to control expression of other genes in vivo. The main groups of plant virus genetic elements useful in genetic engineering are reviewed, including the signals for DNA-dependent and RNA-dependent RNA synthesis, sequences on the virus mRNAs that enable translational control, and sequences that control processing and intracellular sorting of virus proteins. Use of plant viruses as extrachromosomal expression vectors is also discussed, along with the issue of their stability.
Collapse
Affiliation(s)
- A R Mushegian
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091, USA
| | | |
Collapse
|
34
|
Roberts CS, Spalding MH. Post-translational processing of the highly processed, secreted periplasmic carbonic anhydrase of Chlamydomonas is largely conserved in transgenic tobacco. PLANT MOLECULAR BIOLOGY 1995; 29:303-15. [PMID: 7579181 DOI: 10.1007/bf00043654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The periplasmic carbonic anhydrase (CA) gene CAH1 of Chlamydomonas reinhardtii codes for a highly processed secreted glycoprotein. The primary translation product of the CAH1 gene is targeted to the ER, where it is proteolytically processed to yield two different subunits, glycosylated, assembled into an active heterotetramer, and secreted. After replacing the target leader sequence with that from tobacco anionic peroxidase, expression of this gene in transgenic tobacco plants was investigated. SDS-PAGE gels of the purified protein from tobacco, showed that it migrated as a series of discrete bands (two large and one small) with slightly faster mobility than the comparable bands in the purified algal protein. The expressed protein in the plant was active, and staining with thymol and sulfuric acid confirmed that it was also glycosylated. The periplasmic CA1 (peri-CA1) also was found to be enriched in the intercellular fluid of transgenic tobacco, indicating it was secreted. The specific activity of the enzyme and its sensitivity to sulfonamide inhibitors were similar to that of the native algal enzyme. These results suggest that the post translational processing of Chlamydomonas peri-CA1 is largely conserved in a higher plant.
Collapse
Affiliation(s)
- C S Roberts
- Department of Botany, Iowa State University, Ames 50011, USA
| | | |
Collapse
|
35
|
Resch A, Tedin K, Graschopf A, Haggård-Ljungquist E, Bläsi U. Ternary complex formation on leaderless phage mRNA. FEMS Microbiol Rev 1995; 17:151-7. [PMID: 7669341 DOI: 10.1111/j.1574-6976.1995.tb00197.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The phage Lambda PRM promoter-derived cI mRNA and phage P2 gene V mRNA are transcribed beginning with the A residue of the AUG start codon. Using lacZ fusion analysis we have assessed the effects of alterations in the immediate downstream coding region on the translational efficiency of these mRNAs. Mutations, including deletions of the putative downstream box of either cI or gene V mRNAs, showed no significant reduction in expression of the different lacZ fusions. Primer extension inhibition analysis suggests a role of ribosomal protein S1 in cI mRNA recognition.
Collapse
Affiliation(s)
- A Resch
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
36
|
Turner R, Foster GD. The potential exploitation of plant viral translational enhancers in biotechnology for increased gene expression. Mol Biotechnol 1995; 3:225-36. [PMID: 7552692 DOI: 10.1007/bf02789333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The regulation of gene expression is extremely important for all organisms, not least for viruses that require a maximum rate of production of viral proteins to allow rapid multiplication and spread. Single-stranded positive-sense RNA viruses contain specific nucleotide sequences that can be used to elevate the expression of vital gene products to required high levels. Among plant viruses, translational enhancement has been documented widely, especially over the past few years. Reported candidates include one of the best known and most intensely researched virus, tobacco mosaic virus, members of the potyvirus group, and even a small satellite RNA of tobacco necrosis virus. Enhancement values range from 2-100-fold with different viruses, different reporter genes, and in different systems. Research indicates that an absence of secondary structure alone does not explain translational enhancement and despite attempts to determine the mechanism by which this enhancement occurs very little conclusions can be made as yet. Whatever the mechanism, the presence of these sequences upstream from an open reading frame results in an elevated level of protein production and may feature as important tools for biotechnology in the future.
