1
|
Yuce M, Sarica Z, Ates B, Kurkcuoglu O. Exploring species-specific inhibitors with multiple target sites on S. aureus pyruvate kinase using a computational workflow. J Biomol Struct Dyn 2022; 41:3496-3510. [PMID: 35302925 DOI: 10.1080/07391102.2022.2051743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Experimental evidence indicated that bacterial pyruvate kinase of glycolysis can be evaluated as an alternative target to eliminate infections, while antibiotic resistance poses a global threat. Here, we use a computational workflow to reveal and investigate the potential allosteric sites of methicillin-resistant S. aureus PK, which can help in designing species-specific drugs to inhibit activity of this organism. Residue interaction networks point to a known allosteric site at the small C-C interface, a potential allosteric site near the small interface (site #1), and a second potential allosteric site at the large interface (site #2). 2 µs-long molecular dynamics (MD) simulations with AMBER16 generate different conformations of one narrow target site. Known and potential allosteric sites on the selected conformers are investigated using ensemble docking with AutoDock Vina and a library of 2447 FDA-approved drugs. We determine 18 hits, comprising ergot-alkaloids, anti-cancer-agents, antivirals, analgesics, cardiac glycosides, all with a high docking z-score for three sites. 5 selected compounds with high, average and low z-scores are subjected to 50 ns-long MD simulations for MM-GBSA calculations. ΔGbind values up to -49.3 kcal/mol at the C-C interface, up to -32.7 kcal/mol at site #1, and up to -53.3 kcal/mol at site #2 support the docking calculations. We investigate mitapivat and TT-232 as reference compounds under clinical trial, targeting human PK isomers. We suggest 18 FDA-approved hits from the docking calculations and TT-232 as potential inhibitors with multiple target sites on S. aureus PK. This study also proposes pharmacophores models for de novo drug design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Merve Yuce
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Zehra Sarica
- Computational Science and Engineering Division, Informatics Institute, Istanbul Technical University, Istanbul, Turkey
| | - Beril Ates
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Shaw EI, Dooley CA, Fischer ER, Scidmore MA, Fields KA, Hackstadt T. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol 2000; 37:913-25. [PMID: 10972811 DOI: 10.1046/j.1365-2958.2000.02057.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The obligate intracellular bacterium Chlamydia trachomatis has a unique developmental cycle that involves functionally and morphologically distinct cell types adapted for extracellular survival and intracellular multiplication. Infection is initiated by an environmentally resistant cell type called an elementary body (EB). Over the first several hours of infection, EBs differentiate into a larger replicative form, termed the reticulate body (RB). Late in the infectious process, RBs asynchronously begin to differentiate back to EBs, which accumulate within the lumen of the inclusion until released from the host cell for subsequent rounds of infection. In an effort to characterize temporal gene expression in relation to the chlamydial developmental cycle, we have used quantitative-competitive polymerase chain reaction (QC-PCR) and reverse transcription (RT)-PCR techniques. These analyses demonstrate that C. trachomatis double their DNA content every 2-3 h, with synthesis beginning between 2 and 4 h after infection. We determined the onset of transcription of specific temporal classes of developmentally expressed genes. RT-PCR analysis was performed on several genes encoding key enzymes or components of essential biochemical pathways and functions. This comparison encompassed approximately 8% of open reading frames on the C. trachomatis genome. In analysis of total RNA samples harvested at 2, 6, 12 and 20 h after infection, using conditions under which a single chlamydial transcript per infected cell is detected, three major temporal classes of gene expression were resolved. Initiation of transcription appears to occur in three temporal classes which we have operationally defined as: early, which are detected by 2 h after infection during the germination of EBs to RBs; mid-cycle, which appear between 6 and 12 h after infection and represent transcripts expressed during the growth and multiplication of RBs; or late, which appear between 12 and 20 h after infection and represent those genes transcribed during the terminal differentiation of RBs to EBs. Collectively, the data suggest that chlamydial early gene functions are weighted toward initiation of macromolecular synthesis and the establishment of their intracellular niche by modification of the inclusion membrane. Surprisingly, representative enzymes of intermediary metabolism and structural proteins do not appear to be transcribed until 10-12 h after infection; coinciding with the onset of observed binary fission of RBs. Late gene functions appear to be predominately those associated with the terminal differentiation of RBs back to EBs.
