1
|
Zeidler M. Analysis of Phytochrome-Dependent Seed Germination in Arabidopsis. Methods Mol Biol 2022; 2494:117-124. [PMID: 35467203 DOI: 10.1007/978-1-0716-2297-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Light-dependent seed germination guarantees seedling proximity to the soil surface, enabling quick photosynthetic energy supply. While seedling hypocotyl length is mainly used in phytochrome physiological assays to determine the functional impact of photoreceptor point mutations, different intracellular localizations, or the function of signal transduction components, phytochrome-controlled seed germination offers a different, very sensitive tool to test the phytochrome photoreceptor network. Photon fluences as low as 1 nmol m-2 are sufficient to elicit the phytochrome A (phyA)-dependent very low fluence response (VLFR), whereas higher fluences (> 10 μmol m-2) are needed to elicit the phyB-controlled and phyB-photoreversible low fluence response (LFR). Taking advantage of the different sensitivities of both phytochromes to different light qualities and quantities, a screening protocol is presented to score germination under different light conditions.
Collapse
Affiliation(s)
- Mathias Zeidler
- Institute of Plant Physiology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Antelo GT, Sánchez-Lamas M, Goldbaum FA, Otero LH, Bonomi HR, Rinaldi J. A Spectroscopy-based Methodology for Rapid Screening and Characterization of Phytochrome Photochemistry in Search of Pfr-favored Variants. Photochem Photobiol 2020; 96:1221-1232. [PMID: 32683707 DOI: 10.1111/php.13313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/11/2020] [Indexed: 11/30/2022]
Abstract
Phytochromes are photosensitive proteins with a covalently bound open-chain chromophore that can switch between two principal states: red light absorbing Pr and far-red light absorbing Pfr. Our group has previously shown that the bacteriophytochrome from Xanthomonas campestris pv. campestris (XccBphP) is a bathy-like phytochrome that uses biliverdin IXα as a co-factor and is involved in bacterial virulence. To date, the XccBphP crystal structure could only be solved in the Pr state, while the structure of its Pfr state remains elusive. The aims of this work were to develop an efficient screening methodology for the rapid characterization and to identify XccBphP variants that favor the Pfr form. The screening approach developed here consists in analyzing the UV-Vis absorption behavior of clarified crude extracts containing recombinant phytochromes. This strategy has allowed us to quickly explore over a hundred XccBphP variants, characterize multiple variants and identify Pfr-favored candidates. The high-quality data obtained enabled not only a qualitative, but also a quantitative characterization of their photochemistry. This method could be easily adapted to other phytochromes or other photoreceptor families.
Collapse
Affiliation(s)
| | | | | | - Lisandro Horacio Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | | | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Sugishima M, Wada K, Fukuyama K, Yamamoto K. Crystal structure of phytochromobilin synthase in complex with biliverdin IXα, a key enzyme in the biosynthesis of phytochrome. J Biol Chem 2020; 295:771-782. [PMID: 31822504 DOI: 10.1074/jbc.ra119.011431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/08/2019] [Indexed: 11/06/2022] Open
Abstract
Phytochromobilin (PΦB) is a red/far-red light sensory pigment in plant phytochrome. PΦB synthase is a ferredoxin-dependent bilin reductase (FDBR) that catalyzes the site-specific reduction of bilins, which are sensory and photosynthesis pigments, and produces PΦB from biliverdin, a heme-derived linear tetrapyrrole pigment. Here, we determined the crystal structure of tomato PΦB synthase in complex with biliverdin at 1.95 Å resolution. The overall structure of tomato PΦB synthase was similar to those of other FDBRs, except for the addition of a long C-terminal loop and short helices. The structure further revealed that the C-terminal loop is part of the biliverdin-binding pocket and that two basic residues in the C-terminal loop form salt bridges with the propionate groups of biliverdin. This suggested that the C-terminal loop is involved in the interaction with ferredoxin and biliverdin. The configuration of biliverdin bound to tomato PΦB synthase differed from that of biliverdin bound to other FDBRs, and its orientation in PΦB synthase was inverted relative to its orientation in the other FDBRs. Structural and enzymatic analyses disclosed that two aspartic acid residues, Asp-123 and Asp-263, form hydrogen bonds with water molecules and are essential for the site-specific A-ring reduction of biliverdin. On the basis of these observations and enzymatic assays with a V121A PΦB synthase variant, we propose the following mechanistic product release mechanism: PΦB synthase-catalyzed stereospecific reduction produces 2(R)-PΦB, which when bound to PΦB synthase collides with the side chain of Val-121, releasing 2(R)-PΦB from the synthase.
Collapse
Affiliation(s)
- Masakazu Sugishima
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
5
|
Sugishima M, Wada K, Fukuyama K, Yamamoto K. Crystal structure of phytochromobilin synthase in complex with biliverdin IXα, a key enzyme in the biosynthesis of phytochrome. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49934-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
6
|
Papiz MZ, Bellini D, Evans K, Grossmann JG, Fordham‐Skelton T. Light-induced complex formation of bacteriophytochrome RpBphP1 and gene repressor RpPpsR2 probed by SAXS. FEBS J 2019; 286:4261-4277. [PMID: 31243889 PMCID: PMC6899989 DOI: 10.1111/febs.14973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/04/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022]
Abstract
Bacteriophytochrome proteins (BphPs) are molecular light switches that enable organisms to adapt to changing light conditions through the control of gene expression. Canonical type 1 BphPs have histidine kinase output domains, but type 3 RpBphP1, in the bacterium Rhodopseudomonas palustris (Rps. palustris), has a C terminal PAS9 domain and a two-helix output sensor (HOS) domain. Type 1 BphPs form head-to-head parallel dimers; however, the crystal structure of RpBphP1ΔHOS, which does not contain the HOS domain, revealed pseudo anti-parallel dimers. HOS domains are homologs of Dhp dimerization domains in type 1 BphPs. We show, by applying the small angle X-ray scattering (SAXS) technique on full-length RpBphP1, that HOS domains fulfill a similar role in the formation of parallel dimers. On illumination with far-red light, RpBphP1 forms a complex with gene repressor RpPpsR2 through light-induced structural changes in its HOS domains. An RpBphP1:RpPpsR2 complex is formed in the molecular ratio of 2 : 1 such that one RpBphP1 dimer binds one RpPpsR2 monomer. Molecular dimers have been modeled with Pfr and Pr SAXS data, suggesting that, in the Pfr state, stable dimeric four α-helix bundles are formed between HOS domains, rendering RpBphP1functionally inert. On illumination with light of 760 nm wavelength, four α-helix bundles formed by HOS dimers are disrupted, rendering helices available for binding with RpPpsR2.
