1
|
Li F, Roy S, Niculcea J, Gould K, Adams EJ, van der Merwe PA, Choudhuri K. Ligand-induced segregation from large cell-surface phosphatases is a critical step in γδ TCR triggering. Cell Rep 2024; 43:114761. [PMID: 39276348 PMCID: PMC11452322 DOI: 10.1016/j.celrep.2024.114761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Gamma/delta (γδ) T cells are unconventional lymphocytes that recognize diverse ligands via somatically recombined T cell antigen receptors (γδ TCRs). The molecular mechanism by which ligand recognition initiates γδ TCR signaling, a process known as TCR triggering, remains elusive. Unlike αβ TCRs, γδ TCRs are not mechanosensitive and do not require co-receptors or typical binding-induced conformational changes for triggering. Here, we show that γδ TCR triggering by nonclassical MHC class Ib antigens, a major class of ligands recognized by γδ T cells, requires steric segregation of the large cell-surface phosphatases CD45 and CD148 from engaged TCRs at synaptic close-contact zones. Increasing access of these inhibitory phosphatases to sites of TCR engagement, by elongating MHC class Ib ligands or truncating CD45/148 ectodomains, abrogates TCR triggering and T cell activation. Our results identify a critical step in γδ TCR triggering and provide insight into the core triggering mechanism of endogenous and synthetic tyrosine-phosphorylated immunoreceptors.
Collapse
Affiliation(s)
- Fenglei Li
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sobhan Roy
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jacob Niculcea
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Keith Gould
- Department of Infectious Diseases, Imperial College London, London W2 1NY, UK
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | - Kaushik Choudhuri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Li F, Roy S, Niculcea J, Gould K, Adams EJ, van der Merwe PA, Choudhuri K. Ligand-induced segregation from large cell-surface phosphatases is a critical step in γδ TCR triggering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554524. [PMID: 37662246 PMCID: PMC10473748 DOI: 10.1101/2023.08.23.554524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gamma/delta (γδ) T cells are unconventional adaptive lymphocytes that recognize structurally diverse ligands via somatically-recombined antigen receptors (γδ TCRs). The molecular mechanism by which ligand recognition initiates γδ TCR signaling, a process known as TCR triggering, remains elusive. Unlike αβ TCRs, γδ TCRs are not mechanosensitive, and do not require coreceptors or typical binding-induced conformational changes for triggering. Here, we show that γδ TCR triggering by nonclassical MHC class Ib antigens, a major class of ligands recognized by γδ T cells, requires steric segregation of the large cell-surface phosphatases CD45 and CD148 from engaged TCRs at synaptic close contact zones. Increasing access of these inhibitory phosphatases to sites of TCR engagement, by elongating MHC class Ib ligands or truncating CD45/148 ectodomains, abrogates TCR triggering and T cell activation. Our results identify a critical step in γδ TCR triggering and provide insight into the core triggering mechanism of endogenous and synthetic tyrosine-phosphorylated immunoreceptors.
Collapse
|
3
|
Born WK, O'Brien RL. Becoming aware of γδ T cells. Adv Immunol 2022; 153:91-117. [PMID: 35469596 DOI: 10.1016/bs.ai.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The discovery that B cells and αβ T cells exist was predictable: These cells gave themselves away through their products and biological effects. In contrast, there was no reason to anticipate the existence of γδ T cells. Even the accidental discovery of a novel TCR-like gene (later named γ) that did not encode TCR α or β proteins did not immediately change this. TCR-like γ had no obvious function, and its early expression in the thymus encouraged speculation about a possible role in αβ T cell development. However, the identification of human PBL-derived cell-lines which expressed CD3 in complex with the TCR-like γ protein, but not the αβ TCR, first indicated that a second T cell-type might exist, and the TCR-like γ chain was observed to co-precipitate with another protein. Amid speculation about a possible second TCR, this potential dimeric partner was named δ. To determine if the δ protein was indeed TCR-like, we undertook to sequence it. Meanwhile, a fourth TCR-like gene was discovered and provisionally named x. TCR-like x had revealed itself through genomic rearrangements early in T cell development, and was an attractive candidate for the gene encoding δ. The observation that δ protein sequences matched the predicted amino acid sequences encoded by the x gene, as well as serological cross-reactivity, confirmed that the TCR-like x gene indeed encoded the δ protein. Thus, the γδ heterodimer was established as a second TCR, and the cells that express it (the γδ T cells) consequently represented a third lymphocyte-population with the potential of recognizing diverse antigens. Soon, it became clear that γδ T cells are widely distributed and conserved among the vertebrate species, implying biological importance. Consistently, early functional studies revealed their roles in host resistance to pathogens, tissue repair, immune regulation, metabolism, organ physiology and more. Albeit discovered late, γδ T cells have repeatedly proven to play a distinct and often critical immunological role, and now generate much interest.
Collapse
Affiliation(s)
- Willi K Born
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.
| | - Rebecca L O'Brien
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States
| |
Collapse
|
4
|
Molecular design of the γδT cell receptor ectodomain encodes biologically fit ligand recognition in the absence of mechanosensing. Proc Natl Acad Sci U S A 2021; 118:2023050118. [PMID: 34172580 PMCID: PMC8256041 DOI: 10.1073/pnas.2023050118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TCR mechanosensing is thought necessary for digital sensitivity of αβT cell response to scant pMHC antigens. We use bioinformatic analysis, molecular dynamics, single-molecule optical tweezers techniques, cellular activation, and RNA-seq analysis to explore this paradigm in the γδT cell lineage. We find that, in keeping with its role in recognizing abundant cell-surface ligands, the γδTCR lacks force-dependent hallmarks of mechanosensing in αβT cells. High-acuity αβT cell receptor (TCR) recognition of peptides bound to major histocompatibility complex molecules (pMHCs) requires mechanosensing, a process whereby piconewton (pN) bioforces exert physical load on αβTCR–pMHC bonds to dynamically alter their lifetimes and foster digital sensitivity cellular signaling. While mechanotransduction is operative for both αβTCRs and pre-TCRs within the αβT lineage, its role in γδT cells is unknown. Here, we show that the human DP10.7 γδTCR specific for the sulfoglycolipid sulfatide bound to CD1d only sustains a significant load and undergoes force-induced structural transitions when the binding interface-distal γδ constant domain (C) module is replaced with that of αβ. The chimeric γδ–αβTCR also signals more robustly than does the wild-type (WT) γδTCR, as revealed by RNA-sequencing (RNA-seq) analysis of TCR-transduced Rag2−/− thymocytes, consistent with structural, single-molecule, and molecular dynamics studies reflective of γδTCRs as mediating recognition via a more canonical immunoglobulin-like receptor interaction. Absence of robust, force-related catch bonds, as well as γδTCR structural transitions, implies that γδT cells do not use mechanosensing for ligand recognition. This distinction is consonant with the fact that their innate-type ligands, including markers of cellular stress, are expressed at a high copy number relative to the sparse pMHC ligands of αβT cells arrayed on activating target cells. We posit that mechanosensing emerged over ∼200 million years of vertebrate evolution to fulfill indispensable adaptive immune recognition requirements for pMHC in the αβT cell lineage that are unnecessary for the γδT cell lineage mechanism of non-pMHC ligand detection.
Collapse
|
5
|
Willcox CR, Mohammed F, Willcox BE. The distinct MHC-unrestricted immunobiology of innate-like and adaptive-like human γδ T cell subsets-Nature's CAR-T cells. Immunol Rev 2020; 298:25-46. [PMID: 33084045 DOI: 10.1111/imr.12928] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
Distinct innate-like and adaptive-like immunobiological paradigms are emerging for human γδ T cells, supported by a combination of immunophenotypic, T cell receptor (TCR) repertoire, functional, and transcriptomic data. Evidence of the γδ TCR/ligand recognition modalities that respective human subsets utilize is accumulating. Although many questions remain unanswered, one superantigen-like modality features interactions of germline-encoded regions of particular TCR Vγ regions with specific BTN/BTNL family members and apparently aligns with an innate-like biology, albeit with some scope for clonal amplification. A second involves CDR3-mediated γδ TCR interaction with diverse ligands and aligns with an adaptive-like biology. Importantly, these unconventional modalities provide γδ T cells with unique recognition capabilities relative to αβ T cells, B cells, and NK cells, allowing immunosurveillance for signatures of "altered self" on target cells, via a membrane-linked γδ TCR recognizing intact non-MHC proteins on the opposing cell surface. In doing so, they permit cellular responses in diverse situations including where MHC expression is compromised, or where conventional adaptive and/or NK cell-mediated immunity is suppressed. γδ T cells may therefore utilize their TCR like a cell-surface Fab repertoire, somewhat analogous to engineered chimeric antigen receptor T cells, but additionally integrating TCR signaling with parallel signals from other surface immunoreceptors, making them multimolecular sensors of cellular stress.