Collapse
Affiliation(s)
- R Turner
- Botany Department, University of Leicester, UK
| | | |
Collapse
|
37
|
Sandler SJ, Clark AJ. Mutational analysis of sequences in the recF gene of Escherichia coli K-12 that affect expression. J Bacteriol 1994; 176:4011-6. [PMID: 8021183 PMCID: PMC205599 DOI: 10.1128/jb.176.13.4011-4016.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The level of translation of recF-lacZ fusions is reduced 20-fold by nucleotides 49 to 146 of recF. In this region of recF, we found a previously described ribosome-interactive sequence called epsilon and a hexapyrimidine tract located just upstream of the epsilon sequence. Mutational studies indicate that the hexapyrimidine sequence is involved in at least some of the reduced translation. When the hexapyrimidine sequence is mutant, mutating epsilon increases the level of translation maximally. We ruled out the possibility that ribosome frameshifting explains most of the effect of these two sequences on expression and suspect that multiple mechanisms may be responsible. In a separate report, we show that mutations in the hexapyrimidine tract and epsilon increase expression of the full-sized recF gene.
Collapse
Affiliation(s)
- S J Sandler
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
38
|
Koo J, Spremulli L. Effect of the secondary structure in the Euglena gracilis chloroplast ribulose-bisphosphate carboxylase/oxygenase messenger RNA on translational initiation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37314-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Tzareva NV, Makhno VI, Boni IV. Ribosome-messenger recognition in the absence of the Shine-Dalgarno interactions. FEBS Lett 1994; 337:189-94. [PMID: 8287975 DOI: 10.1016/0014-5793(94)80271-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In an attempt to understand how Escherichia coli ribosomes recognize the initiator codon on mRNAs lacking the Shine-Dalgarno (SD) sequence, we have studied 30S initiation complex formation in extension inhibition (toeprinting) experiments using (-SD)mRNAs which are known to be reliably translated in E. coli: the plant viral messenger A1MV RNA 4 and two chimaeric mRNAs coding for beta-glucuronidase (GUS) and bearing the 5'-untranslated sequence of TMV RNA (omega) or the omega-derived sequence (CAA)n as 5'-leaders. Ribosomal protein S1 and IF3 have been found to be indispensable for translational initiation. Protein S1 appears to be a key recognition element. S1 binds to sequences within the leaders of (-SD)mRNAs thus providing their affinity to E. coli ribosomes.
Collapse
Affiliation(s)
- N V Tzareva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | |
Collapse
|
40
|
Fecker LF, Rügenhagen C, Berlin J. Increased production of cadaverine and anabasine in hairy root cultures of Nicotiana tabacum expressing a bacterial lysine decarboxylase gene. PLANT MOLECULAR BIOLOGY 1993; 23:11-21. [PMID: 8219043 DOI: 10.1007/bf00021415] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Several hairy root cultures of Nicotiana tabacum varieties, carrying two direct repeats of a bacterial lysine decarboxylase (ldc) gene controlled by the cauliflower mosaic virus (CaMV) 35S promoter expressed LDC activity up to 1 pkat/mg protein. Such activity was, for example, sufficient to increase cadaverine levels of the best line SR3/1-K1,2 from ca. 50 micrograms (control cultures) to about 700 micrograms/g dry mass. Some of the overproduced cadaverine of this line was used for the formation of anabasine, as shown by a 3-fold increase of this alkaloid. In transgenic lines with lower LDC activity the changes of cadaverine and anabasine levels were correspondingly lower and sometimes hardly distinguishable from controls. Feeding of lysine to root cultures, even to those with low LDC activity, greatly enhanced cadaverine and anabasine levels, while the amino acid had no or very little effect on controls and LDC-negative lines.
