1
|
Abstract
The continuous function of vertebrate photoreceptors requires regeneration of their visual pigment following its destruction upon activation by light (photobleaching). For rods, the chromophore required for the regeneration of rhodopsin is derived from the adjacent retinal pigmented epithelium (RPE) cells through a series of reactions collectively known as the RPE visual cycle. Mounting biochemical and functional evidence demonstrates that, for cones, pigment regeneration is supported by the parallel supply with chromophore by two pathways-the canonical RPE visual cycle and a second, cone-specific retina visual cycle that involves the Müller glial cells in the neural retina. In this article, we review historical information that led to the discovery of the retina visual cycle and discuss what is currently known about the reactions and molecular components of this pathway and its functional role in supporting cone-mediated vision.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Ophthalmology, Gavin Herbert Eye Institute-Center for Translational Vision Research, University of California, Irvine, California, USA; ,
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute-Center for Translational Vision Research, University of California, Irvine, California, USA; ,
| |
Collapse
|
2
|
Kaylor JJ, Frederiksen R, Bedrosian CK, Huang M, Stennis-Weatherspoon D, Huynh T, Ngan T, Mulamreddy V, Sampath AP, Fain GL, Travis GH. RDH12 allows cone photoreceptors to regenerate opsin visual pigments from a chromophore precursor to escape competition with rods. Curr Biol 2024; 34:3342-3353.e6. [PMID: 38981477 PMCID: PMC11303097 DOI: 10.1016/j.cub.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Capture of a photon by an opsin visual pigment isomerizes its 11-cis-retinaldehyde (11cRAL) chromophore to all-trans-retinaldehyde (atRAL), which subsequently dissociates. To restore light sensitivity, the unliganded apo-opsin combines with another 11cRAL to make a new visual pigment. Two enzyme pathways supply chromophore to photoreceptors. The canonical visual cycle in retinal pigment epithelial cells supplies 11cRAL at low rates. The photic visual cycle in Müller cells supplies cones with 11-cis-retinol (11cROL) chromophore precursor at high rates. Although rods can only use 11cRAL to regenerate rhodopsin, cones can use 11cRAL or 11cROL to regenerate cone visual pigments. We performed a screen in zebrafish retinas and identified ZCRDH as a candidate for the enzyme that converts 11cROL to 11cRAL in cone inner segments. Retinoid analysis of eyes from Zcrdh-mutant zebrafish showed reduced 11cRAL and increased 11cROL levels, suggesting impaired conversion of 11cROL to 11cRAL. By microspectrophotometry, isolated Zcrdh-mutant cones lost the capacity to regenerate visual pigments from 11cROL. ZCRDH therefore possesses all predicted properties of the cone 11cROL dehydrogenase. The human protein most similar to ZCRDH is RDH12. By immunocytochemistry, ZCRDH was abundantly present in cone inner segments, similar to the reported distribution of RDH12. Finally, RDH12 was the only mammalian candidate protein to exhibit 11cROL-oxidase catalytic activity. These observations suggest that RDH12 in mammals is the functional ortholog of ZCRDH, which allows cones, but not rods, to regenerate visual pigments from 11cROL provided by Müller cells. This capacity permits cones to escape competition from rods for visual chromophore in daylight-exposed retinas.
Collapse
Affiliation(s)
- Joanna J Kaylor
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Rikard Frederiksen
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Christina K Bedrosian
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Melody Huang
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - David Stennis-Weatherspoon
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Theodore Huynh
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Tiffany Ngan
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Varsha Mulamreddy
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Alapakkam P Sampath
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gordon L Fain
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gabriel H Travis
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA; University of California Los Angeles, Department of Biological Chemistry, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Zampatti S, Peconi C, Calvino G, Ferese R, Gambardella S, Cascella R, Sebastiani J, Falsini B, Cusumano A, Giardina E. A Splicing Variant in RDH8 Is Associated with Autosomal Recessive Stargardt Macular Dystrophy. Genes (Basel) 2023; 14:1659. [PMID: 37628710 PMCID: PMC10454646 DOI: 10.3390/genes14081659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Stargardt macular dystrophy is a genetic disorder, but in many cases, the causative gene remains unrevealed. Through a combined approach (whole-exome sequencing and phenotype/family-driven filtering algorithm) and a multilevel validation (international database searching, prediction scores calculation, splicing analysis assay, segregation analyses), a biallelic mutation in the RDH8 gene was identified to be responsible for Stargardt macular dystrophy in a consanguineous Italian family. This paper is a report on the first family in which a biallelic deleterious mutation in RDH8 is detected. The disease phenotype is consistent with the expected phenotype hypothesized in previous studies on murine models. The application of the combined approach to genetic data and the multilevel validation allowed the identification of a splicing mutation in a gene that has never been reported before in human disorders.
Collapse
Affiliation(s)
- Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
| | - Giulia Calvino
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
| | | | - Stefano Gambardella
- Neuromed IRCSS, 86077 Pozzilli, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | | | - Benedetto Falsini
- Macula & Genoma Foundation, 00133 Rome, Italy; (J.S.)
- Department of Ophthalmology, Policlinico A. Gemelli, IRCCS/Catholic University, 00133 Rome, Italy
- Macula & Genoma Foundation USA, New York, NY 10017, USA
| | - Andrea Cusumano
- Macula & Genoma Foundation, 00133 Rome, Italy; (J.S.)
- Macula & Genoma Foundation USA, New York, NY 10017, USA
- Department of Ophthalmology, Tor Vergata University, 00133 Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
4
|
Kawamura S, Tachibanaki S. Molecular basis of rod and cone differences. Prog Retin Eye Res 2021; 90:101040. [PMID: 34974196 DOI: 10.1016/j.preteyeres.2021.101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In the vertebrate retina, rods and cones both detect light, but they are different in functional aspects such as light sensitivity and time resolution, for example, and in some of cell biological aspects. For functional aspects, both photoreceptors are known to share a common mechanism, phototransduction cascade, consisting of a series of enzyme reactions to convert a photon-capture signal to an electrical signal. To understand the mechanisms of the functional differences between rods and cones at the molecular level, we compared biochemically each of the reactions in the phototransduction cascade between rods and cones using the cells isolated and purified from carp retina. Although proteins in the cascade are functionally similar between rods and cones, their activities together with their expression levels are mostly different between these photoreceptors. In general, reactions to generate a response are slightly less effective, as a total, in cones than in rods, but each of the reactions for termination and recovery of a response are much more effective in cones. These findings explain lower light sensitivity and briefer light responses in cones than in rods. In addition, our considerations suggest that a Ca2+-binding protein, S-modulin or recoverin, has a currently unnoticed role in shaping light responses. With comparison of the expression levels of proteins and/or mRNAs using purified cells, several proteins were found to be specifically or predominantly expressed in cones. These proteins would be of interest for future studies on the difference between rods and cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Murray IJ, Rodrigo-Diaz E, Kelly JMF, Tahir HJ, Carden D, Patryas L, Parry NR. The role of dark adaptation in understanding early AMD. Prog Retin Eye Res 2021; 88:101015. [PMID: 34626782 DOI: 10.1016/j.preteyeres.2021.101015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
The main aim of the paper is to discuss current knowledge on how Age Related Macular Degeneration (AMD) affects Dark Adaptation (DA). The paper is divided into three parts. Firstly, we outline some of the molecular mechanisms that control DA. Secondly, we review the psychophysical issues and the corresponding analytical techniques. Finally, we characterise the link between slowed DA and the morphological abnormalities in early AMD. Historically, DA has been regarded as too cumbersome for widespread clinical application. Yet the technique is extremely useful; it is widely accepted that the psychophysically obtained slope of the second rod-mediated phase of the dark adaptation function is an accurate assay of photoreceptor pigment regeneration kinetics. Technological developments have prompted new ways of generating the DA curve, but analytical problems remain. A simple potential solution to these, based on the application of a novel fast mathematical algorithm, is presented. This allows the calculation of the parameters of the DA curve in real time. Improving current management of AMD will depend on identifying a satisfactory endpoint for evaluating future therapeutic strategies. This must be implemented before the onset of severe disease. Morphological changes progress too slowly to act as a satisfactory endpoint for new therapies whereas functional changes, such as those seen in DA, may have more potential in this regard. It is important to recognise, however, that the functional changes are not confined to rods and that building a mathematical model of the DA curve enables the separation of rod and cone dysfunction and allows more versatility in terms of the range of disease severity that can be monitored. Examples are presented that show how analysing the DA curve into its constituent components can improve our understanding of the morphological changes in early AMD.
Collapse
Affiliation(s)
- Ian J Murray
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK.
| | - Elena Rodrigo-Diaz
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Jeremiah M F Kelly
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Humza J Tahir
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - David Carden
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Laura Patryas
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Neil Ra Parry
- Vision Science Lab., Faculty of Biology, Medicine and Health, University of Manchester, UK; Vision Science Centre, Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
6
|
Light responses of mammalian cones. Pflugers Arch 2021; 473:1555-1568. [PMID: 33742309 DOI: 10.1007/s00424-021-02551-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Cone photoreceptors provide the foundation of most of human visual experience, but because they are smaller and less numerous than rods in most mammalian retinas, much less is known about their physiology. We describe new techniques and approaches which are helping to provide a better understanding of cone function. We focus on several outstanding issues, including the identification of the features of the phototransduction cascade that are responsible for the more rapid kinetics and decreased sensitivity of the cone response, the roles of inner-segment voltage-gated and Ca2+-activated channels, the means by which cones remain responsive even in the brightest illumination, mechanisms of cone visual pigment regeneration in constant light, and energy consumption of cones in comparison to that of rods.
