1
|
Lee JY, Kim ES, Kim SY, Cho YJ, Jo KH, Han JH, Moon SD. The nature and pathological impact of the c.1748A > G variant of the neurofibromin 1 gene. Gene 2025; 952:149381. [PMID: 40037421 DOI: 10.1016/j.gene.2025.149381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder, and mutations in the NF1 gene lead to RAS overactivation, which stimulates abnormal cell proliferation and can cause various tumors. The c.1748A > G mutation in the NF1 gene was initially classified as a missense mutation, but has also been suggested to be a splice mutation. It is thought that the substitution of A for G generates a cryptic splice site, resulting in a 27 bp deletion in the mRNA transcript, but this conclusion has not been documented in currently available databases. The present study was conducted to establish whether the NF1 c.1748A > G mutation induces a splicing error, and to determine whether it is pathogenic i.e. activates RAS and increases the expression of NF1-related downstream signaling molecules. We have confirmed by RT-PCR analysis of NF1 transcripts produced in the patient's peripheral blood lymphocytes as well as in a minigene construct and in iPSCs harboring the c.1748A > G mutation that this mutation creates a cryptic splice site which has the effect of deleting the first 27 bases of exon 16, and leading to transcriptional haploinsufficiency. Additionally, NPCs expressing the splicing mutant exhibited increased phosphorylation of NF1-related AKT/mTOR and Raf/MEK/Erk, as well as more effective wound healing and chemotaxis. We conclude that the NF1 c.1748A > G mutation acts as a splice mutation forming a novel cryptic site, causing a 27 bp deletion in the mRNA. This leads to increased expression of NF1-related downstream signaling molecules through RAS activation, inducing cell proliferation and potential tumor formation.
Collapse
Affiliation(s)
- Ji-Young Lee
- Division of Endocrinology and Metabolism, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, South Korea
| | - Eun Sook Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon 21431, South Korea
| | - Su Yeon Kim
- Division of Endocrinology and Metabolism, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, South Korea
| | - Yun-Jung Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon 21431, South Korea
| | - Kwan Hoon Jo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon 21431, South Korea
| | - Je Ho Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon 21431, South Korea
| | - Sung-Dae Moon
- Division of Endocrinology and Metabolism, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, South Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon 21431, South Korea.
| |
Collapse
|
2
|
Nosková A, Li C, Wang X, Leonard AS, Pausch H, Kadri N. Exploiting public databases of genomic variation to quantify evolutionary constraint on the branch point sequence in 30 plant and animal species. Nucleic Acids Res 2023; 51:12069-12075. [PMID: 37953306 PMCID: PMC10711541 DOI: 10.1093/nar/gkad970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The branch point sequence is a degenerate intronic heptamer required for the assembly of the spliceosome during pre-mRNA splicing. Disruption of this motif may promote alternative splicing and eventually cause phenotype variation. Despite its functional relevance, the branch point sequence is not included in most genome annotations. Here, we predict branch point sequences in 30 plant and animal species and attempt to quantify their evolutionary constraints using public variant databases. We find an implausible variant distribution in the databases from 16 of 30 examined species. Comparative analysis of variants from whole-genome sequencing shows that variants submitted from exome sequencing or false positive variants are widespread in public databases and cause these irregularities. We then investigate evolutionary constraint with largely unbiased public variant databases in 14 species and find that the fourth and sixth position of the branch point sequence are more constrained than coding nucleotides. Our findings show that public variant databases should be scrutinized for possible biases before they qualify to analyze evolutionary constraint.
Collapse
Affiliation(s)
- Adéla Nosková
- Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Chao Li
- Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | - Hubert Pausch
- Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Naveen Kumar Kadri
- Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
3
|
Xie J, Wang L, Lin RJ. Variations of intronic branchpoint motif: identification and functional implications in splicing and disease. Commun Biol 2023; 6:1142. [PMID: 37949953 PMCID: PMC10638238 DOI: 10.1038/s42003-023-05513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
The branchpoint (BP) motif is an essential intronic element for spliceosomal pre-mRNA splicing. In mammals, its sequence composition, distance to the downstream exon, and number of BPs per 3´ splice site are highly variable, unlike the GT/AG dinucleotides at the intron ends. These variations appear to provide evolutionary advantages for fostering alternative splicing, satisfying more diverse cellular contexts, and promoting resilience to genetic changes, thus contributing to an extra layer of complexity for gene regulation. Importantly, variants in the BP motif itself or in genes encoding BP-interacting factors cause human genetic diseases or cancers, highlighting the critical function of BP motif and the need to precisely identify functional BPs for faithful interpretation of their roles in splicing. In this perspective, we will succinctly summarize the major findings related to BP motif variations, discuss the relevant issues/challenges, and provide our insights.
Collapse
Affiliation(s)
- Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Ren-Jang Lin
- Center for RNA Biology & Therapeutics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
4
|
Kadri NK, Mapel XM, Pausch H. The intronic branch point sequence is under strong evolutionary constraint in the bovine and human genome. Commun Biol 2021; 4:1206. [PMID: 34675361 PMCID: PMC8531310 DOI: 10.1038/s42003-021-02725-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
The branch point sequence is a cis-acting intronic motif required for mRNA splicing. Despite their functional importance, branch point sequences are not routinely annotated. Here we predict branch point sequences in 179,476 bovine introns and investigate their variability using a catalogue of 29.4 million variants detected in 266 cattle genomes. We localize the bovine branch point within a degenerate heptamer "nnyTrAy". An adenine residue at position 6, that acts as branch point, and a thymine residue at position 4 of the heptamer are more strongly depleted for mutations than coding sequences suggesting extreme purifying selection. We provide evidence that mutations affecting these evolutionarily constrained residues lead to alternative splicing. We confirm evolutionary constraints on branch point sequences using a catalogue of 115 million SNPs established from 3,942 human genomes of the gnomAD database.