Collapse
Affiliation(s)
- Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Hahn AM, Winkler TH. Resolving the mystery-How TCR transgenic mouse models shed light on the elusive case of gamma delta T cells. J Leukoc Biol 2020; 107:993-1007. [PMID: 32068302 DOI: 10.1002/jlb.1mr0120-237r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Cutting-edge questions in αβ T cell biology were addressed by investigating a range of different genetically modified mouse models. In comparison, the γδ T cell field lacks behind on the availability of such models. Nevertheless, transgenic mouse models proved useful for the investigation of γδ T cell biology and their stepwise development in the thymus. In general, animal models and especially mouse models give access to a wide range of opportunities of modulating γδ T cells, which is unachievable in human beings. Because of their complex biology and specific tissue tropism, it is especially challenging to investigate γδ T cells in in vitro experiments since they might not reliably reflect their behavior and phenotype under physiologic conditions. This review aims to provide a comprehensive historical overview about how different transgenic mouse models contributed in regards of the understanding of γδ T cell biology, whereby a special focus is set on studies including the elusive role of the γδTCR. Furthermore, evolutionary and translational remarks are discussed under the aspect of future implications for the field. The ultimate full understanding of γδ T cells will pave the way for their usage as a powerful new tool in immunotherapy.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Movement
- Founder Effect
- Gene Expression
- Humans
- Immunotherapy/methods
- Mice
- Mice, Transgenic/genetics
- Mice, Transgenic/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- Species Specificity
- T-Lymphocytes/classification
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Anne M Hahn
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
7
|
Jouan Y, Patin EC, Hassane M, Si-Tahar M, Baranek T, Paget C. Thymic Program Directing the Functional Development of γδT17 Cells. Front Immunol 2018; 9:981. [PMID: 29867959 PMCID: PMC5951931 DOI: 10.3389/fimmu.2018.00981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/20/2018] [Indexed: 12/27/2022] Open
Abstract
γδT cells comprise a unique T cell sublineage endowed with a wide functional repertoire, which allow them to play important—sometimes opposite—roles in many immune responses associated with infection, cancer, and inflammatory processes. This is largely dependent on the existence of pre-programmed discrete functional subsets that differentiate within the thymus at specific temporal windows of life. Since they represent a major early source of interleukin-17A in many models of immune responses, the γδT17 cell population has recently gained considerable interest. Thus, a better dissection of the developmental program of this effector γδT subset appears critical in understanding their associated immune functions. Several recent reports have provided new exciting insights into the developmental mechanisms that control γδT cell lineage commitment and differentiation. Here, we review the importance of thymic cues and intrinsic factors that shape the developmental program of γδT17 cells. We also discuss the potential future areas of research in γδT17 cell development especially in regards to the recently provided data from deep RNA sequencing technology. Pursuing our understanding into this complex mechanism will undoubtedly provide important clues into the biology of this particular T cell sublineage.
Collapse
Affiliation(s)
- Youenn Jouan
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France.,Service de Médecine Intensive Réanimation, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Emmanuel C Patin
- Division of Radiotherapy and Imaging, Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Maya Hassane
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Université de Tours, Tours, France
| |
Collapse
|
8
|
Disregulated expression of the transcription factor ThPOK during T-cell development leads to high incidence of T-cell lymphomas. Proc Natl Acad Sci U S A 2015; 112:7773-8. [PMID: 26056302 DOI: 10.1073/pnas.1424104112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factor T-helper-inducing POZ/Krueppel-like factor (ThPOK, encoded by the Zbtb7b gene) plays widespread and critical roles in T-cell development, particularly as the master regulator of CD4 commitment. Here we show that mice expressing a constitutive T-cell-specific ThPOK transgene (ThPOK(const) mice) develop thymic lymphomas. These tumors resemble human T-cell acute lymphoblastic leukemia (T-ALL), in that they predominantly exhibit activating Notch1 mutations. Lymphomagenesis is prevented if thymocyte development is arrested at the DN3 stage by recombination-activating gene (RAG) deficiency, but restored by introduction of a T-cell receptor (TCR) transgene or by a single injection of anti-αβTCR antibody into ThPOK(const) RAG-deficient mice, which promotes development to the CD4(+)8(+) (DP) stage. Hence, TCR signals and/or traversal of the DN (double negative) > DP (double positive) checkpoint are required for ThPOK-mediated lymphomagenesis. These results demonstrate a novel link between ThPOK, TCR signaling, and lymphomagenesis. Finally, we present evidence that ectopic ThPOK expression gives rise to a preleukemic and self-perpetuating DN4 lymphoma precursor population. Our results collectively define a novel role for ThPOK as an oncogene and precisely map the stage in thymopoiesis susceptible to ThPOK-dependent tumor initiation.
Collapse
|
9
|
Fahl SP, Coffey F, Wiest DL. Origins of γδ T cell effector subsets: a riddle wrapped in an enigma. THE JOURNAL OF IMMUNOLOGY 2015; 193:4289-94. [PMID: 25326547 DOI: 10.4049/jimmunol.1401813] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
αβ and γδ T cells are thought to arise from a common precursor in the thymus but play distinct roles in pathogen resistance. Although conventional αβ T cells exit the thymus in a naive state and acquire effector function in the periphery, the effector fate of many γδ T cells is specified in the thymus and exhibits limited plasticity thereafter. This review describes the current models that have been proposed to explain the acquisition of effector fate by γδ T cells, as well as the apparent linkage to Vγ gene usage. The two predominant models are the predetermination model, which suggests that effector fate is determined prior to TCR expression, perhaps in association with the developmental timing of Vγ rearrangement, and the TCR-dependence model, which proposes that the nature of the TCR signal, particularly its intensity or duration, plays an important role in influencing effector fate.
Collapse
Affiliation(s)
- Shawn P Fahl
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Francis Coffey
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - David L Wiest
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
10
|
Dar AA, Patil RS, Chiplunkar SV. Insights into the Relationship between Toll Like Receptors and Gamma Delta T Cell Responses. Front Immunol 2014; 5:366. [PMID: 25132835 PMCID: PMC4116803 DOI: 10.3389/fimmu.2014.00366] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/15/2014] [Indexed: 01/26/2023] Open
Abstract
The tumor microenvironment is an important aspect of cancer biology that contributes to tumor initiation, tumor progression and responses to therapy. The composition and characteristics of the tumor microenvironment vary widely and are important in determining the anti-tumor immune response. Successful immunization requires activation of both innate and adaptive immunity. Generally, immune system is compromised in patients with cancer due to immune suppression, loss of tumor antigen expression and dysfunction of antigen presenting cells (APC). Thus, therapeutic immunization leading to cancer regression remains a significant challenge. Certain cells of the immune system, including dendritic cells (DCs) and gamma delta (γδ) T cells are capable of driving potent anti-tumor responses. The property of MHC-unrestricted cytotoxicity, high potential of cytokine release, tissue tropism and early activation in infections and malignant disease makes γδ T cells as an emerging candidate for immunotherapy. Various strategies are being developed to enhance anti-tumor immune responses of γδ T cells and DCs one of them is the use of novel adjuvants like toll like receptors (TLR) agonists, which enhance γδ T cell function directly or through DC activation, which has ability to prime γδ T cells. TLR agonists are being used clinically either alone or in combination with tumor antigens and has shown initial success in both enhancing immune responses and eliciting anti-tumor activity. TLR activated γδ T cells and DCs nurture each other's activation. This provides a potent base for first line of defense and manipulation of the adaptive response against pathogens and cancer. The available data provides a strong rationale for initiating combinatorial therapy for the treatment of diseases and this review will summarize the application of adjuvants (TLRs) for boosting immune response of γδ T cells to treat cancer and infectious diseases and their use in combinatorial therapy.
Collapse
Affiliation(s)
- Asif Amin Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| | - Rushikesh Sudam Patil
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| | - Shubhada Vivek Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| |
Collapse
|
11
|
Coffey F, Lee SY, Buus TB, Lauritsen JPH, Wong GW, Joachims ML, Thompson LF, Zúñiga-Pflücker JC, Kappes DJ, Wiest DL. The TCR ligand-inducible expression of CD73 marks γδ lineage commitment and a metastable intermediate in effector specification. ACTA ACUST UNITED AC 2014; 211:329-43. [PMID: 24493796 PMCID: PMC3920555 DOI: 10.1084/jem.20131540] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CD73 expression is induced in response to TCR ligation and identifies a population of thymocytes that are committed to the γδ T cell fate. Numerous studies indicate that γδ T cell receptor (γδTCR) expression alone does not reliably mark commitment of early thymic progenitors to the γδ fate. This raises the possibility that the γδTCR is unable to intrinsically specify fate and instead requires additional environmental factors, including TCR–ligand engagement. We use single cell progenitor assays to reveal that ligand acts instructionally to direct adoption of the γδ fate. Moreover, we identify CD73 as a TCR ligand-induced cell surface protein that distinguishes γδTCR-expressing CD4−CD8− progenitors that have committed to the γδ fate from those that have not yet done so. Indeed, unlike CD73− γδTCR+ progenitors, which largely adopt the αβ fate upon separation from the intrathymic selecting environment, those that express CD73 remain CD4−CD8− and committed to the γδ fate. CD73 is expressed by >90% of peripheral γδ cells, suggesting this is a common occurrence during development. Moreover, CD73 induction appears to mark a metastable intermediate stage before acquisition of effector function, suggesting that γδ lineage and effector fate are specified sequentially. These findings have important implications for the role of ligand in γδ lineage commitment and its relationship to the specification of effector fate.