Collapse
|
7
|
Kolesnikov AV, Kiser PD, Palczewski K, Kefalov VJ. Function of mammalian M-cones depends on the level of CRALBP in Müller cells. J Gen Physiol 2021; 153:211551. [PMID: 33216847 PMCID: PMC7685772 DOI: 10.1085/jgp.202012675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
Cone photoreceptors mediate daytime vision in vertebrates. The rapid and efficient regeneration of their visual pigments following photoactivation is critical for the cones to remain photoresponsive in bright and rapidly changing light conditions. Cone pigment regeneration depends on the recycling of visual chromophore, which takes place via the canonical visual cycle in the retinal pigment epithelium (RPE) and the Müller cell-driven intraretinal visual cycle. The molecular mechanisms that enable the neural retina to regenerate visual chromophore for cones have not been fully elucidated. However, one known component of the two visual cycles is the cellular retinaldehyde-binding protein (CRALBP), which is expressed both in the RPE and in Müller cells. To understand the significance of CRALBP in cone pigment regeneration, we examined the function of cones in mice heterozygous for Rlbp1, the gene encoding CRALBP. We found that CRALBP expression was reduced by ∼50% in both the RPE and retina of Rlbp1+/- mice. Electroretinography (ERG) showed that the dark adaptation of rods and cones is unaltered in Rlbp1+/- mice, indicating a normal RPE visual cycle. However, pharmacologic blockade of the RPE visual cycle revealed suppressed cone dark adaptation in Rlbp1+/- mice in comparison with controls. We conclude that the expression level of CRALPB specifically in the Müller cells modulates the efficiency of the retina visual cycle. Finally, blocking the RPE visual cycle also suppressed further cone dark adaptation in Rlbp1-/- mice, revealing a shunt in the classical RPE visual cycle that bypasses CRALBP and allows partial but unexpectedly rapid cone dark adaptation.
Collapse
Affiliation(s)
- Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translation Vision Research, School of Medicine, University of California, Irvine, Irvine, CA.,Research Service, VA Long Beach Healthcare System, Long Beach, CA
| | - Krzysztof Palczewski
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translation Vision Research, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Chemistry, School of Medicine, University of California, Irvine, Irvine, CA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
8
|
Zeng S, Zhang T, Madigan MC, Fernando N, Aggio-Bruce R, Zhou F, Pierce M, Chen Y, Huang L, Natoli R, Gillies MC, Zhu L. Interphotoreceptor Retinoid-Binding Protein (IRBP) in Retinal Health and Disease. Front Cell Neurosci 2020; 14:577935. [PMID: 33328889 PMCID: PMC7710524 DOI: 10.3389/fncel.2020.577935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP), also known as retinol binding protein 3 (RBP3), is a lipophilic glycoprotein specifically secreted by photoreceptors. Enriched in the interphotoreceptor matrix (IPM) and recycled by the retinal pigment epithelium (RPE), IRBP is essential for the vision of all vertebrates as it facilitates the transfer of retinoids in the visual cycle. It also helps to transport lipids between the RPE and photoreceptors. The thiol-dependent antioxidant activity of IRBP maintains the delicate redox balance in the normal retina. Thus, its dysfunction is suspected to play a role in many retinal diseases. We have reviewed here the latest research on IRBP in both retinal health and disease, including the function and regulation of IRBP under retinal stress in both animal models and the human retina. We have also explored the therapeutic potential of targeting IRBP in retinal diseases. Although some technical barriers remain, it is possible that manipulating the expression of IRBP in the retina will rescue or prevent photoreceptor degeneration in many retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Matthew Pierce
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yingying Chen
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lianlin Huang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Mark C Gillies
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Abstract
The visual phototransduction cascade begins with a cis-trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established "dark" regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11-cis-retinal is synthesized via light-dependent mechanisms.
Collapse
|
10
|
Morshedian A, Kaylor JJ, Ng SY, Tsan A, Frederiksen R, Xu T, Yuan L, Sampath AP, Radu RA, Fain GL, Travis GH. Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Müller Glial Cells. Neuron 2019; 102:1172-1183.e5. [PMID: 31056353 PMCID: PMC6586478 DOI: 10.1016/j.neuron.2019.04.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 11/18/2022]
Abstract
While rods in the mammalian retina regenerate rhodopsin through a well-characterized pathway in cells of the retinal pigment epithelium (RPE), cone visual pigments are thought to regenerate in part through an additional pathway in Müller cells of the neural retina. The proteins comprising this intrinsic retinal visual cycle are unknown. Here, we show that RGR opsin and retinol dehydrogenase-10 (Rdh10) convert all-trans-retinol to 11-cis-retinol during exposure to visible light. Isolated retinas from Rgr+/+ and Rgr-/- mice were exposed to continuous light, and cone photoresponses were recorded. Cones in Rgr-/- retinas lost sensitivity at a faster rate than cones in Rgr+/+ retinas. A similar effect was seen in Rgr+/+ retinas following treatment with the glial cell toxin, α-aminoadipic acid. These results show that RGR opsin is a critical component of the Müller cell visual cycle and that regeneration of cone visual pigment can be driven by light.
Collapse
Affiliation(s)
- Ala Morshedian
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joanna J Kaylor
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sze Yin Ng
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Avian Tsan
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rikard Frederiksen
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tongzhou Xu
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lily Yuan
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roxana A Radu
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gordon L Fain
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gabriel H Travis
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Interplay between Autophagy and the Ubiquitin-Proteasome System and Its Role in the Pathogenesis of Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:ijms20010210. [PMID: 30626110 PMCID: PMC6337628 DOI: 10.3390/ijms20010210] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex eye disease with many pathogenesis factors, including defective cellular waste management in retinal pigment epithelium (RPE). Main cellular waste in AMD are: all-trans retinal, drusen and lipofuscin, containing unfolded, damaged and unneeded proteins, which are degraded and recycled in RPE cells by two main machineries—the ubiquitin-proteasome system (UPS) and autophagy. Recent findings show that these systems can act together with a significant role of the EI24 (etoposide-induced protein 2.4 homolog) ubiquitin ligase in their action. On the other hand, E3 ligases are essential in both systems, but E3 is degraded by autophagy. The interplay between UPS and autophagy was targeted in several diseases, including Alzheimer disease. Therefore, cellular waste clearing in AMD should be considered in the context of such interplay rather than either of these systems singly. Aging and oxidative stress, two major AMD risk factors, reduce both UPS and autophagy. In conclusion, molecular mechanisms of UPS and autophagy can be considered as a target in AMD prevention and therapeutic perspective. Further work is needed to identify molecules and effects important for the coordination of action of these two cellular waste management systems.
Collapse
|
12
|
Examining the Role of Cone-expressed RPE65 in Mouse Cone Function. Sci Rep 2018; 8:14201. [PMID: 30242264 PMCID: PMC6155087 DOI: 10.1038/s41598-018-32667-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/13/2018] [Indexed: 11/08/2022] Open
Abstract
Efficient chromophore supply is paramount for the continuous function of vertebrate cone photoreceptors. It is well established that isomerization of all-trans- to 11-cis- retinoid in the retinal pigmented epithelium by RPE65 is a key reaction in this process. Mutations in RPE65 result in a disrupted chromophore supply, retinal degeneration, and blindness. Interestingly, RPE65 has recently been found to also be expressed in cone photoreceptors in several species, including mouse and human. However, the functional role of cone-expressed RPE65 has remained unknown. Here, we used loss and gain of function approaches to investigate this issue. First, we compared the function of cones from control and RPE65-deficient mice. Although we found that deletion of RPE65 partially suppressed cone dark adaptation, the interpretation of this result was complicated by the abnormal cone structure and function caused by the chromophore deficiency in the absence of RPE65 in the pigmented epithelium. As an alternative approach, we generated transgenic mice to express human RPE65 in the cones of mice where RPE65 expression is normally restricted to the pigmented epithelium. Comparison of control (RPE65-deficient) and transgenic (RPE65-expressing) cones revealed no morphological or functional changes, with only a slight delay in dark adaptation, possibly caused by the buffering of retinoids by RPE65. Together, our results do not provide any evidence for a functional role of RPE65 in mouse cones. Future studies will have to determine whether cone-expressed RPE65 plays a role in maintaining the long-term homeostasis of retinoids in cones and their function and survival, particularly in humans.