Collapse
Affiliation(s)
- E I Shaw
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Hamilton, MT 59840, USA
| | | | | | | | | | | |
Collapse
|
3
|
Emmerling M, Bailey JE, Sauer U. Glucose catabolism of Escherichia coli strains with increased activity and altered regulation of key glycolytic enzymes. Metab Eng 1999; 1:117-27. [PMID: 10935925 DOI: 10.1006/mben.1998.0109] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigates the effect of overexpression of key glycolytic enzymes exhibiting either native or alternative allosteric regulation on glucose bioconversion by resting Escherichia coli cells previously engineered for ethanol production. Homologous and heterologous pyruvate kinases (Pyk) and phosphofructokinases (Pfk) were individually and simultaneously overexpressed. Overexpression of the E. coli Pfk led to a shift from ethanol to lactate formation (three-fold above the control level) while overexpression of Pyks accelerated lactate formation two-fold with less reduction in ethanol formation. Further increase in lactate formation (five-fold above the control level) resulted from overexpression of Pfk from Lactobacillus bulgaricus which, unlike the E. coli Pfk, is not allosterically regulated by either phosphoenolpyruvate or ADP. These effects on the carbon flux distribution were accompanied by significant changes in the intracellular concentrations of several glycolytic intermediates. Increased Pfk levels led primarily to reduced levels of hexose phosphates. Increased Pyk activity resulted in more complex changes which were different for overexpressed native Pyk and for overexpressed Bacillus stearothermophilus Pyk, which differs from E. coli Pyk in lacking activation by fructose 1,6-diphosphate, but is allosterically activated by AMP and ribose 5-phosphate. Simultaneous overexpression of native Pfk and Pyk caused a Pfk-overexpression-like phenotype with lower levels of hexose phosphates and further increased lactate formation (nine-fold above the control level). The flux data demonstrate that overexpression of even single enzymes early in a central pathway can increase the fluxes to a particular metabolic product, although it may not affect the glucose uptake rate.
Collapse
Affiliation(s)
- M Emmerling
- Institute of Biotechnology, Eidgenössische Technische Hochschule Zürich, Switzerland
| | | | | |
Collapse
|
4
|
Steiner P, Fussenegger M, Bailey JE, Sauer U. Cloning and expression of the Zymomonas mobilis pyruvate kinase gene in Escherichia coli. Gene 1998; 220:31-8. [PMID: 9767092 DOI: 10.1016/s0378-1119(98)00418-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The homotetrameric pyruvate kinases (PK) constitute a fine example of allosteric enzymes subjected to sophisticated regulatory mechanisms. We have cloned and sequenced the Zymomonas mobilis structural gene for the first prokaryotic dimeric PK, as an initial step toward understanding the peculiar properties of this enzyme. The deduced amino acid sequence of the pyk gene consists of 475 residues with a calculated molecular mass of 51.4kDa and exhibits up to 50% sequence identity with other PKs. Heterologous expression in Escherichia coli was not obtained from the native promoter, but only when the pyk gene was under the control of a strong inducible promoter when a ribosome-binding site was present upstream of the putative TTG start codon of the pyk gene. Kinetic characterization of PK in concentrated crude cell extracts showed that the enzyme is not activated by sugar phosphates or AMP but is slightly inhibited by ATP. Thus, PK of Z. mobilis is unique among the characterized prokaryotic PKs due to its high activity in the absence of any allosteric activator. Amino acid sequence alignments revealed that glutamate 381 may play a role in ineffective binding of the usual PK activator, fructose-1,6-bisphosphate.
