1
|
Farrell PJ. EBV: The Viral Genome. Curr Top Microbiol Immunol 2025. [PMID: 40399574 DOI: 10.1007/82_2025_298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
The Epstein-Barr virus (EBV) genetic map underpins all our understanding of the virus biology and its role in disease. EBV was the first large DNA virus to be fully sequenced and this has been followed by many years of detailed mapping of viral genes and other genetic elements. The genetic map of EBV is based on the reference NC_007605 virus genome but now more than 1,000 EBV genomes have been sequenced. Some sequence variations that may be functionally significant either for the biological properties of EBV or its detection by diagnostic procedures are summarised here but are also considered in detail in other chapters in this book.
Collapse
Affiliation(s)
- Paul J Farrell
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
2
|
Havey L, You H, Asara JM, Wang Y, Guo R. Epstein-Barr Virus-Driven B-Cell Transformation under Germinal Center Hypoxia Requires External Unsaturated Fatty Acids. RESEARCH SQUARE 2025:rs.3.rs-6506954. [PMID: 40313738 PMCID: PMC12045359 DOI: 10.21203/rs.3.rs-6506954/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Epstein-Barr virus (EBV) contributes to over 200,000 cancers annually, predominantly aggressive lymphomas originating from hypoxic germinal centers (< 1% O2). However, conventional models fail to recapitulate the physiologically relevant hypoxic microenvironment which profoundly influences B-cell metabolic remodeling during transformation. Here, we establish an ex vivo model of EBV-driven B-cell transformation under 1% O2, demonstrating robust transformation and super-enhancer activation of oncogenic regulators, including MYC. Multi-omic analyses reveal distinct metabolic adaptations to hypoxia. Unlike normoxic B-cells, which rely on fatty acid desaturases and oxidation to mitigate lipotoxicity, hypoxically transformed B-cells suppress fatty acid synthesis while upregulating glycerophospholipid metabolism and lipid droplet formation to buffer excess saturated lipids. Consequently, these cells exhibit heightened dependence on external unsaturated fatty acids to support proliferation. Our findings provide the first physiologically relevant ex vivo model of EBV-driven B-cell transformation under hypoxia, uncovering metabolic vulnerabilities that could inform targeted therapeutic strategies for EBV-associated malignancies.
Collapse
Affiliation(s)
- Larissa Havey
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - Haixi You
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Yin Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115
| | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| |
Collapse
|
3
|
Kim IE, Fola AA, Puig E, Maina TK, Hui ST, Ma H, Zuckerman K, Agwati EO, Leonetti A, Crudale R, Luftig MA, Moormann AM, Oduor C, Bailey JA. Comparison of nanopore with illumina whole genome assemblies of the Epstein-Barr virus in Burkitt lymphoma. Sci Rep 2025; 15:10970. [PMID: 40164811 PMCID: PMC11958722 DOI: 10.1038/s41598-025-94737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Endemic Burkitt lymphoma (eBL) is one of the most prevalent cancer in children in sub-Saharan Africa, and while prior studies have found that Epstein-Barr virus (EBV) type and variation may alter the tumor driver genes necessary for tumor survival, the precise relationship between EBV variation and EBV-associated tumorigenesis remains unclear due to lack of scalable, cost-effective, viral whole-genome sequencing from tumor samples. This study introduces a rapid and cost-effective method of enriching, sequencing, and assembling accurate EBV genomes in BL tumor cell lines through a combination of selective whole genome amplification (sWGA) and subsequent 2-tube multiplex polymerase chain reaction along with long-read sequencing with a portable sequencer. The method was optimized across a range of parameters to yield a high percentage of EBV reads and sufficient coverage across the EBV genome except for large repeat regions. After optimization, we applied our method to sequence 18 cell lines and 3 patient tumors from fine needle biopsies and assembled them with median coverages of 99.62 and 99.68%, respectively. The assemblies showed high concordance (99.61% similarity) to available Illumina-based assemblies. The improved method and assembly pipeline will allow for better understanding of EBV variation in relation to BL and is applicable more broadly for translational research studies, especially useful for laboratories in Africa where eBL is most widespread.
Collapse
Affiliation(s)
- Isaac E Kim
- Center for Computational Molecular Biology, Brown University, Box G-E5, Providence, 02912, RI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Abebe A Fola
- Center for Computational Molecular Biology, Brown University, Box G-E5, Providence, 02912, RI, USA
| | - Enrique Puig
- Center for Computational Molecular Biology, Brown University, Box G-E5, Providence, 02912, RI, USA
| | - Titus Kipkemboi Maina
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Sin Ting Hui
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Hongyu Ma
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Kaleb Zuckerman
- Center for Computational Molecular Biology, Brown University, Box G-E5, Providence, 02912, RI, USA
| | - Eddy O Agwati
- Department of Zoology, Maseno University, Maseno, Kenya
- Center for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Alec Leonetti
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Rebecca Crudale
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Center for Virology, Duke University School of Medicine, Durham, NC, USA
| | - Ann M Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cliff Oduor
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Box G-E5, Providence, 02912, RI, USA.
- Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025; 89:e0011923. [PMID: 39817754 PMCID: PMC11948499 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Kim IE, Fola AA, Puig E, Maina TK, Hui ST, Ma H, Zuckerman K, Agwati E, Leonetti A, Crudale R, Luftig MA, Moormann AM, Oduor C, Bailey JA. Comparison of Nanopore with Illumina Whole Genome Assemblies of the Epstein-Barr Virus in Burkitt Lymphoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.21.25322471. [PMID: 40061313 PMCID: PMC11888525 DOI: 10.1101/2025.02.21.25322471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Endemic Burkitt lymphoma (eBL) is one of the most prevalent cancer in children in sub-Saharan Africa, and while prior studies have found that Epstein-Barr virus (EBV) type and variation may alter the tumor driver genes necessary for tumor survival, the precise relationship between EBV variation and EBV-associated tumorigenesis remains unclear due to lack of scalable, cost-effective, viral whole-genome sequencing from tumor samples. This study introduces a rapid and cost-effective method of enriching, sequencing, and assembling accurate EBV genomes in BL tumor cell lines through a combination of selective whole genome amplification (sWGA) and subsequent 2-tube multiplex polymerase chain reaction along with long-read sequencing with a portable sequencer. The method was optimized across a range of parameters to yield a high percentage of EBV reads and sufficient coverage across the EBV genome except for large repeat regions. After optimization, we applied our method to sequence 18 cell lines and 3 patient tumors from fine needle biopsies and assembled them with median coverages of 99.62 and 99.68%, respectively. The assemblies showed high concordance (99.61% similarity) to available Illumina-based assemblies. The improved method and assembly pipeline will allow for better understanding of EBV variation in relation to BL and is applicable more broadly for translational research studies, especially useful for laboratories in Africa where eBL is most widespread.
Collapse
Affiliation(s)
- Isaac E. Kim
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Abebe A. Fola
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Enrique Puig
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Titus K. Maina
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Sin Ting Hui
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Hongyu Ma
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Kaleb Zuckerman
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Eddy Agwati
- Department of Zoology, Maseno University, Maseno, Kenya
- Center for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Alec Leonetti
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Rebecca Crudale
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cliff Oduor
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - Jeffrey A. Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| |
Collapse
|
6
|
Chiu YF, Ponlachantra K, Sugden B. How Epstein Barr Virus Causes Lymphomas. Viruses 2024; 16:1744. [PMID: 39599857 PMCID: PMC11599019 DOI: 10.3390/v16111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Since Epstein-Barr Virus (EBV) was isolated 60 years ago, it has been studied clinically, epidemiologically, immunologically, and molecularly in the ensuing years. These combined studies allow a broad mechanistic understanding of how this ubiquitous human pathogen which infects more than 90% of adults can rarely cause multiple types of lymphomas. We survey these findings to provide a coherent description of its oncogenesis.
Collapse
Affiliation(s)
- Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Infectious Diseases, Department of Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 236017, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Khongpon Ponlachantra
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand;
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Gewurz BE, Mosialos G, Rickinson AB, Swaminathan S. Elliott Dan Kieff (1943 to 2024): Epstein-Barr virus cancer biology pioneer. Proc Natl Acad Sci U S A 2024; 121:e2411131121. [PMID: 38950365 DOI: 10.1073/pnas.2411131121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Affiliation(s)
- Benjamin E Gewurz
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA 02115
| | - George Mosialos
- School of Biology, Department of Genetics Development and Molecular Biology, Aristotle University of Thessaloniki, Thessaloniki GR54124, Greece
| | - Alan B Rickinson
- Institute of Cancer and Genomic Sciences, Emeritus Professor of Cancer Studies, College of Medical and Dental Sciences University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sankar Swaminathan
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| |
Collapse
|
8
|
Müller-Durovic B, Jäger J, Engelmann C, Schuhmachers P, Altermatt S, Schlup Y, Duthaler U, Makowiec C, Unterstab G, Roffeis S, Xhafa E, Assmann N, Trulsson F, Steiner R, Edwards-Hicks J, West J, Turner L, Develioglu L, Ivanek R, Azzi T, Dehio P, Berger C, Kuzmin D, Saboz S, Mautner J, Löliger J, Geigges M, Palianina D, Khanna N, Dirnhofer S, Münz C, Bantug GR, Hess C. A metabolic dependency of EBV can be targeted to hinder B cell transformation. Science 2024; 385:eadk4898. [PMID: 38781354 DOI: 10.1126/science.adk4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
After infection of B cells, Epstein-Barr virus (EBV) engages host pathways that mediate cell proliferation and transformation, contributing to the propensity of the virus to drive immune dysregulation and lymphomagenesis. We found that the EBV protein EBNA2 initiates nicotinamide adenine dinucleotide (NAD) de novo biosynthesis by driving expression of the metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in infected B cells. Virus-enforced NAD production sustained mitochondrial complex I activity, to match adenosine triphosphate (ATP) production with bioenergetic requirements of proliferation and transformation. In transplant patients, IDO1 expression in EBV-infected B cells, and a serum signature of increased IDO1 activity, preceded development of lymphoma. In humanized mice infected with EBV, IDO1 inhibition reduced both viremia and lymphomagenesis. Virus-orchestrated NAD biosynthesis is therefore a druggable metabolic vulnerability of EBV-driven B cell transformation, opening therapeutic possibilities for EBV-related diseases.