Collapse
|
13
|
Kiser PD, Zhang J, Sharma A, Angueyra JM, Kolesnikov AV, Badiee M, Tochtrop GP, Kinoshita J, Peachey NS, Li W, Kefalov VJ, Palczewski K. Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function. J Gen Physiol 2018; 150:571-590. [PMID: 29500274 PMCID: PMC5881442 DOI: 10.1085/jgp.201711815] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
RPE65 is a retinoid isomerase essential for rod function, but its contribution to cone vision is enigmatic. Using selective RPE65 inhibitors, Kiser et al. demonstrate that cone function depends only partially on continuous RPE65 activity, providing support for cone-specific regeneration mechanisms. Visual function in vertebrates critically depends on the continuous regeneration of visual pigments in rod and cone photoreceptors. RPE65 is a well-established retinoid isomerase in the pigment epithelium that regenerates rhodopsin during the rod visual cycle; however, its contribution to the regeneration of cone pigments remains obscure. In this study, we use potent and selective RPE65 inhibitors in rod- and cone-dominant animal models to discern the role of this enzyme in cone-mediated vision. We confirm that retinylamine and emixustat-family compounds selectively inhibit RPE65 over DES1, the putative retinoid isomerase of the intraretinal visual cycle. In vivo and ex vivo electroretinography experiments in Gnat1−/− mice demonstrate that acute administration of RPE65 inhibitors after a bleach suppresses the late, slow phase of cone dark adaptation without affecting the initial rapid portion, which reflects intraretinal visual cycle function. Acute administration of these compounds does not affect the light sensitivity of cone photoreceptors in mice during extended exposure to background light, but does slow all phases of subsequent dark recovery. We also show that cone function is only partially suppressed in cone-dominant ground squirrels and wild-type mice by multiday administration of an RPE65 inhibitor despite profound blockade of RPE65 activity. Complementary experiments in these animal models using the DES1 inhibitor fenretinide show more modest effects on cone recovery. Collectively, these studies demonstrate a role for continuous RPE65 activity in mammalian cone pigment regeneration and provide further evidence for RPE65-independent regeneration mechanisms.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH .,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Aditya Sharma
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Juan M Angueyra
- Retinal Neurophysiology Section, National Eye Institute, Bethesda, MD
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Mohsen Badiee
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH
| | - Gregory P Tochtrop
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH
| | | | - Neal S Peachey
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH.,Cole Eye Institute, Cleveland Clinic, Cleveland, OH.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, Bethesda, MD
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
14
|
Cook JD, Ng SY, Lloyd M, Eddington S, Sun H, Nathans J, Bok D, Radu RA, Travis GH. Peropsin modulates transit of vitamin A from retina to retinal pigment epithelium. J Biol Chem 2017; 292:21407-21416. [PMID: 29109151 DOI: 10.1074/jbc.m117.812701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/31/2017] [Indexed: 11/06/2022] Open
Abstract
Peropsin is a non-visual opsin in both vertebrate and invertebrate species. In mammals, peropsin is present in the apical microvilli of retinal pigment epithelial (RPE) cells. These structures interdigitate with the outer segments of rod and cone photoreceptor cells. RPE cells play critical roles in the maintenance of photoreceptors, including the recycling of visual chromophore for the opsin visual pigments. Here, we sought to identify the function of peropsin in the mouse eye. To this end, we generated mice with a null mutation in the peropsin gene (Rrh). These mice exhibited normal retinal histology, normal morphology of outer segments and RPE cells, and no evidence of photoreceptor degeneration. Biochemically, Rrh-/- mice had ∼2-fold higher vitamin A (all-trans-retinol (all-trans-ROL)) in the neural retina following a photobleach and 5-fold lower retinyl esters in the RPE. This phenotype was similar to those reported in mice that lack interphotoreceptor retinoid-binding protein (IRBP) or cellular retinol-binding protein, suggesting that peropsin plays a role in the movement of all-trans-ROL from photoreceptors to the RPE. We compared the phenotypes in mice lacking both peropsin and IRBP with those of mice lacking peropsin or IRBP alone and found that the retinoid phenotype was similarly severe in each of these knock-out mice. We conclude that peropsin controls all-trans-ROL movement from the retina to the RPE or may regulate all-trans-ROL storage within the RPE. We propose that peropsin affects light-dependent regulation of all-trans-ROL uptake from photoreceptors into RPE cells through an as yet undefined mechanism.
Collapse
Affiliation(s)
- Jeremy D Cook
- From the Department of Ophthalmology, Stein Eye Institute
| | - Sze Yin Ng
- From the Department of Ophthalmology, Stein Eye Institute
| | - Marcia Lloyd
- From the Department of Ophthalmology, Stein Eye Institute
| | | | - Hui Sun
- From the Department of Ophthalmology, Stein Eye Institute.,Department of Physiology, and
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Neuroscience, and Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and.,Howard Hughes Medical Institute, Baltimore, Maryland 21205
| | - Dean Bok
- From the Department of Ophthalmology, Stein Eye Institute
| | - Roxana A Radu
- From the Department of Ophthalmology, Stein Eye Institute
| | - Gabriel H Travis
- From the Department of Ophthalmology, Stein Eye Institute, .,Department of Biological Chemistry, School of Medicine, UCLA, Los Angeles, California 90095
| |
Collapse
|
15
|
Abstract
Vertebrate rod and cone photoreceptors require continuous supply of chromophore for regenerating their visual pigments after photoactivation. Cones, which mediate our daytime vision, demand a particularly rapid supply of 11-cis retinal chromophore in order to maintain their function in bright light. An important contribution to this process is thought to be the chromophore precursor 11-cis retinol, which is supplied to cones from Müller cells in the retina and subsequently oxidized to 11-cis retinal as part of the retina visual cycle. However, the molecular identity of the cis retinol oxidase in cones remains unclear. Here, as a first step in characterizing this enzymatic reaction, we sought to determine the subcellular localization of this activity in salamander red cones. We found that the onset of dark adaptation of isolated salamander red cones was substantially faster when exposing directly their outer vs. their inner segment to 9-cis retinol, an analogue of 11-cis retinol. In contrast, this difference was not observed when treating the outer vs. inner segment with 9-cis retinal, a chromophore analogue which can directly support pigment regeneration. These results suggest, surprisingly, that the cis-retinol oxidation occurs in the outer segments of cone photoreceptors. Confirming this notion, pigment regeneration with exogenously added 9-cis retinol was directly observed in the truncated outer segments of cones, but not in rods. We conclude that the enzymatic machinery required for the oxidation of recycled cis retinol as part of the retina visual cycle is present in the outer segments of cones.
Collapse
|
16
|
Xue Y, Sato S, Razafsky D, Sahu B, Shen SQ, Potter C, Sandell LL, Corbo JC, Palczewski K, Maeda A, Hodzic D, Kefalov VJ. The role of retinol dehydrogenase 10 in the cone visual cycle. Sci Rep 2017; 7:2390. [PMID: 28539612 PMCID: PMC5443843 DOI: 10.1038/s41598-017-02549-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Pigment regeneration is critical for the function of cone photoreceptors in bright and rapidly-changing light conditions. This process is facilitated by the recently-characterized retina visual cycle, in which Müller cells recycle spent all-trans-retinol visual chromophore back to 11-cis-retinol. This 11-cis-retinol is oxidized selectively in cones to the 11-cis-retinal used for pigment regeneration. However, the enzyme responsible for the oxidation of 11-cis-retinol remains unknown. Here, we sought to determine whether retinol dehydrogenase 10 (RDH10), upregulated in rod/cone hybrid retinas and expressed abundantly in Müller cells, is the enzyme that drives this reaction. We created mice lacking RDH10 either in cone photoreceptors, Müller cells, or the entire retina. In vivo electroretinography and transretinal recordings revealed normal cone photoresponses in all RDH10-deficient mouse lines. Notably, their cone-driven dark adaptation both in vivo and in isolated retina was unaffected, indicating that RDH10 is not required for the function of the retina visual cycle. We also generated transgenic mice expressing RDH10 ectopically in rod cells. However, rod dark adaptation was unaffected by the expression of RDH10 and transgenic rods were unable to use cis-retinol for pigment regeneration. We conclude that RDH10 is not the dominant retina 11-cis-RDH, leaving its primary function in the retina unknown.