Collapse
Affiliation(s)
- P Steiner
- Institute of Biotechnology, ETH Zürich, CH-8093, Zürich, Switzerland
| | | | | | | |
Collapse
|
5
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
6
|
Hensel M, Shea JE, Bäumler AJ, Gleeson C, Blattner F, Holden DW. Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol 1997; 179:1105-11. [PMID: 9023191 PMCID: PMC178805 DOI: 10.1128/jb.179.4.1105-1111.1997] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We recently identified a pathogenicity island (SPI2) located at 30.7 centisomes on the Salmonella typhimurium chromosome. SPI2 contains genes encoding a type III secretion system whose function is distinct from that of the type III secretion system encoded by a pathogenicity island (SPI1) at 63 centisomes which is involved in epithelial cell entry. An analysis of the boundaries of SPI2 and comparison with the corresponding region of the Escherichia coli chromosome revealed that SPI2 inserted adjacent to the tRNA(Val) gene. The E. coli chromosome contains 9 kb of DNA at the region corresponding to the SPI2 insertion point which appears to be absent in S. typhimurium. The distribution of SPI1 and SPI2 was examined in various Salmonella isolates. In contrast to type III secretion system genes of SPI1, those of SPI2 are not present in Salmonella bongori, which diverged at the first branch point in the Salmonella lineage. These and other data indicate that SPI2 was acquired by a Salmonella strain already harboring SPI1 by horizontal transfer from an unknown source.
Collapse
Affiliation(s)
- M Hensel
- Lehrstuhl für Bakteriologie, Max von Pettenkofer-Institut für Hygieneund Medizinische Mikrobiologie, Munich, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The Saccharomyces cerevisiae genome sequencing project was the first of many projects aimed at sequencing the entire genomes of model organisms. Since its initiation in 1989, there have been numerous debates about the validity of genome sequencing, especially with reference to the model organisms. Seven years on, I hope to satisfy some of the critics by demonstrating that, as a consequence of the mass of data now becoming available from such projects, and the beginning of the major collaborative effort to sequence the human genome, we are now entering an exciting and dynamic time for those involved not only in genome sequencing, but also in all areas of the biological sciences.
Collapse
Affiliation(s)
- K Thomas
- The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, UK
| |
Collapse
|
8
|
Branny P, De La Torre F, Garel JR. The genes for phosphofructokinase and pyruvate kinase of Lactobacillus delbrueckii subsp. bulgaricus constitute an operon. J Bacteriol 1996; 178:4727-30. [PMID: 8755908 PMCID: PMC178247 DOI: 10.1128/jb.178.15.4727-4730.1996] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In Lactobacillus delbrueckii subsp. bulgaricus, the pyk gene coding for pyruvate kinase and the pfk gene coding for phosphofructokinase formed a bicistronic operon transcribed into a 2.9-kb RNA. The nucleotide sequence of the pyk gene indicated that the encoded protein possessed an extra C-terminal domain with a potential phosphoenolpyruvate-dependent autophosphorylation site.
Collapse
Affiliation(s)
- P Branny
- Laboratoire d'Enzymologie, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | |
Collapse
|
9
|
Shea JE, Hensel M, Gleeson C, Holden DW. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 1996; 93:2593-7. [PMID: 8637919 PMCID: PMC39842 DOI: 10.1073/pnas.93.6.2593] [Citation(s) in RCA: 588] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mapping the insertion points of 16 signature-tagged transposon mutants on the Salmonella typhimurium chromosome led to the identification of a 40-kb virulence gene cluster at minute 30.7. This locus is conserved among all other Salmonella species examined but is not present in a variety of other pathogenic bacteria or in Escherichia coli K-12. Nucleotide sequencing of a portion of this locus revealed 11 open reading frames whose predicted proteins encode components of a type III secretion system. To distinguish between this and the type III secretion system encoded by the inv/spa invasion locus known to reside on a pathogenicity island, we refer to the inv/spa locus as Salmonella pathogenicity island (SPI) 1 and the new locus as SPI2. SPI2 has a lower G+C content than that of the remainder of the Salmonella genome and is flanked by genes whose products share greater than 90% identity with those of the E. coli ydhE and pykF genes. Thus SPI2 was probably acquired horizontally by insertion into a region corresponding to that between the ydhE and pykF genes of E. coli. Virulence studies of SPI2 mutants have shown them to be attenuated by at least five orders of magnitude compared with the wild-type strain after oral or intraperitoneal inoculation of mice.