Collapse
Affiliation(s)
- Bojana Müller-Durovic
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Jessica Jäger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sabine Altermatt
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Yannick Schlup
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Celia Makowiec
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Gunhild Unterstab
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Sarah Roffeis
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Erta Xhafa
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Nadine Assmann
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
- Axolabs GmbH, Kulmbach, Germany
| | - Fredrik Trulsson
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Rebekah Steiner
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Joy Edwards-Hicks
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - James West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Leyla Develioglu
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Robert Ivanek
- Bioinformatics Facility, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Tarik Azzi
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zürich, Zürich, Switzerland
- Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Philippe Dehio
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Berger
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Dmitry Kuzmin
- Hornet Therapeutics Ltd, London, UK
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Sophie Saboz
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Josef Mautner
- Department of Gene Vectors, Helmholtz Centre Munich, Munich, Germany
| | - Jordan Löliger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Marco Geigges
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Darya Palianina
- Laboratory of Infection Biology, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Laboratory of Infection Biology, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Glenn R Bantug
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Ye X, Guerin LN, Chen Z, Rajendren S, Dunker W, Zhao Y, Zhang R, Hodges E, Karijolich J. Enhancer-promoter activation by the Kaposi sarcoma-associated herpesvirus episome maintenance protein LANA. Cell Rep 2024; 43:113888. [PMID: 38416644 PMCID: PMC11005752 DOI: 10.1016/j.celrep.2024.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/29/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Higher-order genome structure influences the transcriptional regulation of cellular genes through the juxtaposition of regulatory elements, such as enhancers, close to promoters of target genes. While enhancer activation has emerged as an important facet of Kaposi sarcoma-associated herpesvirus (KSHV) biology, the mechanisms controlling enhancer-target gene expression remain obscure. Here, we discover that the KSHV genome tethering protein latency-associated nuclear antigen (LANA) potentiates enhancer-target gene expression in primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma causally associated with KSHV. Genome-wide analyses demonstrate increased levels of enhancer RNA transcription as well as activating chromatin marks at LANA-bound enhancers. 3D genome conformation analyses identified genes critical for latency and tumorigenesis as targets of LANA-occupied enhancers, and LANA depletion results in their downregulation. These findings reveal a mechanism in enhancer-gene coordination and describe a role through which the main KSHV tethering protein regulates essential gene expression in PEL.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ziche Chen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Suba Rajendren
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ruilin Zhang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Viel KCMF, Parameswaran S, Donmez OA, Forney CR, Hass MR, Yin C, Jones SH, Prosser HK, Diouf AA, Gittens OE, Edsall LE, Chen X, Rowden H, Dunn KA, Guo R, VonHandorf A, Leong MML, Ernst K, Kaufman KM, Lawson LP, Gewurz B, Zhao B, Kottyan LC, Weirauch MT. Shared and distinct interactions of type 1 and type 2 Epstein-Barr Nuclear Antigen 2 with the human genome. BMC Genomics 2024; 25:273. [PMID: 38475709 PMCID: PMC10935964 DOI: 10.1186/s12864-024-10183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.
Collapse
Affiliation(s)
- Kenyatta C M F Viel
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Carmy R Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew R Hass
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Cailing Yin
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sydney H Jones
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hayley K Prosser
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Arame A Diouf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Olivia E Gittens
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lee E Edsall
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hope Rowden
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Katelyn A Dunn
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin Ernst
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lucinda P Lawson
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ben Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
11
|
Malik S, Biswas J, Sarkar P, Nag S, Gain C, Ghosh Roy S, Bhattacharya B, Ghosh D, Saha A. Differential carbonic anhydrase activities control EBV-induced B-cell transformation and lytic cycle reactivation. PLoS Pathog 2024; 20:e1011998. [PMID: 38530845 PMCID: PMC10997083 DOI: 10.1371/journal.ppat.1011998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Epstein-Barr virus (EBV) contributes to ~1% of all human cancers including several B-cell neoplasms. A characteristic feature of EBV life cycle is its ability to transform metabolically quiescent B-lymphocytes into hyperproliferating B-cell blasts with the establishment of viral latency, while intermittent lytic cycle induction is necessary for the production of progeny virus. Our RNA-Seq analyses of both latently infected naïve B-lymphocytes and transformed B-lymphocytes upon lytic cycle replication indicate a contrasting expression pattern of a membrane-associated carbonic anhydrase isoform CA9, an essential component for maintaining cell acid-base homeostasis. We show that while CA9 expression is transcriptionally activated during latent infection model, lytic cycle replication restrains its expression. Pharmacological inhibition of CA-activity using specific inhibitors retards EBV induced B-cell transformation, inhibits B-cells outgrowth and colony formation ability of transformed B-lymphocytes through lowering the intracellular pH, induction of cell apoptosis and facilitating degradation of CA9 transcripts. Reanalyses of ChIP-Seq data along with utilization of EBNA2 knockout virus, ectopic expression of EBNA2 and sh-RNA mediated knockdown of CA9 expression we further demonstrate that EBNA2 mediated CA9 transcriptional activation is essential for EBV latently infected B-cell survival. In contrast, during lytic cycle reactivation CA9 expression is transcriptionally suppressed by the key EBV lytic cycle transactivator, BZLF1 through its transactivation domain. Overall, our study highlights the dynamic alterations of CA9 expression and its activity in regulating pH homeostasis act as one of the major drivers for EBV induced B-cell transformation and subsequent B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Samaresh Malik
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Joyanta Biswas
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Purandar Sarkar
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Subhadeep Nag
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Chandrima Gain
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Shatadru Ghosh Roy
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Bireswar Bhattacharya
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Abhik Saha
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Leopizzi M, Mundo L, Messina E, Campolo F, Lazzi S, Angeloni A, Marchese C, Leoncini L, Giordano C, Slack F, Trivedi P, Anastasiadou E. Epstein-Barr virus-encoded EBNA2 downregulates ICOSL by inducing miR-24 in B-cell lymphoma. Blood 2024; 143:429-443. [PMID: 37847858 PMCID: PMC10862363 DOI: 10.1182/blood.2023021346] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
ABSTRACT Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.
Collapse
Affiliation(s)
- Martina Leopizzi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Lucia Mundo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza University, Rome, Italy
| | - Frank Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
13
|
Zhang J, Sommermann T, Li X, Gieselmann L, de la Rosa K, Stecklum M, Klein F, Kocks C, Rajewsky K. LMP1 and EBNA2 constitute a minimal set of EBV genes for transformation of human B cells. Front Immunol 2023; 14:1331730. [PMID: 38169736 PMCID: PMC10758421 DOI: 10.3389/fimmu.2023.1331730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Epstein-Barr virus (EBV) infection in humans is associated with a wide range of diseases including malignancies of different origins, most prominently B cells. Several EBV latent genes are thought to act together in B cell immortalization, but a minimal set of EBV genes sufficient for transformation remains to be identified. Methods Here, we addressed this question by transducing human peripheral B cells from EBV-negative donors with retrovirus expressing the latent EBV genes encoding Latent Membrane Protein (LMP) 1 and 2A and Epstein-Barr Nuclear Antigen (EBNA) 2. Results LMP1 together with EBNA2, but not LMP1 alone or in combination with LMP2A was able to transform human primary B cells. LMP1/EBNA2-immortalized cell lines shared surface markers with EBV-transformed lymphoblastoid cell lines (LCLs). They showed sustained growth for more than 60 days, albeit at a lower growth rate than EBV-transformed LCLs. LMP1/EBNA2-immortalized cell lines generated tumors when transplanted subcutaneously into severely immunodeficient NOG mice. Conclusion Our results identify a minimal set of EBV proteins sufficient for B cell transformation.
Collapse
Affiliation(s)
- Jingwei Zhang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Thomas Sommermann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Xun Li
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Kathrin de la Rosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Mechanisms and Human Antibodies, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Center of Biological Design, Berlin, Germany
| | - Maria Stecklum
- Experimental Pharmacology and Oncology (EPO) Berlin-Buch GmbH, Berlin, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christine Kocks
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| |
Collapse
|
14
|
Wang C, Zhao B. Epstein-Barr virus and host cell 3D genome organization. J Med Virol 2023; 95:e29234. [PMID: 37988227 PMCID: PMC10664867 DOI: 10.1002/jmv.29234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
The human genome is organized in an extremely complexed yet ordered way within the nucleus. Genome organization plays a critical role in the regulation of gene expression. Viruses manipulate the host machinery to influence host genome organization to favor their survival and promote disease development. Epstein-Barr virus (EBV) is a common human virus, whose infection is associated with various diseases, including infectious mononucleosis, cancer, and autoimmune disorders. This review summarizes our current knowledge of how EBV uses different strategies to control the cellular 3D genome organization to affect cell gene expression to transform normal cells into lymphoblasts.
Collapse
Affiliation(s)
- Chong Wang
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bo Zhao
- Department of Medicine, Division of Infectious Disease, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Sausen DG, Basith A, Muqeemuddin S. EBV and Lymphomagenesis. Cancers (Basel) 2023; 15:cancers15072133. [PMID: 37046794 PMCID: PMC10093459 DOI: 10.3390/cancers15072133] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The clinical significance of Epstein–Barr virus (EBV) cannot be understated. Not only does it infect approximately 90% of the world’s population, but it is also associated with numerous pathologies. Diseases linked to this virus include hematologic malignancies such as diffuse large B-cell lymphoma, Hodgkin lymphoma, Burkitt lymphoma, primary CNS lymphoma, and NK/T-cell lymphoma, epithelial malignancies such as nasopharyngeal carcinoma and gastric cancer, autoimmune diseases such as multiple sclerosis, Graves’ disease, and lupus. While treatment for these disease states is ever evolving, much work remains to more fully elucidate the relationship between EBV, its associated disease states, and their treatments. This paper begins with an overview of EBV latency and latency-associated proteins. It will then review EBV’s contributions to select hematologic malignancies with a focus on the contribution of latent proteins as well as their associated management.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ayeman Basith
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | |
Collapse
|
16
|
Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses 2023; 15:832. [PMID: 37112815 PMCID: PMC10146190 DOI: 10.3390/v15040832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human DNA tumor virus identified from African Burkitt's lymphoma cells. EBV causes ~200,000 various cancers world-wide each year. EBV-associated cancers express latent EBV proteins, EBV nuclear antigens (EBNAs), and latent membrane proteins (LMPs). EBNA1 tethers EBV episomes to the chromosome during mitosis to ensure episomes are divided evenly between daughter cells. EBNA2 is the major EBV latency transcription activator. It activates the expression of other EBNAs and LMPs. It also activates MYC through enhancers 400-500 kb upstream to provide proliferation signals. EBNALP co-activates with EBNA2. EBNA3A/C represses CDKN2A to prevent senescence. LMP1 activates NF-κB to prevent apoptosis. The coordinated activity of EBV proteins in the nucleus allows efficient transformation of primary resting B lymphocytes into immortalized lymphoblastoid cell lines in vitro.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
17
|
Yu H, Robertson ES. Epstein-Barr Virus History and Pathogenesis. Viruses 2023; 15:714. [PMID: 36992423 PMCID: PMC10056551 DOI: 10.3390/v15030714] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first identified human oncogenic virus that can establish asymptomatic life-long persistence. It is associated with a large spectrum of diseases, including benign diseases, a number of lymphoid malignancies, and epithelial cancers. EBV can also transform quiescent B lymphocytes into lymphoblastoid cell lines (LCLs) in vitro. Although EBV molecular biology and EBV-related diseases have been continuously investigated for nearly 60 years, the mechanism of viral-mediated transformation, as well as the precise role of EBV in promoting these diseases, remain a major challenge yet to be completely explored. This review will highlight the history of EBV and current advances in EBV-associated diseases, focusing on how this virus provides a paradigm for exploiting the many insights identified through interplay between EBV and its host during oncogenesis, and other related non-malignant disorders.