Collapse
Affiliation(s)
- Francis Coffey
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
γδ T cells, αβ T cells, and B cells are present together in all but the most primitive vertebrates, suggesting that each population contributes to host immune competence uniquely and that all three are necessary for maintaining immune competence. Functional and molecular analyses indicate that in infections, γδ T cells respond earlier than αβ T cells do and that they emerge late after pathogen numbers start to decline. Thus, these cells may be involved in both establishing and regulating the inflammatory response. Moreover, γδ T cells and αβ T cells are clearly distinct in their antigen recognition and activation requirements as well as in the development of their antigen-specific repertoire and effector function. These aspects allow γδ T cells to occupy unique temporal and functional niches in host immune defense. We review these and other advances in γδ T cell biology in the context of their being the major initial IL-17 producers in acute infection.
Collapse
|
13
|
Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L, Picard D, Anderson B, Scharf L, Kung JE, Sibener LV, Savage PB, Jabri B, Bendelac A, Adams EJ. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 2013; 39:1032-42. [PMID: 24239091 PMCID: PMC3875342 DOI: 10.1016/j.immuni.2013.11.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/28/2013] [Indexed: 01/13/2023]
Abstract
The nature of the antigens recognized by γδ T cells and their potential recognition of major histocompatibility complex (MHC)-like molecules has remained unclear. Members of the CD1 family of lipid-presenting molecules are suggested ligands for Vδ1 TCR-expressing γδ T cells, the major γδ lymphocyte population in epithelial tissues. We crystallized a Vδ1 TCR in complex with CD1d and the self-lipid sulfatide, revealing the unusual recognition of CD1d by germline Vδ1 residues spanning all complementarity-determining region (CDR) loops, as well as sulfatide recognition separately encoded by nongermline CDR3δ residues. Binding and functional analysis showed that CD1d presenting self-lipids, including sulfatide, was widely recognized by gut Vδ1+ γδ T cells. These findings provide structural demonstration of MHC-like recognition of a self-lipid by γδ T cells and reveal the prevalence of lipid recognition by innate-like T cell populations.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens, CD1d/chemistry
- Antigens, CD1d/metabolism
- Crystallography, X-Ray
- Epitopes
- Humans
- Jurkat Cells
- Lipids/immunology
- Major Histocompatibility Complex/immunology
- Models, Molecular
- Protein Structure, Quaternary
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Sulfoglycosphingolipids/chemistry
- Sulfoglycosphingolipids/metabolism
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Adrienne M Luoma
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Caitlin D Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Toufic Mayassi
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Leslie A Bembinster
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Li Bai
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute
| | - Damien Picard
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute
| | - Brian Anderson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Louise Scharf
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer E Kung
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Leah V Sibener
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute
| | - Erin J Adams
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Pang DJ, Neves JF, Sumaria N, Pennington DJ. Understanding the complexity of γδ T-cell subsets in mouse and human. Immunology 2012; 136:283-90. [PMID: 22385416 DOI: 10.1111/j.1365-2567.2012.03582.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
γδ T cells are increasingly recognized as having important functional roles in a range of disease scenarios such as infection, allergy, autoimmunity and cancer. With this has come realization that γδ cells are not a homogeneous population of cells with a single physiological role. Instead, ever increasing complexity in both phenotype and function is being ascribed to γδ cell subsets from various tissues and locations, and in both mouse and human. Here, we review this complexity by describing how diverse γδ cell subsets are generated in the murine thymus, and how these events relate to subsequent γδ subset function in the periphery. We then review the two major γδ cell populations in human, highlighting the several similarities of Vδ1(+) cells to certain murine γδ subsets, and describing the remarkable functional plasticity of human Vδ2(+) cells. A better understanding of this spectrum of γδ cell phenotypes should facilitate more targeted approaches to utilise their tremendous functional potential in the clinic.
Collapse
Affiliation(s)
- Dick J Pang
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
15
|
Korn T, Petermann F. Development and function of interleukin 17-producing γδ T cells. Ann N Y Acad Sci 2012; 1247:34-45. [DOI: 10.1111/j.1749-6632.2011.06355.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Sandstrom A, Scharf L, McRae G, Hawk AJ, Meredith SC, Adams EJ. γδ T cell receptors recognize the non-classical major histocompatibility complex (MHC) molecule T22 via conserved anchor residues in a MHC peptide-like fashion. J Biol Chem 2012; 287:6035-43. [PMID: 22215668 DOI: 10.1074/jbc.m111.333153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The molecular mechanisms by which γδ T cells recognize ligand remain a mystery. The non-classical MHC molecule T22 represents the best characterized ligand for murine γδ T cells, with a motif (W … EGYEL) present in the γδ T cell receptor complementary-determining region 3δ (CDR3δ) loop mediating γδ T cell recognition of this molecule. Produced through V(D)J recombination, this loop is quite diverse, with different numbers and chemical types of amino acids between Trp and EGYEL, which have unknown functional consequences for T22 recognition. We have investigated the biophysical and structural effects of CDR3δ loop diversity, revealing a range of affinities for T22 but a common thermodynamic pattern. Mutagenesis of these CDR3δ loops defines the key anchor residues involved in T22 recognition as W … EGYEL, similar to those found for the G8 CDR3δ loop, and demonstrates that spacer residues modulate but are not required for T22 recognition. Comparison of the location of these residues in the T22 interface reveals a striking similarity to peptide anchor residues in classically presented MHC peptides, with the key Trp residue of the CDR3δ motif completing the deficient peptide-binding groove of T22. This suggests that γδ T cell recognition of T22 utilizes the conserved ligand-presenting nature of the MHC fold.
Collapse
Affiliation(s)
- Andrew Sandstrom
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
17
|
Born WK, Zhang L, Nakayama M, Jin N, Chain JL, Huang Y, Aydintug MK, O'Brien RL. Peptide antigens for gamma/delta T cells. Cell Mol Life Sci 2011; 68:2335-43. [PMID: 21553233 PMCID: PMC11114491 DOI: 10.1007/s00018-011-0697-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 02/06/2023]
Abstract
γδ T cells express adaptive antigen receptors encoded by rearranging genes. Their diversity is highest in the small region of TCR V-J junctions, especially in the δ chain, which should enable the γδ TCRs to distinguish differences in small epitopes. Indeed, recognition of small molecules, and of an epitope on a larger protein has been reported. Responses to small non-peptides known as phospho-antigens are multi-clonal yet limited to a single γδ T cell subset in humans and non-human primates. Responses to small peptides are multi-clonal or oligo-clonal, include more than one subset of γδ T cells, and occur in rodents and primates. However, less effort has been devoted to investigate the peptide responses. To settle the questions of whether peptides can be ligands for the γδ TCRs, and whether responses to small peptides might occur normally, peptide binding will have to be demonstrated, and natural peptide ligands identified.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens/metabolism
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Humans
- Peptides/immunology
- Peptides/metabolism
- Protein Binding/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Willi K Born
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kreslavsky T, Gleimer M, Garbe AI, von Boehmer H. αβ versus γδ fate choice: counting the T-cell lineages at the branch point. Immunol Rev 2011; 238:169-81. [PMID: 20969592 DOI: 10.1111/j.1600-065x.2010.00947.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both αβ and γδ T cells develop in the thymus from a common progenitor. Historically distinguished by their T-cell receptor (TCR), these lineages are now defined on the basis of distinct molecular programs. Intriguingly, in many transgenic and knockout systems these programs are mismatched with the TCR type, leading to the development of γδ lineage cells driven by αβTCR and vice versa. These puzzling observations were recently explained by the demonstration that TCR signal strength, rather than TCR type per se, instructs lineage fate, with stronger TCR signal favoring γδ and weaker signal favoring αβ lineage fates. These studies also highlighted the ERK (extracellular signal regulated kinase)-Egr (early growth response)-Id3 (inhibitor of differentiation 3) axis as a potential molecular switch downstream of TCR that determines lineage choice. Indeed, removal of Id3 was sufficient to redirect TCRγδ transgenic cells to the αβ lineage, even in the presence of strong TCR signal. However, in TCR non-transgenic Id3 knockout mice the overall number of γδ lineage cells was increased due to an outgrowth of a Vγ1Vδ6.3 subset, suggesting that not all γδ T cells depend on this molecular switch for lineage commitment. Thus, the γδ lineage may in fact be a collection of two or more lineages not sharing a common molecular program and thus equipollent to the αβ lineage. TCR signaling is not the only factor that is required for development of αβ and γδ lineage cells; other pathways, such as signaling from Notch and CXCR4 receptors, cooperate with the TCR in this process.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Laboratory of Lymphocyte Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
19
|
Qi Q, Kannan AK, August A. Tec family kinases: Itk signaling and the development of NKT αβ and γδ T cells. FEBS J 2011; 278:1970-9. [PMID: 21362141 DOI: 10.1111/j.1742-4658.2011.08074.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Tec family tyrosine kinase interleukin-2 inducible T-cell kinase (Itk) is predominantly expressed in T cells and has been shown to be critical for the development, function and differentiation of conventional αβ T cells. However, less is known about its role in nonconventional T cells such as NKT and γδ T cells. In this minireview, we discuss evidence for a role for Itk in the development of invariant NKT αβ cells, as well as a smaller population NKT-like γδ T cells. We discuss how these cells take what could be the same signaling pathway regulated by Itk, and interpret it to give different outcomes with regards to development and function.