Collapse
Affiliation(s)
- J E Shea
- Department of Infectious Diseases and Bacteriology, Royal Postgraduate Medical School, London, United Kingdom
| | | | | | | |
Collapse
|
10
|
Nairn J, Smith S, Allison PJ, Rigden D, Fothergill-Gilmore LA, Price NC. Cloning and sequencing of a gene encoding pyruvate kinase from Schizosaccharomyces pombe; implications for quaternary structure and regulation of the enzyme. FEMS Microbiol Lett 1995; 134:221-6. [PMID: 8586271 DOI: 10.1111/j.1574-6968.1995.tb07941.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A cDNA encoding pyruvate kinase from Schizosaccharomyces pombe has been isolated from a lambda ZAPII library. This cDNA was sequenced and found to contain an open reading frame of 1524 nucleotides, giving a predicted protein subunit M, of 55470. The sequence shows a high degree of identity with other pyruvate kinase sequences, with residues implicated in the binding of substrate and metal ion co-factors conserved. However, there are significant differences in the putative subunit interface and effector binding regions which may account for the unusual quaternary structure and regulatory properties of the S. pombe enzyme.
Collapse
Affiliation(s)
- J Nairn
- Department of Biological and Molecular Sciences, University of Stirling, UK
| | | | | | | | | | | |
Collapse
|
11
|
Crouzet P, Otten L. Sequence and mutational analysis of a tartrate utilization operon from Agrobacterium vitis. J Bacteriol 1995; 177:6518-26. [PMID: 7592429 PMCID: PMC177504 DOI: 10.1128/jb.177.22.6518-6526.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The grapevine is the natural host of the tumorigenic bacterium Agrobacterium vitis. Most of the A. vitis isolates can use tartrate, an unusually abundant compound in grapevine. The nopaline strain, AB4, contains a 170-kb conjugative plasmid (pTrAB4) encoding tartrate utilization. A 5.65-kb pTrAB4 region which enables non-tartrate-utilizing Agrobacterium tumefaciens to grow on tartrate was sequenced and mutagenized with the transcriptional fusion transposon Tn5-uidA1. This DNA fragment contains four intact open reading frames (ORFs) (ttuABCD) required for tartrate-dependent growth. The mutant phenotypes of each ORF, their homologies to published sequences, and their induction patterns allowed us to propose a model for tartrate utilization in A. vitis. ttuA encodes a LysR-like transcriptional activator and is transcribed in the absence of tartrate. ttuB codes for a protein with homology to transporter proteins and is required for entry of tartrate into bacteria. ttuC codes for a tartrate dehydrogenase, while ttuD lacks homology to known sequences; the growth properties of ttuD mutants suggest that TtuD catalyzes the second step in tartrate degradation. A fifth incomplete ORF (ttuE) encodes a pyruvate kinase which is induced by tartrate and required for optimal growth. Although the ttuABCD fragment allows growth of A. tumefaciens on tartrate, it does not provide full tartrate utilization in the original A. vitis background.