Collapse
Affiliation(s)
- Yunlu Xue
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Shinya Sato
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - David Razafsky
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- MilliporeSigma, St. Louis, MO, 63103, USA
| | - Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Susan Q Shen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Chloe Potter
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Joseph C Corbo
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, USA
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Didier Hodzic
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| |
Collapse
|
17
|
Sato S, Kefalov VJ. cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration. J Physiol 2016; 594:6753-6765. [PMID: 27385534 PMCID: PMC5108915 DOI: 10.1113/jp272831] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/04/2016] [Indexed: 01/21/2023] Open
Abstract
KEY POINTS This study explores the nature of the cis retinol that Müller cells in the retina provide to cones for the regeneration of their visual pigment. We report that the retina visual cycle provides cones exclusively with 11-cis chromophore in both salamander and mouse and show that this selectivity is dependent on the 11-cis-specific cellular retinaldehyde binding protein (CRALBP) present in Müller cells. Even though salamander blue cones and green rods share the same visual pigment, only blue cones but not green rods are able to dark-adapt in the retina following a bleach and to use exogenous 9-cis retinol for pigment regeneration, suggesting that access to the retina visual cycle is cone-specific and pigment-independent. Our results show that the retina produces 11-cis retinol that can be oxidized and used for pigment regeneration and dark adaptation selectively in cones and not in rods. ABSTRACT Chromophore supply by the retinal Müller cells (retina visual cycle) supports the efficient pigment regeneration required for cone photoreceptor function in bright light. Surprisingly, a large fraction of the chromophore produced by dihydroceramide desaturase-1, the putative all-trans retinol isomerase in Müller cells, appears to be 9-cis retinol. In contrast, the canonical retinal pigment epithelium (RPE) visual cycle produces exclusively 11-cis retinal. Here, we used the different absorption spectra of 9-cis and 11-cis pigments to identify the isoform of the chromophore produced by the visual cycle of the intact retina. We found that the spectral sensitivity of salamander and mouse cones dark-adapted in the isolated retina (with only the retina visual cycle) was similar to that of cones dark-adapted in the intact eye (with both the RPE and retina visual cycles) and consistent with pure 11-cis pigment composition. However, in mice lacking the cellular retinaldehyde binding protein (CRALBP), cone spectral sensitivity contained a substantial 9-cis component. Thus, the retina visual cycle provides cones exclusively with 11-cis chromophore and this process is mediated by the 11-cis selective CRALBP in Müller cells. Finally, despite sharing the same pigment, salamander blue cones, but not green rods, recovered their sensitivity in the isolated retina. Exogenous 9-cis retinol produced robust sensitivity recovery in bleached red and blue cones but not in red and green rods, suggesting that cis retinol oxidation restricts access to the retina visual cycle to cones.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Ophthalmology and Visual SciencesWashington University School of MedicineSaint LouisMO63110USA
| | - Vladimir J. Kefalov
- Department of Ophthalmology and Visual SciencesWashington University School of MedicineSaint LouisMO63110USA
| |
Collapse
|
18
|
Markand S, Baskin NL, Chakraborty R, Landis E, Wetzstein SA, Donaldson KJ, Priyadarshani P, Alderson SE, Sidhu CS, Boatright JH, Iuvone PM, Pardue MT, Nickerson JM. IRBP deficiency permits precocious ocular development and myopia. Mol Vis 2016; 22:1291-1308. [PMID: 27829784 PMCID: PMC5082647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/25/2016] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Interphotoreceptor retinoid-binding protein (IRBP) is abundant in the subretinal space and binds retinoids and lipophilic molecules. The expression of IRBP begins precociously early in mouse eye development. IRBP-deficient (KO) mice show less cell death in the inner retinal layers of the retina before eyelid opening compared to wild-type C57BL/6J (WT) controls and eventually develop profound myopia. Thus, IRBP may play a role in eye development before visually-driven phenomena. We report comparative observations during the course of the natural development of eyes in WT and congenic IRBP KO mice that suggest IRBP is necessary at the early stages of mouse eye development for correct function and development to exist in later stages. METHODS We observed the natural development of congenic WT and IRBP KO mice, monitoring several markers of eye size and development, including haze and clarity of optical components in the eye, eye size, axial length, immunohistological markers of differentiation and eye development, visually guided behavior, and levels of a putative eye growth stop signal, dopamine. We conducted these measurements at several ages. Slit-lamp examinations were conducted at post-natal day (P)21. Fundus and spectral domain optical coherence tomography (SD-OCT) images were compared at P15, P30, P45, and P80. Enucleated eyes from P5 to P10 were measured for weight, and ocular dimensions were measured with a noncontact light-emitting diode (LED) micrometer. We counted the cells that expressed tyrosine hydroxylase (TH-positive cells) at P23-P36 using immunohistochemistry on retinal flatmounts. High-performance liquid chromatography (HPLC) was used to analyze the amounts of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) at P7-P60. Monocular form deprivation in the right eye was induced using head-mounted goggles from P28 to P56. RESULTS Eye elongation and eye size in the IRBP KO mice began to increase at P7 compared to the WT mice. This difference increased until P12, and the difference was maintained thereafter. SD-OCT images in live mice confirmed previously reported retinal thinning of the outer nuclear layer in the IRBP KO mice compared to the WT mice from P15 to P80. Slit-lamp and fundoscopy examination outcomes did not differ between the WT and KO mice. SD-OCT measurements of the optical axis components showed that the only factor contributing to excess optical axis length was the depth of the vitreous body. No other component of optical axis length (including corneal thickness, anterior chamber depth, and lens thickness) was different from that of the WT mouse. The refractive power of the IRBP KO mice did not change in response to form deprivation. The number of retinal TH-positive cells was 28% greater in the IRBP KO retinas compared to the WT mice at P30. No significant differences were observed in the steady-state retinal DA or DOPAC levels or in the DOPAC/DA ratios between the WT and IRBP KO mice. CONCLUSIONS The IRBP KO mouse eye underwent precocious development and rapid eye size growth temporally about a day sooner than the WT mouse eye. Eye size began to differ between the WT and KO mice before eyelid opening, indicating no requirement for focus-dependent vision, and suggesting a developmental abnormality in the IRBP KO mouse eye that precedes form vision-dependent emmetropization. Additionally, the profoundly myopic KO eye did not respond to form deprivation compared to the non-deprived contralateral eye. Too much growth occurred in some parts of the eye, possibly upsetting a balance among size, differentiation, and focus-dependent growth suppression. Thus, the loss of IRBP may simply cause growth that is too rapid, possibly due to a lack of sequestration or buffering of morphogens that normally would bind to IRBP but are unbound in the IRBP KO eye. Despite the development of profound myopia, the DA levels in the IRBP KO mice were not statistically different from those in the WT mice, even with the excess of TH-positive cells in the IRBP KO mice compared to the WT mice. Overall, these data suggest that abnormal eye elongation in the IRBP KO mouse is independent of, precedes, and is epistatic to the process(es) of visually-driven refractive development.
Collapse
Affiliation(s)
- Shanu Markand
- Department of Ophthalmology, Emory University, Atlanta, GA
| | | | - Ranjay Chakraborty
- Department of Ophthalmology, Emory University, Atlanta, GA,Atlanta Veterans Administration Center of Visual and Neurocognitive Rehabilitation, Decatur, GA
| | - Erica Landis
- Atlanta Veterans Administration Center of Visual and Neurocognitive Rehabilitation, Decatur, GA,Neuroscience Program, Laney Graduate School, Emory University, Atlanta, GA
| | | | | | | | | | | | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, GA,Atlanta Veterans Administration Center of Visual and Neurocognitive Rehabilitation, Decatur, GA
| | - P. Michael Iuvone
- Department of Ophthalmology, Emory University, Atlanta, GA,Department of Pharmacology, Emory University, Atlanta, GA
| | - Machelle T. Pardue
- Department of Ophthalmology, Emory University, Atlanta, GA,Atlanta Veterans Administration Center of Visual and Neurocognitive Rehabilitation, Decatur, GA,Neuroscience Program, Laney Graduate School, Emory University, Atlanta, GA,Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | | |
Collapse
|
19
|
Abstract
Visual systems detect light by monitoring the effect of photoisomerization of a chromophore on the release of a neurotransmitter from sensory neurons, known as rod and cone photoreceptor cells in vertebrate retina. In all known visual systems, the chromophore is 11-cis-retinal complexed with a protein, called opsin, and photoisomerization produces all-trans-retinal. In mammals, regeneration of 11-cis-retinal following photoisomerization occurs by a thermally driven isomerization reaction. Additional reactions are required during regeneration to protect cells from the toxicity of aldehyde forms of vitamin A that are essential to the visual process. Photochemical and phototransduction reactions in rods and cones are identical; however, reactions of the rod and cone visual pigment regeneration cycles differ, and perplexingly, rod and cone regeneration cycles appear to use different mechanisms to overcome the energy barrier involved in converting all-trans- to 11-cis-retinoid. Abnormal processing of all-trans-retinal in the rod regeneration cycle leads to retinal degeneration, suggesting that excessive amounts of the retinoid itself or its derivatives are toxic. This line of reasoning led to the development of various approaches to modifying the activity of the rod visual cycle as a possible therapeutic approach to delay or prevent retinal degeneration in inherited retinal diseases and perhaps in the dry form of macular degeneration (geographic atrophy). In spite of great progress in understanding the functioning of rod and cone regeneration cycles at a molecular level, resolution of a number of remaining puzzling issues will offer insight into the amelioration of several blinding retinal diseases.