Collapse
Affiliation(s)
- Miroslav Z. Papiz
- Institute of Integrative BiologyUniversity of LiverpoolUK
- STFC Daresbury LaboratoryWarringtonUK
| | - Dom Bellini
- Institute of Integrative BiologyUniversity of LiverpoolUK
| | - Kate Evans
- Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityUK
| | - J Günter Grossmann
- Institute of Integrative BiologyUniversity of LiverpoolUK
- STFC Daresbury LaboratoryWarringtonUK
| | | |
Collapse
|
7
|
Mahawar L, Shekhawat GS. Haem oxygenase: A functionally diverse enzyme of photosynthetic organisms and its role in phytochrome chromophore biosynthesis, cellular signalling and defence mechanisms. PLANT, CELL & ENVIRONMENT 2018; 41:483-500. [PMID: 29220548 DOI: 10.1111/pce.13116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/26/2017] [Accepted: 11/23/2017] [Indexed: 05/08/2023]
Abstract
Haem oxygenase (HO) is a universal enzyme that catalyses stereospecific cleavage of haem to BV IX α and liberates Fe+2 ion and CO as by-product. Beside haem degradation, it has important functions in plants that include cellular defence, stomatal regulation, iron mobilization, phytochrome chromophore synthesis, and lateral root formation. Phytochromes are an extended family of photoreceptors with a molecular mass of 250 kDa and occur as a dimer made up of 2 equivalent subunits of 125 kDa each. Each subunit is made of two components: the chromophore, a light-capturing pigment molecule and the apoprotein. Biosynthesis of phytochrome (phy) chromophore includes the oxidative splitting of haem to biliverdin IX by an enzyme HO, which is the decisive step in the biosynthesis. In photosynthetic organisms, BVα is reduced to 3Z PΦB by a ferredoxin-dependent PΦB synthase that finally isomerised to PΦB. The synthesized PΦB assembles with the phytochrome apoprotein in the cytoplasm to generate holophytochrome. Thus, necessary for photomorphogenesis in plants, which has confirmed from the genetic studies, conducted on Arabidopsis thaliana and pea. Besides the phytochrome chromophore synthesis, the review also emphasises on the current advances conducted in plant HO implying its developmental and defensive role.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342001, India
| | | |
Collapse
|
8
|
Nito K, Wong CCL, Yates JR, Chory J. Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. Cell Rep 2013; 3:1970-9. [PMID: 23746445 DOI: 10.1016/j.celrep.2013.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022] Open
Abstract
Phytochromes are red/far-red light receptors that function in photomorphogenesis of plants. Photoisomerization of phytochrome by red light leads to its translocation to the nucleus, where it regulates gene expression. We examined whether phytochrome is phosphorylated in response to light, and we report that phytochrome B (phyB)'s N terminus contains a region with a number of phosphoserines, threonines, and tyrosines. The light-dependent phosphorylation of tyrosine 104 (Y104) appears to play a negative role in phyB's activity, because a phosphomimic mutant, phyBY104E, is unable to complement any phyB-related phenotype, is defective in binding to its signaling partner PIF3, and fails to form stable nuclear bodies even though it retains normal photochemistry in vitro. In contrast, plants stably expressing a nonphosphorylatable mutant, phyBY104F, are hypersensitive to light. The proper response to changes in the light environment is crucial for plant survival, and our study brings tyrosine phosphorylation to the forefront of light-signaling mechanisms.
Collapse
Affiliation(s)
- Kazumasa Nito
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
9
|
Song C, Rohmer T, Tiersch M, Zaanen J, Hughes J, Matysik J. Solid-State NMR Spectroscopy to Probe Photoactivation in Canonical Phytochromes. Photochem Photobiol 2013; 89:259-73. [DOI: 10.1111/php.12029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/28/2012] [Indexed: 01/17/2023]
Affiliation(s)
| | - Thierry Rohmer
- Leids Instituut voor Chemisch Onderzoek; Universiteit Leiden; Leiden; The Netherlands
| | | | - Jan Zaanen
- Instituut-Lorentz for Theoretical Physics; Universiteit Leiden; Leiden; The Netherlands
| | - Jon Hughes
- Pflanzenphysiologie; Justus-Liebig-Universität; Giessen; Germany
| | | |
Collapse
|
10
|
Song C, Essen LO, Gärtner W, Hughes J, Matysik J. Solid-state NMR spectroscopic study of chromophore-protein interactions in the Pr ground state of plant phytochrome A. MOLECULAR PLANT 2012; 5:698-715. [PMID: 22419823 DOI: 10.1093/mp/sss017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Despite extensive study, the molecular structure of the chromophore-binding pocket of phytochrome A (phyA), the principal photoreceptor controlling photomorphogenesis in plants, has not yet been successfully resolved. Here, we report a series of two-dimensional (2-D) magic-angle spinning solid-state NMR experiments on the recombinant N-terminal, 65-kDa PAS-GAF-PHY light-sensing module of phytochrome A3 from oat (Avena sativa), assembled with uniformly 13C- and 15N-labeled phycocyanobilin (u-[13C,15N]-PCB-As.phyA3). The Pr state of this protein was studied regarding the electronic structure of the chromophore and its interactions with the proximal amino acids. Using 2-D 13C-13C and 1H-15N experiments, a complete set of 13C and 15N assignments for the chromophore were obtained. Also, a large number of 1H-13C distance restraints between the chromophore and its binding pocket were revealed by interfacial heteronuclear correlation spectroscopy. 13C doublings of the chromophore A-ring region and the C-ring carboxylate moiety, together with the observation of two Pr isoforms, Pr-I and Pr-II, demonstrate the local mobility of the chromophore and the plasticity of its protein environment. It appears that the interactions and dynamics in the binding pocket of phyA in the Pr state are remarkably similar to those of cyanobacterial phytochrome (Cph1). The N-terminus of the region modeled (residues 56-66 of phyA) is highly mobile. Differences in the regulatory processes involved in plant and Cph1 phytochromes are discussed.
Collapse
Affiliation(s)
- Chen Song
- Leids Instituut voor Chemisch Onderzoek, Universiteit Leiden, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Gärtner W. Kurt Schaffner: from organic photochemistry to photobiology. Photochem Photobiol Sci 2012; 11:872-80. [DOI: 10.1039/c2pp05405a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Alvey RM, Biswas A, Schluchter WM, Bryant DA. Attachment of noncognate chromophores to CpcA of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 by heterologous expression in Escherichia coli. Biochemistry 2011; 50:4890-902. [PMID: 21553904 DOI: 10.1021/bi200307s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many cyanobacteria use brilliantly pigmented, multisubunit macromolecular structures known as phycobilisomes as antenna to enhance light harvesting for photosynthesis. Recent studies have defined the enzymes that synthesize phycobilin chromophores as well as many of the phycobilin lyase enzymes that attach these chromophores to their cognate apoproteins. The ability of the phycocyanin α-subunit (CpcA) to bind alternative linear tetrapyrrole chromophores was examined through the use of a heterologous expression system in Escherichia coli. E. coli strains produced phycocyanobilin, phytochromobilin, or phycoerythrobilin when they expressed 3Z-phycocyanobilin:ferredoxin oxidoreductase (PcyA), 3Z-phytochromobilin:ferredoxin oxidoreductase (HY2) from Arabidopsis thaliana, or phycoerythrobilin synthase (PebS) from the myovirus P-SSM4, respectively. CpcA from Synechocystis sp. PCC 6803 or Synechococcus sp. PCC 7002 was coexpressed in these strains with the phycocyanin α-subunit phycocyanobilin lyase, CpcE/CpcF, or the phycoerythrocyanin α-subunit phycocyanobilin isomerizing lyase, PecE/PecF, from Noctoc sp. PCC 7120. Both lyases were capable of attaching three different linear tetrapyrrole chromophores to CpcA; thus, up to six different CpcA variants, each with a unique chromophore, could be produced with this system. One of these chromophores, denoted phytoviolobilin, has not yet been observed naturally. The recombinant proteins had unexpected and potentially useful properties, which included very high fluorescence quantum yields and photochemical activity. Chimeric lyases PecE/CpcF and CpcE/PecF were used to show that the isomerizing activity that converts phycocyanobilin to phycoviolobilin resides with PecF and not PecE. Finally, spectroscopic properties of recombinant phycocyanin R-PCIII, in which the CpcA subunits carry a phycoerythrobilin chromophore, are described.
Collapse
Affiliation(s)
- Richard M Alvey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.