Collapse
Affiliation(s)
- Naveen Kumar Kadri
- grid.5801.c0000 0001 2156 2780Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Xena Marie Mapel
- grid.5801.c0000 0001 2156 2780Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Hubert Pausch
- grid.5801.c0000 0001 2156 2780Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Královičová J, Borovská I, Pengelly R, Lee E, Abaffy P, Šindelka R, Grutzner F, Vořechovský I. Restriction of an intron size en route to endothermy. Nucleic Acids Res 2021; 49:2460-2487. [PMID: 33550394 PMCID: PMC7969005 DOI: 10.1093/nar/gkab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/15/2022] Open
Abstract
Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.
Collapse
Affiliation(s)
- Jana Královičová
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Borovská
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben Pengelly
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| | - Eunice Lee
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Pavel Abaffy
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Radek Šindelka
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Frank Grutzner
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Igor Vořechovský
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| |
Collapse
|
6
|
Morais P, Adachi H, Yu YT. Spliceosomal snRNA Epitranscriptomics. Front Genet 2021; 12:652129. [PMID: 33737950 PMCID: PMC7960923 DOI: 10.3389/fgene.2021.652129] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Small nuclear RNAs (snRNAs) are critical components of the spliceosome that catalyze the splicing of pre-mRNA. snRNAs are each complexed with many proteins to form RNA-protein complexes, termed as small nuclear ribonucleoproteins (snRNPs), in the cell nucleus. snRNPs participate in pre-mRNA splicing by recognizing the critical sequence elements present in the introns, thereby forming active spliceosomes. The recognition is achieved primarily by base-pairing interactions (or nucleotide-nucleotide contact) between snRNAs and pre-mRNA. Notably, snRNAs are extensively modified with different RNA modifications, which confer unique properties to the RNAs. Here, we review the current knowledge of the mechanisms and functions of snRNA modifications and their biological relevance in the splicing process.
Collapse
Affiliation(s)
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
7
|
Abstract
The spliceosome removes introns from messenger RNA precursors (pre-mRNA). Decades of biochemistry and genetics combined with recent structural studies of the spliceosome have produced a detailed view of the mechanism of splicing. In this review, we aim to make this mechanism understandable and provide several videos of the spliceosome in action to illustrate the intricate choreography of splicing. The U1 and U2 small nuclear ribonucleoproteins (snRNPs) mark an intron and recruit the U4/U6.U5 tri-snRNP. Transfer of the 5' splice site (5'SS) from U1 to U6 snRNA triggers unwinding of U6 snRNA from U4 snRNA. U6 folds with U2 snRNA into an RNA-based active site that positions the 5'SS at two catalytic metal ions. The branch point (BP) adenosine attacks the 5'SS, producing a free 5' exon. Removal of the BP adenosine from the active site allows the 3'SS to bind, so that the 5' exon attacks the 3'SS to produce mature mRNA and an excised lariat intron.
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| | - Clément Charenton
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
8
|
Neil CR, Fairbrother WG. Intronic RNA: Ad'junk' mediator of post-transcriptional gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194439. [PMID: 31682938 DOI: 10.1016/j.bbagrm.2019.194439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/30/2019] [Indexed: 01/23/2023]
Abstract
RNA splicing, the process through which intervening segments of noncoding RNA (introns) are excised from pre-mRNAs to allow for the formation of a mature mRNA product, has long been appreciated for its capacity to add complexity to eukaryotic proteomes. However, evidence suggests that the utility of this process extends beyond protein output and provides cells with a dynamic tool for gene regulation. In this review, we aim to highlight the role that intronic RNA plays in mediating specific splicing outcomes in pre-mRNA processing, as well as explore an emerging class of stable intronic sequences that have been observed to act in gene expression control. Building from underlying flexibility in both sequence and structure, intronic RNA provides mechanisms for post-transcriptional gene regulation that are amenable to the tissue and condition specific needs of eukaryotic cells. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Christopher R Neil
- Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States of America
| | - William G Fairbrother
- Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States of America; Center for Computational Molecular Biology, Brown University, Providence, RI, United States of America.
| |
Collapse
|
9
|
Brant AC, Majerciak V, Moreira MAM, Zheng ZM. HPV18 Utilizes Two Alternative Branch Sites for E6*I Splicing to Produce E7 Protein. Virol Sin 2019; 34:211-221. [PMID: 30945125 PMCID: PMC6513837 DOI: 10.1007/s12250-019-00098-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/21/2019] [Indexed: 12/26/2022] Open
Abstract
Human papillomavirus 18 (HPV18) E6 and E7 oncogenes are transcribed as a single bicistronic E6E7 pre-mRNA. The E6 ORF region in the bicistronic E6E7 pre-mRNA contains an intron. Splicing of this intron disrupts the E6 ORF integrity and produces a spliced E6*I RNA for efficient E7 translation. Here we report that the E6 intron has two overlapped branch point sequences (BPS) upstream of its 3′ splice site, with an identical heptamer AACUAAC, for E6*I splicing. One heptamer has a branch site adenosine (underlined) at nt 384 and the other at nt 388. E6*I splicing efficiency correlates to the expression level of E6 and E7 proteins and depends on the selection of which branch site. In general, E6*I splicing prefers the 3′ss-proximal branch site at nt 388 over the distal branch site at nt 384. Inactivation of the nt 388 branch site was found to activate a cryptic acceptor site at nt 636 for aberrant RNA splicing. Together, these data suggest that HPV18 modulates its production ratio of E6 and E7 proteins by alternative selection of the two mapped branch sites for the E6*I splicing, which could be beneficial in its productive or oncogenic infection according to the host cell environment.