Collapse
Affiliation(s)
- Hui Yu
- Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, The Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Hao M, Tang J, Ge S, Li T, Xia N. Bacterial-Artificial-Chromosome-Based Genome Editing Methods and the Applications in Herpesvirus Research. Microorganisms 2023; 11:589. [PMID: 36985163 PMCID: PMC10056367 DOI: 10.3390/microorganisms11030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Herpesviruses are major pathogens that infect humans and animals. Manipulating the large genome is critical for exploring the function of specific genes and studying the pathogenesis of herpesviruses and developing novel anti-viral vaccines and therapeutics. Bacterial artificial chromosome (BAC) technology significantly advanced the capacity of herpesviruses researchers to manipulate the virus genomes. In the past years, advancements in BAC-based genome manipulating and screening strategies of recombinant BACs have been achieved, which has promoted the study of the herpes virus. This review summarizes the advances in BAC-based gene editing technology and selection strategies. The merits and drawbacks of BAC-based herpesvirus genome editing methods and the application of BAC-based genome manipulation in viral research are also discussed. This review provides references relevant for researchers in selecting gene editing methods in herpes virus research. Despite the achievements in the genome manipulation of the herpes viruses, the efficiency of BAC-based genome manipulation is still not satisfactory. This review also highlights the need for developing more efficient genome-manipulating methods for herpes viruses.
Collapse
Affiliation(s)
- Mengling Hao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiabao Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen 361102, China
| |
Collapse
|
19
|
Ross AM, Leahy CI, Neylon F, Steigerova J, Flodr P, Navratilova M, Urbankova H, Vrzalikova K, Mundo L, Lazzi S, Leoncini L, Pugh M, Murray PG. Epstein-Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma. Life (Basel) 2023; 13:521. [PMID: 36836878 PMCID: PMC9967091 DOI: 10.3390/life13020521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells and we address the germinal centre model of infection and how this can lead to lymphoma in some instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that end, we also explore the unique genetic background of this entity and briefly discuss the potential role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to improve patient stratification, treatment strategies, and outcomes.
Collapse
Affiliation(s)
- Aisling M. Ross
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ciara I. Leahy
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Fiona Neylon
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- BioScience and BioEngineering Research (BioSciBer), Bernal BioMaterials Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Jana Steigerova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| | - Patrik Flodr
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Martina Navratilova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Helena Urbankova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky Univesity and University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Katerina Vrzalikova
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucia Mundo
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnologies, Section of Pathology, University of Siena, 53100 Siena, Italy
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul G. Murray
- Health Research Institute and School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olmouc, 775 15 Olomouc, Czech Republic
| |
Collapse
|
20
|
Awasthi P, Dwivedi M, Kumar D, Hasan S. Insights into intricacies of the Latent Membrane Protein-1 (LMP-1) in EBV-associated cancers. Life Sci 2023; 313:121261. [PMID: 36493876 DOI: 10.1016/j.lfs.2022.121261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Numerous lymphomas, carcinomas, and other disorders have been associated with Epstein-Barr Virus (EBV) infection. EBV's carcinogenic potential can be correlated to latent membrane protein 1 (LMP1), which is essential for fibroblast and primary lymphocyte transformation. LMP1, a transmembrane protein with constitutive activity, belongs to the tumour necrosis factor receptor (TNFR) superfamily. LMP1 performs number of role in the life cycle of EBV and the pathogenesis by interfering with, reprogramming, and influencing a vast range of host cellular activities and functions that are getting well-known but still poorly understood. LMP1, pleiotropically perturbs, reprograms and balances a wide range of various processes of cell such as extracellular vesicles, epigenetics, ubiquitin machinery, metabolism, cell proliferation and survival, and also promotes oncogenic transformation, angiogenesis, anchorage-independent cell growth, metastasis and invasion, tumour microenvironment. By the help of various experiments, it is proven that EBV-encoded LMP1 activates multiple cell signalling pathways which affect antigen presentation, cell-cell interactions, chemokine and cytokine production. Therefore, it is assumed that LMP1 may perform majorly in EBV associated malignancies. For the development of novel techniques toward targeted therapeutic applications, it is essential to have a complete understanding of the LMP1 signalling landscape in order to identify potential targets. The focus of this review is on LMP1-interacting proteins and related signalling processes. We further discuss tactics for using the LMP1 protein as a potential therapeutic for cancers caused by the EBV.
Collapse
Affiliation(s)
- Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES University Dehradun, Uttarakhand, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| |
Collapse
|
21
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
22
|
SoRelle ED, Dai J, Reinoso-Vizcaino NM, Barry AP, Chan C, Luftig MA. Time-resolved transcriptomes reveal diverse B cell fate trajectories in the early response to Epstein-Barr virus infection. Cell Rep 2022; 40:111286. [PMID: 36044865 PMCID: PMC9879279 DOI: 10.1016/j.celrep.2022.111286] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Epstein-Barr virus infection of B lymphocytes elicits diverse host responses via well-adapted transcriptional control dynamics. Consequently, this host-pathogen interaction provides a powerful system to explore fundamental processes leading to consensus fate decisions. Here, we use single-cell transcriptomics to construct a genome-wide multistate model of B cell fates upon EBV infection. Additional single-cell data from human tonsils reveal correspondence of model states to analogous in vivo phenotypes within secondary lymphoid tissue, including an EBV+ analog of multipotent activated precursors that can yield early memory B cells. These resources yield exquisitely detailed perspectives of the transforming cellular landscape during an oncogenic viral infection that simulates antigen-induced B cell activation and differentiation. Thus, they support investigations of state-specific EBV-host dynamics, effector B cell fates, and lymphomagenesis. To demonstrate this potential, we identify EBV infection dynamics in FCRL4+/TBX21+ atypical memory B cells that are pathogenically associated with numerous immune disorders.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley P Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
23
|
EBNA2-EBF1 complexes promote MYC expression and metabolic processes driving S-phase progression of Epstein-Barr virus-infected B cells. Proc Natl Acad Sci U S A 2022; 119:e2200512119. [PMID: 35857872 PMCID: PMC9335265 DOI: 10.1073/pnas.2200512119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human tumor virus which preferentially infects resting human B cells. Upon infection in vitro, EBV activates and immortalizes these cells. The viral latent protein EBV nuclear antigen 2 (EBNA2) is essential for B cell activation and immortalization; it targets and binds the cellular and ubiquitously expressed DNA-binding protein CBF1, thereby transactivating a plethora of viral and cellular genes. In addition, EBNA2 uses its N-terminal dimerization (END) domain to bind early B cell factor 1 (EBF1), a pioneer transcription factor specifying the B cell lineage. We found that EBNA2 exploits EBF1 to support key metabolic processes and to foster cell cycle progression of infected B cells in their first cell cycles upon activation. The α1-helix within the END domain was found to promote EBF1 binding. EBV mutants lacking the α1-helix in EBNA2 can infect and activate B cells efficiently, but activated cells fail to complete the early S phase of their initial cell cycle. Expression of MYC, target genes of MYC and E2F, as well as multiple metabolic processes linked to cell cycle progression are impaired in EBVΔα1-infected B cells. Our findings indicate that EBF1 controls B cell activation via EBNA2 and, thus, has a critical role in regulating the cell cycle of EBV-infected B cells. This is a function of EBF1 going beyond its well-known contribution to B cell lineage specification.
Collapse
|
24
|
Palmer WH, Telford M, Navarro A, Santpere G, Norman PJ. Human herpesvirus diversity is altered in HLA class I binding peptides. Proc Natl Acad Sci U S A 2022; 119:e2123248119. [PMID: 35486690 PMCID: PMC9170163 DOI: 10.1073/pnas.2123248119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), and Varicella–Zoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.
Collapse
Affiliation(s)
- William H. Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| | - Marco Telford
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra - Consejo Superior de Investigaciones Científicas), Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats and Universitat Pompeu Fabra, 08010 Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
25
|
Rahman R, Gopinath D, Buajeeb W, Poomsawat S, Johnson NW. Potential Role of Epstein-Barr Virus in Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma: A Scoping Review. Viruses 2022; 14:801. [PMID: 35458531 PMCID: PMC9032208 DOI: 10.3390/v14040801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
Though the oral cavity is anatomically proximate to the nasal cavity and acts as a key reservoir of EBV habitation and transmission, it is still unclear whether EBV plays a significant role in oral carcinogenesis. Many studies have detected EBV DNA in tissues and exfoliated cells from OSCC patients. However, very few studies have investigated the expression of functional EBV proteins implicated in its oncogenicity. The most studied are latent membrane protein 1 (LMP-1), a protein associated with the activation of signalling pathways; EBV determined nuclear antigen (EBNA)-1, a protein involved in the regulation of gene expression; and EBV-encoded small non-polyadenylated RNA (EBER)-2. LMP-1 is considered the major oncoprotein, and overexpression of LMP-1 observed in OSCC indicates that this molecule might play a significant role in oral carcinogenesis. Although numerous studies have detected EBV DNA and proteins from OSCC and oral potentially malignant disorders, heterogeneity in methodologies has led to discrepant results, hindering interpretation. Elucidating the exact functions of EBV and its proteins when expressed is vital in establishing the role of viruses in oral oncogenesis. This review summarises the current evidence on the potential role of EBV in oral oncogenesis and discusses the implications as well as recommendations for future research.