Collapse
Affiliation(s)
- P Crouzet
- Department of Phytopathology, Plant Molecular Biology Institute of Centre National de la Recherche Scientifique, Strasbourg, France
| | | |
Collapse
|
12
|
Mattevi A, Valentini G, Rizzi M, Speranza ML, Bolognesi M, Coda A. Crystal structure of Escherichia coli pyruvate kinase type I: molecular basis of the allosteric transition. Structure 1995; 3:729-41. [PMID: 8591049 DOI: 10.1016/s0969-2126(01)00207-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Pyruvate kinase (PK) plays a major role in the regulation of glycolysis. Its catalytic activity is controlled by the substrate phosphoenolpyruvate and by one or more allosteric effectors. The crystal structures of the non-allosteric PKs from cat and rabbit muscle are known. We have determined the three-dimensional structure of the allosteric type I PK from Escherichia coli, in order to study the mechanism of allosteric regulation. RESULTS The 2.5 A resolution crystal structure of the unligated type I PK in the inactive T-state shows that each subunit of the homotetrameric enzyme comprises a (beta/alpha)8-barrel domain, a flexible beta-barrel domain and a C-terminal domain. The allosteric and active sites are located at the domain interfaces. Comparison of the T-state E. coli PK with the non-allosteric muscle enzyme, which is thought to adopt a conformation similar to the active R-state, reveals differences in the orientations of the beta-barrel and C-terminal domains of each subunit, which are rotated by 17 degrees and 15 degrees, respectively. Moreover, the relative orientation of the four subunits differs by about 16 degrees in the two enzymes. Highly conserved residues at the subunit interfaces couple these movements to conformational changes in the substrate and allosteric effector binding sites. The subunit rotations observed in the T-state PK induce a shift in loop 6 of the (beta/alpha)8-barrel domain, leading to a distortion of the phosphoenolpyruvate-binding site accounting for the low substrate affinity of the T-state enzyme. CONCLUSIONS Our results suggest that allosteric control of PK is accomplished through remarkable domain and subunit rotations. On transition from the T- to the R-state all 12 domains of the functional tetramer modify their relative orientations. These concerted motions are the molecular basis of the coupling between the active centre and the allosteric site.
Collapse
Affiliation(s)
- A Mattevi
- Department of Genetics and Microbiology, University of Pavia, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Bork P, Ouzounis C, Casari G, Schneider R, Sander C, Dolan M, Gilbert W, Gillevet PM. Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology. Mol Microbiol 1995; 16:955-67. [PMID: 7476192 DOI: 10.1111/j.1365-2958.1995.tb02321.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report on the analysis of 214kb of the parasitic eubacterium Mycoplasma capricolum sequenced by genomic walking techniques. The 287 putative proteins detected to date represent about half of the estimated total number of 500 predicted for this organism. A large fraction of these (75%) can be assigned a likely function as a result of similarity searches. Several important features of the functional organization of this small genome are already apparent. Among these are (i) the expected relatively large number of enzymes involved in metabolic transport and activation, for efficient use of host cell nutrients; (ii) the presence of anabolic enzymes; (iii) the unexpected diversity of enzymes involved in DNA replication and repair; and (iv) a sizeable number of orthologues (82 so far) in Escherichia coli. This survey is beginning to provide a detailed view of how M. capricolum manages to maintain essential cellular processes with a genome much smaller than that of its bacterial relatives.
Collapse
Affiliation(s)
- P Bork
- Max-Delbrück-Centre for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ramseier TM, Bledig S, Michotey V, Feghali R, Saier MH. The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Mol Microbiol 1995; 16:1157-69. [PMID: 8577250 DOI: 10.1111/j.1365-2958.1995.tb02339.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Escherichia coli fructose repressor, FruR, is known to regulate expression of several genes concerned with carbon utilization. Using a previously derived consensus sequence for FruR binding, additional potential operators were identified and tested for FruR binding in DNA band migration retardation assays. Operators in the control regions of operons concerned with carbon metabolism bound FruR, while those in operons not concerned with carbon metabolism did not. In vivo assays with transcriptional lacZ fusions showed that FruR controls the expression of FruR operator-containing genes encoding key enzymes of virtually every major pathway of carbon metabolism. Moreover, a fruR null mutation altered the rates of utilization of at least 36 carbon sources. In general, oxidation rates for glycolytic substances were enhanced while those for gluconeogenic substances were depressed. Alignment of FruR operators revealed that the consensus sequence for FruR binding is the same for operons that are activated and repressed by FruR and permitted formulation of a revised FruR-binding consensus sequence. The reported observations indicate that FruR modulates the direction of carbon flow by transcriptional activation of genes encoding enzymes concerned with oxidative and gluconeogenic carbon flow and by repression of those concerned with fermentative carbon flow.