Collapse
Affiliation(s)
- Ayslan Castro Brant
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA.,Genetics Post-Graduation Program, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,Genetics Program, Nacional Cancer Institute, INCA, Rio de Janeiro, 20231-050, Brazil
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | | | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA.
| |
Collapse
|
10
|
Zhang Q, Fan X, Wang Y, Sun MA, Shao J, Guo D. BPP: a sequence-based algorithm for branch point prediction. Bioinformatics 2018. [PMID: 28633445 DOI: 10.1093/bioinformatics/btx401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Motivation Although high-throughput sequencing methods have been proposed to identify splicing branch points in the human genome, these methods can only detect a small fraction of the branch points subject to the sequencing depth, experimental cost and the expression level of the mRNA. An accurate computational model for branch point prediction is therefore an ongoing objective in human genome research. Results We here propose a novel branch point prediction algorithm that utilizes information on the branch point sequence and the polypyrimidine tract. Using experimentally validated data, we demonstrate that our proposed method outperforms existing methods. Availability and implementation: https://github.com/zhqingit/BPP. Contact djguo@cuhk.edu.hk. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Qing Zhang
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology
| | - Xiaodan Fan
- Department of Statistics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yejun Wang
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Ming-An Sun
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology
| | - Jianlin Shao
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dianjing Guo
- School of Life Sciences and the State Key Laboratory of Agrobiotechnology
| |
Collapse
|
11
|
Pineda JMB, Bradley RK. Most human introns are recognized via multiple and tissue-specific branchpoints. Genes Dev 2018; 32:577-591. [PMID: 29666160 PMCID: PMC5959240 DOI: 10.1101/gad.312058.118] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 12/20/2022]
Abstract
Pineda and Bradley demonstrate that almost all human introns contain multiple branchpoints. Approximately three-quarters of constitutive introns exhibit tissue-specific branchpoint usage. Although branchpoint recognition is an essential component of intron excision during the RNA splicing process, the branchpoint itself is frequently assumed to be a basal, rather than regulatory, sequence feature. However, this assumption has not been systematically tested due to the technical difficulty of identifying branchpoints and quantifying their usage. Here, we analyzed ∼1.31 trillion reads from 17,164 RNA sequencing data sets to demonstrate that almost all human introns contain multiple branchpoints. This complexity holds even for constitutive introns, 95% of which contain multiple branchpoints, with an estimated five to six branchpoints per intron. Introns upstream of the highly regulated ultraconserved poison exons of SR genes contain twice as many branchpoints as the genomic average. Approximately three-quarters of constitutive introns exhibit tissue-specific branchpoint usage. In an extreme example, we observed a complete switch in branchpoint usage in the well-studied first intron of HBB (β-globin) in normal bone marrow versus metastatic prostate cancer samples. Our results indicate that the recognition of most introns is unexpectedly complex and tissue-specific and suggest that alternative splicing catalysis typifies the majority of introns even in the absence of differences in the mature mRNA.
Collapse
Affiliation(s)
- Jose Mario Bello Pineda
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Genome Sciences, University of Washington, Seattle, Wasington 98195, USA.,Medical Scientist Training Program, University of Washington, Seattle, Wasington 98195, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Genome Sciences, University of Washington, Seattle, Wasington 98195, USA
| |
Collapse
|
12
|
Molecular basis of differential 3' splice site sensitivity to anti-tumor drugs targeting U2 snRNP. Nat Commun 2017; 8:2100. [PMID: 29235465 PMCID: PMC5727392 DOI: 10.1038/s41467-017-02007-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
Several splicing-modulating compounds, including Sudemycins and Spliceostatin A, display anti-tumor properties. Combining transcriptome, bioinformatic and mutagenesis analyses, we delineate sequence determinants of the differential sensitivity of 3′ splice sites to these drugs. Sequences 5′ from the branch point (BP) region strongly influence drug sensitivity, with additional functional BPs reducing, and BP-like sequences allowing, drug responses. Drug-induced retained introns are typically shorter, displaying higher GC content and weaker polypyrimidine-tracts and BPs. Drug-induced exon skipping preferentially affects shorter alternatively spliced regions with weaker BPs. Remarkably, structurally similar drugs display both common and differential effects on splicing regulation, SSA generally displaying stronger effects on intron retention, and Sudemycins more acute effects on exon skipping. Collectively, our results illustrate how splicing modulation is exquisitely sensitive to the sequence context of 3′ splice sites and to small structural differences between drugs. Several families of natural compounds target core components of the pre-mRNA splicing machinery and display anti-tumor activity. Here the authors show that particular sequence features can be linked to drug response, and that drugs with very similar chemical structures display substantially different effects on splicing regulation.
Collapse
|
13
|
Wen J, Wang J, Zhang Q, Guo D. A heuristic model for computational prediction of human branch point sequence. BMC Bioinformatics 2017; 18:459. [PMID: 29065858 PMCID: PMC5655975 DOI: 10.1186/s12859-017-1864-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pre-mRNA splicing is the removal of introns from precursor mRNAs (pre-mRNAs) and the concurrent ligation of the flanking exons to generate mature mRNA. This process is catalyzed by the spliceosome, where the splicing factor 1 (SF1) specifically recognizes the seven-nucleotide branch point sequence (BPS) and the U2 snRNP later displaces the SF1 and binds to the BPS. In mammals, the degeneracy of BPS motifs together with the lack of a large set of experimentally verified BPSs complicates the task of BPS prediction in silico. RESULTS In this paper, we develop a simple and yet efficient heuristic model for human BPS prediction based on a novel scoring scheme, which quantifies the splicing strength of putative BPSs. The candidate BPS is restricted exclusively within a defined BPS search region to avoid the influences of other elements in the intron and therefore the prediction accuracy is improved. Moreover, using two types of relative frequencies for human BPS prediction, we demonstrate our model outperformed other current implementations on experimentally verified human introns. CONCLUSION We propose that the binding energy contributes to the molecular recognition involved in human pre-mRNA splicing. In addition, a genome-wide human BPS prediction is carried out. The characteristics of predicted BPSs are in accordance with experimentally verified human BPSs, and branch site positions relative to the 3'ss and the 5'end of the shortened AGEZ are consistent with the results of published papers. Meanwhile, a webserver for BPS predictor is freely available at http://biocomputer.bio.cuhk.edu.hk/BPS .