Collapse
Affiliation(s)
- Rifat Rahman
- Menzies Health Institute Queensland, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (R.R.); (N.W.J.)
| | - Divya Gopinath
- Clinical Oral Health Sciences Division, School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Waranun Buajeeb
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Sopee Poomsawat
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;
| | - Newell W. Johnson
- Menzies Health Institute Queensland, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia; (R.R.); (N.W.J.)
- Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
26
|
Do Epstein–Barr Virus Mutations and Natural Genome Sequence Variations Contribute to Disease? Biomolecules 2021; 12:biom12010017. [PMID: 35053165 PMCID: PMC8774192 DOI: 10.3390/biom12010017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Most of the world’s population is infected by the Epstein–Barr virus (EBV), but the incidence of the diseases associated with EBV infection differs greatly in different parts of the world. Many factors may determine those differences, but variation in the virus genome is likely to be a contributing factor for some of the diseases. Here, we describe the main forms of EBV genome sequence variation, and the mechanisms by which variations in the virus genome are likely to contribute to disease. EBV genome deletions or polymorphisms can also provide useful markers for monitoring disease. If some EBV strains prove to be more pathogenic than others, this suggests the possible value of immunising people against infection by those pathogenic strains.
Collapse
|
27
|
Sidorov S, Fux L, Steiner K, Bounlom S, Traxel S, Azzi T, Berisha A, Berger C, Bernasconi M, Niggli FK, Perner Y, Pather S, Kempf W, Nadal D, Bürgler S. CD4 + T cells are found within endemic Burkitt lymphoma and modulate Burkitt lymphoma precursor cell viability and expression of pathogenically relevant Epstein-Barr virus genes. Cancer Immunol Immunother 2021; 71:1371-1392. [PMID: 34668039 PMCID: PMC9123076 DOI: 10.1007/s00262-021-03057-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
Endemic Burkitt lymphoma (eBL) is an aggressive B cell cancer characterized by an IgH/c-myc translocation and the harboring of Epstein-Barr virus (EBV). Evidence accumulates that CD4 + T cells might contribute to eBL pathogenesis. Here, we investigate the presence of CD4 + T cells in primary eBL tissue and their potential dichotomous impact on an EBV-infected pre-eBL cell model using ex vivo material and in vitro co-cultures. In addition, we establish a novel method to study the effect of IgH/c-myc translocation in primary B cells by employing a CRISPR/Cas9 knock-in approach to introduce and tag de novo translocation. We unprecedently document that CD4 + T cells are present in primary eBL tumor tissue. Furthermore, we demonstrate that CD4 + T cells on the one hand suppress eBL development by killing pre-eBL cells lacking IgH/c-myc translocation in vitro and on the other hand indirectly promote eBL development by inducing crucial EBV Latency III to Latency I switching in pre-eBL cells. Finally, we show that while the mere presence of an IgH/c-myc translocation does not suffice to escape CD4 + T-cell-mediated killing in vitro, the CD4 + T-cell-mediated suppression of EBV's Latency III program in vivo may allow cells harboring an IgH/c-myc translocation and additional mutations to evade immune control and proliferate by means of deregulated c-myc activity, resulting in neoplasia. Thus, our study highlights the dichotomous effects of CD4 + T cells and the mechanisms involved in eBL pathogenesis, suggests mechanisms of their impact on eBL progression, and provides a novel in vitro model for further investigation of IgH/c-myc translocation.
Collapse
Affiliation(s)
- Semjon Sidorov
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland.
| | - Lara Fux
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Katja Steiner
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Samyo Bounlom
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Sabrina Traxel
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Tarik Azzi
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Arbeneshe Berisha
- Kempf Und Pfaltz, Histological Diagnostics, Zürich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Christoph Berger
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Michele Bernasconi
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland.,Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Felix K Niggli
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Yvonne Perner
- Division of Anatomical Pathology, National Health Laboratory Service, Chris Hani Baragwanath Academic Hospital, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sugeshnee Pather
- Division of Anatomical Pathology, National Health Laboratory Service, Chris Hani Baragwanath Academic Hospital, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Werner Kempf
- Kempf Und Pfaltz, Histological Diagnostics, Zürich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - David Nadal
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Simone Bürgler
- Experimental Infectious Diseases and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
28
|
EBNA2 driven enhancer switching at the CIITA-DEXI locus suppresses HLA class II gene expression during EBV infection of B-lymphocytes. PLoS Pathog 2021; 17:e1009834. [PMID: 34352044 PMCID: PMC8370649 DOI: 10.1371/journal.ppat.1009834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/17/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
Viruses suppress immune recognition through diverse mechanisms. Epstein-Barr Virus (EBV) establishes latent infection in memory B-lymphocytes and B-cell malignancies where it impacts B-cell immune function. We show here that EBV primary infection of naïve B-cells results in a robust down-regulation of HLA genes. We found that the viral encoded transcriptional regulatory factor EBNA2 bound to multiple regulatory regions in the HLA locus. Conditional expression of EBNA2 correlated with the down regulation of HLA class II transcription. EBNA2 down-regulation of HLA transcription was found to be dependent on CIITA, the major transcriptional activator of HLA class II gene transcription. We identified a major EBNA2 binding site downstream of the CIITA gene and upstream of DEXI, a dexamethasone inducible gene that is oriented head-to-head with CIITA gene transcripts. CRISPR/Cas9 deletion of the EBNA2 site upstream of DEXI attenuated CIITA transcriptional repression. EBNA2 caused an increase in DEXI transcription and a graded change in histone modifications with activation mark H3K27ac near the DEXI locus, and a loss of activation marks at the CIITA locus. A prominent CTCF binding site between CIITA and DEXI enhancers was mutated and further diminished the effects of EBNA2 on CIITA. Analysis of HiC data indicate that DEXI and CIITA enhancers are situated in different chromosome topological associated domains (TADs). These findings suggest that EBNA2 down regulates HLA-II genes through the down regulation of CIITA, and that this down regulation is an indirect consequence of EBNA2 enhancer formation at a neighboring TAD. We propose that enhancer competition between these neighboring chromosome domains represents a novel mechanism for gene regulation demonstrated by EBNA2.
Collapse
|
29
|
Suppression of JAK-STAT signaling by Epstein-Barr virus tegument protein BGLF2 through recruitment of SHP1 phosphatase and promotion of STAT2 degradation. J Virol 2021; 95:e0102721. [PMID: 34319780 DOI: 10.1128/jvi.01027-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Some lytic proteins encoded by Epstein-Barr virus (EBV) suppress host interferon (IFN) signaling to facilitate viral replication. In this study we sought to identify and characterize EBV proteins antagonizing IFN signaling. The induction of IFN-stimulated genes (ISGs) by IFN-β was effectively suppressed by EBV. A functional screen was therefore performed to identify IFN-antagonizing proteins encoded by EBV. EBV tegument protein BGLF2 was identified as a potent suppressor of JAK-STAT signaling. This activity was found to be independent of its stimulatory effect on p38 and JNK pathways. Association of BGLF2 with STAT2 resulted in more pronounced K48-linked polyubiquitination and proteasomal degradation of the latter. Mechanistically, BGLF2 promoted the recruitment of SHP1 phosphatase to STAT1 to inhibit its tyrosine phosphorylation. In addition, BGLF2 associated with cullin 1 E3 ubiquitin ligase to facilitate its recruitment to STAT2. Consequently, BGLF2 suppressed ISG induction by IFN-β. Furthermore, BGLF2 also suppressed type II and type III IFN signaling, although the suppressive effect on type II IFN response was milder. When pre-treated with IFN-β, host cells became less susceptible to primary infection of EBV. This phenotype was reversed when expression of BGLF2 was enforced. Finally, genetic disruption of BGLF2 in EBV led to more pronounced induction of ISGs. Taken together, our study unveils the roles of BGLF2 not only in the subversion of innate IFN response but also in lytic infection and reactivation of EBV. Importance Epstein-Barr virus (EBV) is an oncogenic virus associated with the development of lymphoid and epithelial malignancies. EBV has to subvert interferon-mediated host antiviral response to replicate and cause diseases. It is therefore of great interest to identify and characterize interferon-antagonizing proteins produced by EBV. In this study we perform a screen to search for EBV proteins that suppress the action of interferons. We further show that BGLF2 protein of EBV is particularly strong in this suppression. This is achieved by inhibiting two key proteins STAT1 and STAT2 that mediate the antiviral activity of interferons. BGLF2 recruits a host enzyme to remove the phosphate group from STAT1 thereby inactivating its activity. BGLF2 also redirects STAT2 for degradation. A recombinant virus in which BGLF2 gene has been disrupted can activate host interferon response more robustly. Our findings reveal a novel mechanism by which EBV BGLF2 protein suppresses interferon signaling.