Collapse
Affiliation(s)
- L F Fecker
- Institut für Biochemie und Pflanzenvirologie, Biologische Bundesanstalt für Land- und Forstwirtschaft, Braunschweig, Germany
| | | | | |
Collapse
|
41
|
Enhanced stable expression of aVibrio luciferase under the control of the Ω-translational enhancer in transgenic plants. World J Microbiol Biotechnol 1992; 8:638-44. [PMID: 24425616 DOI: 10.1007/bf01238805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/1992] [Accepted: 07/03/1992] [Indexed: 10/25/2022]
Abstract
A fusion gene usingluxA andluxB genes ofVibrio species has been designed to express light autonomously in plants.LuxA:luxB was introduced into plants by a high-efficiency transformation system consisting of a high-copy virulence helper plasmid pUCD2614 and T-vector pUCD2715 containingluxA:luxB. The expression ofluxA:luxB fusion gene was optimized by adjusting the spacing between the genes and by placing the translational efficiency of its mRNA under the control of the Ω-3 translational enhancer. The resulting transgenic plants synthesized luciferase at levels greater than 1% of the total leaf protein. These plants produced light autonomously and light intensity was enhanced by the addition of aldehyde. That theluxA:luxB fusion has been optimized enables its use as a reporter for gene activity in plants during development and under various stress-inducing conditions. These results show that a specific protein from an introduced foreign gene can be produced with high efficiency in cultivated plants and such a system is therefore amenable for production of desired proteins through conventional farming methods.
Collapse
|
42
|
Ivanov IG, Alexandrova R, Dragulev B, Leclerc D, Saraffova A, Maximova V, Abouhaidar MG. Efficiency of the 5'-terminal sequence (omega) of tobacco mosaic virus RNA for the initiation of eukaryotic gene translation in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:151-6. [PMID: 1396694 DOI: 10.1111/j.1432-1033.1992.tb17271.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent studies have demonstrated that the 5' leader (omega sequence) of tobacco mosaic virus RNA has a certain enhancing capacity for translation of mRNA in both prokaryotes and eukaryotes. In order to estimate the efficiency of omega to initiate translation of mRNA in Escherichia coli, in comparison to the Shine-Dalgarno (S/D) sequence, we have inserted eight different eukaryotic genes into two types of E. coli expression vectors containing one constitutive promoter (P1) but different translation-initiation sites (S/D or omega delta 3 sequence, respectively). The efficiency of transcription and translation in vivo was evaluated for these vectors by measuring the yield of protein and both the level and stability of mRNA. We report that substitution of omega delta 3 for S/D decreases the yield of expressed protein 4-1900-fold and the content of gene-specific mRNA is decreased by about sevenfold. However, in comparison with the S/D sequence, the level of protein expressed under the translational control of omega delta 3 is less sensitive to changes in the 5' coding region. We also report that the omega sequence contains a region of 10-12 nucleotides complementary to the small ribosomal subunit RNA (rRNA) of E. coli, Eikenella corrodens and Xenopus laevis, and to the rRNA of the (small ribosomal) subunit of Oryza sativa.
Collapse
Affiliation(s)
- I G Ivanov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia
| | | | | | | | | | | | | |
Collapse
|
43
|
Ivanov I, Alexandrova R, Dragulev B, Saraffova A, AbouHaidar MG. Effect of tandemly repeated AGG triplets on the translation of CAT-mRNA in E. coli. FEBS Lett 1992; 307:173-6. [PMID: 1379538 DOI: 10.1016/0014-5793(92)80761-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been shown that tandems of rare arginine codons AGG have a strong inhibitory effect on translation of mRNA in E. coli [5]. This has been explained by the rate-limiting interaction of these codons with the less abundant tRNA(AGG) [6]. In this study tandemly repeated AGG triplets were introduced into the chloramphenicol acetyltransferase (CAT) gene either upstream of the initiation ATG codon or downstream of it (both in frame and out of frame) and the expression of the modified genes was investigated. We report that the addition of AGG clusters resulted in a substantial inhibitory effect on CAT gene expression independently of their localization in mRNA. This inhibitory effect is explained by a competition of the tandem AGGAGG with the natural Shine-Dalgarno (SD) sequence (consensus AAGGAGGU) for the 3'-end of the 16S small ribosomal RNA (rRNA).