Collapse
|
20
|
Kolesnikov AV, Maeda A, Tang PH, Imanishi Y, Palczewski K, Kefalov VJ. Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina. J Physiol 2015; 593:4923-41. [PMID: 26350353 DOI: 10.1113/jp271285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS This study explores the molecular mechanisms that regulate the recycling of chromophore required for pigment regeneration in mammalian cones. We report that two chromophore binding proteins, retinol dehydrogenase 8 (RDH8) and photoreceptor-specific ATP-binding cassette transporter (ABCA4) accelerate the dark adaptation of cones, first, directly, by facilitating the processing of chromophore in cones, and second, indirectly, by accelerating the turnover of chromophore in rods, which is then recycled and delivered to both rods and cones. Preventing competition with the rods by knocking out rhodopsin accelerated cone dark adaptation, demonstrating the interplay between rod and cone pigment regeneration driven by the retinal pigment epithelium (RPE). This novel interdependence of rod and cone pigment regeneration should be considered when developing therapies targeting the recycling of chromophore for rods, and evaluating residual cone function should be a critical test for such regimens targeting the RPE. ABSTRACT Rapid recycling of visual chromophore and regeneration of the visual pigment are critical for the continuous function of mammalian cone photoreceptors in daylight vision. However, the molecular mechanisms modulating the supply of visual chromophore to cones have remained unclear. Here we explored the roles of two chromophore-binding proteins, retinol dehydrogenase 8 (RDH8) and photoreceptor-specific ATP-binding cassette transporter 4 (ABCA4), in dark adaptation of mammalian cones. We report that young adult RDH8/ABCA4-deficient mice have normal M-cone morphology but reduced visual acuity and photoresponse amplitudes. Notably, the deletion of RDH8 and ABCA4 suppressed the dark adaptation of M-cones driven by both the intraretinal visual cycle and the retinal pigmented epithelium (RPE) visual cycle. This delay can be caused by two separate mechanisms: direct involvement of RDH8 and ABCA4 in cone chromophore processing, and an indirect effect from the delayed recycling of chromophore by the RPE due to its slow release from RDH8/ABCA4-deficient rods. Intriguingly, our data suggest that RDH8 could also contribute to the oxidation of cis-retinoids in cones, a key reaction of the retina visual cycle. Finally, we dissected the roles of rod photoreceptors and RPE for dark adaptation of M-cones. We found that rods suppress, whereas RPE promotes, cone dark adaptation. Thus, therapeutic approaches targeting the RPE visual cycle could have adverse effects on the function of cones, making the evaluation of residual cone function a critical test for regimens targeting the RPE.
Collapse
Affiliation(s)
- Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Peter H Tang
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yoshikazu Imanishi
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
21
|
Yamaoka H, Tachibanaki S, Kawamura S. Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes. J Biol Chem 2015; 290:24381-90. [PMID: 26286749 DOI: 10.1074/jbc.m115.674101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
On absorption of light by vertebrate visual pigment, the chromophore, 11-cis retinal, is isomerized to all-trans retinal to activate the phototransduction cascade, which leads to a hyperpolarizing light response. Activated pigment is inactivated by phosphorylation on the protein moiety, opsin. Isomerized all-trans retinal is ultimately released from opsin, and the pigment is regenerated by binding to 11-cis retinal. In this pigment regeneration cycle, the phosphates incorporated should be removed in order that the pigment regains the capability of activating the phototransduction cascade. However, it is not clear yet how pigment dephosphorylation takes place in the regeneration cycle. First in this study, we tried to estimate the dephosphorylation activity in living carp rods and cones and found that the activity, which is present mainly in the cytoplasm in both rods and cones, is three times higher in cones than in rods. Second, we examined at which stage the dephosphorylation takes place; before or after the release of all-trans retinal, during pigment regeneration, or after pigment regeneration. For this purpose we prepared three types of phosphorylated substrates in purified carp rod and cone membranes: phosphorylated bleaching intermediate, phosphorylated opsin, and phosphorylated and regenerated pigment. We also examined the effect of pigment regeneration on the dephosphorylation. The results showed that the dephosphorylation does not show substrate preference in the regeneration cycle and suggested that the dephosphorylation takes place constantly. The results also suggest that, under bright light, some of the regenerated visual pigment remains phosphorylated to reduce the light sensitivity in cones.
Collapse
Affiliation(s)
| | - Shuji Tachibanaki
- From the Graduate School of Frontier Biosciences and the Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan
| | - Satoru Kawamura
- From the Graduate School of Frontier Biosciences and the Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Abstract
Cones are photoreceptor cells used for bright light and color vision. Retinoids are vitamin A derivatives, one of which is the 11-cis aldehyde form that serves as the chromophore for both cone and rod visual pigments. In the visual disease, Type 2 Leber congenital amaurosis (LCA2), 11-cis-retinal generation is inhibited or abolished. Work by others has shown that patients with LCA2 have symptoms consistent with degenerating cones. In mouse models for LCA2, early cone degeneration is readily apparent: cone opsins and other proteins associated with the outer segment are delocalized and cell numbers decline rapidly within the first month. Rods would appear normal morphologically and functionally, if not for the absence of chromophore. Supplementation of mouse models of LCA2 with cis-retinoids has been shown to slow loss of cone photoreceptor cells if mice were maintained in darkness. Thus, 11-cis-retinal appears not only to have a role in the light response reaction but also to promote proper trafficking of the cone opsins and maintain viable cones.
Collapse
Affiliation(s)
- Masahiro Kono
- Department of Ophthalmology, Albert Florens Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
23
|
Hirota M, Miyagawa S, Kanda H, Endo T, Lohmann TK, Miyoshi T, Morimoto T, Fujikado T. Slow Cone Reflectance Changes during Bleaching Determined by Adaptive Optics Scanning Laser Ophthalmoscope in Living Human Eyes. PLoS One 2015; 10:e0131485. [PMID: 26121666 PMCID: PMC4488269 DOI: 10.1371/journal.pone.0131485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022] Open
Abstract
To investigate the changes in the reflectance of human cone photoreceptors by an adaptive optics scanning laser ophthalmoscope (AO-SLO) during photobleaching. A custom-built AO-SLO with an observation light of 840-nm was used to measure the cone densities and the reflectance changes during bleaching by 630 nm red light emitting diodes. Measurements were made at 1° and 3° temporal to the fovea within an area of 1° × 1° in 8 eyes of 8 normal subjects. After dark-adaptation, images of the cone mosaics were recorded continuously for 5-min before, 5-min during, and after 5-min of light stimulation with a sampling rate of 5-Hz. The first positive peak (P1) was observed at 72.2 ± 15.0-s and a second positive peak (P2) at 257.5 ± 34.5-s at 1°. The increase of the reflectance of P1 was significantly larger at 1° (34.4 ± 13.9%) than at 3° (26.0 ± 10.5%; P = 0.03, Wilcoxon’s signed rank test). The average cone density at 1° (51123.13 ± 1401.23 cells/mm2) was significantly larger than that at 3° (30876.13 ± 1459.28 cells/mm2; P <0.001, Wilcoxon’s signed rank test). The changes in the reflectance of the cones during bleaching by red light had two peaks. The two peaks may be caused by regeneration of cone photopigment during bleaching.
Collapse
Affiliation(s)
- Masakazu Hirota
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Suguru Miyagawa
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Fundamental Technology Sec, R&D Department, Topcon Corporation, Itabashi, Tokyo, Japan
| | - Hiroyuki Kanda
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takao Endo
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tibor Karl Lohmann
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Ophthalmology, University Hospital Aachen RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Tomomitsu Miyoshi
- Department of Integrative Physiology, Graduate School of Medicine& Frontier Biosciences Osaka University, Suita, Osaka, Japan
| | - Takeshi Morimoto
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takashi Fujikado
- Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
24
|
Sato S, Miyazono S, Tachibanaki S, Kawamura S. RDH13L, an enzyme responsible for the aldehyde-alcohol redox coupling reaction (AL-OL coupling reaction) to supply 11-cis retinal in the carp cone retinoid cycle. J Biol Chem 2014; 290:2983-92. [PMID: 25533474 DOI: 10.1074/jbc.m114.629162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cone photoreceptors require effective pigment regeneration mechanisms to maintain their sensitivity in the light. Our previous studies in carp cones suggested the presence of an unconventional and very effective mechanism to produce 11-cis retinal, the necessary component in pigment regeneration. In this reaction (aldehyde-alcohol redox coupling reaction, AL-OL coupling reaction), formation of 11-cis retinal, i.e. oxidation of 11-cis retinol is coupled to reduction of an aldehyde at a 1:1 molar ratio without exogenous NADP(H) which is usually required in this kind of reaction. Here, we identified carp retinol dehydrogenase 13-like (RDH13L) as an enzyme catalyzing the AL-OL coupling reaction. RDH13L was partially purified from purified carp cones, identified as a candidate protein, and its AL-OL coupling activity was confirmed using recombinant RDH13L. We further examined the substrate specificity, subcellular localization, and expression level of RDH13L. Based on these results, we concluded that RDH13L contributes to a significant part, but not all, of the AL-OL coupling activity in carp cones. RDH13L contained tightly bound NADP(+) which presumably functions as a cofactor in the reaction. Mouse RDH14, a mouse homolog of carp RDH13L, also showed the AL-OL coupling activity. Interestingly, although carp cone membranes, carp RDH13L and mouse RDH14 all showed the coupling activity at 15-37 °C, they also showed a conventional NADP(+)-dependent 11-cis retinol oxidation activity above 25 °C without addition of aldehydes. This dual mechanism of 11-cis retinal synthesis attained by carp RDH13L and mouse RDH14 probably contribute to effective pigment regeneration in cones that function in the light.