Collapse
|
30
|
Hatano Y, Ideta T, Hirata A, Hatano K, Tomita H, Okada H, Shimizu M, Tanaka T, Hara A. Virus-Driven Carcinogenesis. Cancers (Basel) 2021; 13:2625. [PMID: 34071792 PMCID: PMC8198641 DOI: 10.3390/cancers13112625] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from the accumulation of genetic and epigenetic alterations. Even in the era of precision oncology, carcinogens contributing to neoplastic process are still an important focus of research. Comprehensive genomic analyses have revealed various combinations of base substitutions, referred to as the mutational signatures, in cancer. Each mutational signature is believed to arise from specific DNA damage and repair processes, including carcinogens. However, as a type of carcinogen, tumor viruses increase the cancer risk by alternative mechanisms, including insertional mutagenesis, viral oncogenes, and immunosuppression. In this review, we summarize virus-driven carcinogenesis to provide a framework for the control of malignant cell proliferation. We first provide a brief overview of oncogenic viruses and describe their implication in virus-related tumors. Next, we describe tumor viruses (HPV, Human papilloma virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; EBV, Epstein-Barr virus; Kaposi sarcoma herpesvirus; MCV, Merkel cell polyoma virus; HTLV-1, Human T-cell lymphotropic virus, type-1) and tumor virus-related cancers. Lastly, we introduce emerging tumor virus candidates, human cytomegalovirus (CMV), human herpesvirus-6 (HHV-6) and adeno-associated virus-2 (AAV-2). We expect this review to be a hub in a complex network of data for virus-associated carcinogenesis.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Takayasu Ideta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
- Department of Laboratory Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1194, Japan;
| | - Kayoko Hatano
- Department of Obstetrics and Gynecology, Gifu University Hospital, Gifu 501-1194, Japan;
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
| | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| |
Collapse
|
31
|
Huang S, Yasuda T. Pathologically Relevant Mouse Models for Epstein-Barr Virus-Associated B Cell Lymphoma. Front Immunol 2021; 12:639844. [PMID: 33732260 PMCID: PMC7959712 DOI: 10.3389/fimmu.2021.639844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
The Epstein–Barr virus (EBV) is endemic in humans and can efficiently transform infected B cells under some circumstances. If an EBV carrier experiences immune suppression, EBV+ B cells can turn into lymphoblasts and exhibit growth expansion that may cause lymphoproliferative diseases which often develop into lymphoma. Our immune system conducts surveillance for EBV+ B cells in order to block spontaneous tumor formation. Here, we summarize the EBV products involved in tumorigenesis, EBV-associated lymphomas, and pathologically relevant mouse models. Preclinical mouse models for a range of EBV-associated diseases not only clear the path to new therapeutic approaches but also aid in our understanding of the nature of lymphomagenesis and immune surveillance.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
32
|
Luo Y, Liu Y, Wang C, Gan R. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int 2021; 21:93. [PMID: 33549103 PMCID: PMC7868022 DOI: 10.1186/s12935-021-01793-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is closely associated with multiple human cancers. EBV-associated cancers are mainly lymphomas derived from B cells and T cells (Hodgkin lymphoma, Burkitt lymphoma, NK/T-cell lymphoma, and posttransplant lymphoproliferative disorder (PTLD)) and carcinomas derived from epithelial cells (nasopharyngeal carcinoma and gastric carcinoma). EBV can induce oncogenesis in its host cell by activating various signaling pathways, such as nuclear factor-κB (NF-κB), phosphoinositide-3-kinase/protein kinase B (PI3K/AKT), Janus kinase/signal transducer and transcription activator (JAK/STAT), mitogen-activated protein kinase (MAPK), transforming growth factor-β (TGF-β), and Wnt/β-catenin, which are regulated by EBV-encoded proteins and noncoding RNA. In this review, we focus on the oncogenic roles of EBV that are mediated through the aforementioned signaling pathways.
Collapse
Affiliation(s)
- Yin Luo
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Yitong Liu
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Chengkun Wang
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.
| | - Runliang Gan
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
33
|
Hosoi H, Niibori-Nambu A, Nah GSS, Bahirvani AG, Mok MMH, Sanda T, Kumar AP, Tenen DG, Ito Y, Sonoki T, Osato M. Super-enhancers for RUNX3 are required for cell proliferation in EBV-infected B cell lines. Gene 2021; 774:145421. [PMID: 33444684 DOI: 10.1016/j.gene.2021.145421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/30/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus nuclear antigens 2 (EBNA2) mediated super-enhancers, defined by in silico data, localize near genes associated with B cell transcription factors including RUNX3. However, the biological function of super-enhancer for RUNX3 gene (seR3) remains unclear. Here, we show that two seR3s, tandemly-located at 59- and 70-kb upstream of RUNX3 transcription start site, named seR3 -59h and seR3 -70h, are required for RUNX3 expression and cell proliferation in Epstein-Barr virus (EBV)-positive malignant B cells. A BET bromodomain inhibitor, JQ1, potently suppressed EBV-positive B cell growth through the reduction of RUNX3 and MYC expression. Excision of either or both seR3s by employing CRISPR/Cas9 system resulted in the decrease in RUNX3 expression and the subsequent suppression of cell proliferation and colony forming capability. The expression of MYC was also reduced when seR3s were deleted, probably due to the loss of trans effect of seR3s on the super-enhancers for MYC. These findings suggest that seR3s play a pivotal role in expression and biological function of both RUNX3 and MYC. seR3s would serve as a potential therapeutic target in EBV-related widespread tumors.
Collapse
Affiliation(s)
- Hiroki Hosoi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Institute of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Giselle Sek Suan Nah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Japan.
| |
Collapse
|
34
|
Epstein-Barr Virus Reactivation-Induced Immunoglobulin Production: Significance on Autoimmunity. Microorganisms 2020; 8:microorganisms8121875. [PMID: 33260824 PMCID: PMC7760294 DOI: 10.3390/microorganisms8121875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/29/2022] Open
Abstract
Epstein–Barr virus (EBV) mainly persists in B cells, which differentiate into antibody-producing cells, and thus, EBV has been implicated in autoimmune diseases. We aimed to describe the EBV reactivation and its relevance to autoimmune disease, focusing on Graves’ disease, which is an autoimmune hyperthyroidism caused by thyrotropin receptor antibodies. Circulating autoreactive B cells that have evaded from the selection have difficulties differentiating to produce antibodies. However, once EBV infects such B cells and reactivates, the B cells may become plasma cells and produce autoantibody. We herein proposed an EBV reactivation-induced Ig production system, which is a distinct pathway from the antibody production system through germinal centers and bone marrow and has the following characteristics: 1. IgM dominance, 2. ubiquitous Ig production, and 3. the rescue of autoreactive B cells, which skews Ig production toward autoantigens. IgM autoantibodies induced by EBV reactivation may activate the classical complement pathway and injure healthy tissue, which supply autoantigens for the production of affinity-matured IgG autoantibodies. Antibodies induced by EBV reactivation may play important roles in the development and exacerbation of autoimmune diseases.
Collapse
|
35
|
Epstein-Barr Virus Genomes Reveal Population Structure and Type 1 Association with Endemic Burkitt Lymphoma. J Virol 2020; 94:JVI.02007-19. [PMID: 32581102 DOI: 10.1128/jvi.02007-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Endemic Burkitt lymphoma (eBL), the most prevalent pediatric cancer in sub-Saharan Africa, is distinguished by its inclusion of Epstein-Barr virus (EBV). In order to better understand the impact of EBV variation in eBL tumorigenesis, we improved viral DNA enrichment methods and generated a total of 98 new EBV genomes from both eBL cases (n = 58) and healthy controls (n = 40) residing in the same geographic region in Kenya. Using our unbiased methods, we found that EBV type 1 was significantly more prevalent in eBL patients (74.5%) than in healthy children (47.5%) (odds ratio = 3.24, 95% confidence interval = 1.36 to 7.71, P = 0.007), as opposed to similar proportions in both groups. Controlling for EBV type, we also performed a genome-wide association study identifying six nonsynonymous variants in the genes EBNA1, EBNA2, BcLF1, and BARF1 that were enriched in eBL patients. In addition, viruses isolated from plasma of eBL patients were identical to their tumor counterparts consistent with circulating viral DNA originating from the tumor. We also detected three intertypic recombinants carrying type 1 EBNA2 and type 2 EBNA3 regions, as well as one novel genome with a 20-kb deletion, resulting in the loss of multiple lytic and virion genes. Comparing EBV types, viral genes displayed differential variation rates as type 1 appeared to be more divergent, while type 2 demonstrated novel substructures. Overall, our findings highlight the complexities of the EBV population structure and provide new insight into viral variation, potentially deepening our understanding of eBL oncogenesis.IMPORTANCE Improved viral enrichment methods conclusively demonstrate EBV type 1 to be more prevalent in eBL patients than in geographically matched healthy controls, which previously underrepresented the prevalence of EBV type 2. Genome-wide association analysis between cases and controls identifies six eBL-associated nonsynonymous variants in EBNA1, EBNA2, BcLF1, and BARF1 genes. Analysis of population structure reveals that EBV type 2 exists as two genomic subgroups and was more commonly found in female than in male eBL patients.
Collapse
|
36
|
The BHLF1 Locus of Epstein-Barr Virus Contributes to Viral Latency and B-Cell Immortalization. J Virol 2020; 94:JVI.01215-20. [PMID: 32581094 DOI: 10.1128/jvi.01215-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) BHLF1 gene encodes an abundant linear and several circular RNAs believed to perform noncoding functions during virus replication, although an open reading frame (ORF) is retained among an unknown percentage of EBV isolates. Evidence suggests that BHLF1 is also transcribed during latent infection, which prompted us to investigate the contribution of this locus to latency. Analysis of transcripts transiting BHLF1 revealed that its transcription is widespread among B-cell lines supporting the latency I or III program of EBV protein expression and is more complex than originally presumed. EBV-negative Burkitt lymphoma cell lines infected with either wild-type or two different BHLF1 mutant EBVs were initially indistinguishable in supporting latency III. However, cells infected with BHLF1 - virus ultimately transitioned to the more restrictive latency I program, whereas cells infected with wild-type virus either sustained latency III or transitioned more slowly to latency I. Upon infection of primary B cells, which require latency III for growth in vitro, both BHLF1 - viruses exhibited variably reduced immortalization potential relative to the wild-type virus. Finally, in transfection experiments, efficient protein expression from an intact BHLF1 ORF required the EBV posttranscriptional regulator protein SM, whose expression is limited to the replicative cycle. Thus, one way in which BHLF1 may contribute to latency is through a mechanism, possibly mediated or regulated by a long noncoding RNA, that supports latency III critical for the establishment of EBV latency and lifelong persistence within its host, whereas any retained protein-dependent function of BHLF1 may be restricted to the replication cycle.IMPORTANCE Epstein-Barr virus (EBV) has significant oncogenic potential that is linked to its latent infection of B lymphocytes, during which virus replication is not supported. The establishment of latent infection, which is lifelong and can precede tumor development by years, requires the concerted actions of nearly a dozen EBV proteins and numerous small non-protein-coding RNAs. Elucidating how these EBV products contribute to latency is crucial for understanding EBV's role in specific malignancies and, ultimately, for clinical intervention. Historically, EBV genes that contribute to virus replication have been excluded from consideration of a role in latency, primarily because of the general incompatibility between virus production and cell survival. However, here, we provide evidence that the genetic locus containing one such gene, BHLF1, indeed contributes to key aspects of EBV latency, including its ability to promote the continuous growth of B lymphocytes, thus providing significant new insight into EBV biology and oncogenic potential.