Collapse
Affiliation(s)
- Jia Wen
- School of Life Science, State Key Laboratory of Agrobiotechnology and ShenZhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jue Wang
- School of Life Science, State Key Laboratory of Agrobiotechnology and ShenZhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Zhang
- School of Life Science, State Key Laboratory of Agrobiotechnology and ShenZhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Dianjing Guo
- School of Life Science, State Key Laboratory of Agrobiotechnology and ShenZhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Agrebi N, Ben-Mustapha I, Matoussi N, Dhouib N, Ben-Ali M, Mekki N, Ben-Ahmed M, Larguèche B, Ben Becher S, Béjaoui M, Barbouche MR. Rare splicing defects of FAS underly severe recessive autoimmune lymphoproliferative syndrome. Clin Immunol 2017; 183:17-23. [PMID: 28668589 DOI: 10.1016/j.clim.2017.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/08/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a prototypic disorder of impaired apoptosis characterized by autoimmune features and lymphoproliferation. Heterozygous germline or somatic FAS mutations associated with preserved protein expression have been described. Very rare cases of homozygous germline FAS mutations causing severe autosomal recessive form of ALPS with a complete defect of Fas expression have been reported. We report two unrelated patients from highly inbred North African population showing a severe ALPS phenotype and an undetectable Fas surface expression. Two novel homozygous mutations have been identified underlying rare splicing defects mechanisms. The first mutation breaks a branch point sequence and the second alters a regulatory exonic splicing site. These splicing defects induce the skipping of exon 6 encoding the transmembrane domain of CD95. Our findings highlight the requirement of tight regulation of FAS exon 6 splicing for balanced alternative splicing and illustrate the importance of such studies in highly consanguineous populations.
Collapse
Affiliation(s)
- N Agrebi
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; The University of Carthage, Faculty of Sciences of Bizerte, 7021 Jarzouna, Tunisia
| | - I Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia.
| | - N Matoussi
- Faculty of Medicine, 1007 Tunis, Tunisia; Department of Pediatric Care, Emergency and Out Patient Children's Hospital of Tunis, 1029 Tunis, Tunisia
| | - N Dhouib
- Faculty of Medicine, 1007 Tunis, Tunisia; National Bone Marrow Transplantation Center, 1006 Tunis, Tunisia
| | - M Ben-Ali
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia
| | - N Mekki
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia
| | - M Ben-Ahmed
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia
| | - B Larguèche
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia
| | - S Ben Becher
- Faculty of Medicine, 1007 Tunis, Tunisia; Department of Pediatric Care, Emergency and Out Patient Children's Hospital of Tunis, 1029 Tunis, Tunisia
| | - M Béjaoui
- Faculty of Medicine, 1007 Tunis, Tunisia; National Bone Marrow Transplantation Center, 1006 Tunis, Tunisia
| | - M R Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02), Institut Pasteur de Tunis, 1002 Tunis, Belvédère, Tunisia; Université de Tunis El Manar, 1068 Tunis, Tunisia; Faculty of Medicine, 1007 Tunis, Tunisia
| |
Collapse
|
15
|
Ajiro M, Zheng ZM. Vemurafenib-resistant BRAF selects alternative branch points different from its wild-type BRAF in intron 8 for RNA splicing. Cell Biosci 2015; 5:70. [PMID: 26697165 PMCID: PMC4687071 DOI: 10.1186/s13578-015-0061-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022] Open
Abstract
One mechanism of resistance of the melanoma-associated BRAF kinase to its small molecule inhibitor vemurafenib is by point mutations in its intron 8 resulting in exons 4–8 skipping. In this report, we carried out in vitro BRAF RNA splicing assays and lariat RT-PCR to map the intron 8 branch points in wild-type and BRAF mutants. We identify multiple branch points (BP) in intron 8 of both wild-type (wt) and vemurafenib-resistant BRAF RNA. In wt BRAF, BPs are located at -29A, -28A and -26A, whereas in a vemurafenib-resistant BRAF splicing mutant, BPs map to -22A, -18A and -15A, proximal to the intron 8 3′ splice site. This finding of a distal-to-proximal shift of the branch point sequence in BRAF splicing in response to point-mutations in intron 8 provides insight into the regulation of BRAF alternative splicing upon vemurafenib resistance.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| |
Collapse
|
16
|
Crisci A, Raleff F, Bagdiul I, Raabe M, Urlaub H, Rain JC, Krämer A. Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins. Nucleic Acids Res 2015; 43:10456-73. [PMID: 26420826 PMCID: PMC4666396 DOI: 10.1093/nar/gkv952] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023] Open
Abstract
Splicing factor 1 (SF1) recognizes the branch point sequence (BPS) at the 3′ splice site during the formation of early complex E, thereby pre-bulging the BPS adenosine, thought to facilitate subsequent base-pairing of the U2 snRNA with the BPS. The 65-kDa subunit of U2 snRNP auxiliary factor (U2AF65) interacts with SF1 and was shown to recruit the U2 snRNP to the spliceosome. Co-immunoprecipitation experiments of SF1-interacting proteins from HeLa cell extracts shown here are consistent with the presence of SF1 in early splicing complexes. Surprisingly almost all U2 snRNP proteins were found associated with SF1. Yeast two-hybrid screens identified two SURP domain-containing U2 snRNP proteins as partners of SF1. A short, evolutionarily conserved region of SF1 interacts with the SURP domains, stressing their role in protein–protein interactions. A reduction of A complex formation in SF1-depleted extracts could be rescued with recombinant SF1 containing the SURP-interaction domain, but only partial rescue was observed with SF1 lacking this sequence. Thus, SF1 can initially recruit the U2 snRNP to the spliceosome during E complex formation, whereas U2AF65 may stabilize the association of the U2 snRNP with the spliceosome at later times. In addition, these findings may have implications for alternative splicing decisions.