Collapse
Affiliation(s)
- Qian Qi
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
20
|
Champagne E. γδ T cell receptor ligands and modes of antigen recognition. Arch Immunol Ther Exp (Warsz) 2011; 59:117-37. [PMID: 21298486 DOI: 10.1007/s00005-011-0118-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/02/2010] [Indexed: 01/03/2023]
Abstract
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
Collapse
Affiliation(s)
- Eric Champagne
- INSERM U1043/CNRS U5282; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.
| |
Collapse
|
21
|
Abstract
Two major T lymphocyte lineages--alphabeta and gammadelta T cells--develop in the thymus from common precursors. Differentiation of both lineages requires signals coming from TCRs. Development of alphabeta T cells is driven at early stages by signaling from the pre-TCR, most likely in a ligand-independent fashion, and later--by signals delivered by alphabetaTCRs binding to their ligands--classical or non-classical MHC molecules. gammadelta lineage cells likewise require TCR signaling for their differentiation. Recent work from several groups suggests that TCR signaling not only ensures the developmental progression towards alphabeta and gammadelta lineages but that signal strength instructs lineage fate: weaker TCR signal results in alphabeta and stronger--in gammadelta lineage commitment. However, as most gammadeltaTCRs remain orphan receptors, it is still debated whether strong signals from gammadeltaTCRs in development are generated in a ligand-dependent manner (as in the case of alphabetaTCRs), ligand-independent manner (as for pre-TCR) or both. Here we summarize evidence supporting a possible role for ligands in gammadelta T cell lineage commitment and the generation of gammadelta sublineages.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Laboratory of Lymphocyte Biology, Cancer Immunology & AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Smith 736, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Park K, He X, Lee HO, Hua X, Li Y, Wiest D, Kappes DJ. TCR-mediated ThPOK induction promotes development of mature (CD24-) gammadelta thymocytes. EMBO J 2010; 29:2329-41. [PMID: 20551904 PMCID: PMC2910264 DOI: 10.1038/emboj.2010.113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 05/07/2010] [Indexed: 12/23/2022] Open
Abstract
T lymphocytes develop into two major lineages characterized by expression of the alphabeta and gammadelta T cell receptor (TCR) heterodimers. Within each major lineage, further specialization occurs, resulting in distinct subsets that differ in TCR specificity, phenotype and functional attributes. Thus, in the murine thymus, two distinct subsets of mature (CD24-) gammadelta cells have been identified, that is NK1.1+ cells, which are enriched for Vgamma1.1 usage and selectively produce IFNgamma on stimulation, and CCR6+ cells, which are enriched for Vgamma2 usage produce IL17. The upstream signals and transcriptional pathways that promote development of these distinct gammadelta subsets remain relatively poorly understood. Here, we show that the Zn-finger transcription factor ThPOK has a critical function in the development of gammadelta thymocytes. Thus, lack of functional ThPOK causes a marked reduction in the percentage and absolute number of mature gammadelta thymocytes, and a particularly severe reduction of NK1.1+ cells. Conversely, constitutive ThPOK expression leads to a striking increase in mature NK1.1+ gammadelta thymocytes. Further, we show that ThPOK induction in gammadelta thymocytes is induced by strong TCR signals mediated by engagement with antibody or high-affinity endogenous ligands, and that an important ThPOK cis-acting element, the distal regulatory element (DRE), is sufficient for this TCR-dependent induction. These results show that ThPOK expression in gammadelta thymocytes is regulated in part by the strength of TCR signalling, identify ThPOK as an important mediator of gammadelta T cell development/maturation, and lend strong support to the view that development of a significant fraction of gammadelta T cells depends on TCR engagement/signalling.
Collapse
Affiliation(s)
- Kyewon Park
- Blood Cell Development and Cancer Keystone Program, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, USA
| | - Xi He
- Blood Cell Development and Cancer Keystone Program, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, USA
| | - Hyung-Ok Lee
- Blood Cell Development and Cancer Keystone Program, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, USA
| | - Xiang Hua
- Blood Cell Development and Cancer Keystone Program, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, USA
| | - Yi Li
- Blood Cell Development and Cancer Keystone Program, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, USA
| | - David Wiest
- Blood Cell Development and Cancer Keystone Program, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, USA
| | - Dietmar J Kappes
- Blood Cell Development and Cancer Keystone Program, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, USA
| |
Collapse
|
23
|
Kreslavsky T, Gleimer M, von Boehmer H. Alphabeta versus gammadelta lineage choice at the first TCR-controlled checkpoint. Curr Opin Immunol 2010; 22:185-92. [PMID: 20074925 DOI: 10.1016/j.coi.2009.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 12/22/2009] [Indexed: 01/13/2023]
Abstract
Alphabeta and gammadelta T cells develop in the thymus from a common precursor. Although lineages initially were defined by the type of TCR they express, it soon became clear that the TCR type per se does not play a deterministic role in the lineage decision, since in various transgenic and knockout models, as well as in a small fraction of cells in wt mice, the TCRgammadelta can drive the differentiation of alphabeta lineage cells and the TCRalphabeta can drive differentiation of gammadelta lineage cells. Thus until recently it was unclear what determines lineage choice and at which stage the two lineages diverge. Recent observations suggest that TCR signal strength determines lineage fate and that lineage choice is made at or shortly after the first TCR-controlled checkpoint. While it is clear that the decision between alphabeta and gammadelta lineages is made at the first TCR-controlled checkpoint and the alphabeta sublineages split off later, it is less clear whether gammadelta sublineages divert already at the first TCR-controlled checkpoint or later. Recent experiments support the former view.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Laboratory of Lymphocyte Biology, Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
24
|
Qi Q, Xia M, Hu J, Hicks E, Iyer A, Xiong N, August A. Enhanced development of CD4+ gammadelta T cells in the absence of Itk results in elevated IgE production. Blood 2009; 114:564-71. [PMID: 19443662 PMCID: PMC2713465 DOI: 10.1182/blood-2008-12-196345] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 05/07/2009] [Indexed: 11/20/2022] Open
Abstract
The Tec kinase Itk is critical for the development of alphabeta T cells as well as differentiation of CD4(+) T cells into Th2 cells. Itk null mice have defects in the production of Th2 cytokines; however, they paradoxically have significant elevations in serum IgE. Here we show that Itk null mice have increased numbers of gammadelta T cells in the thymus and spleen. This includes elevated numbers of CD4(+) gammadelta T cell, the majority of which carry the Vgamma1.1 and Vdelta6.2/3 gammadelta T-cell receptor with a distinct phenotype. The development of these CD4(+) gammadelta T cells is T cell intrinsic, independent of either major histocompatibility complex class I or class II, and is favored during development in the absence of Itk. Itk null CD4(+) gammadelta T cells secrete significant amounts of Th2 cytokines and can induce the secretion of IgE by wild-type B cells. Our data indicate that Itk plays important role in regulating gammadelta T-cell development and function. In addition, our data indicate that the elevated IgE observed in Itk-deficient mice is due in part to the enhanced development of CD4(+) gammadelta T cells in the absence of Itk.