Collapse
|
37
|
Guo R, Zhang Y, Teng M, Jiang C, Schineller M, Zhao B, Doench JG, O'Reilly RJ, Cesarman E, Giulino-Roth L, Gewurz BE. DNA methylation enzymes and PRC1 restrict B-cell Epstein-Barr virus oncoprotein expression. Nat Microbiol 2020; 5:1051-1063. [PMID: 32424339 PMCID: PMC7462085 DOI: 10.1038/s41564-020-0724-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
To accomplish the remarkable task of lifelong infection, the Epstein-Barr virus (EBV) switches between four viral genome latency and lytic programmes to navigate the B-cell compartment and evade immune responses. The transforming programme, consisting of highly immunogenic EBV nuclear antigen (EBNA) and latent membrane proteins (LMPs), is expressed in newly infected B lymphocytes and in post-transplant lymphomas. On memory cell differentiation and in most EBV-associated Burkitt's lymphomas, all but one viral antigen are repressed for immunoevasion. To gain insights into the epigenetic mechanisms that restrict immunogenic oncoprotein expression, a genome-scale CRISPR-Cas9 screen was performed in EBV and Burkitt's lymphoma cells. Here, we show that the ubiquitin ligase ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1) and its DNA methyltransferase partner DNA methyltransferase I (DNMT1) are critical for the restriction of EBNA and LMP expression. All UHRF1 reader and writer domains were necessary for silencing and DNMT3B was identified as an upstream viral genome CpG methylation initiator. Polycomb repressive complex I exerted a further layer of control over LMP expression, suggesting a second mechanism for latency programme switching. UHRF1, DNMT1 and DNMT3B are upregulated in germinal centre B cells, the Burkitt's lymphoma cell of origin, providing a molecular link between B-cell state and the EBV latency programme. These results suggest rational therapeutic targets to manipulate EBV oncoprotein expression.
Collapse
Affiliation(s)
- Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yuchen Zhang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chang Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Molly Schineller
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Richard J O'Reilly
- Department of Pediatrics, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
38
|
Li C, Romero-Masters JC, Huebner S, Ohashi M, Hayes M, Bristol JA, Nelson SE, Eichelberg MR, Van Sciver N, Ranheim EA, Scott RS, Johannsen EC, Kenney SC. EBNA2-deleted Epstein-Barr virus (EBV) isolate, P3HR1, causes Hodgkin-like lymphomas and diffuse large B cell lymphomas with type II and Wp-restricted latency types in humanized mice. PLoS Pathog 2020; 16:e1008590. [PMID: 32542010 PMCID: PMC7316346 DOI: 10.1371/journal.ppat.1008590] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/25/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022] Open
Abstract
EBV transforms B cells in vitro and causes human B-cell lymphomas including classical Hodgkin lymphoma (CHL), Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). The EBV latency protein, EBNA2, transcriptionally activates the promoters of all latent viral protein-coding genes expressed in type III EBV latency and is essential for EBV's ability to transform B cells in vitro. However, EBNA2 is not expressed in EBV-infected CHLs and BLs in humans. EBV-positive CHLs have type II latency and are largely driven by the EBV LMP1/LMP2A proteins, while EBV-positive BLs, which usually have type I latency are largely driven by c-Myc translocations, and only express the EBNA1 protein and viral non-coding RNAs. Approximately 15% of human BLs contain naturally occurring EBNA2-deleted viruses that support a form of viral latency known as Wp-restricted (expressing the EBNA-LP, EBNA3A/3B/3C, EBNA1 and BHRF1 proteins), but whether Wp-restricted latency and/or EBNA2-deleted EBV can induce lymphomas in humanized mice, or in the absence of c-Myc translocations, is unknown. Here we show that a naturally occurring EBNA2-deleted EBV strain (P3HR1) isolated from a human BL induces EBV-positive B-cell lymphomas in a subset of infected cord blood-humanized (CBH) mice. Furthermore, we find that P3HR1-infected lymphoma cells support two different viral latency types and phenotypes that are mutually exclusive: 1) Large (often multinucleated), CD30-positive, CD45-negative cells reminiscent of the Reed-Sternberg (RS) cells in CHL that express high levels of LMP1 but not EBNA-LP (consistent with type II viral latency); and 2) smaller monomorphic CD30-negative DLBCL-like cells that express EBNA-LP and EBNA3A but not LMP1 (consistent with Wp-restricted latency). These results reveal that EBNA2 is not absolutely required for EBV to form tumors in CBH mice and suggest that P3HR1 virus can be used to model EBV positive lymphomas with both Wp-restricted and type II latency in vivo.
Collapse
MESH Headings
- Animals
- Cell Line
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/pathology
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Nuclear Antigens/genetics
- Epstein-Barr Virus Nuclear Antigens/metabolism
- Gene Deletion
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Hodgkin Disease/genetics
- Hodgkin Disease/metabolism
- Hodgkin Disease/pathology
- Hodgkin Disease/virology
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/virology
- Mice
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Latency
Collapse
Affiliation(s)
- Chunrong Li
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James C. Romero-Masters
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shane Huebner
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark R. Eichelberg
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erik A. Ranheim
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rona S. Scott
- Center for Molecular and Tumor Virology, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
39
|
Functional interplay of Epstein-Barr virus oncoproteins in a mouse model of B cell lymphomagenesis. Proc Natl Acad Sci U S A 2020; 117:14421-14432. [PMID: 32522871 DOI: 10.1073/pnas.1921139117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a B cell transforming virus that causes B cell malignancies under conditions of immune suppression. EBV orchestrates B cell transformation through its latent membrane proteins (LMPs) and Epstein-Barr nuclear antigens (EBNAs). We here identify secondary mutations in mouse B cell lymphomas induced by LMP1, to predict and identify key functions of other EBV genes during transformation. We find aberrant activation of early B cell factor 1 (EBF1) to promote transformation of LMP1-expressing B cells by inhibiting their differentiation to plasma cells. EBV EBNA3A phenocopies EBF1 activities in LMP1-expressing B cells, promoting transformation while inhibiting differentiation. In cells expressing LMP1 together with LMP2A, EBNA3A only promotes lymphomagenesis when the EBNA2 target Myc is also overexpressed. Collectively, our data support a model where proproliferative activities of LMP1, LMP2A, and EBNA2 in combination with EBNA3A-mediated inhibition of terminal plasma cell differentiation critically control EBV-mediated B cell lymphomagenesis.
Collapse
|
40
|
Roy Chattopadhyay N, Chatterjee K, Tiwari N, Chakrabarti S, Sahu SK, Deb Roy S, Ghosh A, Reddy RR, Das P, Mal S, Karnar BB, Das AK, Tsering S, Riba K, Puii Z, Zomawia E, Singh YI, Suryawanshi AR, Kumar A, Ganguly D, Goswami C, Choudhuri T. TLR9 Polymorphisms Might Contribute to the Ethnicity Bias for EBV-Infected Nasopharyngeal Carcinoma. iScience 2020; 23:100937. [PMID: 32179470 PMCID: PMC7068130 DOI: 10.1016/j.isci.2020.100937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a rare malignancy in most parts of the world, but is endemic in some ethnic groups. The association of NPC with the Epstein-Barr virus (EBV) is firmly established; however, the mechanism is still unclear. TLR9 is well known for its essential role in viral pathogen recognition and activation of innate immunity. Here, we report a set of TLR9 polymorphisms in the TIR-2 domain of the TLR9 protein collected from the EBV-infected NPC samples from northeast Indian populations sharing the aforesaid ethnicity. The occurrence of mutations is significantly high in these samples as we found a p value of <0.0001 at a significance level of 0.05. These might play an important role for the lack of function of TLR9 and thus for the higher occurrence of EBV-mediated NPC in such ethnic groups. EBV-associated nasopharyngeal carcinoma (NPC) is endemic in Mongoloids TLR9 is essential for virus recognition and immunity against cancers Polymorphisms are common in TLR9 protein in EBV-infected Mongoloids with NPC NPC susceptibility prediction by TLR9 mutation screening in people for prevention
Collapse
Affiliation(s)
| | - Koustav Chatterjee
- Department of Biotechnology, Visva Bharati, Santiniketan, Bolpur 731235, India
| | - Nikhil Tiwari
- School of Biological Science, National Institute of Science Education and Research, Padnpur, Odisha 752050, India
| | | | - Sushil Kumar Sahu
- Depatrment of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sankar Deb Roy
- Department of Radiation Oncology, Eden Medical Center, Dimapur, Nagaland 797112, India
| | - Arijit Ghosh
- School of Biological Science, National Institute of Science Education and Research, Padnpur, Odisha 752050, India
| | - R Rajendra Reddy
- Clinical Proteomics, Institute of Life Sciences, 751023 Bhubaneswar, India
| | - Piyanki Das
- Department of Biotechnology, Visva Bharati, Santiniketan, Bolpur 731235, India
| | - Sudipa Mal
- Department of Biotechnology, Visva Bharati, Santiniketan, Bolpur 731235, India
| | - Basab Bijay Karnar
- Department of Biotechnology, Visva Bharati, Santiniketan, Bolpur 731235, India
| | - Ashok Kumar Das
- Dr B. Borooah Cancer Institute, ENT Department, Guwahati, Assam 781016, India
| | - Sam Tsering
- Tertiary Cancer Center, TomoRiba Institute of Health and Medical Sciences, Naharlagun, Arunachal Pradesh 791110, India
| | - Komri Riba
- Tertiary Cancer Center, TomoRiba Institute of Health and Medical Sciences, Naharlagun, Arunachal Pradesh 791110, India
| | - Zoreng Puii
- State Referral Hospital, Falkawn, Mizoram 796005, India
| | - Eric Zomawia
- State Referral Hospital, Falkawn, Mizoram 796005, India
| | - Y Indibar Singh
- Department of Radiotherapy, Regional Institute of Medical Sciences, Imphal, Manipur 795004, India
| | | | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, 560100 Bangalore, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Dipyaman Ganguly
- Dendritic Cell Laboratory, Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, 700032 Kolkata, India
| | - Chandan Goswami
- School of Biological Science, National Institute of Science Education and Research, Padnpur, Odisha 752050, India
| | - Tathagata Choudhuri
- Department of Biotechnology, Visva Bharati, Santiniketan, Bolpur 731235, India.