Collapse
Affiliation(s)
- I Ivanov
- Department of Botany, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
44
|
Loechel S, Inamine JM, Hu PC. A novel translation initiation region from Mycoplasma genitalium that functions in Escherichia coli. Nucleic Acids Res 1991; 19:6905-11. [PMID: 1762919 PMCID: PMC329327 DOI: 10.1093/nar/19.24.6905] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The tuf gene of Mycoplasma genitalium uses a signal other than a Shine-Dalgarno sequence to promote translation initiation. We have inserted the translation initiation region of this gene in front of the Escherichia coli lacZ gene and shown that it is recognized by the translational machinery of E. coli; the signal operates in vivo at roughly the same efficiency as a synthetic Shine-Dalgarno sequence. The M. genitalium sequence was also used to replace the native translation initiation region of the cat gene. When assayed in E. coli, the M. genitalium sequence is equivalent to a Shine-Dalgarno sequence in stimulating translation of this mRNA also. Site-directed mutagenesis enabled us to identify some of the bases that comprise the functional sequence. We propose that the sequence UUAACAACAU functions as a ribosome binding site by annealing to nucleotides 1082-1093 of the E. coli 16S rRNA. The activity of this sequence is enhanced when it is present in the loop of a stem-and-loop structure. Additional sequences both upstream and downstream of the initiation codon are also involved, but their role has not been elucidated.
Collapse
Affiliation(s)
- S Loechel
- Department of Pediatrics, University of North Carolina, Chapel Hill 27599-7220
| | | | | |
Collapse
|
45
|
|
46
|
Faxén M, Plumbridge J, Isaksson LA. Codon choice and potential complementarity between mRNA downstream of the initiation codon and bases 1471-1480 in 16S ribosomal RNA affects expression of glnS. Nucleic Acids Res 1991; 19:5247-51. [PMID: 1681509 PMCID: PMC328883 DOI: 10.1093/nar/19.19.5247] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A cis-acting expression mutation, GAG to GAA, in the third codon of the glnS gene is analyzed. Both codons code for glutamic acid but the mutation is known to increase gene expression by four fold. We show that the mutation has an effect only if it is located in the beginning of a gene but not if located internally. Data are presented that suggest that the reason for the increased expression by the mutation is the potential formation of one more base pair between the mRNA and 16S ribosomal RNA. Gene expression varies about 16 fold as the number of potential base pairs within the sequence 1471-1480 in 16S RNA increase from two to ten. We also give evidence that supports the idea that the presence of rare codons near the beginning of the mRNA can affect expression.
Collapse
Affiliation(s)
- M Faxén
- Department of Microbiology, Stockholm University, Sweden
| | | | | |
Collapse
|
47
|
Boni IV, Isaeva DM, Musychenko ML, Tzareva NV. Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res 1991. [PMID: 2011495 DOI: 10.1093/nar/19.1.15533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Ribosomal protein S1 is known to play an important role in translational initiation, being directly involved in recognition and binding of mRNAs by 30S ribosomal particles. Using a specially developed procedure based on efficient crosslinking of S1 to mRNA induced by UV irradiation, we have identified S1 binding sites on several phage RNAs in preinitiation complexes. Targets for S1 on Q beta and fr RNAs are localized upstream from the coat protein gene and contain oligo(U)-sequences. In the case of Q beta RNA, this S1 binding site overlaps the S-site for Q beta replicase and the site for S1 binding within a binary complex. It is reasonable that similar U-rich sequences represent S1 binding sites on bacterial mRNAs. To test this idea we have used E. coli ssb mRNA prepared in vitro with the T7 promoter/RNA polymerase system. By the methods of toeprinting, enzymatic footprinting, and UV crosslinking we have shown that binding of the ssb mRNA to 30S ribosomes is S1-dependent. The oligo(U)-sequence preceding the SD domain was found to be the target for S1. We propose that S1 binding sites, represented by pyrimidine-rich sequences upstream from the SD region, serve as determinants involved in recognition of mRNA by the ribosome.