Collapse
Affiliation(s)
- Michele E Auldridge
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
14
|
Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. Proc Natl Acad Sci U S A 2011; 108:3842-7. [PMID: 21325055 DOI: 10.1073/pnas.1013377108] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phytochrome photoreceptors mediate light responses in plants and in many microorganisms. Here we report studies using (1)H-(13)C magic-angle spinning NMR spectroscopy of the sensor module of cyanobacterial phytochrome Cph1. Two isoforms of the red-light absorbing Pr ground state are identified. Conclusive evidence that photoisomerization occurs at the C15-methine bridge leading to a β-facial disposition of the ring D is presented. In the far-red-light absorbing Pfr state, strong hydrogen-bonding interactions of the D-ring carbonyl group to Tyr-263 and of N24 to Asp-207 hold the chromophore in a tensed conformation. Signaling is triggered when Asp-207 is released from its salt bridge to Arg-472, probably inducing conformational changes in the tongue region. A second signal route is initiated by partner swapping of the B-ring propionate between Arg-254 and Arg-222.
Collapse
|
15
|
Palágyi A, Terecskei K, Ádám É, Kevei É, Kircher S, Mérai Z, Schäfer E, Nagy F, Kozma-Bognár L. Functional analysis of amino-terminal domains of the photoreceptor phytochrome B. PLANT PHYSIOLOGY 2010; 153:1834-45. [PMID: 20530216 PMCID: PMC2923874 DOI: 10.1104/pp.110.153031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/06/2010] [Indexed: 05/18/2023]
Abstract
At the core of the circadian network in Arabidopsis (Arabidopsis thaliana), clock genes/proteins form multiple transcriptional/translational negative feedback loops and generate a basic approximately 24-h oscillation, which provides daily regulation for a wide range of processes. This temporal organization enhances the fitness of plants only if it corresponds to the natural day/night cycles. Light, absorbed by photoreceptors, is the most effective signal in synchronizing the oscillator to environmental cycles. Phytochrome B (PHYB) is the major red/far-red light-absorbing phytochrome receptor in light-grown plants. Besides modulating the pace and phase of the circadian clock, PHYB controls photomorphogenesis and delays flowering. It has been demonstrated that the nuclear-localized amino-terminal domain of PHYB is capable of controlling photomorphogenesis and, partly, flowering. Here, we show (1) that PHYB derivatives containing 651 or 450 amino acid residues of the amino-terminal domains are functional in mediating red light signaling to the clock, (2) that circadian entrainment is a nuclear function of PHYB, and (3) that a 410-amino acid amino-terminal fragment does not possess any functions of PHYB due to impaired chromophore binding. However, we provide evidence that the carboxyl-terminal domain is required to mediate entrainment in white light, suggesting a role for this domain in integrating red and blue light signaling to the clock. Moreover, careful analysis of the circadian phenotype of phyB-9 indicates that PHYB provides light signaling for different regulatory loops of the circadian oscillator in a different manner, which results in an apparent decoupling of the loops in the absence of PHYB under specific light conditions.
Collapse
|
16
|
Bongards C, Gärtner W. The role of the chromophore in the biological photoreceptor phytochrome: an approach using chemically synthesized tetrapyrroles. Acc Chem Res 2010; 43:485-95. [PMID: 20055450 DOI: 10.1021/ar800133x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In plants and bacteria, phytochromes serve as light-inducible, red-/far-red light sensitive photoreceptors that control a wide range of photomorphogenetic processes. Phytochromes comprise a protein moiety and a covalently bound bilin chromophore. Bilins are open-chain tetrapyrrole compounds that derive biosynthetically from ubiquitous porphyrins. The investigations of phytochromes reveal that precise interactions between the protein moiety and its bilin chromophore are essential for the proper functioning of this photoreceptor; accordingly, synthetic manipulation of the parts is an important method for studying the whole. Although variations in the protein structure are readily accomplished by routine mutagenesis protocols, the generation of structurally modified bilins is a laborious, multistep process. Recent improvement in the synthesis of open-chain tetrapyrroles now permits the generation of novel, structurally modified (and even selectively isotope-labeled) chromophores. Furthermore, by using the capability of recombinant apo-phytochrome to bind the chromophore autocatalytically, researchers can now generate novel chromoproteins with modified functions. In the protein-bound state, the phytochrome chromophore is photoisomerized at one double bond, in the bridge between the last two of the four pyrrole rings (the C and D rings), generating the thermally stable, physiologically active P(fr) form. This conversion--photoisomerization from the form absorbing red light (P(r)) to the form absorbing far-red light (P(fr))--covers 12 orders of magnitude, from subpicoseconds to seconds. Such spectroscopic and kinetic studies yield a wealth of time-resolved spectral data, even more so, if proteins with changed sequence or chromophore structure are utilized. In particular, bilins with a changed substitution pattern at the photoisomerizing ring D have shed light on the chromophore-protein interactions during the photoisomerization. The mechanisms generating and stabilizing the light-induced P(fr) form of phytochromes are now seen in greater detail. On the other hand, the use of bilins with selective incorporation of stable isotopes identify light-induced conformational motions when studied by vibrational (FTIR and Raman) and NMR spectroscopy. In this Account, we present spectroscopic investigations that provide structural details in these biological photoreceptors with great precision and document the dynamics elicited by light excitation. This approach yields important information that complements the data deduced from crystal structure.
Collapse
Affiliation(s)
- Christian Bongards
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34−36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Borucki B, Lamparter T. A polarity probe for monitoring light-induced structural changes at the entrance of the chromophore pocket in a bacterial phytochrome. J Biol Chem 2009; 284:26005-16. [PMID: 19640848 DOI: 10.1074/jbc.m109.049056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Light-induced structural changes at the entrance of the chromophore pocket of Agp1 phytochrome were investigated by using a thiol-reactive fluorescein derivative that is covalently attached to the genuine chromophore binding site (Cys-20) and serves as a polarity probe. In the apoprotein, the absorption spectrum of bound fluorescein is red-shifted with respect to that of the free label suggesting that the probe enters the hydrophobic chromophore pocket. Assembly of this construct with the chromophores phycocyanobilin or biliverdin is associated with a blue-shift of the fluorescein absorption band indicating the displacement of the probe out of the pocket. The probe does not affect the photochromic and kinetic properties of the noncovalent bilin adducts. Upon photoconversion to Pfr, the probe spectrum undergoes again a bathochromic shift and a strong rise in CD indicating a more hydrophobic and asymmetric environment. We propose that the environmental changes of the probe reflect conformational changes at the entrance of the chromophore pocket and are indicative for rearrangements of the chromophore ring A. Flash photolysis measurements showed that the absorption changes of the probe are kinetically coupled to the formation of Meta-R(C) and Pfr. In the biliverdin adduct, an additional component occurs that probably reflects a transition between two Meta-RC substates. Analogous results to that of the noncovalent phycocyanobilin adduct were obtained with the mutant V249C in which probe and chromophore are covalently attached. The conformational changes of the chromophore are correlated to proton transfer to the protein surface.