Collapse
Affiliation(s)
- T M Ramseier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | | | |
Collapse
|
15
|
Jetten MS, Gubler ME, Lee SH, Sinskey AJ. Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum. Appl Environ Microbiol 1994; 60:2501-7. [PMID: 8074528 PMCID: PMC201676 DOI: 10.1128/aem.60.7.2501-2507.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pyruvate kinase activity is an important element in the flux control of the intermediate metabolism. The purified enzyme from Corynebacterium glutamicum demonstrated a marked sigmoidal dependence of the initial rate on the phosphoenolpyruvate concentration. In the presence of the negative allosteric effector ATP, the phosphoenolpyruvate concentration at the half-maximum rate (S0.5) increased from 1.2 to 2.8 mM, and cooperation, as expressed by the Hill coefficient, increased from 2.0 to 3.2. AMP promoted opposite effects: the S0.5 was decreased to 0.4 mM, and the enzyme exhibited almost no cooperation. The maximum reaction rate was 702 U/mg, which corresponded to an apparent kcat of 2,540 s-1. The enzyme was not influenced by fructose-1,6-diphosphate and used Mn2+ or Co2+ as cations. Sequence determination of the C. glutamicum pyk gene revealed an open reading frame coding for a polypeptide of 475 amino acids. From this information and the molecular mass of the native protein, it follows that the pyruvate kinase is a tetramer of 236 kDa. Comparison of the deduced polypeptide sequence with the sequences of other bacterial pyruvate kinases showed 39 to 44% homology, with some regions being very strongly conserved.
Collapse
Affiliation(s)
- M S Jetten
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
16
|
Pevzner PA, Lipshutz RJ. Towards DNA sequencing chips. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 1994 1994. [DOI: 10.1007/3-540-58338-6_64] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
18
|
Burland V, Daniels DL, Plunkett G, Blattner FR. Genome sequencing on both strands: the Janus strategy. Nucleic Acids Res 1993; 21:3385-90. [PMID: 8346017 PMCID: PMC331435 DOI: 10.1093/nar/21.15.3385] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The design of large scale DNA sequencing projects such as genome analysis demands a new approach to sequencing strategy, since neither a purely random nor a purely directed method is satisfactory. We have developed a strategy that combines these two methods in a way that preserves the advantages of both while avoiding their particular limitations. Computer simulations showed that a specific balance of random and directed sequencing was required for the most efficient strategy, termed the Janus strategy, which has been used in the Escherichia coli genome sequencing project. This approach depended on obtaining sequence easily from either strand of a cloned insert, and was facilitated by inversion of the insert in the engineered M13 vector Janus, by site-specific recombination. The inversion was accomplished simply by growth on the appropriate host strain, when the DNA strand incorporated into the new single stranded phage was complementary to that in the original phage, and was sequenced by the same simple protocol as the first strand.
Collapse
Affiliation(s)
- V Burland
- Laboratory of Genetics, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
19
|
Llanos RM, Harris CJ, Hillier AJ, Davidson BE. Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase. J Bacteriol 1993; 175:2541-51. [PMID: 8478320 PMCID: PMC204555 DOI: 10.1128/jb.175.9.2541-2551.1993] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The discovery of a novel multicistronic operon that encodes phosphofructokinase, pyruvate kinase, and lactate dehydrogenase in the lactic acid bacterium Lactococcus lactis is reported. The three genes in the operon, designated pfk, pyk, and ldh, contain 340, 502, and 325 codons, respectively. The intergenic distances are 87 bp between pfk and pyk and 117 bp between pyk and ldh. Plasmids containing pfk and pyk conferred phosphofructokinase and pyruvate kinase activity, respectively, on their host. The identity of ldh was established previously by the same approach (R. M. Llanos, A. J. Hillier, and B. E. Davidson, J. Bacteriol. 174:6956-6964, 1992). Each of the genes is preceded by a potential ribosome binding site. The operon is expressed in a 4.1-kb transcript. The 5' end of the transcript was determined to be a G nucleotide positioned 81 bp upstream from the pfk start codon. The pattern of codon usage within the operon is highly biased, with 11 unused amino acid codons. This degree of bias suggests that the operon is highly expressed. The three proteins encoded on the operon are key enzymes in the Embden-Meyerhoff pathway, the central pathway of energy production and lactic acid synthesis in L. lactis. For this reason, we have called the operon the las (lactic acid synthesis) operon.