Collapse
Affiliation(s)
- Qian Qi
- Center for Molecular Immunology & Infectious Disease, Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Tuovinen H, Pöntynen N, Gylling M, Kekäläinen E, Perheentupa J, Miettinen A, Arstila TP. gammadelta T cells develop independently of Aire. Cell Immunol 2009; 257:5-12. [PMID: 19261265 DOI: 10.1016/j.cellimm.2009.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/28/2009] [Accepted: 01/30/2009] [Indexed: 11/30/2022]
Abstract
Mutations in the transcriptional regulator Aire disrupt thymic alphabeta T cell selection, causing in humans Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). However, it is not known whether Aire is needed for normal gammadelta T cell development. We show that Aire(-/-) mice have a normal frequency of gammadelta T cells, with TCR repertoire comparable to that of wild-type mice, and normal amount of TCR Cdelta mRNA in ileum and skin. gammadelta T cells did not express increased amounts of CD25 or display hyperproliferation, and were not involved in pathological salivary gland infiltrates. Lastly, the frequency of circulating gammadelta T cells was similar in APECED patients and healthy controls. These data indicate that gammadelta T cells develop independently of Aire and are unlikely to have a significant pathogenetic or protective role in APECED. The antigens responsible for gammadelta and alphabeta T cell selection are thus probably largely different.
Collapse
MESH Headings
- Adult
- Animals
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Polyendocrinopathies, Autoimmune/immunology
- Polyendocrinopathies, Autoimmune/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcription Factors/genetics
- Transcription Factors/immunology
- AIRE Protein
Collapse
Affiliation(s)
- Heli Tuovinen
- Department of Immunology, Haartman Institute, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
26
|
Adams EJ, Strop P, Shin S, Chien YH, Garcia KC. An autonomous CDR3delta is sufficient for recognition of the nonclassical MHC class I molecules T10 and T22 by gammadelta T cells. Nat Immunol 2008; 9:777-84. [PMID: 18516039 PMCID: PMC2768525 DOI: 10.1038/ni.1620] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 05/05/2008] [Indexed: 12/12/2022]
Abstract
It remains unclear whether gammadelta T cell antigen receptors (TCRs) detect antigens in a way similar to antibodies or alphabeta TCRs. Here we show that reactivity between the G8 and KN6 gammadelta TCRs and the major histocompatibility complex class Ib molecule T22 could be recapitulated, with retention of wild-type ligand affinity, in an alphabeta TCR after grafting of a G8 or KN6 complementarity-determining region 3-delta (CDR3delta) loop in place of the CDR3alpha loop of an alphabeta TCR. We also found that a shared sequence motif in CDR3delta loops of all T22-reactive gammadelta TCRs bound T22 in energetically distinct ways, and that T10(d), which bound G8 with weak affinity, was converted into a high-affinity ligand by a single point mutation. Our results demonstrate unprecedented autonomy of a single CDR3 loop in antigen recognition.
Collapse
MESH Headings
- Animals
- Binding Sites
- Circular Dichroism
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Lymphocyte Activation/immunology
- Protein Binding
- Protein Structure, Quaternary
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Structure-Activity Relationship
- Surface Plasmon Resonance
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Pavel Strop
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sunny Shin
- Department of Microbiology & Immunology and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yueh-Hsiu Chien
- Department of Microbiology & Immunology and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Abstract
Two main lineages of T cells develop in the thymus: those that express the alphabeta T-cell receptor (TCR) and those that express the gammadelta TCR. Whereas the development, selection, and peripheral localization of newly differentiated alphabeta T cells are understood in some detail, these processes are less well characterized in gammadelta T cells. This review describes research carried out in this laboratory and others, which addresses several key aspects of gammadelta T-cell development, including the decision of precursor cells to differentiate into the gammadelta versus alphabeta lineage, the ordered differentiation over the course of ontogeny of functional gammadelta T-cell subsets expressing distinct TCR structures, programming of ordered Vgamma gene rearrangement in the thymus, including a molecular switch that ensures appropriate Vgamma rearrangements at the appropriate stage of development, positive selection in the thymus of gammadelta T cells destined for the epidermis, and the acquisition by developing gammadelta T cells of cues that determine their correct localization in the periphery. This research suggests a coordination of molecularly programmed events and cellular selection, which enables specialization of the thymus for production of distinct T-cell subsets at different stages of development.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Humans
- Lymphocyte Activation/immunology
- Mice
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Na Xiong
- Department of Molecular and Cell Biology, Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | | |
Collapse
|
28
|
Konigshofer Y, Chien YH. γδ T cells — innate immune lymphocytes? Curr Opin Immunol 2006; 18:527-33. [PMID: 16879956 DOI: 10.1016/j.coi.2006.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/19/2006] [Indexed: 11/28/2022]
Abstract
It is unclear what the antigen recognition determinants of gammadelta T-cell receptors (TCRs) are. Compared with immunoglobulin and alphabeta TCRs, gammadelta TCRs have the highest potential CDR3 diversity generated by VDJ recombination. However, gammadelta T-cell reactivities seem to segregate with V gene usage, which has been taken to suggest that rearrangement has little role in generating different antigen specificities. During the past year, the CDR3 regions were found to determine the antigen specificities of T10- and T22-reactive gammadelta TCRs, a surface protein complex was identified as a ligand for human phosphoantigen-reactive gammadelta T cells, and the first co-crystal structure of a gammadelta TCR bound to its ligand was reported. These advances warrant a fresh look at gammadelta T-cell antigen recognition.
Collapse
Affiliation(s)
- Yves Konigshofer
- The Department of Microbiology and Immunology, Stanford University, Beckman B255, Stanford, CA 94305, USA
| | | |
Collapse
|
29
|
Haks MC, Lefebvre JM, Lauritsen JPH, Carleton M, Rhodes M, Miyazaki T, Kappes DJ, Wiest DL. Attenuation of gammadeltaTCR signaling efficiently diverts thymocytes to the alphabeta lineage. Immunity 2005; 22:595-606. [PMID: 15894277 DOI: 10.1016/j.immuni.2005.04.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 04/04/2005] [Accepted: 04/05/2005] [Indexed: 01/20/2023]
Abstract
The role of the T cell antigen receptor complex (TCR) in alphabeta/gammadelta lineage commitment remains controversial, in particular whether different TCR isoforms intrinsically favor adoption of a certain lineage. Here, we demonstrate that impairing the signaling capacity of a gammadeltaTCR complex enables it to efficiently direct thymocytes to the alphabeta lineage. In the presence of a ligand, a transgenic gammadeltaTCR mediates almost exclusive adoption of the gammadelta lineage, while in the absence of ligand, the same gammadeltaTCR promotes alphabeta lineage development with efficiency comparable to the pre-TCR. Importantly, attenuating gammadeltaTCR signaling through Lck deficiency causes reduced ERK1/2 activation and Egr expression and diverts thymocytes to the alphabeta lineage even in the presence of ligand. Conversely, ectopic Egr overexpression favors gammadelta T cell development. Our data support a model whereby gammadelta versus alphabeta lineage commitment is controlled by TCR signal strength, which depends critically on the ERK MAPK-Egr pathway.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Early Growth Response Protein 1
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Inhibitor of Differentiation Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphorylation
- Proteins/genetics
- Proteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Mariëlle C Haks
- Division of Basic Sciences, Immunobiology Working Group, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, Chien YH. Antigen recognition determinants of gammadelta T cell receptors. Science 2005; 308:252-5. [PMID: 15821090 DOI: 10.1126/science.1106480] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular basis of gammadelta T cell receptor (TCR) recognition is poorly understood. Here, we analyze the TCR sequences of a natural gammadelta T cell population specific for the major histocompatibility complex class Ib molecule T22. We find that T22 recognition correlates strongly with a somatically recombined TCRdelta complementarity-determining region 3 (CDR3) motif derived from germ line-encoded residues. Sequence diversity around these residues modulates TCR ligand-binding affinities, whereas V gene usage correlates mainly with tissue origin. These results show how an antigen-specific gammadelta TCR repertoire can be generated at a high frequency and suggest that gammadelta T cells recognize a limited number of antigens.