Collapse
Affiliation(s)
- Berthold Borucki
- Department of Physics, Biophysics Group, Freie Universität Berlin, Arnimallee 14, Berlin D-14195, Germany
| | | |
Collapse
|
18
|
Bacteriophytochromes Control Photosynthesis in Rhodopseudomonas palustris. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-8815-5_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Mutant screen distinguishes between residues necessary for light-signal perception and signal transfer by phytochrome B. PLoS Genet 2008; 4:e1000158. [PMID: 18704165 PMCID: PMC2494609 DOI: 10.1371/journal.pgen.1000158] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 07/10/2008] [Indexed: 01/21/2023] Open
Abstract
The phytochromes (phyA to phyE) are a major plant photoreceptor family that regulate a diversity of developmental processes in response to light. The N-terminal 651–amino acid domain of phyB (N651), which binds an open tetrapyrrole chromophore, acts to perceive and transduce regulatory light signals in the cell nucleus. The N651 domain comprises several subdomains: the N-terminal extension, the Per/Arnt/Sim (PAS)-like subdomain (PLD), the cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) subdomain, and the phytochrome (PHY) subdomain. To define functional roles for these subdomains, we mutagenized an Arabidopsis thaliana line expressing N651 fused in tandem to green fluorescent protein, β-glucuronidase, and a nuclear localization signal. A large-scale screen for long hypocotyl mutants identified 14 novel intragenic missense mutations in the N651 moiety. These new mutations, along with eight previously identified mutations, were distributed throughout N651, indicating that each subdomain has an important function. In vitro analysis of the spectral properties of these mutants enabled them to be classified into two principal classes: light-signal perception mutants (those with defective spectral activity), and signaling mutants (those normal in light perception but defective in intracellular signal transfer). Most spectral mutants were found in the GAF and PHY subdomains. On the other hand, the signaling mutants tend to be located in the N-terminal extension and PLD. These observations indicate that the N-terminal extension and PLD are mainly involved in signal transfer, but that the C-terminal GAF and PHY subdomains are responsible for light perception. Among the signaling mutants, R110Q, G111D, G112D, and R325K were particularly interesting. Alignment with the recently described three-dimensional structure of the PAS-GAF domain of a bacterial phytochrome suggests that these four mutations reside in the vicinity of the phytochrome light-sensing knot. Adapting to the light environment, plants have evolved several photoreceptors, of which the phytochromes are specialized in perceiving the red and far-red light region of the spectrum. Although phytochrome was first discovered in plants, the phytochrome species are present in several organisms, including bacteria. The mechanisms by which phytochromes transduce light signals to downstream components are most well studied in plants. Upon light activation, phytochromes translocate from the cytoplasm into nucleus and regulate the gene expression network through interaction with nuclear transcription factors. The phytochrome molecule can be divided into two major domains: the N-terminal moiety, which is responsible for the light perception, and the C-terminal moiety. Although the C-terminal moiety was though to be involved in signal transduction, it has recently been shown that the N-terminal moiety has a role not only in the light perception, but also in light signal transfer to the downstream network. However, no signaling motifs have been found in the N-terminal moiety. In this study, we analyzed intragenic mutations derived from a genetic screen and found a cluster of residues necessary for signal transduction in a small region neighboring the light-sensing chromophore moiety on the three-dimensional structure. This is an important step towards understanding how a major plant photoreceptor, phytochrome, intramolecularly processes the light signal to trigger diverse physiological responses.
Collapse
|
20
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
21
|
Hahn J, Strauss HM, Landgraf FT, Gimenèz HF, Lochnit G, Schmieder P, Hughes J. Probing protein-chromophore interactions in Cph1 phytochrome by mutagenesis. FEBS J 2006; 273:1415-29. [PMID: 16689929 DOI: 10.1111/j.1742-4658.2006.05164.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have investigated mutants of phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803 in order to study chromophore-protein interactions. Cph1Delta2, the 514-residue N-terminal sensor module produced as a recombinant His6-tagged apoprotein in Escherichia coli, autoassembles in vitro to form a holoprotein photochemically indistinguishable from the full-length product. We generated 12 site-directed mutants of Cph1Delta2, focusing on conserved residues which might be involved in chromophore-protein autoassembly and photoconversion. Folding, phycocyanobilin-binding and Pr-->Pfr photoconversion were analysed using CD and UV-visible spectroscopy. MALDI-TOF-MS confirmed C259 as the chromophore attachment site. C259L is unable to attach the chromophore covalently but still autoassembles to form a red-shifted photochromic holoprotein. H260Q shows UV-visible properties similar to the wild-type at pH 7.0 but both Pr and Pfr (reversibly) bleach at pH 9.0, indicating that the imidazole side chain buffers chromophore protonation. Mutations at E189 disturbed folding but the residue is not essential for chromophore-protein autoassembly. In D207A, whereas red irradiation of the ground state leads to bleaching of the red Pr band as in the wild-type, a Pfr-like peak does not arise, implicating D207 as a proton donor for a deprotonated intermediate prior to Pfr. UV-Vis spectra of both H260Q under alkaline conditions and D207A point to a particular significance of protonation in the Pfr state, possibly implying proton migration (release and re-uptake) during Pr-->Pfr photoconversion. The findings are discussed in relation to the recently published 3D structure of a bacteriophytochrome fragment.
Collapse
Affiliation(s)
- Janina Hahn
- Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Photoreceptors allow living organisms to optimize perception of light in the natural environment and thus to gain information about their external world. In this review, we describe blue and red light photoreceptors in bacteria, plants, and animals in relation to their evolution. Analyses performed in different organisms have revealed wonderful examples of structural modifications of the light-sensing proteins themselves, as well as diversification of the signal transduction pathways they use in relation with their evolutionary history and function. In different organisms, the same photoreceptor may have a very conserved role (convergent evolution of function) or may modulate different responses (acquisition of new function). Multiple photoreceptors of the same family in the same organism indicate gene duplication events during evolution, with a consequent enhanced sensitivity to variations in ambient light. Conversely, two different photoreceptors may be involved in the control of the same physiological response. Genomic analysis in marine diatoms, combined with phylogenetic studies, has also revealed the presence of blue and red light photoreceptors in the marine environment. This discovery has intriguing implications for the understanding of light perception and its evolution in photosynthetic organisms. In addition, the characterization of these photoreceptors likely will add to our understanding of photoreceptor diversity as an adaptation to different habitats.
Collapse
Affiliation(s)
- Angela Falciatore
- Cell Signalling Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Naples, Italy
| | | |
Collapse
|
23
|
Jacobi PA, Adel Odeh IM, Buddhu SC, Cai G, Rajeswari S, Fry D, Zheng W, DeSimone RW, Guo J, Coutts LD, Hauck SI, Leung SH, Ghosh I, Pippin. D. Synthetic Studies in Phytochrome Chemistry. Synlett 2005; 19:2861-2885. [PMID: 18633455 PMCID: PMC2467512 DOI: 10.1055/s-2005-918956] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An account is given of the author's several approaches to the synthesis of the parent chromophore of phytochrome (1), a protein-bound linear tetrapyrrole derivative that controls photomorphogenesis in higher plants. These studies culminated in enantioselective syntheses of both 2R- and 2S-phytochromobilin (4), as well as several (13)C-labeled derivatives designed to probe the site of Z,E-isomerization during photoexcitation. When reacted in vitro, synthetic 2R-4 and recombinant-derived phytochrome apoprotein N-C produced a protein-bound chromophore with identical difference spectra to naturally occurring 1.
Collapse
Affiliation(s)
- Peter A. Jacobi
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Imad M. Adel Odeh
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Subhas C. Buddhu
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Guolin Cai
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Sundaramoorthi Rajeswari
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Douglas Fry
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Wanjun Zheng
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Robert W. DeSimone
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Jiasheng Guo
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Lisa D. Coutts
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Sheila I. Hauck
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Sam H. Leung
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Indranath Ghosh
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| | - Douglas Pippin.
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA. Fax: 603 646 3946
| |
Collapse
|
24
|
Davis TH. Biography of J. Clark Lagarias. Proc Natl Acad Sci U S A 2004; 101:17331-3. [PMID: 15583120 PMCID: PMC536052 DOI: 10.1073/pnas.0408338102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Oka Y, Matsushita T, Mochizuki N, Suzuki T, Tokutomi S, Nagatani A. Functional analysis of a 450-amino acid N-terminal fragment of phytochrome B in Arabidopsis. THE PLANT CELL 2004; 16:2104-16. [PMID: 15273294 PMCID: PMC519201 DOI: 10.1105/tpc.104.022350] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 05/31/2004] [Indexed: 05/20/2023]
Abstract
Phytochrome, a major photoreceptor in plants, consists of two domains: the N-terminal photosensory domain and the C-terminal domain. Recently, the 651-amino acid photosensory domain of phytochrome B (phyB) has been shown to act as a functional photoreceptor in the nucleus. The phytochrome (PHY) domain, which is located at the C-terminal end of the photosensory domain, is required for the spectral integrity of phytochrome; however, little is known about the signal transduction activity of this domain. Here, we have established transgenic Arabidopsis thaliana lines expressing an N-terminal 450-amino acid fragment of phyB (N450) lacking the PHY domain on a phyB-deficient background. Analysis of these plants revealed that N450 can act as an active photoreceptor when attached to a short nuclear localization signal and beta-glucuronidase. In vitro spectral analysis of reconstituted chromopeptides further indicated that the stability of the N450 Pfr form, an active form of phytochrome, is markedly reduced in comparison with the Pfr form of full-length phyB. Consistent with this, plants expressing N450 failed to respond to intermittent light applied at long intervals, indicating that N450 Pfr is short-lived in vivo. Taken together, our findings show that the PHY domain is dispensable for phyB signal transduction but is required for stabilizing the Pfr form of phyB.