Collapse
Affiliation(s)
- Angela Crisci
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Flore Raleff
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Ivona Bagdiul
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Monika Raabe
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | | | - Angela Krämer
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
17
|
Zhao C, Bachu R, Popović M, Devany M, Brenowitz M, Schlatterer JC, Greenbaum NL. Conformational heterogeneity of the protein-free human spliceosomal U2-U6 snRNA complex. RNA (NEW YORK, N.Y.) 2013; 19:561-73. [PMID: 23426875 PMCID: PMC3677266 DOI: 10.1261/rna.038265.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 05/24/2023]
Abstract
The complex formed between the U2 and U6 small nuclear (sn)RNA molecules of the eukaryotic spliceosome plays a critical role in the catalysis of precursor mRNA splicing. Here, we have used enzymatic structure probing, (19)F NMR, and analytical ultracentrifugation techniques to characterize the fold of a protein-free biophysically tractable paired construct representing the human U2-U6 snRNA complex. Results from enzymatic probing and (19)F NMR for the complex in the absence of Mg(2+) are consistent with formation of a four-helix junction structure as a predominant conformation. However, (19)F NMR data also identify a lesser fraction (up to 14% at 25°C) of a three-helix conformation. Based upon this distribution, the calculated ΔG for inter-conversion to the four-helix structure from the three-helix structure is approximately -4.6 kJ/mol. In the presence of 5 mM Mg(2+), the fraction of the three-helix conformation increased to ∼17% and the Stokes radius, measured by analytical ultracentrifugation, decreased by 2%, suggesting a slight shift to an alternative conformation. NMR measurements demonstrated that addition of an intron fragment to the U2-U6 snRNA complex results in displacement of U6 snRNA from the region of Helix III immediately 5' of the ACAGAGA sequence of U6 snRNA, which may facilitate binding of the segment of the intron adjacent to the 5' splice site to the ACAGAGA sequence. Taken together, these observations indicate conformational heterogeneity in the protein-free human U2-U6 snRNA complex consistent with a model in which the RNA has sufficient conformational flexibility to facilitate inter-conversion between steps of splicing in situ.
Collapse
Affiliation(s)
- Caijie Zhao
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Ravichandra Bachu
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Milena Popović
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Matthew Devany
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Jörg C. Schlatterer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Nancy L. Greenbaum
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, USA
- The Graduate Center, City University of New York, New York, New York 10016, USA
| |
Collapse
|
18
|
Kannan R, Hartnett S, Voelker RB, Berglund JA, Staley JP, Baumann P. Intronic sequence elements impede exon ligation and trigger a discard pathway that yields functional telomerase RNA in fission yeast. Genes Dev 2013; 27:627-38. [PMID: 23468430 DOI: 10.1101/gad.212738.112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The fission yeast telomerase RNA (TER1) precursor harbors an intron immediately downstream from its mature 3' end. Unlike most introns, which are removed from precursor RNAs by the spliceosome in two sequential but tightly coupled transesterification reactions, TER1 only undergoes the first cleavage reaction during telomerase RNA maturation. The mechanism underlying spliceosome-mediated 3' end processing has remained unclear. We now demonstrate that a strong branch site (BS), a long distance to the 3' splice site (3' SS), and a weak polypyrimidine (Py) tract act synergistically to attenuate the transition from the first to the second step of splicing. The observation that a strong BS antagonizes the second step of splicing in the context of TER1 suggests that the BS-U2 snRNA interaction is disrupted after the first step and thus much earlier than previously thought. The slow transition from first to second step triggers the Prp22 DExD/H-box helicase-dependent rejection of the cleaved products and Prp43-dependent "discard" of the splicing intermediates. Our findings explain how the spliceosome can function in 3' end processing and provide new insights into the mechanism of splicing.
Collapse
Affiliation(s)
- Ram Kannan
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ajiro M, Jia R, Zhang L, Liu X, Zheng ZM. Intron definition and a branch site adenosine at nt 385 control RNA splicing of HPV16 E6*I and E7 expression. PLoS One 2012; 7:e46412. [PMID: 23056301 PMCID: PMC3464268 DOI: 10.1371/journal.pone.0046412] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
HPV16 E6 and E7, two viral oncogenes, are expressed from a single bicistronic pre-mRNA. In this report, we provide the evidence that the bicistronic pre-mRNA intron 1 contains three 5' splice sites (5' ss) and three 3' splice sites (3' ss) normally used in HPV16(+) cervical cancer and its derived cell lines. The choice of two novel alternative 5' ss (nt 221 5' ss and nt 191 5' ss) produces two novel isoforms of E6E7 mRNAs (E6*V and E6*VI). The nt 226 5' ss and nt 409 3' ss is preferentially selected over the other splice sites crossing over the intron to excise a minimal length of the intron in RNA splicing. We identified AACAAAC as the preferred branch point sequence (BPS) and an adenosine at nt 385 (underlined) in the BPS as a branch site to dictate the selection of the nt 409 3' ss for E6*I splicing and E7 expression. Introduction of point mutations into the mapped BPS led to reduced U2 binding to the BPS and thereby inhibition of the second step of E6E7 splicing at the nt 409 3' ss. Importantly, the E6E7 bicistronic RNA with a mutant BPS and inefficient splicing makes little or no E7 and the resulted E6 with mutations of (91)QYNK(94) to (91)PSFW(94) displays attenuate activity on p53 degradation. Together, our data provide structural basis of the E6E7 intron 1 for better understanding of how viral E6 and E7 expression is regulated by alternative RNA splicing. This study elucidates for the first time a mapped branch point in HPV16 genome involved in viral oncogene expression.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Tumor Virus RNA Biology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Rong Jia
- Tumor Virus RNA Biology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Lifang Zhang
- Tumor Virus RNA Biology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Xuefeng Liu
- Tumor Virus RNA Biology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Delgado E, Carrera C, Nebreda P, Fernández-García A, Pinilla M, García V, Pérez-Álvarez L, Thomson MM. Identification of new splice sites used for generation of rev transcripts in human immunodeficiency virus type 1 subtype C primary isolates. PLoS One 2012; 7:e30574. [PMID: 22363449 PMCID: PMC3281843 DOI: 10.1371/journal.pone.0030574] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 12/21/2011] [Indexed: 12/16/2022] Open
Abstract
The HIV-1 primary transcript undergoes a complex splicing process by which more than 40 different spliced RNAs are generated. One of the factors contributing to HIV-1 splicing complexity is the multiplicity of 3′ splice sites (3'ss) used for generation of rev RNAs, with two 3'ss, A4a and A4b, being most commonly used, a third site, A4c, used less frequently, and two additional sites, A4d and A4e, reported in only two and one isolates, respectively. HIV-1 splicing has been analyzed mostly in subtype B isolates, and data on other group M clades are lacking. Here we examine splice site usage in three primary isolates of subtype C, the most prevalent clade in the HIV-1 pandemic, by using an in vitro infection assay of peripheral blood mononuclear cells. Viral spliced RNAs were identified by RT-PCR amplification using a fluorescently-labeled primer and software analyses and by cloning and sequencing the amplified products. The results revealed that splice site usage for generation of rev transcripts in subtype C differs from that reported for subtype B, with most rev RNAs using two previously unreported 3'ss, one located 7 nucleotides upstream of 3'ss A4a, designated A4f, preferentially used by two isolates, and another located 14 nucleotides upstream of 3'ss A4c, designated A4g, preferentially used by the third isolate. A new 5′ splice site, designated D2a, was also identified in one virus. Usage of the newly identified splice sites is consistent with sequence features commonly found in subtype C viruses. These results show that splice site usage may differ between HIV-1 subtypes.