| |
Collapse
|
41
|
Gain C, Malik S, Bhattacharjee S, Ghosh A, Robertson ES, Das BB, Saha A. Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway. PLoS Pathog 2020; 16:e1008105. [PMID: 32092124 PMCID: PMC7058366 DOI: 10.1371/journal.ppat.1008105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/05/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear oncoprotein EBNA3C is essential for B-cell transformation and development of several B-cell lymphomas particularly those are generated in an immuno-compromised background. EBNA3C recruits ubiquitin-proteasome machinery for deregulating multiple cellular oncoproteins and tumor suppressor proteins. Although EBNA3C is found to be ubiquitinated at its N-terminal region and interacts with 20S proteasome, the viral protein is surprisingly stable in growing B-lymphocytes. EBNA3C can also circumvent autophagy-lysosomal mediated protein degradation and subsequent antigen presentation for T-cell recognition. Recently, we have shown that EBNA3C enhances autophagy, which serve as a prerequisite for B-cell survival particularly under growth deprivation conditions. We now demonstrate that proteasomal inhibition by MG132 induces EBNA3C degradation both in EBV transformed B-lymphocytes and ectopic-expression systems. Interestingly, MG132 treatment promotes degradation of two EBNA3 family oncoproteins-EBNA3A and EBNA3C, but not the viral tumor suppressor protein EBNA3B. EBNA3C degradation induced by proteasomal inhibition is partially blocked when autophagy-lysosomal pathway is inhibited. In response to proteasomal inhibition, EBNA3C is predominantly K63-linked polyubiquitinated, colocalized with the autophagy-lysosomal fraction in the cytoplasm and participated within p62-LC3B complex, which facilitates autophagy-mediated degradation. We further show that the degradation signal is present at the first 50 residues of the N-terminal region of EBNA3C. Proteasomal inhibition reduces the colony formation ability of this important viral oncoprotein, induces apoptotic cell death and increases transcriptional activation of both latent and lytic gene expression which further promotes viral reactivation from EBV transformed B-lymphocytes. Altogether, this study offers rationale to use proteasome inhibitors as potential therapeutic strategy against multiple EBV associated B-cell lymphomas, where EBNA3C is expressed.
Collapse
Affiliation(s)
- Chandrima Gain
- Department of Life Sciences, Presidency University, West Bengal, India
| | - Samaresh Malik
- Department of Life Sciences, Presidency University, West Bengal, India
| | | | - Arijit Ghosh
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Erle S. Robertson
- Department of Otorhinolaryngology Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Abhik Saha
- Department of Life Sciences, Presidency University, West Bengal, India
| |
Collapse
|
42
|
Nehme Z, Pasquereau S, Herbein G. Targeting histone epigenetics to control viral infections. HISTONE MODIFICATIONS IN THERAPY 2020. [PMCID: PMC7453269 DOI: 10.1016/b978-0-12-816422-8.00011-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past decades, many studies have significantly broadened our understanding of complex virus-host interactions to control chromatin structure and dynamics.1, 2 However, the role and impact of such modifications during viral infections is not fully revealed. Indeed, this type of regulation is bidirectional between the virus and the host. While viral replication and gene expression are significantly impacted by histone modifications on the viral chromatin,3 studies have shown that some viral pathogens dynamically manipulate cellular epigenetic factors to enhance their own survival and pathogenesis, as well as escape the immune system defense lines.4 In this dynamic, histone posttranslational modifications (PTMs) appear to play fundamental roles in the regulation of chromatin structure and recruitment of other factors.5 Genuinely, those PTMs play a vital role in lytic infection, latency reinforcement, or, conversely, viral reactivation.6 In this chapter, we will examine and review the involvement of histone modifications as well as their potential manipulation to control infections during various viral life cycle stages, highlighting their prospective implications in the clinical management of human immunodeficiency virus (HIV), herpes simplex virus (HSV), human cytomegalovirus (HCMV), hepatitis B and C viruses (HBV and HCV, respectively), Epstein–Barr virus (EBV), and other viral diseases. Targeting histone modifications is critical in setting the treatment of chronic viral infections with both lytic and latent stages (HIV, HCMV, HSV, RSV), virus-induced cancers (HBV, HCV, EBV, KSHV, HPV), and epidemic/emerging viruses (e.g. influenza virus, arboviruses).
Collapse
|
43
|
The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon 2019; 5:e02624. [PMID: 31840114 PMCID: PMC6893087 DOI: 10.1016/j.heliyon.2019.e02624] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
p53, p63, and p73, the members of the p53 family of proteins, are structurally similar proteins that play central roles regulating cell cycle and apoptotic cell death. Alternative splicing at the carboxyl terminus and the utilization of different promoters further categorizes these proteins as having different isoforms for each. Among such isoforms, TA and ΔN versions of each protein serve as the pro and the anti-apoptotic proteins, respectively. Changes in the expression patterns of these isoforms are noted in many human cancers. Proteins of certain human herpesviruses, like Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), interact with p53 family members and alter their expressions in many malignancies. Upon infections in the B cells and epithelial cells, EBV expresses different lytic or latent proteins during viral replication and latency respectively to preserve viral copy number, chromosomal integrity and viral persistence inside the host. In this review, we have surveyed and summarised the interactions of EBV gene products, known so far, with the p53 family proteins. The interactions between P53 and EBV oncoproteins are observed in stomach cancer, non-Hodgkin's lymphoma (NHL) of the head and neck, Nasopharyngeal Cancer (NPC), Gastric carcinoma (GC) and Burkitt's lymphoma (BL). EBV latent protein EBNA1, EBNA3C, LMP-1, and lytic proteins BZLF-1 can alter p53 expressions in many cancer cell lines. Interactions of p63 with EBNA-1, 2, 5, LMP-2A and BARF-1 have also been investigated in several cancers. Similarly, associations of p73 isoform with EBV latent proteins EBNA3C and LMP-1 have been reported. Methylation and single nucleotide polymorphisms in p53 have also been found to be correlated with EBV infection. Therefore, interactions and altered expression strategies of the isoforms of p53 family proteins in EBV associated cancers propose an important field for further molecular research.
Collapse
|
44
|
Pich D, Mrozek-Gorska P, Bouvet M, Sugimoto A, Akidil E, Grundhoff A, Hamperl S, Ling PD, Hammerschmidt W. First Days in the Life of Naive Human B Lymphocytes Infected with Epstein-Barr Virus. mBio 2019; 10:e01723-19. [PMID: 31530670 PMCID: PMC6751056 DOI: 10.1128/mbio.01723-19] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) infects and activates resting human B lymphocytes, reprograms them, induces their proliferation, and establishes a latent infection in them. In established EBV-infected cell lines, many viral latent genes are expressed. Their roles in supporting the continuous proliferation of EBV-infected B cells in vitro are known, but their functions in the early, prelatent phase of infection have not been investigated systematically. In studies during the first 8 days of infection using derivatives of EBV with mutations in single genes of EBVs, we found only Epstein-Barr nuclear antigen 2 (EBNA2) to be essential for activating naive human B lymphocytes, inducing their growth in cell volume, driving them into rapid cell divisions, and preventing cell death in a subset of infected cells. EBNA-LP, latent membrane protein 2A (LMP2A), and the viral microRNAs have supportive, auxiliary functions, but mutants of LMP1, EBNA3A, EBNA3C, and the noncoding Epstein-Barr virus with small RNA (EBERs) had no discernible phenotype compared with wild-type EBV. B cells infected with a double mutant of EBNA3A and 3C had an unexpected proliferative advantage and did not regulate the DNA damage response (DDR) of the infected host cell in the prelatent phase. Even EBNA1, which has very critical long-term functions in maintaining and replicating the viral genomic DNA in established cell lines, was dispensable for the early activation of infected cells. Our findings document that the virus dose is a decisive parameter and indicate that EBNA2 governs the infected cells initially and implements a strictly controlled temporal program independent of other viral latent genes. It thus appears that EBNA2 is sufficient to control all requirements for clonal cellular expansion and to reprogram human B lymphocytes from energetically quiescent to activated cells.IMPORTANCE The preferred target of Epstein-Barr virus (EBV) is human resting B lymphocytes. We found that their infection induces a well-coordinated, time-driven program that starts with a substantial increase in cell volume, followed by cellular DNA synthesis after 3 days and subsequent rapid rounds of cell divisions on the next day accompanied by some DNA replication stress (DRS). Two to 3 days later, the cells decelerate and turn into stably proliferating lymphoblast cell lines. With the aid of 16 different recombinant EBV strains, we investigated the individual contributions of EBV's multiple latent genes during early B-cell infection and found that many do not exert a detectable phenotype or contribute little to EBV's prelatent phase. The exception is EBNA2 that is essential in governing all aspects of B-cell reprogramming. EBV relies on EBNA2 to turn the infected B lymphocytes into proliferating lymphoblasts preparing the infected host cell for the ensuing stable, latent phase of viral infection. In the early steps of B-cell reprogramming, viral latent genes other than EBNA2 are dispensable, but some, EBNA-LP, for example, support the viral program and presumably stabilize the infected cells once viral latency is established.
Collapse
Affiliation(s)
- Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Paulina Mrozek-Gorska
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Mickaël Bouvet
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Atsuko Sugimoto
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Ezgi Akidil
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Stephan Hamperl
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
45
|
Roy Chattopadhyay N, Das P, Chatterjee K, Choudhuri T. Higher incidence of nasopharyngeal carcinoma in some regions in the world confers for interplay between genetic factors and external stimuli. Drug Discov Ther 2019; 11:170-180. [PMID: 28867748 DOI: 10.5582/ddt.2017.01030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a rare variety of head and neck cancers. The risk factors include three major causes: genetic factors, viral infection, and environmental and dietary factors. The types of NPC show strong ethnic and geographic variations. The keratinizing and non-keratinizing types are prevalent in the lower incidence regions like North America and Europe; whereas the undifferentiated type is mostly found in the regions with higher incidences like China, North Africa, Arctic, and Nagaland of North-East India. These suggest a possible major role of the internal genetic factors for generation and promotion of this disease. Viral infections might accelerate the process of carcinogenesis by helping in cellular proliferation and loss of apoptosis. Diet and other environmental factors promote these neoplastic processes and further progression of the disease occurs.