Collapse
Affiliation(s)
- R M Llanos
- Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
20
|
Sakai H, Ohta T. Molecular cloning and nucleotide sequence of the gene for pyruvate kinase of Bacillus stearothermophilus and the production of the enzyme in Escherichia coli. Evidence that the genes for phosphofructokinase and pyruvate kinase constitute an operon. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:851-9. [PMID: 8436141 DOI: 10.1111/j.1432-1033.1993.tb17618.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pyruvate kinase from Bacillus stearothermophilus is an allosteric enzyme activated by AMP or ribose 5-phosphate but not by fructose 1,6-bisphosphate. The gene for the enzyme was cloned in Escherichia coli and its entire nucleotide sequence was determined. The deduced amino acid sequence consisted of 587 residues and the molecular mass was calculated to be 62 317 Da. The sequence was highly similar to other pyruvate kinases, indicating that they have the same evolutional origin. Similarly to the E. coli enzymes, the enzyme does not contain an N-terminal domain, in contrast to the eukaryotic pyruvate kinases. However, the Bacillus stearothermophilus enzyme had an extra C-terminal sequence consisting of about 110 amino acid residues. A phosphoenolpyruvate-binding motif, which is observed in pyruvate phosphate dikinase, phosphoenolpyruvate: sugar phosphotransferase system enzyme I and phosphoenolpyruvate synthase, was present in the extra C-terminal sequence. There was an open reading frame upstream of the pyruvate kinase gene. The homology of the sequence showed that the gene encodes phosphofructokinase. Both phosphofructokinase and pyruvate kinase were expressed in E. coli cells, and the evidence suggesting that both genes constitute an operon is presented.
Collapse
Affiliation(s)
- H Sakai
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Tokyo, Japan
| | | |
Collapse
|
21
|
Valentini G, Stoppini M, Iadarola P, Malcovati M, Ferri G, Speranza ML. Divergent binding sites in pyruvate kinases I and II from Escherichia coli. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1993; 374:69-74. [PMID: 8439398 DOI: 10.1515/bchm3.1993.374.1-6.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pyridoxal 5'-phosphate incorporation into pyruvate kinase II from E. coli was decreased by the substrate phosphoenolpyruvate and increased by the allosteric activator ribose 5-phosphate, the total incorporation being linearly related to inactivation. Four lysyl residues were substantially modified, whatever the incubation conditions were while two additional residues became reactive only in the presence of the allosteric activator. Six tryptic peptides containing modified lysines were purified and sequenced. They defined five regions of pyruvate kinase II, since one of them contained two labelled lysines and included a peptide which also appeared independently. Sequence comparison with E. coli type I, yeast and cat muscle pyruvate kinases shows that the binding regions of pyruvate kinase II are clearly divergent from those of pyruvate kinase I and of the eukaryotic enzymes.
Collapse
Affiliation(s)
- G Valentini
- Dipartimento di Biochimica, Università di Pavia
| | | | | | | | | | | |
Collapse
|
22
|
Allert S, Ernest I, Poliszczak A, Opperdoes FR, Michels PA. Molecular cloning and analysis of two tandemly linked genes for pyruvate kinase of Trypanosoma brucei. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 200:19-27. [PMID: 1879424 DOI: 10.1111/j.1432-1033.1991.tb21043.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Trypanosoma brucei (stock 427) genes encoding the glycolytic enzyme pyruvate kinase are present on two homologous chromosomes. We have cloned and characterized one of the alleles. Two large, tandemly arranged open reading frames were found, each coding for a pyruvate kinase polypeptide of 498 amino acids. The gene sequences differ at 15 positions, resulting in five amino acid substitutions. The calculated molecular masses of the polypeptides are 54,378 Da and 54,363 Da. These values are somewhat smaller than those reported for the subunit molecular mass of the purified protein, which is 57-59 kDa. However, in vitro translation of the DNA region corresponding to the open reading frame, and translation of the RNA in a wheat-germ lysate, yielded a product that comigrated exactly with the native polypeptide in SDS/PAGE. The overall identity between the sequences of the trypanosomal enzyme and the enzymes from other sources is 41-51%. The conserved residues are not equally distributed over the polypeptide. The primary structure of domains A and, to a lesser extent, B, which constitute the active site, are rather well conserved. In contrast, the sequence of domain C, which supposedly is involved in the regulation of the enzyme activity, is much more variable. The cytosolically located pyruvate kinase of T. brucei lacks the specific features found in the majority of the glycolytic enzymes of this organism that are sequestered in a microbody-like organelle, the glycosome. It has neither a relatively high subunit molecular mass, due to unique insertions or terminal extensions, nor a high excess of positively charged amino acids. The polypeptide is shorter than that of most other pyruvate kinases and the calculated net charge is only +3.