Collapse
Affiliation(s)
- Elena Delgado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Carrera
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Paloma Nebreda
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Milagros Pinilla
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Valentina García
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucía Pérez-Álvarez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael M. Thomson
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Moss SP, Joyce DA, Humphries S, Tindall KJ, Lunt DH. Comparative analysis of teleost genome sequences reveals an ancient intron size expansion in the zebrafish lineage. Genome Biol Evol 2011; 3:1187-96. [PMID: 21920901 PMCID: PMC3205604 DOI: 10.1093/gbe/evr090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have developed a bioinformatics pipeline for the comparative evolutionary analysis of Ensembl genomes and have used it to analyze the introns of the five available teleost fish genomes. We show our pipeline to be a powerful tool for revealing variation between genomes that may otherwise be overlooked with simple summary statistics. We identify that the zebrafish, Danio rerio, has an unusual distribution of intron sizes, with a greater number of larger introns in general and a notable peak in the frequency of introns of approximately 500 to 2,000 bp compared with the monotonically decreasing frequency distributions of the other fish. We determine that 47% of D. rerio introns are composed of repetitive sequences, although the remainder, over 331 Mb, is not. Because repetitive elements may be the origin of the majority of all noncoding DNA, it is likely that the remaining D. rerio intronic sequence has an ancient repetitive origin and has since accumulated so many mutations that it can no longer be recognized as such. To study such an ancient expansion of repeats in the Danio, lineage will require further comparative analysis of fish genomes incorporating a broader distribution of teleost lineages.
Collapse
|
22
|
Tsuiji H, Yoshimoto R, Hasegawa Y, Furuno M, Yoshida M, Nakagawa S. Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1. Genes Cells 2011; 16:479-90. [PMID: 21463453 PMCID: PMC3116199 DOI: 10.1111/j.1365-2443.2011.01502.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gomafu (also referred to as RNCR2/MIAT) was originally identified as a noncoding RNA expressed in a particular set of neurons. Unlike protein-coding mRNAs, the Gomafu RNA escapes nuclear export and stably accumulates in the nucleus, making a unique nuclear compartment. Although recent studies have revealed the functional relevance of Gomafu in a series of physiological processes, the underlying molecular mechanism remains largely uncharacterized. In this report, we identified a chicken homologue of Gomafu using a comparative genomic approach to search for functionally important and conserved sequence motifs among evolutionarily distant species. Unexpectedly, we found that all Gomafu RNA examined shared a distinctive feature: tandem repeats of UACUAAC, a sequence that has been identified as a conserved intron branch point in the yeast Saccharomyces cerevisiae. The tandem UACUAAC Gomafu RNA repeats bind to the SF1 splicing factor with a higher affinity than the divergent branch point sequence in mammals, which affects the kinetics of the splicing reaction in vitro. We propose that the Gomafu RNA regulates splicing efficiency by changing the local concentration of splicing factors within the nucleus.
Collapse
Affiliation(s)
- Hitomi Tsuiji
- Nakagawa Initiative Research Unit, RIKEN Advanced Science Institute, Hirosawa, Wako, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Corrionero A, Miñana B, Valcárcel J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 2011; 25:445-59. [PMID: 21363963 PMCID: PMC3049286 DOI: 10.1101/gad.2014311] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022]
Abstract
Spliceostatin A (SSA) is a stabilized derivative of a Pseudomonas bacterial fermentation product that displays potent anti-proliferative and anti-tumor activities in cancer cells and animal models. The drug inhibits pre-mRNA splicing in vitro and in vivo and binds SF3b, a protein subcomplex of U2 small nuclear ribonucleoprotein (snRNP), which is essential for recognition of the pre-mRNA branch point. We report that SSA prevents interaction of an SF3b 155-kDa subunit with the pre-mRNA, concomitant with nonproductive recruitment of U2 snRNP to sequences 5' of the branch point. Differences in base-pairing potential with U2 snRNA in this region lead to different sensitivity of 3' splice sites to SSA, and to SSA-induced changes in alternative splicing. Indeed, rather than general splicing inhibition, splicing-sensitive microarray analyses reveal specific alternative splicing changes induced by the drug that significantly overlap with those induced by knockdown of SF3b 155. These changes lead to down-regulation of genes important for cell division, including cyclin A2 and Aurora A kinase, thus providing an explanation for the anti-proliferative effects of SSA. Our results reveal a mechanism that prevents nonproductive base-pairing interactions in the spliceosome, and highlight the regulatory and cancer therapeutic potential of perturbing the fidelity of splice site recognition.