Collapse
Affiliation(s)
- Yoshito Oka
- Laboratory of Plant Physiology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KCS, Adám E, Fejes E, Schäfer E, Nagy F. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. THE PLANT CELL 2004; 16:1433-45. [PMID: 15155879 PMCID: PMC490037 DOI: 10.1105/tpc.021568] [Citation(s) in RCA: 350] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 03/09/2004] [Indexed: 05/18/2023]
Abstract
Light, in a quality- and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochrome, promotes interaction of phytochrome A (phyA) and phyB with transcription factors including phytochrome interacting factor 3 (PIF3), and is thought to trigger a transcriptional cascade to regulate the expression of approximately 2500 genes in Arabidopsis thaliana. Here, we show that controlled degradation of the transcription factor PIF3 is a major regulatory step in light signaling. We demonstrate that accumulation of PIF3 in the nucleus in dark requires constitutive photomorphogenesis 1 (COP1), a negative regulator of photomorphogenesis, and show that red (R) and far-red light (FR) induce rapid degradation of the PIF3 protein. This process is controlled by the concerted action of the R/FR absorbing phyA, phyB, and phyD photoreceptors, and it is not affected by COP1. Rapid light-induced degradation of PIF3 indicates that interaction of PIF3 with these phytochrome species is transient. In addition, we provide evidence that the poc1 mutant, a postulated PIF3 overexpressor that displays hypersensitivity to R but not to FR, lacks detectable amounts of the PIF3 protein. Thus, we propose that PIF3 acts transiently, and its major function is to mediate phytochrome-induced signaling during the developmental switch from skotomorphogenesis to photomorphogenesis and/or dark to light transitions.
Collapse
Affiliation(s)
- Diana Bauer
- Biologie II/Institut für Botanik, University of Freiburg, Freiburg, Germany D-79104
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kami C, Mukougawa K, Muramoto T, Yokota A, Shinomura T, Lagarias JC, Kohchi T. Complementation of phytochrome chromophore-deficient Arabidopsis by expression of phycocyanobilin:ferredoxin oxidoreductase. Proc Natl Acad Sci U S A 2004; 101:1099-104. [PMID: 14722358 PMCID: PMC327157 DOI: 10.1073/pnas.0307615100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The covalently bound phytochromobilin (PphiB) prosthetic group is required for the diverse photoregulatory activities of all members of the phytochrome family in vascular plants, whereas by contrast, green algal and cyanobacterial phytochromes use the more reduced linear tetrapyrrole pigment phycocyanobilin (PCB). To assess the functional consequence of the substitution of PphiB with PCB in plants, the phytochrome chromophore-deficient hy2 mutant of Arabidopsis was transformed with a constitutively expressed pcyA gene that encodes the cyanobacterial enzyme, PCB:ferredoxin oxidoreductase. Spectroscopic analyses of extracts from etiolated seedlings revealed that PcyA expression restored photoactive phytochrome to WT levels, albeit with blue-shifted absorption maxima, while also restoring light lability to phytochrome A. Photobiological measurements indicated that PcyA expression rescued phytochrome-mediated red high-irradiance responses, low-fluence red/far-red (FR) photoreversible responses, and very-low-fluence responses, thus confirming that PCB can functionally substitute for PphiB for these photoregulatory activities. Although PcyA expression failed to rescue phytochrome A-mediated FR high-irradiance responsivity to that of WT, our studies indicate that the FR high-irradiance response is fully functional in pcyA-expressing plants but shifted to shorter wavelengths, indicating that PCB can functionally complement this phytochrome-mediated response in vascular plants.
Collapse
Affiliation(s)
- Chitose Kami
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Andrawiss M, Takeuchi Y, Hewlett L, Collins M. Murine leukemia virus particle assembly quantitated by fluorescence microscopy: role of Gag-Gag interactions and membrane association. J Virol 2003; 77:11651-60. [PMID: 14557651 PMCID: PMC229285 DOI: 10.1128/jvi.77.21.11651-11660.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to track the assembly of murine leukemia virus (MLV), we used fluorescence microscopy to visualize particles containing Gag molecules fused to fluorescent proteins (FPs). Gag-FP chimeras budded from cells to produce fluorescent spots, which passed through the same pore-size filters and sedimented at the same velocity as authentic MLV. N-terminal myristylation of Gag-FPs was necessary for particle formation unless wild-type Gag was coexpressed. By labeling nonmyristylated Gag with yellow FP and wild-type Gag with cyan FP, we could quantitate the coincorporation of two proteins into single particles. This experiment showed that nonmyristylated Gag was incorporated into mixed particles at approximately 50% the efficiency of wild-type Gag. Mutations that inhibit Gag-Gag interactions (K. Alin and S. P. Goff, Virology 216:418-424, 1996; K. Alin and S. P. Goff, Virology 222:339-351, 1996) were then introduced into the capsid (CA) region of Gag-FPs. The mutations P150L and R119C/P133L inhibited fluorescent particle formation by these Gag-FPs, but Gag-FPs containing these mutations could be efficiently incorporated into particles when coexpressed with wild-type Gag. When these mutations were introduced into nonmyristylated Gag-FPs, no incorporation into particles in the presence of wild-type Gag was detected. These data suggest that two independent mechanisms, CA interactions and membrane association following myristylation, cooperate in MLV Gag assembly and budding.
Collapse
Affiliation(s)
- Mariam Andrawiss
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Science, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
29
|
Abstract
Phytochromes were long thought to have evolved in non-motile photosynthetic eukaryotes for adaptation to unfavorable light environments, but recent studies suggest that phytochromes evolved billions of years earlier from a tetrapyrrole sensor protein progenitor. These investigations have identified phytochromes and phytochrome-related proteins in photosynthetic bacteria (cyanobacteria and purple bacteria), nonphotosynthetic eubacteria and fungi - an observation that has opened new avenues for investigating the origins, molecular evolution and biochemical functions of this ecologically important family of plant photoreceptors.
Collapse
|
30
|
Nagy F, Schäfer E. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:329-355. [PMID: 12221979 DOI: 10.1146/annurev.arplant.53.100301.135302] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this review the kinetic properties of both phytochrome A and B measured by in vivo spectroscopy in Arabidopsis are described. Inactivation of phyA is mediated by destruction and that of phyB by fast dark reversion. Recent observations, describing a complex interaction network of various phytochromes and cryptochromes, are also discussed. The review describes recent analysis of light-dependent nuclear translocation of phytochromes and genetic and molecular dissection of phyA- and phyB-mediated signal transduction. After nuclear transport, both phyA- and phyB-mediated signal transduction probably include the formation of light-dependent transcriptional complexes. Although this hypothesis is quite attractive and probably true for some responses, it cannot account for the complex network of phyA-mediated signaling and the interaction with the circadian clock. In addition, the biological function of phytochromes localized in the cytosol remains to be elucidated.