Collapse
Affiliation(s)
- Sunny Shin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Aydintug MK, Roark CL, Yin X, Wands JM, Born WK, O'Brien RL. Detection of Cell Surface Ligands for the γδ TCR Using Soluble TCRs. THE JOURNAL OF IMMUNOLOGY 2004; 172:4167-75. [PMID: 15034029 DOI: 10.4049/jimmunol.172.7.4167] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The natural ligands recognized by gammadelta TCRs are still largely unknown, in part because immunization does not normally result in Ag-specific gammadelta T cell responses. Taking advantage of an established ligand for a particular gammadelta TCR, we demonstrated that a multimerized recombinant form of this gammadelta TCR can be used like a mAb to specifically detect its own ligand. Using the same approach for more common gammadelta TCRs whose ligands remain unknown, we detected on certain cell lines molecules that appear to be ligands for three additional gammadelta TCRs. One of these represents the mouse Vgamma6/Vdelta1 invariant gammadelta TCR, which predominates in the female reproductive tract, the tongue, and the lung, and other tissues during inflammation. The second represents the closely related Vgamma5/Vdelta1 invariant gammadelta TCR expressed by most epidermal T cells. The third is a Vgamma1/Vdelta6.3 TCR, representative of a variable type frequently found on lymphoid gammadelta T cells. We found evidence that ligands for multiple gammadelta TCRs may be simultaneously expressed on a single cell line, and that at least some of the putative ligands are protease sensitive. This study suggests that soluble versions of gammadelta TCRs can be as tools to identify and characterize the natural ligands of gammadelta T cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/analysis
- Binding Sites, Antibody
- Binding, Competitive/immunology
- Cell Line
- Cell Line, Tumor
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cells, Cultured
- Endopeptidases/metabolism
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Humans
- Hybridomas
- Ligands
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/isolation & purification
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Sensitivity and Specificity
- Solubility
- Staining and Labeling/methods
Collapse
Affiliation(s)
- M Kemal Aydintug
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kapp JA, Kapp LM, McKenna KC, Lake JP. gammadelta T-cell clones from intestinal intraepithelial lymphocytes inhibit development of CTL responses ex vivo. Immunology 2004; 111:155-64. [PMID: 15027900 PMCID: PMC1782403 DOI: 10.1111/j.0019-2805.2003.01793.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 09/12/2003] [Accepted: 11/04/2003] [Indexed: 11/30/2022] Open
Abstract
Oral administration of antigen induces a state of tolerance that is associated with activation of CD8+ T cells that can transfer unresponsiveness to naïve syngeneic hosts. These T cells are not lytic, but they inhibit development of antibody, CD4+ T helper cell, and CD8+ cytotoxic T lymphocyte (CTL) responses upon adoptive transfer into naïve, syngeneic mice. In addition, we have shown that depletion of gammadelta T cells by injection of the anti-delta chain antibody (GL3) down modulates the expression of gammadelta T-cell receptor (TCR) and inhibits the induction of oral tolerance to ovalbumin. Oral administration of antigen also fails to induce tolerance in TCR delta-chain knockout mice suggesting that gammadelta T cells play a critical, active role in tolerance induced by orally administered antigen. To further study the contribution of gammadelta T cells to tolerance, murine gammadelta T cells were isolated from intraepithelial lymphocytes (IEL) of the small intestine by stimulation with splenic filler cells, concanavalin A and growth factors. gammadelta IEL lines demonstrated lytic activity in a redirected lysis assay. gammadelta T-cell clones express different gammadelta TCR genes and secrete large amounts of interleukin (IL)-10, but little or no IL-2, IL-4, or interferon-gamma. gammadelta IEL clones expressed transforming growth factor-beta1 and macrophage migration inhibitory factor, as well as IL-10, mRNA. Moreover, gammadelta T-cell clones potently inhibited the generation of CTL responses by secreted molecules rather than by direct cell-to-cell contact.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Clone Cells/immunology
- Cytotoxicity, Immunologic/immunology
- Epithelial Cells/immunology
- Immune Tolerance
- Immunity, Mucosal
- Immunophenotyping
- Intestinal Mucosa/immunology
- Intestine, Small/immunology
- Lymphocyte Culture Test, Mixed
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Judith A Kapp
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
33
|
Howcroft TK, Singer DS. Expression of nonclassical MHC class Ib genes: comparison of regulatory elements. Immunol Res 2003; 27:1-30. [PMID: 12637766 DOI: 10.1385/ir:27:1:1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peptide binding proteins of the major histocompatibility complex consist of the "classical" class Ia and "nonclassical" class Ib genes. The gene organization and structure/function relationship of the various exons comprising class I proteins are very similar among the class Ia and class Ib genes. Although the tissue-specific patterns of expression of these two gene families are overlapping, many class Ib genes are distinguished by relative low abundance and/or limited tissue distribution. Further, many of the class Ib genes serve specialized roles in immune responses. Given that the coding sequences of the class Ia and class Ib genes are highly homologous we sought to examine the promoter regions of the various class Ib genes by comparison to the well characterized promoter elements regulating expression of the class Ia genes. This analysis revealed a surprising complexity of promoter structures among all class I genes and few instances of conservation of class Ia promoter regulatory elements among the class Ib genes.
Collapse
Affiliation(s)
- T Kevin Howcroft
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1360, USA.
| | | |
Collapse
|
34
|
Born WK, Vollmer M, Reardon C, Matsuura E, Voelker DR, Giclas PC, O'Brien RL. Hybridomas expressing gammadelta T-cell receptors respond to cardiolipin and beta2-glycoprotein 1 (apolipoprotein H). Scand J Immunol 2003; 58:374-81. [PMID: 12950685 DOI: 10.1046/j.1365-3083.2003.01315.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hybridomas expressing murine gammadelta T-cell receptors were found to produce cytokines in response to cardiolipin (CL) and structurally related anionic phospholipids. This response required serum at concentrations related to the amount of CL in cultures. The purified serum factor, beta2-glycoprotein 1 (beta2-GP1) (apolipoprotein H), supported the CL response alone, whereas several other serum proteins and ovalbumin did not. beta2-GP1 is known to form complexes with anionic phospholipids, particularly CL, which are often recognized by pathological autoantibodies. We speculate that gammadelta T cells also recognize such complexes and that the hybridoma response reported here reflects this specificity.
Collapse
Affiliation(s)
- W K Born
- Department of Immunology at National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Lahn M, Kanehiro A, Takeda K, Terry J, Hahn YS, Aydintug MK, Konowal A, Ikuta K, O'Brien RL, Gelfand EW, Born WK. MHC class I-dependent Vgamma4+ pulmonary T cells regulate alpha beta T cell-independent airway responsiveness. Proc Natl Acad Sci U S A 2002; 99:8850-5. [PMID: 12070351 PMCID: PMC124387 DOI: 10.1073/pnas.132519299] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2001] [Indexed: 11/18/2022] Open
Abstract
Mice exposed to aerosolized ovalbumin (OVA) develop increased airway responsiveness when deficient in gammadelta T cells. This finding suggests that gammadelta T cells function as negative regulators. The regulatory influence of gammadelta T cells is evident after OVA-sensitization and -challenge, and after OVA-challenge alone, but not in untreated mice. With aerosolized Abs to target pulmonary T cells, we now demonstrate that negative regulation of airway responsiveness is mediated by a small subpopulation of pulmonary gammadelta T cells. These cells express Vgamma4 and depend in their function on the presence of IFN-gamma and MHC class I. Moreover, their effect can be demonstrated in the absence of alphabeta T cells. This novel type of negative regulation seems to precede the development of the adaptive, antigen-specific allergic response.
Collapse
Affiliation(s)
- Michael Lahn
- Department of Immunology, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Gammadelta T cells remain an enigma. They are capable of generating more unique antigen receptors than alphabeta T cells and B cells combined, yet their repertoire of antigen receptors is dominated by specific subsets that recognize a limited number of antigens. A variety of sometimes conflicting effector functions have been ascribed to them, yet their biological function(s) remains unclear. On the basis of studies of gammadelta T cells in infectious and autoimmune diseases, we argue that gammadelta T cells perform different functions according to their tissue distribution, antigen-receptor structure and local microenvironment; we also discuss how and at what stage of the immune response they become activated.
Collapse
Affiliation(s)
- Simon R Carding
- School of Biochemistry and Molecular Biology, The University of Leeds, West Yorkshire, UK.