Collapse
Affiliation(s)
- Anna Corrionero
- Centre de Regulació Genòmica, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Belén Miñana
- Centre de Regulació Genòmica, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08003 Barcelona, Spain
| |
Collapse
|
24
|
Pastuszak AW, Joachimiak MP, Blanchette M, Rio DC, Brenner SE, Frankel AD. An SF1 affinity model to identify branch point sequences in human introns. Nucleic Acids Res 2010; 39:2344-56. [PMID: 21071404 PMCID: PMC3064769 DOI: 10.1093/nar/gkq1046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Splicing factor 1 (SF1) binds to the branch point sequence (BPS) of mammalian introns and is believed to be important for the splicing of some, but not all, introns. To help identify BPSs, particularly those that depend on SF1, we generated a BPS profile model in which SF1 binding affinity data, validated by branch point mapping, were iteratively incorporated into computational models. We searched a data set of 117 499 human introns for best matches to the SF1 Affinity Model above a threshold, and counted the number of matches at each intronic position. After subtracting a background value, we found that 87.9% of remaining high-scoring matches identified were located in a region upstream of 3′-splice sites where BPSs are typically found. Since U2AF65 recognizes the polypyrimidine tract (PPT) and forms a cooperative RNA complex with SF1, we combined the SF1 model with a PPT model computed from high affinity binding sequences for U2AF65. The combined model, together with binding site location constraints, accurately identified introns bound by SF1 that are candidates for SF1-dependent splicing.
Collapse
Affiliation(s)
- Alexander W Pastuszak
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
| | | | | | | | | | | |
Collapse
|
25
|
del Moral-Hernández O, López-Urrutia E, Bonilla-Moreno R, Martínez-Salazar M, Arechaga-Ocampo E, Berumen J, Villegas-Sepúlveda N. The HPV-16 E7 oncoprotein is expressed mainly from the unspliced E6/E7 transcript in cervical carcinoma C33-A cells. Arch Virol 2010; 155:1959-70. [PMID: 20865289 DOI: 10.1007/s00705-010-0787-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 08/23/2010] [Indexed: 11/29/2022]
Abstract
The HPV-16 E6/E7 early transcripts are first produced as bicistronic or polycistronic mRNAs, and about 90% of the original pre-mRNA is spliced to produce three new alternative mRNAs. HPV-16 spliced transcripts are expressed heterogeneously in tumors and cell lines. Our results suggest that suboptimal splicing acceptor sites in E6/E7 intron 1 and the differential expression of splicing factors are involved in the production of the heterogeneous splicing profile in cell lines. The unspliced pre-mRNA and the alternative spliced transcripts contribute differentially to the production of E7 in stably transfected C33-A cells. The highest level of E7 was produced from the least prevalent transcript, the unspliced E6/E7(pre-mRNA). The order of relative expression of E7 was unspliced E6/E7(pre-mRNA) > E6*I/E7 > E6*II/E7. Our findings suggest that E6/E7 alternative splicing may be a mechanism for differential expression of the E6 and E7 oncoproteins, which also affects the expression of their targets, the proteins p53 and pRb.
Collapse
Affiliation(s)
- Oscar del Moral-Hernández
- Unidad Zacatenco, Depto. Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados-IPN (CINVESTAV-IPN), Av. IPN # 2508, Zacatenco, Apdo. Postal 14-740, 07360, Mexico, D.F., Mexico
| | | | | | | | | | | | | |
Collapse
|
26
|
Hallegger M, Sobala A, Smith CWJ. Four exons of the serotonin receptor 4 gene are associated with multiple distant branch points. RNA (NEW YORK, N.Y.) 2010; 16:839-51. [PMID: 20197377 PMCID: PMC2844630 DOI: 10.1261/rna.2013110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Splicing of vertebrate introns involves recognition of three consensus elements at the 3' end. The branch point (BP) and polypyrimidine tract (PPT) are usually located within 40 nucleotides (nt) of the 3' splice site (3' ss), AG, but can be much more distant. A characteristic of the region between distant BPs (dBPs) and the 3' ss is the absence of intervening AG dinucleotides, leading to its designation as the "AG exclusion zone" (AGEZ). The human HTR4 gene, which encodes serotonin receptor 4 and has been associated with schizophrenia, bipolar disease, and gastrointestinal disorders, has four exons with extensive AGEZs. We have mapped the BPs for HTR4 exons 3, 4, 5, and g generated by in vitro splicing, and validated them by mutagenesis in exon-trapping vectors. All exons used dBPs up to 273 nt upstream of the exon. Strikingly, exons 4 and 5 used combinations of both distant and conventionally located BPs, suggesting that successful splicing of these exons can occur by distinct pathways. Our results emphasize the importance for single nucleotide polymorphism resequencing projects to take account of potential dBPs, as the extended AGEZs are vulnerable to mutations that could affect splicing itself or regulation of alternative splicing.
Collapse
Affiliation(s)
- Martina Hallegger
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | | |
Collapse
|
27
|
Abstract
Spliceosomal snRNAs are extensively 2'-O-methylated and pseudouridylated. The modified nucleotides are relatively highly conserved across species, and are often clustered in regions of functional importance in pre-mRNA splicing. Over the past decade, the study of the mechanisms and functions of spliceosomal snRNA modifications has intensified. Two independent mechanisms behind these modifications, RNA-independent (protein-only) and RNA-dependent (RNA-guided), have been discovered. The role of spliceosomal snRNA modifications in snRNP biogenesis and spliceosome assembly has also been verified.
Collapse
Affiliation(s)
- John Karijolich
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
28
|
Sammeth M. Complete alternative splicing events are bubbles in splicing graphs. J Comput Biol 2009; 16:1117-40. [PMID: 19689216 DOI: 10.1089/cmb.2009.0108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic splicing structures are known to involve a high degree of alternative forms derived from a premature transcript by alternative splicing (AS). With the advent of new sequencing technologies, evidence for new splice forms becomes increasingly available-bit by bit revealing that the true splicing diversity of "AS events" often comprises more than two alternatives and therefore cannot be sufficiently described by pairwise comparisons as conducted in analyzes hitherto. Especially, I emphasize on "complete" AS events which include all hitherto known variants of a splicing variation. Challenges emerge from the richness of data (millions of transcripts) and artifacts introduced during the technical process of obtaining transcript sequences ("noise")-especially when dealing with single-read sequences known as expressed sequence tags (ESTs). Herein, I describe a novel method to efficiently predict AS events in different resolutions ("dimensions") from transcript annotations that allows for combination of fragmented EST data with full-length cDNAs and can cope with large datasets containing noise. At the doorstep of many new splice forms becoming available by novel high-throughput sequencing technologies, the presented method helps to dynamically update AS databases. Applying this method to estimate the real complexity of alternative splicing, I found in human and murine annotations thousands of novel AS events that either have been disregarded or mischaracterized in earlier works. The growth of evidence for such events suggests that the number still keeps climbing. When considering complete events, the majority of exons that are observed as "mutually exclusive" in pairwise comparisons in fact involves at least one other alternative splice form that disagrees with their mutual exclusion. Similar observations also hold for the alternative skipping of two subsequent exons. Results suggest that the systematical analysis of complete AS events on large scale provides subtle insights in the mechanisms that drive (alternative) splicing.