Collapse
Affiliation(s)
- S Allert
- International Institute of Cellular and Molecular Pathology, Research Unit for Tropical Diseases, Brussels, Belgium
| | | | | | | | | |
Collapse
|
23
|
Valentini G, Stoppini M, Speranza ML, Malcovati M, Ferri G. Bacterial pyruvate kinases have a shorter N-terminal domain. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1991; 372:91-3. [PMID: 1859631 DOI: 10.1515/bchm3.1991.372.1.91] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The N-terminal portions of the two forms of pyruvate kinase (EC2.7.1.40) from Escherichia coli have been sequenced up the 48th and 43rd residue, respectively. Comparison with the known primary structures shows that bacterial enzymes lack a substantial portion of the N-terminal sequence with respect to pyruvate kinases from vertebrates. This makes the suggested functional role of the N-terminal domain unlikely [Muirhead, H. (1990) Biochem. Soc. Trans. 18, 193-196] although an elongation of this domain with evolution is apparent.
Collapse
Affiliation(s)
- G Valentini
- Dipartimento di Biochimica, Università di Pavia
| | | | | | | | | |
Collapse
|
24
|
Abstract
Nucleic acid hybridization with a labeled probe is the only practical way to detect a complementary target sequence in a complex nucleic acid mixture. The first section of this article covers quantitative aspects of nucleic acid hybridization thermodynamics and kinetics. The probes considered are oligonucleotides or polynucleotides, DNA or RNA, single- or double-stranded, and natural or modified, either in the nucleotide bases or in the backbone. The hybridization products are duplexes or triplexes formed with targets in solution or on solid supports. Additional topics include hybridization acceleration and reactions involving branch migration. The second section deals with synthesis or biosynthesis and detection of labeled probes, with a discussion of their sensitivity and specificity limits. Direct labeling is illustrated with radioactive probes. The discussion of indirect labels begins with biotinylated probes as prototypes. Reporter groups considered include radioactive, fluorescent, and chemiluminescent nucleotides, as well as enzymes with colorimetric, fluorescent, and luminescent substrates.
Collapse
Affiliation(s)
- J G Wetmur
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
25
|
Ohara O, Ishizaki J, Nakano T, Arita H, Teraoka H. A simple and sensitive method for determining transcription initiation site: identification of two transcription initiation sites in rat group II phospholipase A2 gene. Nucleic Acids Res 1990; 18:6997-7002. [PMID: 2263458 PMCID: PMC332761 DOI: 10.1093/nar/18.23.6997] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We developed a simple and sensitive method for assigning transcriptional initiation sites, and applied it to characterize the transcriptional unit of rat group II phospholipase A2 (PLA2) gene. Our method involves the primer extension reaction followed by detection of its products by hybridization. Using this method, we were able to map two transcriptional initiation sites on the nucleotide sequence of the core promoter region of PLA2 gene with one-base resolution without any difficulties.
Collapse
Affiliation(s)
- O Ohara
- Shionogi Research Laboratories, Shionogi and Co. Ltd, Osaka, Japan
| | | | | | | | | |
Collapse
|
26
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1990; 18:211-8. [PMID: 2308834 PMCID: PMC330251 DOI: 10.1093/nar/18.1.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|