Collapse
Affiliation(s)
- Shinya Sato
- From the Graduate School of Frontier Biosciences and
| | | | - Shuji Tachibanaki
- From the Graduate School of Frontier Biosciences and Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan
| | - Satoru Kawamura
- From the Graduate School of Frontier Biosciences and Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-acyltransferase (MFAT). Proc Natl Acad Sci U S A 2014; 111:7302-7. [PMID: 24799687 DOI: 10.1073/pnas.1319142111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Absorption of a photon by a rhodopsin or cone-opsin pigment isomerizes its 11-cis-retinaldehyde (11-cis-RAL) chromophore to all-trans-retinaldehyde (all-trans-RAL), which dissociates after a brief period of activation. Light sensitivity is restored to the resulting apo-opsin when it recombines with another 11-cis-RAL. Conversion of all-trans-RAL to 11-cis-RAL is carried out by an enzyme pathway called the visual cycle in cells of the retinal pigment epithelium. A second visual cycle is present in Müller cells of the retina. The retinol isomerase for this noncanonical pathway is dihydroceramide desaturase (DES1), which catalyzes equilibrium isomerization of retinol. Because 11-cis-retinol (11-cis-ROL) constitutes only a small fraction of total retinols in an equilibrium mixture, a subsequent step involving selective removal of 11-cis-ROL is required to drive synthesis of 11-cis-retinoids for production of visual chromophore. Selective esterification of 11-cis-ROL is one possibility. Crude homogenates of chicken retinas rapidly convert all-trans-ROL to 11-cis-retinyl esters (11-cis-REs) with minimal formation of other retinyl-ester isomers. This enzymatic activity implies the existence of an 11-cis-specific retinyl-ester synthase in Müller cells. Here, we evaluated multifunctional O-acyltransferase (MFAT) as a candidate for this 11-cis-RE-synthase. MFAT exhibited much higher catalytic efficiency as a synthase of 11-cis-REs versus other retinyl-ester isomers. Further, we show that MFAT is expressed in Müller cells. Finally, homogenates of cells coexpressing DES1 and MFAT catalyzed the conversion of all-trans-ROL to 11-cis-RP, similar to what we observed with chicken-retina homogenates. MFAT is therefore an excellent candidate for the retinyl-ester synthase that cooperates with DES1 to drive synthesis of 11-cis-retinoids by mass action.
Collapse
|
26
|
Sato S, Fukagawa T, Tachibanaki S, Yamano Y, Wada A, Kawamura S. Substrate specificity and subcellular localization of the aldehyde-alcohol redox-coupling reaction in carp cones. J Biol Chem 2013; 288:36589-97. [PMID: 24217249 DOI: 10.1074/jbc.m113.521153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment.
Collapse
Affiliation(s)
- Shinya Sato
- From the Department of Biological Sciences, Graduate School of Science, and
| | | | | | | | | | | |
Collapse
|
27
|
Garlipp MA, Gonzalez-Fernandez F. Cone outer segment and Müller microvilli pericellular matrices provide binding domains for interphotoreceptor retinoid-binding protein (IRBP). Exp Eye Res 2013; 113:192-202. [DOI: 10.1016/j.exer.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
28
|
Vitamin A derivatives as treatment options for retinal degenerative diseases. Nutrients 2013; 5:2646-66. [PMID: 23857173 PMCID: PMC3738993 DOI: 10.3390/nu5072646] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 11/17/2022] Open
Abstract
The visual cycle is a sequential enzymatic reaction for vitamin A, all-trans-retinol, occurring in the outer layer of the human retina and is essential for the maintenance of vision. The central source of retinol is derived from dietary intake of both retinol and pro-vitamin A carotenoids. A series of enzymatic reactions, located in both the photoreceptor outer segment and the retinal pigment epithelium, transform retinol into the visual chromophore 11-cis-retinal, regenerating visual pigments. Retina specific proteins carry out the majority of the visual cycle, and any significant interruption in this sequence of reactions is capable of causing varying degrees of blindness. Among these important proteins are Lecithin:retinol acyltransferase (LRAT) and retinal pigment epithelium-specific 65-kDa protein (RPE65) known to be responsible for esterification of retinol to all-trans-retinyl esters and isomerization of these esters to 11-cis-retinal, respectively. Deleterious mutations in these genes are identified in human retinal diseases that cause blindness, such as Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP). Herein, we discuss the pathology of 11-cis-retinal deficiency caused by these mutations in both animal disease models and human patients. We also review novel therapeutic strategies employing artificial visual chromophore 9-cis-retinoids which have been employed in clinical trials involving LCA patients.
Collapse
|
29
|
Cascella M, Bärfuss S, Stocker A. Cis-retinoids and the chemistry of vision. Arch Biochem Biophys 2013; 539:187-95. [PMID: 23791723 DOI: 10.1016/j.abb.2013.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
Abstract
We discuss here principal biochemical transformations of retinoid molecules in the visual cycle. We focus our analysis on the accumulating evidence of alternate pathways and functional redundancies in the cycle. The efficiency of the visual cycle depends, on one hand, on fast regeneration of the photo-bleached chromophores. On the other hand, it is crucial that the cyclic process should be highly selective to avoid accumulation of byproducts. The state-of-the-art knowledge indicates that single enzymatically active components of the cycle are not strictly selective and may require chaperones to enhance their rates. It appears that protein-protein interactions significantly improve the biological stability of the visual cycle. In particular, synthesis of thermodynamically less stable 11-cis-retinoid conformers is favored by physical interactions of the isomerases present in the retina with cellular retinaldehyde binding protein.
Collapse
Affiliation(s)
- Michele Cascella
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | | | | |
Collapse
|
30
|
Frederiksen R, Boyer NP, Nickle B, Chakrabarti KS, Koutalos Y, Crouch RK, Oprian D, Cornwall MC. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods. ACTA ACUST UNITED AC 2013; 139:493-505. [PMID: 22641642 PMCID: PMC3362518 DOI: 10.1085/jgp.201110685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.
Collapse
Affiliation(s)
- Rikard Frederiksen
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc Natl Acad Sci U S A 2013; 110:1732-7. [PMID: 23319618 DOI: 10.1073/pnas.1214387110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A prime goal of regenerative medicine is to direct cell fates in a therapeutically useful manner. Retinitis pigmentosa is one of the most common degenerative diseases of the eye and is associated with early rod photoreceptor death followed by secondary cone degeneration. We hypothesized that converting adult rods into cones, via knockdown of the rod photoreceptor determinant Nrl, could make the cells resistant to the effects of mutations in rod-specific genes, thereby preventing secondary cone loss. To test this idea, we engineered a tamoxifen-inducible allele of Nrl to acutely inactivate the gene in adult rods. This manipulation resulted in reprogramming of rods into cells with a variety of cone-like molecular, histologic, and functional properties. Moreover, reprogramming of adult rods achieved cellular and functional rescue of retinal degeneration in a mouse model of retinitis pigmentosa. These findings suggest that elimination of Nrl in adult rods may represent a unique therapy for retinal degeneration.
Collapse
|
32
|
Abstract
The chromophore of all known visual pigments consists of 11-cis-retinal (derived from either vitamin A1 or A2) or a hydroxylated derivative, bound to a protein (opsin) via a Schiff base. Absorption of a photon results in photoisomerization of the chromophore to all-trans-retinal and conversion of the visual pigment to the signaling form. Regeneration of the 11-cis-retinal occurs in an adjacent tissue and involves several enzymes, several water-soluble retinoid-binding proteins, and intra- and intercellular diffusional processes. Rod photoreceptor cells depend completely on the output of 11-cis-retinal from adjacent retinal pigment epithelial (RPE) cells. Cone photoreceptors cells can use 11-cis-retinal from the RPE and from a second more poorly characterized cycle, which appears to involve adjacent Müller (glial) cells. Recent progress in the characterization of rod and cone visual cycle components and reactions will result in the development of approaches to the amelioration of blinding eye diseases associated with visual cycle defects.
Collapse
Affiliation(s)
- John C Saari
- Department of Ophthalmology and Biochemistry, University of Washington, Seattle, WA 91895, USA.
| |
Collapse
|
33
|
Kaylor JJ, Yuan Q, Cook J, Sarfare S, Makshanoff J, Miu A, Kim A, Kim P, Habib S, Roybal CN, Xu T, Nusinowitz S, Travis GH. Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat Chem Biol 2012; 9:30-6. [PMID: 23143414 PMCID: PMC3522777 DOI: 10.1038/nchembio.1114] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/05/2012] [Indexed: 11/21/2022]
Abstract
Absorption of a light particle by an opsin-pigment causes photoisomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the resulting apo-opsin requires chemical re-isomerization of the photobleached chromophore. This is carried out by a multistep enzyme pathway called the visual cycle. Accumulating evidence suggests the existence of an alternate visual cycle for regenerating opsins in daylight. Here, we identified dihydroceramide desaturase-1 (DES1) as a retinol isomerase and an excellent candidate for isomerase-2 in this alternate pathway. DES1 is expressed in retinal Müller cells where it co-immunoprecipitates with cellular retinaldehyde binding protein (CRALBP). Adenoviral gene therapy with DES1 partially rescued the biochemical and physiological phenotypes in rpe65 −/− mice lacking isomerohydrolase (isomerase-1). Knockdown of DES1 expression by RNA-interference concordantly reduced isomerase-2 activity in cultured Müller cells. Purified DES1 possessed very high isomerase-2 activity in the presence of appropriate cofactors, suggesting that DES1 by itself is sufficient for isomerase activity.