Collapse
Affiliation(s)
- Ferenc Nagy
- Institute of Plant Biology, Biological Research Center, H-6701 Szeged, Hungary.
| | | |
Collapse
|
31
|
Gambetta GA, Lagarias JC. Genetic engineering of phytochrome biosynthesis in bacteria. Proc Natl Acad Sci U S A 2001; 98:10566-71. [PMID: 11553807 PMCID: PMC58506 DOI: 10.1073/pnas.191375198] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bilin prosthetic groups of the phytochrome photoreceptors and the light-harvesting phycobiliprotein antennae arise from the oxygen-dependent ring opening of heme. Two ferredoxin-dependent enzymes contribute to this conversion: a heme oxygenase and a bilin reductase with discrete double-bond specificity. Using a dual plasmid system, one expressing a truncated cyanobacterial apophytochrome 1, Cph1(N514), and the other expressing a two-gene operon consisting of a heme oxygenase and a bilin reductase, these studies establish the feasibility of producing photoactive phytochromes in any heme-containing cell. Heterologous expression systems for phytochromes not only will facilitate genetic analysis of their assembly, spectrophotometric activity, and biological function, but also might afford the means to regulate gene expression by light in nonplant cells.
Collapse
Affiliation(s)
- G A Gambetta
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
32
|
Jacobi PA, Pippin D. Enantioselective syntheses of (13)C-labeled (2R)- and (2S)-phytochromobilin dimethyl ester. Org Lett 2001; 3:827-30. [PMID: 11263892 DOI: 10.1021/ol006977q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(2R)- and (2S)-phytochromobilin dimethyl ester have been prepared in enantiomerically pure form, specifically (13)C-labeled at C(10) or C(15).
Collapse
Affiliation(s)
- P A Jacobi
- Burke Chemical Laboratory, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
33
|
Abstract
The phytochromes, photoreceptors sensitive to red and far-red light, are critical for sensing foliage shade, canopy breaks, and neighbor proximity. A combination of molecular genetic, evolutionary, and ecological techniques are being used to understand how phytochromes function in the natural environment. We discuss studies on the adaptive value of phytochrome mediated plasticity, as well as the role that variation in phytochrome expression and function might play in allowing plants to adapt to unique light environments. Continued study of phytochrome signaling variation may reveal how natural selection acts at the molecular level.
Collapse
Affiliation(s)
- J N Maloof
- Plant Biology Laboratory, The Salk Institute for Biological Sciences, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
34
|
Lindner I, Braslavsky SE, Schaffner K, Gärtner W. Model Studies of Phytochrome Photochromism: Protein-Mediated Photoisomerization of a Linear Tetrapyrrole in the Absence of Covalent Bonding This work is part of the PhD thesis of I. Lindner, Max-Planck-Institut für Strahlenchemie, Mülheim an der Ruhr, and Gerhard-Mercator-Universität, Duisburg, 2000. We thank Tanja Berndsen, Gül Koç, and Helene Steffen for technical assistance. Angew Chem Int Ed Engl 2000; 39:3269-3271. [PMID: 11028073 DOI: 10.1002/1521-3773(20000915)39:18<3269::aid-anie3269>3.0.co;2-i] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- I Lindner
- Max-Planck-Institut für Strahlenchemie Postfach 101365, 45413 Mülheim an der Ruhr (Germany)
| | | | | | | |
Collapse
|
35
|
Lindner I, Braslavsky S, Schaffner K, Gärtner W. Modellstudien zum Photochromismus des Phytochroms – proteingesteuerte Photoisomerisierung eines nicht kovalent gebundenen offenkettigen Tetrapyrrols. Angew Chem Int Ed Engl 2000. [DOI: 10.1002/1521-3757(20000915)112:18<3398::aid-ange3398>3.0.co;2-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Hughes J, Lamparter T. Prokaryotes and phytochrome. The connection to chromophores and signaling. PLANT PHYSIOLOGY 1999; 121:1059-1068. [PMID: 10594094 PMCID: PMC1539234 DOI: 10.1104/pp.121.4.1059] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- J Hughes
- Pflanzenphysiologie, Freie Universitat Berlin, Konigin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | | |
Collapse
|
37
|
Davis SJ, Kurepa J, Vierstra RD. The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci U S A 1999; 96:6541-6. [PMID: 10339624 PMCID: PMC26918 DOI: 10.1073/pnas.96.11.6541] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/1999] [Accepted: 03/22/1999] [Indexed: 12/21/2022] Open
Abstract
The hy1 mutants of Arabidopsis thaliana fail to make the phytochrome-chromophore phytochromobilin and therefore are deficient in a wide range of phytochrome-mediated responses. Because this defect can be rescued by feeding seedlings biliverdin IXalpha, it is likely that the mutations affect an enzyme that converts heme to this phytochromobilin intermediate. By a combination of positional cloning and candidate-gene isolation, we have identified the HY1 gene and found it to be related to cyanobacterial, algal, and animal heme oxygenases. Three independent alleles of hy1 contain DNA lesions within the HY1 coding region, and a genomic sequence spanning the HY1 locus complements the hy1-1 mutation. HY1 is a member of a gene family and is expressed in a variety of A. thaliana tissues. Based on its homology, we propose that HY1 encodes a higher-plant heme oxygenase, designated AtHO1, responsible for catalyzing the reaction that opens the tetrapyrrole ring of heme to generate biliverdin IXalpha.
Collapse
Affiliation(s)
- S J Davis
- Laboratory of Genetics and the Cellular and Molecular Biology Program, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
38
|
Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM. The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. THE PLANT CELL 1999; 11:335-48. [PMID: 10072395 PMCID: PMC144190 DOI: 10.1105/tpc.11.3.335] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The HY1 locus of Arabidopsis is necessary for phytochrome chromophore biosynthesis and is defined by mutants that show a long hypocotyl phenotype when grown in the light. We describe here the molecular cloning of the HY1 gene by using chromosome walking and mutant complementation. The product of the HY1 gene shows significant similarity to animal heme oxygenases and contains a possible transit peptide for transport to plastids. Heme oxygenase activity was detected in the HY1 protein expressed in Escherichia coli. Heme oxygenase catalyzes the oxygenation of heme to biliverdin, an activity that is necessary for phytochrome chromophore biosynthesis. The predicted transit peptide is sufficient to transport the green fluorescent protein into chloroplasts. The accumulation of the HY1 protein in plastids was detected by using immunoblot analysis with an anti-HY1 antiserum. These results indicate that the Arabidopsis HY1 gene encodes a plastid heme oxygenase necessary for phytochrome chromophore biosynthesis.