Collapse
Affiliation(s)
- I V Boni
- M.M. Shemyakin Institute of Bioorganic Chemistry, USSR Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
48
|
Boni IV, Isaeva DM, Musychenko ML, Tzareva NV. Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res 1991; 19:155-62. [PMID: 2011495 PMCID: PMC333546 DOI: 10.1093/nar/19.1.155] [Citation(s) in RCA: 212] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ribosomal protein S1 is known to play an important role in translational initiation, being directly involved in recognition and binding of mRNAs by 30S ribosomal particles. Using a specially developed procedure based on efficient crosslinking of S1 to mRNA induced by UV irradiation, we have identified S1 binding sites on several phage RNAs in preinitiation complexes. Targets for S1 on Q beta and fr RNAs are localized upstream from the coat protein gene and contain oligo(U)-sequences. In the case of Q beta RNA, this S1 binding site overlaps the S-site for Q beta replicase and the site for S1 binding within a binary complex. It is reasonable that similar U-rich sequences represent S1 binding sites on bacterial mRNAs. To test this idea we have used E. coli ssb mRNA prepared in vitro with the T7 promoter/RNA polymerase system. By the methods of toeprinting, enzymatic footprinting, and UV crosslinking we have shown that binding of the ssb mRNA to 30S ribosomes is S1-dependent. The oligo(U)-sequence preceding the SD domain was found to be the target for S1. We propose that S1 binding sites, represented by pyrimidine-rich sequences upstream from the SD region, serve as determinants involved in recognition of mRNA by the ribosome.
Collapse
Affiliation(s)
- I V Boni
- M.M. Shemyakin Institute of Bioorganic Chemistry, USSR Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
49
|
Powell BS, Kado CI. Specific binding of VirG to the vir box requires a C-terminal domain and exhibits a minimum concentration threshold. Mol Microbiol 1990; 4:2159-66. [PMID: 2089226 DOI: 10.1111/j.1365-2958.1990.tb00577.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The positive regulatory protein VirG from the virulence region of the Ti plasmid of Agrobacterium tumefaciens was first demonstrated to possess DNA-binding capabilities using chromatographically purified protein and in vitro assays (Powell et al., 1989). This paper is an extension of that research and presents evidence on the in vivo DNA-binding properties of VirG using a transcription interference assay. VirG protein bound specifically to a 'vir box' response element and repressed transcription of a lacZ reporter gene, but increased transcription in the absence of a vir box. A biphasic response in specific DNA-binding was observed upon increasing virG expression, suggesting that specific binding was co-operatively affected by protein concentration. Certain TrpE'-'VirG hybrid proteins also bound the vir box, but required sequences distal to amino acid Arg-118 of the VirG polypeptide. These data further localize a DNA-binding domain within VirG, and support a modified model for the regulation of virulence genes in which transphosphorylation by the coregulator VirA functions to stabilize specific DNA-binding by low concentrations of VirG, resulting in gene activation. Otherwise, at high concentrations, VirG promotes expression of the virulence regulon without assistance from VirA as was shown previously (Rogowsky et al., 1987).
Collapse
Affiliation(s)
- B S Powell
- Department of Plant Pathology, University of California, Davis 95616
| | | |
Collapse
|
50
|
Dolph PJ, Huang JT, Schneider RJ. Translation by the adenovirus tripartite leader: elements which determine independence from cap-binding protein complex. J Virol 1990; 64:2669-77. [PMID: 1692346 PMCID: PMC249445 DOI: 10.1128/jvi.64.6.2669-2677.1990] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The adenovirus tripartite leader is a 200-nucleotide-long 5' noncoding region which facilitates translation of viral mRNAs at late times after infection. The tripartite leader also confers the ability to initiate translation independent of the requirement for cap-binding protein complex or eIF-4F without any requirement for adenovirus gene products. To elucidate the manner by which the tripartite leader functions, the primary determinants of leader activity were investigated in vivo by testing a series of mutations expressed from transfected plasmids. The results of these experiments indicate that the tripartite leader does not promote internal ribosome binding, at least in a manner recently described for picornavirus mRNAs. In addition, despite an unusual arrangement of sequences complementary to the 3' end of 18S rRNA in the tripartite leader, we could find no evidence for involvement in its translation activity. Instead, our results are consistent with a model in which much of the first leader is maintained in an unstructured conformation which determines the ability of the tripartite leader to facilitate translation and bypass a normal requirement for eIF-4F activity. Several possible translation models are discussed, as well as the implications for translation of late viral mRNAs.
Collapse
Affiliation(s)
- P J Dolph
- Kaplan Cancer Center, New York University Medical Center, New York 10016
| | | | | |
Collapse
|