Collapse
Affiliation(s)
| | - Piyanki Das
- Department of Biotechnology, Visva-Bharati, Siksha Bhavana
| | | | | |
Collapse
|
46
|
Ponnusamy R, Khatri R, Correia PB, Wood CD, Mancini EJ, Farrell PJ, West MJ. Increased association between Epstein-Barr virus EBNA2 from type 2 strains and the transcriptional repressor BS69 restricts EBNA2 activity. PLoS Pathog 2019; 15:e1007458. [PMID: 31283782 PMCID: PMC6638984 DOI: 10.1371/journal.ppat.1007458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/18/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022] Open
Abstract
Natural variation separates Epstein-Barr virus (EBV) into type 1 and type 2 strains. Type 2 EBV is less transforming in vitro due to sequence differences in the EBV transcription factor EBNA2. This correlates with reduced activation of the EBV oncogene LMP1 and some cell genes. Transcriptional activation by type 1 EBNA2 can be suppressed through the binding of two PXLXP motifs in its transactivation domain (TAD) to the dimeric coiled-coil MYND domain (CC-MYND) of the BS69 repressor protein (ZMYND11). We identified a third conserved PXLXP motif in type 2 EBNA2. We found that type 2 EBNA2 peptides containing this motif bound BS69CC-MYND efficiently and that the type 2 EBNA2TAD bound an additional BS69CC-MYND molecule. Full-length type 2 EBNA2 also bound BS69 more efficiently in pull-down assays. Molecular weight analysis and low-resolution structures obtained using small-angle X-ray scattering showed that three BS69CC-MYND dimers bound two molecules of type 2 EBNA2TAD, in line with the dimeric state of full-length EBNA2 in vivo. Importantly, mutation of the third BS69 binding motif in type 2 EBNA2 improved B-cell growth maintenance and the transcriptional activation of the LMP1 and CXCR7 genes. Our data indicate that increased association with BS69 restricts the function of type 2 EBNA2 as a transcriptional activator and driver of B cell growth and may contribute to reduced B-cell transformation by type 2 EBV. Epstein-Barr virus (EBV) drives the development of many human cancers worldwide including specific types of lymphoma and carcinoma. EBV infects B lymphocytes and immortalises them, thus contributing to lymphoma development. The virus promotes B lymphocyte growth and survival by altering the level at which hundreds of genes are expressed. The EBV protein EBNA2 is known to activate many growth-promoting genes. Natural variation in the sequence of EBNA2 defines the two main EBV strains: type 1 and type 2. Type 2 strains immortalise B lymphocytes less efficiency and activate some growth genes poorly, although the mechanism of this difference is unclear. We now show that sequence variation in type 2 EBNA2 creates a third site of interaction for the repressor protein (BS69, ZMYND11). We have characterised the complex formed between type 2 EBNA2 and BS69 and show that three dimers of BS69 form a bridged complex with two molecules of type 2 EBNA2. We demonstrate that mutation of the additional BS69 interaction site in type 2 EBNA2 improves its growth-promoting and gene induction function. Our results therefore highlight a molecular mechanism that may contribute to the different B lymphocyte growth promoting activities of EBV strains. This aids our understanding of immortalisation by EBV.
Collapse
Affiliation(s)
- Rajesh Ponnusamy
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Ritika Khatri
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Paulo B. Correia
- Section of Virology, Imperial College London, London, United Kingdom
| | - C. David Wood
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Erika J. Mancini
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Paul J. Farrell
- Section of Virology, Imperial College London, London, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Cheerathodi MR, Meckes DG. The Epstein-Barr virus LMP1 interactome: biological implications and therapeutic targets. Future Virol 2018; 13:863-887. [PMID: 34079586 DOI: 10.2217/fvl-2018-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oncogenic potential of Epstein-Barr virus (EBV) is mostly attributed to latent membrane protein 1 (LMP1), which is essential and sufficient for transformation of fibroblast and primary lymphocytes. LMP1 expression results in the activation of multiple signaling cascades like NF-ΚB and MAP kinases that trigger cell survival and proliferative pathways. LMP1 specific signaling events are mediated through the recruitment of a number of interacting proteins to various signaling domains. Based on these properties, LMP1 is an attractive target to develop effective therapeutics to treat EBV-related malignancies. In this review, we focus on LMP1 interacting proteins, associated signaling events, and potential targets that could be exploited for therapeutic strategies.
Collapse
Affiliation(s)
- Mujeeb R Cheerathodi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| |
Collapse
|
48
|
Abstract
Epstein-Barr virus (EBV) is one of the most widespread human pathogens. EBV infection is usually asymptomatic, and it establishes life-long latent infection. EBV latent infection sometimes causes various tumorigenic diseases, such as EBV-related lymphoproliferative diseases, Burkitt lymphomas, Hodgkin lymphomas, NK/T-cell lymphomas, and epithelial carcinomas. EBV-encoded latent genes are set of viral genes that are expressed in latently infected cells. They include virally encoded proteins, noncoding RNAs, and microRNAs. Different latent gene expression patterns are noticed in different types of EBV-infected cells. Viral latent gene products contribute to EBV-mediated B cell transformation and likely contribute to lymphomagenesis and epithelial carcinogenesis as well. Many biological functions of viral latent gene products have been reported, making difficult to understand a whole view of EBV latency. In this review, we will focus on latent gene functions that have been verified by genetic experiments using EBV mutants. We will also summarize how viral latent genes contribute to EBV-mediated B cell transformation, Burkitt lymphomagenesis, and epithelial carcinogenesis.
Collapse
|
49
|
Wood CD, Carvell T, Gunnell A, Ojeniyi OO, Osborne C, West MJ. Enhancer Control of MicroRNA miR-155 Expression in Epstein-Barr Virus-Infected B Cells. J Virol 2018; 92:e00716-18. [PMID: 30021904 PMCID: PMC6146817 DOI: 10.1128/jvi.00716-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022] Open
Abstract
The oncogenic microRNA (miRNA) miR-155 is the most frequently upregulated miRNA in Epstein-Barr virus (EBV)-positive B cell malignancies and is upregulated in other nonviral lymphomas. Both EBV nuclear antigen 2 (EBNA2) and the B cell transcription factor interferon regulatory factor 4 (IRF4) are known to activate transcription of the host cell gene from which miR-155 is processed (miR-155HG; BIC). EBNA2 also activates IRF4 transcription, indicating that EBV may upregulate miR-155 through direct and indirect mechanisms. The mechanism of transcriptional regulation of IRF4 and miR-155HG by EBNA2, however, has not been defined. We demonstrate that EBNA2 can activate IRF4 and miR-155HG expression through specific upstream enhancers that are dependent on the Notch signaling transcription factor RBPJ, a known binding partner of EBNA2. We demonstrate that in addition to the activation of the miR-155HG promoter, IRF4 can also activate miR-155HG via the upstream enhancer also targeted by EBNA2. Gene editing to remove the EBNA2- and IRF4-responsive miR-155HG enhancer located 60 kb upstream of miR-155HG led to reduced miR-155HG expression in EBV-infected cells. Our data therefore demonstrate that specific RBPJ-dependent enhancers regulate the IRF4-miR-155 expression network and play a key role in the maintenance of miR-155 expression in EBV-infected B cells. These findings provide important insights that will improve our understanding of miR-155 control in B cell malignancies.IMPORTANCE MicroRNA miR-155 is expressed at high levels in many human cancers, particularly lymphomas. Epstein-Barr virus (EBV) infects human B cells and drives the development of numerous lymphomas. Two genes carried by EBV (LMP1 and EBNA2) upregulate miR-155 expression, and miR-155 expression is required for the growth of EBV-infected B cells. We show that the EBV transcription factor EBNA2 upregulates miR-155 expression by activating an enhancer upstream from the miR-155 host gene (miR-155HG) from which miR-155 is derived. We show that EBNA2 also indirectly activates miR-155 expression through enhancer-mediated activation of IRF4 IRF4 then activates both the miR-155HG promoter and the upstream enhancer, independently of EBNA2. Gene editing to remove the miR-155HG enhancer leads to a reduction in miR-155HG expression. We therefore identify enhancer-mediated activation of miR-155HG as a critical step in promoting B cell growth and a likely contributor to lymphoma development.
Collapse
Affiliation(s)
- C David Wood
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Thomas Carvell
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Andrea Gunnell
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Opeoluwa O Ojeniyi
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Cameron Osborne
- Department of Medical and Molecular Genetics, King's College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Michelle J West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
50
|
Epstein-Barr Virus Nuclear Antigen 3C Facilitates Cell Proliferation by Regulating Cyclin D2. J Virol 2018; 92:JVI.00663-18. [PMID: 29997218 DOI: 10.1128/jvi.00663-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Cell cycle regulation is one of the hallmarks of virus-mediated oncogenesis. Epstein-Barr virus (EBV)-induced lymphomas express a repertoire of essential viral latent proteins that regulate expression of cell cycle-related proteins to dysregulate this process, thereby facilitating the proliferation of infected cells. We now demonstrate that the essential EBV latent protein 3C (EBNA3C) stabilizes cyclin D2 to regulate cell cycle progression. More specifically, EBNA3C directly binds to cyclin D2 and they colocalize together in nuclear compartments. We show that EBNA3C regulates the promoter of cyclin D2 through cooperation with master transcription factor Bcl6 and enhances its stability by inhibiting its ubiquitin-dependent degradation. EBNA3C also promoted cell proliferation in the presence of cyclin D2, suggesting that cyclin D2 contributes to EBNA3C-mediated cell cycle progression. These results provide new clues as to the role of this essential viral latent protein and its ability to regulate expression of cellular factors, which drives the oncogenic process.IMPORTANCE Epstein-Barr virus (EBV) is the first identified human tumor virus and is associated with a range of human cancers. During EBV-induced lymphomas, the essential viral latent proteins modify the expression of cell cycle-related proteins to disturb the cell cycle process, thereby facilitating the proliferative process. The essential EBV nuclear antigen 3C (EBNA3C) plays an important role in EBV-mediated B-cell transformation. Here we show that EBNA3C stabilizes cyclin D2 to regulate cell cycle progression. More specifically, EBNA3C directly binds to cyclin D2, and they colocalize together in nuclear compartments. EBNA3C enhances cyclin D2 stability by inhibiting its ubiquitin-dependent degradation and significantly promotes cell proliferation in the presence of cyclin D2. Our results provide novel insights into the function of EBNA3C on cell progression by regulating the cyclin D2 protein and raise the possibility of the development of new anticancer therapies against EBV-associated cancers.
Collapse
|