Collapse
Affiliation(s)
- Joanna J Kaylor
- Jules Stein Eye Institute, University of California, Los Angeles School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tang PH, Kono M, Koutalos Y, Ablonczy Z, Crouch RK. New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res 2012; 32:48-63. [PMID: 23063666 DOI: 10.1016/j.preteyeres.2012.09.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 01/05/2023]
Abstract
The retinoid cycle is a series of biochemical reactions within the eye that is responsible for synthesizing the chromophore, 11-cis retinal, for visual function. The chromophore is bound to G-protein coupled receptors, opsins, within rod and cone photoreceptor cells forming the photosensitive visual pigments. Integral to the sustained function of photoreceptors is the continuous generation of chromophore by the retinoid cycle through two separate processes, one that supplies both rods and cones and another that exclusively supplies cones. Recent findings such as RPE65 localization within cones and the pattern of distribution of retinoid metabolites within mouse and human retinas have challenged previous proposed schemes. This review will focus on recent findings regarding the transport of retinoids, the mechanisms by which chromophore is supplied to both rods and cones, and the metabolism of retinoids within the posterior segment of the eye.
Collapse
Affiliation(s)
- Peter H Tang
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
35
|
Chen Y, Okano K, Maeda T, Chauhan V, Golczak M, Maeda A, Palczewski K. Mechanism of all-trans-retinal toxicity with implications for stargardt disease and age-related macular degeneration. J Biol Chem 2012; 287:5059-69. [PMID: 22184108 PMCID: PMC3281612 DOI: 10.1074/jbc.m111.315432] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/17/2011] [Indexed: 12/14/2022] Open
Abstract
Compromised clearance of all-trans-retinal (atRAL), a component of the retinoid cycle, increases the susceptibility of mouse retina to acute light-induced photoreceptor degeneration. Abca4(-/-)Rdh8(-/-) mice featuring defective atRAL clearance were used to examine the one or more underlying molecular mechanisms, because exposure to intense light causes severe photoreceptor degeneration in these animals. Here we report that bright light exposure of Abca4(-/-)Rdh8(-/-) mice increased atRAL levels in the retina that induced rapid NADPH oxidase-mediated overproduction of intracellular reactive oxygen species (ROS). Moreover, such ROS generation was inhibited by blocking phospholipase C and inositol 1,4,5-trisphosphate-induced Ca(2+) release, indicating that activation occurs upstream of NADPH oxidase-mediated ROS generation. Because multiple upstream G protein-coupled receptors can activate phospholipase C, we then tested the effects of antagonists of serotonin 2A (5-HT(2A)R) and M(3)-muscarinic (M(3)R) receptors and found they both protected Abca4(-/-)Rdh8(-/-) mouse retinas from light-induced degeneration. Thus, a cascade of signaling events appears to mediate the toxicity of atRAL in light-induced photoreceptor degeneration of Abca4(-/-)Rdh8(-/-) mice. A similar mechanism may be operative in human Stargardt disease and age-related macular degeneration.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Alcohol Oxidoreductases/genetics
- Alcohol Oxidoreductases/metabolism
- Animals
- Calcium/metabolism
- Corneal Dystrophies, Hereditary/genetics
- Corneal Dystrophies, Hereditary/metabolism
- Corneal Dystrophies, Hereditary/pathology
- Humans
- Inositol 1,4,5-Trisphosphate/genetics
- Inositol 1,4,5-Trisphosphate/metabolism
- Light/adverse effects
- Macular Degeneration/genetics
- Macular Degeneration/metabolism
- Macular Degeneration/pathology
- Mice
- Mice, Knockout
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Photoreceptor Cells, Vertebrate/metabolism
- Photoreceptor Cells, Vertebrate/pathology
- Reactive Oxygen Species/metabolism
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/metabolism
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Retinaldehyde/metabolism
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Signal Transduction
- Type C Phospholipases/genetics
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Yu Chen
- From the Departments of Pharmacology and
| | | | - Tadao Maeda
- From the Departments of Pharmacology and
- Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Vishal Chauhan
- From the Departments of Pharmacology and
- Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | | | - Akiko Maeda
- From the Departments of Pharmacology and
- Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | | |
Collapse
|
36
|
RPE65 is present in human green/red cones and promotes photopigment regeneration in an in vitro cone cell model. J Neurosci 2012; 31:18618-26. [PMID: 22171060 DOI: 10.1523/jneurosci.4265-11.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RPE65 is an abundantly expressed protein within the retinal pigment epithelium (RPE) of the eye that is required for retinoid metabolism to support vision. Its genetic mutations are linked to the congenital disease Leber congenital amaurosis Type 2 (LCA2) characterized by the early onset of central vision loss. Current gene therapy trials have targeted restoration of functional RPE65 within the RPE of these patients with some success. Recent data show that RPE65 is also present within mouse cones to promote function. In this study, we evaluated the presence of RPE65 in human cones and investigated its potential mechanism for supporting cone function in the 661W cone cell line. We found that RPE65 was selectively expressed in human green/red cones but absent from blue cones and mediated ester hydrolysis for photopigment synthesis in vitro. These data suggest that cone RPE65 supports human diurnal vision, potentially enhancing our strategies for treating LCA2.
Collapse
|
37
|
Kiser PD, Golczak M, Maeda A, Palczewski K. Key enzymes of the retinoid (visual) cycle in vertebrate retina. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:137-51. [PMID: 21447403 PMCID: PMC3158816 DOI: 10.1016/j.bbalip.2011.03.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/08/2011] [Accepted: 03/22/2011] [Indexed: 12/11/2022]
Abstract
A major goal in vision research over the past few decades has been to understand the molecular details of retinoid processing within the retinoid (visual) cycle. This includes the consequences of side reactions that result from delayed all-trans-retinal clearance and condensation with phospholipids that characterize a variety of serious retinal diseases. Knowledge of the basic retinoid biochemistry involved in these diseases is essential for development of effective therapeutics. Photoisomerization of the 11-cis-retinal chromophore of rhodopsin triggers a complex set of metabolic transformations collectively termed phototransduction that ultimately lead to light perception. Continuity of vision depends on continuous conversion of all-trans-retinal back to the 11-cis-retinal isomer. This process takes place in a series of reactions known as the retinoid cycle, which occur in photoreceptor and RPE cells. All-trans-retinal, the initial substrate of this cycle, is a chemically reactive aldehyde that can form toxic conjugates with proteins and lipids. Therefore, much experimental effort has been devoted to elucidate molecular mechanisms of the retinoid cycle and all-trans-retinal-mediated retinal degeneration, resulting in delineation of many key steps involved in regenerating 11-cis-retinal. Three particularly important reactions are catalyzed by enzymes broadly classified as acyltransferases, short-chain dehydrogenases/reductases and carotenoid/retinoid isomerases/oxygenases. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Philip D. Kiser
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4965
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4965
| | - Akiko Maeda
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4965
- Department of Ophthalmology and Vision Sciences, Case Western Reserve University, Cleveland, OH, 44106-4965
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4965
| |
Collapse
|
38
|
Abstract
The visual pigment, rhodopsin, consists of opsin protein with 11-cis retinal chromophore, covalently bound. Light activates rhodopsin by isomerizing the chromophore to the all-trans conformation. The activated rhodopsin sets in motion a biochemical cascade that evokes an electrical response by the photoreceptor. All-trans retinal is eventually released from the opsin and reduced to vitamin A. Rod and cone photoreceptors contain vast amounts of rhodopsin, so after exposure to bright light, the concentration of vitamin A can reach relatively high levels within their outer segments. Since a retinal analog, β-ionone, is capable of activating some types of visual pigments, we tested whether vitamin A might produce a similar effect. In single-cell recordings from isolated dark-adapted salamander green-sensitive rods, exogenously applied vitamin A decreased circulating current and flash sensitivity and accelerated flash response kinetics. These changes resembled those produced by exposure of rods to steady light. Microspectrophotometric measurements showed that vitamin A accumulated in the outer segments and binding of vitamin A to rhodopsin was confirmed in in vitro assays. In addition, vitamin A improved the sensitivity of photoreceptors to ultraviolet (UV) light. Apparently, the energy of a UV photon absorbed by vitamin A transferred by a radiationless process to the 11-cis retinal chromophore of rhodopsin, which subsequently isomerized. Therefore, our results suggest that vitamin A binds to rhodopsin at an allosteric binding site distinct from the chromophore binding pocket for 11-cis retinal to activate the rhodopsin, and that it serves as a sensitizing chromophore for UV light.
Collapse
|
39
|
Kefalov VJ. Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches. J Biol Chem 2011; 287:1635-41. [PMID: 22074928 DOI: 10.1074/jbc.r111.303008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of the visual pigment by light in rod and cone photoreceptors initiates our visual perception. As a result, the signaling properties of visual pigments, consisting of a protein, opsin, and a chromophore, 11-cis-retinal, play a key role in shaping the light responses of photoreceptors. The combination of pharmacological, physiological, and genetic tools has been a powerful approach advancing our understanding of the interactions between opsin and chromophore and how they affect the function of visual pigments. The signaling properties of the visual pigments modulate many aspects of the function of rods and cones, producing their unique physiological properties.