Collapse
Affiliation(s)
- T Muramoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
39
|
Bhoo SH, Hirano T, Jeong HY, Lee JG, Furuya M, Song PS. Phytochrome Photochromism Probed by Site-Directed Mutations and Chromophore Esterification. J Am Chem Soc 1997. [DOI: 10.1021/ja972875s] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seong Hee Bhoo
- Department of Chemistry, University of Nebraska Lincoln, Nebraska 68588 Kumho Life & Environmental Science and Chemical Laboratories Kumho Petrochemical Company, Kwangju 506-712, Korea Hitachi Advanced Research Laboratory, Hitachi, Ltd. Hatoyama, Saitama 350-03, Japan
| | - Takashi Hirano
- Department of Chemistry, University of Nebraska Lincoln, Nebraska 68588 Kumho Life & Environmental Science and Chemical Laboratories Kumho Petrochemical Company, Kwangju 506-712, Korea Hitachi Advanced Research Laboratory, Hitachi, Ltd. Hatoyama, Saitama 350-03, Japan
| | - Ho-Young Jeong
- Department of Chemistry, University of Nebraska Lincoln, Nebraska 68588 Kumho Life & Environmental Science and Chemical Laboratories Kumho Petrochemical Company, Kwangju 506-712, Korea Hitachi Advanced Research Laboratory, Hitachi, Ltd. Hatoyama, Saitama 350-03, Japan
| | - Jung-Goo Lee
- Department of Chemistry, University of Nebraska Lincoln, Nebraska 68588 Kumho Life & Environmental Science and Chemical Laboratories Kumho Petrochemical Company, Kwangju 506-712, Korea Hitachi Advanced Research Laboratory, Hitachi, Ltd. Hatoyama, Saitama 350-03, Japan
| | - Masaki Furuya
- Department of Chemistry, University of Nebraska Lincoln, Nebraska 68588 Kumho Life & Environmental Science and Chemical Laboratories Kumho Petrochemical Company, Kwangju 506-712, Korea Hitachi Advanced Research Laboratory, Hitachi, Ltd. Hatoyama, Saitama 350-03, Japan
| | - Pill-Soon Song
- Department of Chemistry, University of Nebraska Lincoln, Nebraska 68588 Kumho Life & Environmental Science and Chemical Laboratories Kumho Petrochemical Company, Kwangju 506-712, Korea Hitachi Advanced Research Laboratory, Hitachi, Ltd. Hatoyama, Saitama 350-03, Japan
| |
Collapse
|
40
|
Abstract
BACKGROUND Biologically compatible fluorescent protein probes, particularly the self-assembling green fluorescent protein (GFP) from the jellyfish Aequorea victoria, have revolutionized research in cell, molecular and developmental biology because they allow visualization of biochemical events in living cells. Additional fluorescent proteins that could be reconstituted in vivo while extending the useful wavelength range towards the orange and red regions of the light spectrum would increase the range of applications currently available with fluorescent protein probes. RESULTS Intensely orange fluorescent adducts, which we designate phytofluors, are spontaneously formed upon incubation of recombinant plant phytochrome apoproteins with phycoerythrobilin, the linear tetrapyrrole precursor of the phycoerythrin chromophore. Phytofluors have large molar absorption coefficients, fluorescence quantum yields greater than 0.7, excellent photostability, stability over a wide range of pH, and can be reconstituted in living plant cells. CONCLUSIONS The phytofluors constitute a new class of fluorophore that can potentially be produced upon bilin uptake by any living cell expressing an apophytochrome cDNA. Mutagenesis of the phytochrome apoprotein and/or alteration of the linear tetrapyrrole precursor by chemical synthesis are expected to afford new phytofluors with fluorescence excitation and emission spectra spanning the visible to near-infrared light spectrum.
Collapse
Affiliation(s)
- J T Murphy
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
41
|
Mozley D, Remberg A, Gärtner W. Large-scale generation of affinity-purified recombinant phytochrome chromopeptide. Photochem Photobiol 1997; 66:710-5. [PMID: 9383995 DOI: 10.1111/j.1751-1097.1997.tb03211.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two different yeast expression systems, Pichia pastoris and Hansenula polymorpha, are compared for their capability to express in functional form the 65 kDa N-terminal portion of oat phytochrome A (phyA, spanning amino acids 1-595). The front half of phytochrome was selected for this investigation because it exhibits a greater stability than the full-length protein, and it harbors full spectroscopic and kinetic properties of phytochrome, allowing an exact proof of the functional integrity of the recombinant material. In the comparison between the two expression systems used, special emphasis was given to optimizing the yield of the expression and to improving the quality of the expressed material with respect to the proportion of functional protein. From identical volumes of cell culture, H. polymorpha synthesized between 8- and 10-fold more functional protein than P. pastoris. Following the observation by Wu and Lagarias (Proc. Natl. Acad. Sci. USA 93, 8989-8994, 1996) that P. pastoris endogenously produces the chromophore of phytochrome, phytochromobilin (P phi B) in significant amounts that leads to formation of spectrally active phytochrome during expression, the invention of an alternative high-yield expression system was strongly demanded. A His6-tag was attached to the C-terminus of the recombinant protein, which allows for a convenient and efficient purification and selects the full-length proteins over translationally truncated peptides. Fully reconstituted chromoproteins showed an A660/A280 ratio of > 1.2, indicating the high degree of reconstitutable apoprotein obtained by this procedure. The assembly between apoprotein and the chromophore phycocyanobilin when followed time-resolved yielded a time constant (tau obs) of 35 s. The lambda max values of the red-(Pr) and the far red-absorbing (Pfr) forms of phytochrome (665 and 729 nm) of the recombinant 65 kDa chromopeptide, reconstituted with P phi B are nearly identical to those of native full-length oat phytochrome. The kinetic parameters of the affinity-purified 65 kDa phytochrome chromoprotein for the Pr-->I700--> -->Ptr conversion are compared to those of the recombinant 65 kDa chromoprotein, lacking the His-tag and to wild-type oat phytochrome. Referring to wild-type phytochrome allows determination of whether the recombinant material has lost spectral properties during the purification procedure. The decay of the primary intermediate (I700) occurs with nearly the same time constant for the His-tagged chromoprotein and for the reference (110 and 90 microseconds, respectively). The formation of the Ptr form was fitted with three exponentials in both the His-tagged and the reference chromoprotein with the middle component being slightly smaller and the longest component being remarkably larger for the His-tagged protein (1.5, 10 and 300 ms) than for the reference (1.4, 18 and 96 ms). This selective slowing down of the long kinetic component in the millisecond time range may be indicative of stronger interactions between protein domains involving the C-terminus that in the His-tagged form exhibits increased polarity.
Collapse
Affiliation(s)
- D Mozley
- Max-Planck-Institut für Strahlenchemie, Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
42
|
Manabe K, Nakazawa M. The structure and function of phytochrome A: the roles of the entire molecule and of its various parts. JOURNAL OF PLANT RESEARCH 1997; 110:109-122. [PMID: 27520051 DOI: 10.1007/bf02506850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/1996] [Revised: 12/14/1996] [Indexed: 06/06/2023]
Abstract
Phytochrome A is readily cleavable by proteolytic agents to yield an amino-terminal fragment of 66 kilodalton (kDa), which consists of residues 1 to approximately 600, and a dimer of the carboxy-terminal 55-kDa fragment, from residue 600 or so to the carboxyl terminus. The former domain, carrying the tetrapyrrole chromophore, has been studied extensively because of its photoactivity, while less attention has been paid to the non-chromophoric portion until quite recently. However, the evidence gathered to date suggests that this domain is also of great improtance. We present here a review of the structure and the biochemical and physiological functions of the two domains, of parts of these domains, and of the cooperation between them.
Collapse
Affiliation(s)
- K Manabe
- Biological Materials, Faculty of Science, Yokohama City University, Seto 22-2, Kanazawa-ku, 236, Yokohama, Japan
| | - M Nakazawa
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka-ku, 244, Yokohama, Japan
| |
Collapse
|
43
|
Affiliation(s)
- J M Staub
- Department of Biology, Yale University, New Haven, CT 06520-8104, USA
| | | |
Collapse
|
44
|
Wu SH, Lagarias JC. The methylotrophic yeast Pichia pastoris synthesizes a functionally active chromophore precursor of the plant photoreceptor phytochrome. Proc Natl Acad Sci U S A 1996; 93:8989-94. [PMID: 8799141 PMCID: PMC38582 DOI: 10.1073/pnas.93.17.8989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Induction of the expression of an algal phytochrome cDNA in the methylotrophic yeast Pichia pastoris led to time-dependent formation of photoactive holophytochrome without the addition of exogenous bilins. Both in vivo and in vitro difference spectra of this phytochromic species are very similar to those of higher plant phytochrome A, supporting the conclusion that this species possesses a phytochromobilin prosthetic group. Zinc blot analyses confirm that a bilin chromophore is covalently bound to the algal phytochrome apoprotein. The hypothesis that P. pastoris contains phytochromobilin synthase, the enzyme that converts biliverdin IX alpha to phytochromobilin, was also addressed in this study. Soluble extracts from P. pastoris were able to convert biliverdin to a bilin pigment, which produced a native difference spectrum upon assembly with oat apophytochrome A. HPLC analyses confirm that biliverdin is converted to both 3E- and 3Z-isomers of phytochromobilin. These investigations demonstrate that the ability to synthesize phytochromobilin is not restricted to photosynthetic organisms and support the hypothesis of a more widespread distribution of the phytochrome photoreceptor.