| | | |
Collapse
|
37
|
Sathiyaseelan T, Naiman B, Welte S, Machugh N, Black SJ, Baldwin CL. Immunological characterization of a gammadelta T-cell stimulatory ligand on autologous monocytes. Immunology 2002; 105:181-9. [PMID: 11872093 PMCID: PMC1782649 DOI: 10.1046/j.0019-2805.2001.01356.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2001] [Revised: 10/08/2001] [Accepted: 11/24/2001] [Indexed: 11/20/2022] Open
Abstract
Bovine gammadelta T cells are stimulated to proliferate by autologous monocytes. This is referred to as the autologous mixed leucocyte reaction (AMLR). It has been shown previously that the stimulatory component is constitutively expressed on the monocyte plasma membrane and is a protein or has a protein moiety. Here we showed that gammadelta T-cell responses to the monocytes requires interaction with the T-cell receptor because Fab1 fragments of a monoclonal antibody (mAb) that reacts with the delta chain of the T-cell receptor blocked proliferation in the AMLR. Monocyte molecules involved in stimulation were also characterized further by biochemical and immunological methods. A mAb, named M5, was generated by immunizing mice with bovine monocytes and shown to block the ability of monocytes to stimulate in the AMLR. Treatment of monocytes or monocyte membranes with high salt, chelating agents or phospholipase C did not affect their ability to stimulate gammadelta T-cell proliferation or reactivity with mAb M5 indicating the ability of monocytes to stimulate does not involve peripheral membrane components or a glycosyl-phosphatidylinsositol (GPI)-anchored components. Hence it was concluded that the stimulation occurred as a result of intergral membrane proteins including that recognized by mAb M5. The ligand for mAb M5 was on all bovine monocytes and to a lower level on granulocytes but not on lymphocytes. MAb M5 also reacted with sheep monocytes but not with human monocytes or murine macrophages, in agreement with a previous reports that sheep monocytes but not human or mouse mononuclear phagocytes have the capacity to stimulate bovine gammadelta T cells in in vitro cultures. The level of expression of the M5 ligand was not altered by gamma-irradiation or culture of monocytes with lipopolysaccharide but it was decreased following culture with interferon-gamma-containing cell culture supernatants.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Cattle
- Cell Division/immunology
- Cells, Cultured
- Female
- Humans
- Interferon-gamma/immunology
- Ligands
- Lymphocyte Activation/immunology
- Lymphocyte Culture Test, Mixed
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Monocytes/immunology
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/antagonists & inhibitors
- Sheep
- Species Specificity
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Thillainayagam Sathiyaseelan
- Department of Veterinary and Animal Sciences, Program for Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
38
|
Selin LK, Santolucito PA, Pinto AK, Szomolanyi-Tsuda E, Welsh RM. Innate immunity to viruses: control of vaccinia virus infection by gamma delta T cells. THE JOURNAL OF IMMUNOLOGY 2001; 166:6784-94. [PMID: 11359837 DOI: 10.4049/jimmunol.166.11.6784] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The existence of gammadelta T cells has been known for over 15 years, but their significance in innate immunity to virus infections has not been determined. We show here that gammadelta T cells are well suited to provide a rapid response to virus infection and demonstrate their role in innate resistance to vaccinia virus (VV) infection in both normal C57BL/6 and beta TCR knockout (KO) mice. VV-infected mice deficient in gammadelta T cells had significantly higher VV titers early postinfection (PI) and increased mortality when compared with control mice. There was a rapid and profound VV-induced increase in IFN-gamma-producing gammadelta T cells in the peritoneal cavity and spleen of VV-infected mice beginning as early as day 2 PI. This rapid response occurred in the absence of priming, as there was constitutively a significant frequency of VV-specific gammadelta T cells in the spleen in uninfected beta TCR KO mice, as demonstrated by limiting dilution assay. Also, like NK cells, another mediator of innate immunity to viruses, gammadelta T cells in uninfected beta TCR KO mice expressed constitutive cytolytic activity. This cytotoxicity was enhanced and included a broader range of targets after VV infection. VV-infected beta TCR KO mice cleared most of the virus by day 8 PI, the peak of the gammadelta T cell response, but thereafter the gammadelta T cell number declined and the virus recrudesced. Thus, gammadelta T cells can be mediators of innate immunity to viruses, having a significant impact on virus replication early in infection in the presence or absence of the adaptive immune response.
Collapse
MESH Headings
- Animals
- Cell Movement/genetics
- Cell Movement/immunology
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/analysis
- Genes, T-Cell Receptor beta
- Genetic Predisposition to Disease
- Immunity, Cellular/genetics
- Immunity, Innate/genetics
- Kinetics
- Lymphocyte Activation/genetics
- Lymphocyte Count
- Lymphocyte Depletion
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Peritoneal Cavity/cytology
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Survival Rate
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccinia/genetics
- Vaccinia/immunology
- Vaccinia/mortality
- Vaccinia/virology
- Vaccinia virus/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- L K Selin
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- S Bahram
- Centre de Recherche d'Immunologie et d'Hématologie, Strasbourg, France
| |
Collapse
|
40
|
Hara T, Nishimura H, Hasegawa Y, Yoshikai Y. Thymus-dependent modulation of Ly49 inhibitory receptor expression on NK1.1+gamma/delta T cells. Immunology 2001; 102:24-30. [PMID: 11168633 PMCID: PMC1783153 DOI: 10.1046/j.1365-2567.2001.01155.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex (MHC) class I-specific inhibitory receptors are expressed not only on natural killer (NK) cells but also on some subsets of T cells. We here show Ly49 expression on gamma/delta T cells in the thymus and liver of beta2-microglobulin-deficient (beta2m-/-) and C57BL/6 (beta2m+/+) mice. Ly49C/I or Ly49A receptor was expressed on NK1.1+gamma/delta T cells but not on NK1.1-gamma/delta T cells. The numbers of NK1.1+gamma/delta T cells were significantly smaller in beta2m+/+ mice than in beta2m-/- mice with the same H-2b genetic background. Among NK1.1+gamma/delta T cells, the proportions of Ly49C/I+ cells but not of Ly49A+ cells, were decreased in beta2m+/+ mice, suggesting that cognate interaction between Ly49C/I and H-2Kb is involved in the reduction of the number of Ly49C/I+ gamma/delta T cells in beta2m+/+ mice. The frequency of Ly49C/I+ cells in NK1.1+gamma/delta T cells was lower in both lethally irradiated beta2m+/+ mice transplanted with bone marrow (BM) from beta2m-/- mice and lethally irradiated beta2m-/- mice transplanted with BM from beta2m+/+ mice than those in adult thymectomized BM-transplanted chimera mice. These results suggest that reduction of Ly49C/I+ NK1.1+gamma/delta T cells in beta2m+/+ mice is at least partly due to the down-modulation by MHC class I molecules on BM-derived haematopoietic cells or radioresistant cells in the thymus.
Collapse
MESH Headings
- Animals
- Antigens/analysis
- Antigens, Ly/metabolism
- Antigens, Surface/metabolism
- Bone Marrow Transplantation
- Female
- Lectins, C-Type
- Liver/immunology
- Male
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- NK Cell Lectin-Like Receptor Subfamily A
- NK Cell Lectin-Like Receptor Subfamily B
- Proteins/analysis
- Radiation Tolerance
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Immunologic/metabolism
- Receptors, NK Cell Lectin-Like
- T-Lymphocyte Subsets/immunology
- Thymus Gland/immunology
- Transplantation Chimera/immunology
- beta 2-Microglobulin/deficiency
Collapse
Affiliation(s)
- T Hara
- Laboratory of Host Defense & Germfree Life, Research Institute for Disease Mechanism & Control; First Department of Internal Medicine, Nagoya University School of Medicine, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|
41
|
O'Brien RL, Yin X, Huber SA, Ikuta K, Born WK. Depletion of a gamma delta T cell subset can increase host resistance to a bacterial infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6472-9. [PMID: 11086087 DOI: 10.4049/jimmunol.165.11.6472] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gammadelta T lymphocytes have been shown to regulate immune responses in diverse experimental systems. Because distinct gammadelta T cell subsets, as defined by the usage of certain TCR V genes, preferentially respond in various diseases and disease models, we have hypothesized that the various gammadelta T cell subsets carry out different functions. To test this, we compared one particular gammadelta T cell subset, the Vgamma1(+) subset, which represents a major gammadelta T cell type in the lymphoid organs and blood of mice, to other subsets and to gammadelta T cells as a whole. Using Listeria monocytogenes infection as an infectious disease model, we found that bacterial containment improves in mice depleted of Vgamma1(+) gammadelta T cells, albeit mice lacking all gammadelta T cells are instead impaired in their ability to control Listeria expansion. Our findings indicate that Vgamma1(+) gammadelta T cells reduce the ability of the innate immune system to destroy Listeria, even though other gammadelta T cells as a whole promote clearance of this pathogen.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Female
- Gene Targeting
- Immunity, Cellular/genetics
- Immunity, Innate/genetics
- Injections, Intravenous
- Listeria monocytogenes/immunology
- Listeriosis/genetics
- Listeriosis/immunology
- Listeriosis/microbiology
- Liver/immunology
- Liver/microbiology
- Lymphocyte Depletion
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Spleen/immunology
- Spleen/microbiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
Collapse
Affiliation(s)
- R L O'Brien
- Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | | | | | | | |
Collapse
|
42
|
Hayday AC. [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18:975-1026. [PMID: 10837080 DOI: 10.1146/annurev.immunol.18.1.975] [Citation(s) in RCA: 849] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The tripartite subdivision of lymphocytes into B cells, alphabeta T cells, and gammadelta cells has been conserved seemingly since the emergence of jawed vertebrates, more than 450 million years ago. Yet, while we understand much about B cells and alphabeta T cells, we lack a compelling explanation for the evolutionary conservation of gammadelta cells. Such an explanation may soon be forthcoming as advances in unraveling the biochemistry of gammadelta cell interactions are reconciled with the abnormal phenotypes of gammadelta-deficient mice and with the striking differences in gammadelta cell activities in different strains and species. In this review, the properties of gammadelta cells form a basis for understanding gammadelta cell interactions with antigens and other cells that in turn form a basis for understanding immunoprotective and regulatory functions of gammadelta cells in vivo. We conclude by considering which gammadelta cell functions may be most critical.