Collapse
Affiliation(s)
- Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
40
|
Sergouniotis PI, Sohn EH, Li Z, McBain VA, Wright GA, Moore AT, Robson AG, Holder GE, Webster AR. Phenotypic Variability in RDH5 Retinopathy (Fundus Albipunctatus). Ophthalmology 2011; 118:1661-70. [DOI: 10.1016/j.ophtha.2010.12.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/16/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022] Open
|
41
|
Tang PH, Wheless L, Crouch RK. Regeneration of photopigment is enhanced in mouse cone photoreceptors expressing RPE65 protein. J Neurosci 2011; 31:10403-11. [PMID: 21753017 PMCID: PMC3153911 DOI: 10.1523/jneurosci.0182-11.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/19/2011] [Accepted: 05/30/2011] [Indexed: 11/21/2022] Open
Abstract
As cone photoreceptors mediate vision in bright light, their photopigments are bleached at a rapid rate and require substantial recycling of the chromophore 11-cis-retinal (RAL) for continued function. The retinal pigment epithelium (RPE) supplies 11-cis-RAL to both rod and cone photoreceptors; however, stringent demands imposed by the function of cones in bright light exceed the output from this source. Recent evidence has suggested that cones may be able to satisfy this demand through privileged access to an additional source of chromophore located within the inner retina. In this study, we demonstrate that the protein RPE65, previously identified in RPE as the isomerohydrolase of the RPE-retinal visual cycle, is found within cones of the rod-dominant mouse retina, and the level of RPE65 in cones is inversely related to the level in the RPE. The light sensitivity of cone ERGs of BALB/c mice, which had an undetectable level of cone RPE65, was enhanced by approximately threefold with administration of exogenous chromophore, indicating that the cones of these animals are chromophore deficient. This enhancement with chromophore administration was not observed in C57BL/6 mice, whose cones contain RPE65. These results demonstrate that RPE65 within cones may be essential for the efficient regeneration of cone photopigments under bright-light conditions.
Collapse
Affiliation(s)
| | - Lee Wheless
- Medicine–Division of Biostatistics and Epidemiology, and
| | - Rosalie K. Crouch
- Departments of Neuroscience
- Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
42
|
Parker R, Wang JS, Kefalov VJ, Crouch RK. Interphotoreceptor retinoid-binding protein as the physiologically relevant carrier of 11-cis-retinol in the cone visual cycle. J Neurosci 2011; 31:4714-9. [PMID: 21430170 PMCID: PMC3226706 DOI: 10.1523/jneurosci.3722-10.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 01/18/2011] [Accepted: 01/27/2011] [Indexed: 11/21/2022] Open
Abstract
Cones function in constant light and are responsible for mediating daytime human vision. Like rods, cones use the photosensitive molecule 11-cis-retinal to detect light, and in constant illumination, a continuous supply of 11-cis-retinal is needed. A retina visual cycle is thought to provide a privileged supply of 11-cis-retinal to cones by using 11-cis-retinol generated in Müller cells. In the cycle, 11-cis-retinol is transported from Müller cells to cone inner segments, where it is oxidized to 11-cis-retinal. This oxidation step is only performed in cones, thus rendering the cycle cone-specific. Interphotoreceptor retinoid-binding protein (IRBP) is a retinoid-binding protein in the subretinal space that binds 11-cis-retinol endogenously. Cones in Irbp(-/-) mice are retinoid-deficient under photopic conditions, and it is possible that 11-cis-retinol supplies are disrupted in the absence of IRBP. We tested the hypothesis that IRBP facilitates the delivery of 11-cis-retinol to cones by preserving the isomeric state of 11-cis-retinol in light. With electrophysiology, we show that the cone-like photoreceptors of Nrl(-/-) mice use the cone visual cycle similarly to wild-type cones. Then, using oxidation assays in isolated Nrl(-/-)Rpe65(-/-) retinas, we show that IRBP delivers 11-cis-retinol for oxidation in cones and improves the efficiency of the oxidation reaction. Finally, we show that IRBP protects the isomeric state of 11-cis-retinol in the presence of light. Together, these findings suggest that IRBP plays an important role in the delivery of 11-cis-retinol to cones and can facilitate cone function in the presence of light.
Collapse
Affiliation(s)
- Ryan Parker
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29403, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
Cone photoreceptors mediate our daytime vision and function under bright and rapidly-changing light conditions. As their visual pigment is destroyed in the process of photoactivation, the continuous function of cones imposes the need for rapid recycling of their chromophore and regeneration of their pigment. The canonical retinoid visual cycle through the retinal pigment epithelium cells recycles chromophore and supplies it to both rods and cones. However, shortcomings of this pathway, including its slow rate and competition with rods for chromophore, have led to the suggestion that cones might use a separate mechanism for recycling of chromophore. In the past four decades biochemical studies have identified enzymatic activities consistent with recycling chromophore in the retinas of cone-dominant animals, such as chicken and ground squirrel. These studies have led to the hypothesis of a cone-specific retina visual cycle. The physiological relevance of these studies was controversial for a long time and evidence for the function of this visual cycle emerged only in very recent studies and will be the focus of this review. The retina visual cycle supplies chromophore and promotes pigment regeneration only in cones but not in rods. This pathway is independent of the pigment epithelium and instead involves the Müller cells in the retina, where chromophore is recycled and supplied selectively to cones. The rapid supply of chromophore through the retina visual cycle is critical for extending the dynamic range of cones to bright light and for their rapid dark adaptation following exposure to light. The importance of the retina visual cycle is emphasized also by its preservation through evolution as its function has now been demonstrated in species ranging from salamander to zebrafish, mouse, primate, and human.
Collapse
Affiliation(s)
- Jin-Shan Wang
- Department of Ophthalmology & Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | | |
Collapse
|
44
|
Makino CL, Riley CK, Looney J, Crouch RK, Okada T. Binding of more than one retinoid to visual opsins. Biophys J 2011; 99:2366-73. [PMID: 20923672 DOI: 10.1016/j.bpj.2010.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 02/06/2023] Open
Abstract
Visual opsins bind 11-cis retinal at an orthosteric site to form rhodopsins but increasing evidence suggests that at least some are capable of binding an additional retinoid(s) at a separate, allosteric site(s). Microspectrophotometric measurements on isolated, dark-adapted, salamander photoreceptors indicated that the truncated retinal analog, β-ionone, partitioned into the membranes of green-sensitive rods; however, in blue-sensitive rod outer segments, there was an enhanced uptake of four or more β-ionones per rhodopsin. X-ray crystallography revealed binding of one β-ionone to bovine green-sensitive rod rhodopsin. Cocrystallization only succeeded with extremely high concentrations of β-ionone and binding did not alter the structure of rhodopsin from the inactive state. Salamander green-sensitive rod rhodopsin is also expected to bind β-ionone at sufficiently high concentrations because the binding site is present on its surface. Therefore, both blue- and green-sensitive rod rhodopsins have at least one allosteric binding site for retinoid, but β-ionone binds to the latter type of rhodopsin with low affinity and low efficacy.
Collapse
Affiliation(s)
- Clint L Makino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
45
|
Parker RO, Crouch RK. Retinol dehydrogenases (RDHs) in the visual cycle. Exp Eye Res 2010; 91:788-92. [PMID: 20801113 PMCID: PMC3065351 DOI: 10.1016/j.exer.2010.08.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
The isomerization of 11-cis retinal to all-trans retinal in photoreceptors is the first step in vision. For photoreceptors to function in constant light, the all-trans retinal must be converted back to 11-cis retinal via the enzymatic steps of the visual cycle. Within this cycle, all-trans retinal is reduced to all-trans retinol in photoreceptors and transported to the retinal pigment epithelium (RPE). In the RPE, all-trans retinol is converted to 11-cis retinol, and in the final enzymatic step, 11-cis retinol is oxidized to 11-cis retinal. The first and last steps of the classical visual cycle are reduction and oxidation reactions, respectively, that utilize retinol dehydrogenase (RDH) enzymes. The visual cycle RDHs have been extensively studied, but because multiple RDHs are capable of catalyzing each step, the exact RDHs responsible for each reaction remain unknown. Within rods, RDH8 is largely responsible for the reduction of all-trans retinal with possible assistance from RDH12. retSDR1 is thought to reduce all-trans retinal in cones. In the RPE, the oxidation of 11-cis retinol is carried out by RDH5 with possible help from RDH11 and RDH10. Here, we review the characteristics of each RDH in vitro and the findings from knockout models that suggest the roles for each in the visual cycle.
Collapse
Affiliation(s)
- Ryan O Parker
- Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue Charleston, SC 29403, United States.
| | | |
Collapse
|
46
|
|
47
|
von Lintig J, Kiser PD, Golczak M, Palczewski K. The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision. Trends Biochem Sci 2010; 35:400-10. [PMID: 20188572 PMCID: PMC2891588 DOI: 10.1016/j.tibs.2010.01.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/08/2010] [Accepted: 01/20/2010] [Indexed: 01/20/2023]
Abstract
Recently, much progress has been made in elucidating the chemistry and metabolism of retinoids and carotenoids, as well as the structures of processing proteins related to vision. Carotenoids and their retinoid metabolites are isoprenoids, so only a limited number of chemical transformations are possible, and just a few of these occur naturally. Although there is an intriguing evolutionary conservation of the key components involved in the production and recycling of chromophores, these genes have also adapted to the specific requirements of insect and vertebrate vision. These 'ancestral footprints' in animal genomes bear witness to the common origin of the chemistry of vision, and will further stimulate research across evolutionary boundaries.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | | | |
Collapse
|
48
|
Is the lifetime of light-stimulated cGMP phosphodiesterase regulated by recoverin through its regulation of rhodopsin phosphorylation? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00039522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
|
50
|
|