Collapse
Affiliation(s)
- S H Wu
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
45
|
Foerstendorf H, Mummert E, Schäfer E, Scheer H, Siebert F. Fourier-transform infrared spectroscopy of phytochrome: difference spectra of the intermediates of the photoreactions. Biochemistry 1996; 35:10793-9. [PMID: 8718870 DOI: 10.1021/bi960960r] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The photocycle of 124 kDa phytochrome A from Avena sativa was studied by Fourier-transform infrared spectroscopy at low temperatures. Difference spectra between the parent state Pr and the intermediates of the Pr-->Pfr pathway, i.e. lumi-R, meta-Ra, and meta-Rc, and between Pfr and the intermediates of the Pfr-->Pr pathway, lumi-F and meta-F, were obtained in 1H2O and 2H2O for the first time. Each spectrum shows characteristic spectral features which allow a clear distinction between the different intermediates. A general feature is that greater changes occur with increasing temperature, i.e. at the later steps of the photoreactions. Nevertheless, the changes in the spectral regions of the protein (amide I and amide II) were found to be surprisingly small, excluding larger conformational changes of the protein. All spectra of the intermediates are characterized by a strong negative band around 1700 cm-1. This band is tentatively assigned to the C = O stretch of ring D of the chromophore. Since it is not observed in the difference spectra between the parent states, it is concluded that ring D is located in a similar molecular environment in Pr and Pfr. In the photoproducts lumi-R and lumi-F, this band undergoes an upshift to 1720 cm-1. The high frequencies suggest that the chromophore is protonated in these intermediates as well as in Pr and Pfr.
Collapse
Affiliation(s)
- H Foerstendorf
- Institut für Biophysik und Strahlenbiologie, Albert-Ludwigs-Universität, Freiburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
46
|
Li L, Murphy JT, Lagarias JC. Continuous fluorescence assay of phytochrome assembly in vitro. Biochemistry 1995; 34:7923-30. [PMID: 7794904 DOI: 10.1021/bi00024a017] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Incubation of recombinant apophytochrome with the phycobiliprotein chromophore precursor phycoerythrobilin produces a covalent adduct that exhibits a fluorescence excitation maximum at 576 nm and an emission maximum at 586 nm. Using these fluorescence parameters, we have developed a kinetic assay for quantitative analysis of the assembly of the plant photoreceptor phytochrome in real time. Kinetic measurements performed with different phycoerythrobilin concentrations confirm that bilin attachment to apophytochrome involves two steps, an initial formation of a reversible non-covalent complex followed by thioether bond formation. The kinetic constants for both steps of phycoerythrobilin attachment to apophytochrome were estimated with this assay. Methodology for determining the kinetic constants for the assembly of both the natural phytochrome chromophore precursor, phytochromobilin, and the analog phycocyanobilin is also described. Since the latter two bilins yield covalent, nonfluorescent adducts with apophytochrome, their co-incubation with phycoerythrobilin reduces the rate of formation of the fluorescent phycoerythrobilin adduct in an irreversible, competitive manner. Competition experiments were also performed with biliverdin, a structurally related bilin which does not form a covalent adduct with apophytochrome. Such measurements show that biliverdin reversibly binds to apophytochrome with a submicromolar binding constant, an affinity which is very similar to that of phytochromobilin. The utility of this fluorescence assay for identification of novel inhibitors of phytochrome assembly and for characterization of the structural features of both bilin and apophytochrome necessary for photoreceptor assembly is discussed.
Collapse
Affiliation(s)
- L Li
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
47
|
Emmler K, Stockhaus J, Chua NH, Schäfer E. An amino-terminal deletion of rice phytochrome A results in a dominant negative suppression of tobacco phytochrome A activity in transgenic tobacco seedlings. PLANTA 1995; 197:103-10. [PMID: 7580859 DOI: 10.1007/bf00239945] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Overexpression of phytochrome A results in an increased inhibition of hypocotyl elongation under red and far-red light. We used this approach to assay for the function of N-terminal mutations of rice (Oryza sativa L.) phytochrome A. Transgenic tobacco seedlings that express the wild-type rice phytochrome A (RW), a rice phytochrome A lacking the first 80 amino acids (NTD) or a rice phytochrome A with a conversion of the first 10 serines into alanine residues (S/A) were compared with untransformed wild-type tobacco (Nicotiana tabacum L. cv. Xanthi) seedlings. Experiments under different fluence rates showed that RW and, even more strongly, S/A increased the response under both red and far-red light, whereas NTD decreased the response under far-red light but hardly altered the response under red light. These results indicate that NTD not only lacks residues essential for an increased response under red light but also distorts the wild-type response under far-red light. Wild-type rice phytochrome A and, even more so, S/A mediate an enhanced phytochrome A as well as phytochrome B function, whereas NTD interferes with the function of endogenous tobacco phytochrome A as well as that of rice phytochrome A when co-expressed in a single host. Experiments with seedlings of different ages and various times of irradiation under far-red light demonstrated that the effect of NTD is dependent on the stage of development. Our results suggest that the lack of the first 80 amino acids still allows a rice phytochrome A to interact with the phytochrome transduction pathway, albeit non-productively in tobacco seedlings.
Collapse
Affiliation(s)
- K Emmler
- Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | |
Collapse
|
48
|
Li L, Lagarias JC. Phytochrome assembly in living cells of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1994; 91:12535-9. [PMID: 7809073 PMCID: PMC45473 DOI: 10.1073/pnas.91.26.12535] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The biological activity of the plant photoreceptor phytochrome requires the specific association of a linear tetrapyrrole prosthetic group with a large apoprotein. As an initial step to develop an in vivo assay system for structure-function analysis of the phytochrome photoreceptor, we undertook experiments to reconstitute holophytochrome in the yeast Saccharomyces cerevisiae. Here we show that yeast cells expressing recombinant oat apophytochrome A can take up exogenous linear tetrapyrroles, and, in a time-dependent manner, these pigments combine with the apoprotein to form photoactive holophytochrome in situ. Cell viability measurements indicate that holophytochrome assembly occurs in living cells. Unlike phytochrome A in higher plant tissue, which is rapidly degraded upon photoactivation, the reconstituted photoreceptor appears to be light stable in yeast. Reconstitution of photoactive phytochrome in yeast cells should enable us to exploit the power of yeast genetics for structure-function dissection of this important plant photoreceptor.
Collapse
Affiliation(s)
- L Li
- Section of Molecular and Cellular Biology, University of California, Davis 95616
| | | |
Collapse
|
49
|
Elich TD, Chory J. Initial events in phytochrome signalling: still in the dark. PLANT MOLECULAR BIOLOGY 1994; 26:1315-1327. [PMID: 7858193 DOI: 10.1007/bf00016477] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- T D Elich
- Plant Biology Laboratory, Salk Institute for Biological Studies, San Diego, CA 92186-5800
| | | |
Collapse
|
50
|
Konomi K, Li HS, Kuno N, Furuya‡ M. EFFECTS OF N-PHENYLIMIDE S-23142 AND N-METHYL MESOPORPHYRIN IX ON THE SYNTHESIS OF THE PHYTOCHROME CHROMOPHORE IN PEA EMBRYONIC AXES. Photochem Photobiol 1993. [DOI: 10.1111/j.1751-1097.1993.tb04983.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|