Collapse
Affiliation(s)
- A C Hayday
- Department of Immunobiology, Guy's King's St. Thomas' Medical School, King's College, University of London, United Kingdom.
| |
Collapse
|
43
|
Wingren C, Crowley MP, Degano M, Chien Y, Wilson IA. Crystal structure of a gammadelta T cell receptor ligand T22: a truncated MHC-like fold. Science 2000; 287:310-4. [PMID: 10634787 DOI: 10.1126/science.287.5451.310] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Murine T10 and T22 are highly related nonclassical major histocompatibility complex (MHC) class Ib proteins that bind to certain gammadelta T cell receptors (TCRs) in the absence of other components. The crystal structure of T22b at 3.1 angstroms reveals similarities to MHC class I molecules, but one side of the normal peptide-binding groove is severely truncated, which allows direct access to the beta-sheet floor. Potential gammadelta TCR-binding sites can be inferred from functional mapping of T10 and T22 point mutants and allelic variants. Thus, T22 represents an unusual variant of the MHC-like fold and indicates that gammadelta and alphabeta TCRs interact differently with their respective MHC ligands.
Collapse
MESH Headings
- Alleles
- Amino Acid Substitution
- Animals
- Binding Sites
- Crystallography, X-Ray
- Glycosylation
- Histocompatibility Antigens Class I/chemistry
- Hydrogen Bonding
- Ligands
- Mice
- Models, Molecular
- Point Mutation
- Protein Conformation
- Protein Folding
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/immunology
- Proteins/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Surface Properties
- beta 2-Microglobulin/chemistry
Collapse
Affiliation(s)
- C Wingren
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
44
|
Chien YH, Hampl J. Antigen-recognition properties of murine gamma delta T cells. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2000; 22:239-50. [PMID: 11116955 DOI: 10.1007/pl00006752] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Y H Chien
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
45
|
Morita CT, Mariuzza RA, Brenner MB. Antigen recognition by human gamma delta T cells: pattern recognition by the adaptive immune system. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2000; 22:191-217. [PMID: 11116953 DOI: 10.1007/s002810000042] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
MESH Headings
- Animals
- Antigen Presentation
- Antigens, Bacterial/immunology
- Antigens, CD1/immunology
- Antigens, Protozoan/immunology
- Hemiterpenes
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunity, Active
- Immunity, Cellular
- Lipids/immunology
- Major Histocompatibility Complex/immunology
- Organophosphorus Compounds/immunology
- Organophosphorus Compounds/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- C T Morita
- Division of Rheumatology, Department of Internal Medicine, Interdisciplinary Group in Immunology, EMRB 340F, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
46
|
Hampl J, Schild H, Litzenberger C, Baron M, Crowley MP, Chien YH. The Specificity of a Weak γδ TCR Interaction Can Be Modulated by the Glycosylation of the Ligand. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.1.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The γδ T cell clone LBK5 recognizes the MHC molecule IEk. Here, we demonstrate that the affinity of this interaction is weaker than those typically reported for αβ TCRs that recognize peptide/MHC complexes. Consistent with our previous finding that peptide bound to the IE molecule does not confer specificity, we show that the entire epitope for LBK5 is contained within the polypeptide chains of the molecule, centered around the polymorphic residues 67 and 70 of the IE β-chain. However, LBK5 recognition is profoundly influenced by the N-linked glycosylation at residue 82 of the IE α-chain. Since infected, stressed, or transformed cells often change the posttranslational modifications of their surface glycoproteins, this finding suggests a new way in which γδ T cell Ag recognition can be regulated.
Collapse
Affiliation(s)
- Johannes Hampl
- ‡Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA 94305
| | | | | | | | | | - Yueh-hsiu Chien
- *Department of Microbiology and Immunology,
- †Program of Immunology, and
| |
Collapse
|
47
|
Abstract
Mammalian and avian CD3+ T cells can be separated into two lymphocyte subsets bearing heterodimeric T-cell receptors (TCR) composed of either alphabeta or gammadelta chains. Although it is now widely accepted that gammadelta and alphabeta T cells fulfill mandatory and nonredundant roles, the generality of this assumption and the exact functions played by gammadelta T cells remain uncertain. While an early protective role of gammadelta T cells has long been suspected, recent observations drawn in particular from transgenic models suggest their implication in the homeostatic control of immune and nonimmune processes. This hypothesis is also supported by the existence of several self-reactive gammadelta T-cell subsets in rodents and humans, whose specificity and effector properties will be detailed and discussed here. The present review will also describe several mechanisms that could allow efficient control of these self-reactive subsets while permitting expression of their regulatory and/or protective properties.
Collapse
Affiliation(s)
- F Halary
- INSERM U463, Institut de Biologie, Nantes, France
| | | | | |
Collapse
|
48
|
Abstract
T-cell receptor gammadelta cells (TCRgammadelta) are often found in increased numbers during the course of several viral infections in humans. Although these findings suggest an important role for this unique subset, their precise function has not been ascertained. Recent studies in murine models of both RNA and DNA virus infections have begun to shed new light on the potential function for TCRgammadelta cells in antiviral immunity. It is clear that TCRgammadelta cells participate in the immune response to human immunodeficiency virus (HIV), influenza, Sendai, coxsackie, vaccinia, vesicular stomatitis virus (VSV), and herpes simplex virus-1 (HSV-1) viral infections since they become activated and home to the sites of viral replication. In this review we will summarize current efforts to dissect the role of TCRgammadelta cells in these disease settings, emphasizing the effector functions utilized, the TCR repertoire, and the antigens recognized. Particular focus will be placed on HSV-1 infections where we have begun to address these issues and have shown that TCRgammadelta cells are sufficient for protection from lethal infection and are able to recognize the herpes virus antigen glycoprotein I.
Collapse
Affiliation(s)
- R Sciammas
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA, USA
| | | |
Collapse
|
49
|
Szczepanik M, Nowak B, Askenase PW, Ptak W. Cross-talk between gammadelta T lymphocytes and immune cells in humoral response. Immunol Suppl 1998; 95:612-7. [PMID: 9893053 PMCID: PMC1364360 DOI: 10.1046/j.1365-2567.1998.00642.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of gamma delta T cells in immunoregulation is largely unknown. In the current study we noted that gamma delta T cells play a positive role in the humoral response. These positively acting gamma delta T cells are required for the successful adoptive cell transfer of the humoral response, as well as for in vitro generation of plaque-forming cells (PFC). The presented results show that gammadelta T cells cause an increase in interleukin-10 (IL-10) production, which partly elucidates the mechanism of action of these cells. However, experiments with cell culture inserts strongly suggest that direct cell-cell contact between immune and gamma delta H-2-compatible regulatory T cells is critical to the exertion of the positive immunoregulatory function of gamma delta cells. The mechanism of cross-talk between these two cell populations is still not clear but we regard as most likely that the positively acting gamma delta T cells may interact with a complex of heat-shock protein-non-polymorphic MHC (IB) on the surface of T helper type 2 and/or B cells. This could provide, by direct cell-cell contact, the cognate recognition between gamma delta T-cell receptors and heat-shock protein-MHC that leads to positive internal signalling in the immune cells.
Collapse
Affiliation(s)
- M Szczepanik
- Jagiellonian University, College of Medicine, Department of Immunology, Cracow, Poland
| | | | | | | |
Collapse
|
50
|
Sciammas R, Bluestone JA. HSV-1 Glycoprotein I-Reactive TCRγδ Cells Directly Recognize the Peptide Backbone in a Conformationally Dependent Manner. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Despite the description of numerous antigenic ligands recognized by TCRγδ cells, detailed information concerning the structural nature of these antigenic epitopes is lacking. In addition, the recent descriptions of human TCRγδ cells recognizing mycobacterium-derived low m.w. lipid molecules confirms that the spectrum and nature of biologic structures that are capable of being recognized by TCRγδ cells are unclear. We have previously described a murine TCRγδ cell clone, TgI4.4, that is reactive to herpes simplex virus (HSV)-1 glycoprotein I (gI). Unlike TCRαβ-mediated, MHC-restricted Ag recognition but similar to Ig Ag recognition, TgI4.4 recognizes purified gI directly, in the absence of Ag processing or presentation. Since gI is a complex glycoprotein, the nature of the antigenic epitope was investigated. First, gI recognition by TgI4.4 is conformationally dependent, as revealed by denaturation and proteolytic experiments. Secondly, the epitope recognized by TgI4.4 was mapped to the amino terminus by using insertion mutants of gI. Lastly, TgI4.4 recognizes the gI protein directly since completely deglycosylated forms of gI are efficiently recognized. Therefore, TCRγδ cells are capable of recognizing a variety of molecular structures, including proteins. The ability of TgI4.4 to recognize a nonglycosylated form of gI suggests that HSV-1 recognition by TCRγδ cells in vivo is not limited by cell-specific glycosylation patterns or glycosylation-dependent conformational influences.
Collapse
Affiliation(s)
- Roger Sciammas
- Committee on Immunology and Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637
| | - Jeffrey A. Bluestone
- Committee on Immunology and Ben May Institute for Cancer Research, University of Chicago, Chicago, IL 60637
| |
Collapse
|