Collapse
Affiliation(s)
- Michael Sammeth
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) , Barcelona, Spain.
| |
Collapse
|
29
|
Affiliation(s)
- Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| |
Collapse
|
30
|
Brock JE, Dietrich RC, Padgett RA. Mutational analysis of the U12-dependent branch site consensus sequence. RNA (NEW YORK, N.Y.) 2008; 14:2430-9. [PMID: 18824513 PMCID: PMC2578861 DOI: 10.1261/rna.1189008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 08/01/2008] [Indexed: 05/26/2023]
Abstract
Highly conserved sequences at the 5' splice site and branch site of U12-dependent introns are important determinants for splicing by U12-dependent spliceosomes. This study investigates the in vivo splicing phenotypes of mutations in the branch site consensus sequence of the U12-dependent intron F from a human NOL1 (P120) minigene. Intron F contains a fully consensus branch site sequence (UUCCUUAAC). Mutations at each position were analyzed for their effects on U12-dependent splicing in vivo. Mutations at most positions resulted in a significant reduction of correct U12-dependent splicing. Defects observed included increased unspliced RNA levels, the activation of cryptic U2-dependent 5' and 3' splice sites, and the activation of cryptic U12-dependent branch/3' splice sites. A strong correlation was observed between the predicted thermodynamic stability of the branch site: U12 snRNA interaction and correct U12-dependent splicing. The lack of a polypyrimidine tract between the branch site and 3' splice site of U12-dependent introns and the observed reliance on base-pairing interactions for correct U12-dependent splicing emphasize the importance of RNA/RNA interactions during U12-dependent intron recognition and proper splice site selection.
Collapse
Affiliation(s)
- Jay E Brock
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
31
|
Gao K, Masuda A, Matsuura T, Ohno K. Human branch point consensus sequence is yUnAy. Nucleic Acids Res 2008; 36:2257-67. [PMID: 18285363 PMCID: PMC2367711 DOI: 10.1093/nar/gkn073] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 01/17/2008] [Accepted: 02/05/2008] [Indexed: 11/18/2022] Open
Abstract
Yeast carries a strictly conserved branch point sequence (BPS) of UACUAAC, whereas the human BPS is degenerative and is less well characterized. The human consensus BPS has never been extensively explored in vitro to date. Here, we sequenced 367 clones of lariat RT-PCR products arising from 52 introns of 20 human housekeeping genes. Among the 367 clones, a misincorporated nucleotide at the branch point was observed in 181 clones, for which we can precisely pinpoint the branch point. The branch points were comprised of 92.3% A, 3.3% C, 1.7% G and 2.8% U. Our analysis revealed that the human consensus BPS is simply yUnAy, where the underlined is the branch point at position zero and the lowercase pyrimidines ('y') are not as well conserved as the uppercase U and A. We found that the branch points are located 21-34 nucleotides upstream of the 3' end of an intron in 83% clones. We also found that the polypyrimidine tract spans 4-24 nucleotides downstream of the branch point. Our analysis demonstrates that the human BPSs are more degenerative than we have expected and that the human BPSs are likely to be recognized in combination with the polypyrimidine tract and/or the other splicing cis-elements.
Collapse
Affiliation(s)
| | | | | | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
32
|
Garrey SM, Cass DM, Wandler AM, Scanlan MS, Berglund JA. Transposition of two amino acids changes a promiscuous RNA binding protein into a sequence-specific RNA binding protein. RNA (NEW YORK, N.Y.) 2008; 14:78-88. [PMID: 18000034 PMCID: PMC2151040 DOI: 10.1261/rna.633808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In yeast (Saccharomyces cerevisiae), the branchpoint binding protein (BBP) recognizes the conserved yeast branchpoint sequence (UACUAAC) with a high level of specificity and affinity, while the human branchpoint binding protein (SF1) binds the less-conserved consensus branchpoint sequence (CURAY) in human introns with a lower level of specificity and affinity. To determine which amino acids in BBP provide the additional specificity and affinity absent in SF1, a panel of chimeric SF1 proteins was tested in RNA binding assays with wild-type and mutant RNA substrates. This approach revealed that the QUA2 domain of BBP is responsible for the enhanced RNA binding affinity and specificity displayed by BBP compared with SF1. Within the QUA2 domain, a transposition of adjacent arginine and lysine residues is primarily responsible for the switch in RNA binding between BBP and SF1. Alignment of multiple branchpoint binding proteins and the related STAR/GSG proteins suggests that the identity of these two amino acids and the RNA target sequences of all of these proteins are correlated.
Collapse
Affiliation(s)
- Stephen M Garrey
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | |
Collapse
|
33
|
Habara Y, Doshita M, Hirozawa S, Yokono Y, Yagi M, Takeshima Y, Matsuo M. A strong exonic splicing enhancer in dystrophin exon 19 achieve proper splicing without an upstream polypyrimidine tract. J Biochem 2007; 143:303-10. [PMID: 18039686 DOI: 10.1093/jb/mvm227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proper splicing is known to proceed under the control of conserved cis-elements located at exon-intron boundaries. Recently, it was shown that additional elements, such as exonic splicing enhancers (ESEs), are essential for the proper splicing of certain exons, in addition to the splice donor and acceptor site sequences; however, the relationship between these cis-elements is still unclear. In this report, we utilize dystrophin exon 19 to analyse the relationship between the ESE and its upstream acceptor site sequences. Dystrophin exon 19, which maintains adequate splicing donor and acceptor consensus sequences, encodes exonic splicing enhancer (dys-ESE19) sequences. Splice pattern analysis, using a minigene reporter expressed in HeLa cells, showed that either a strong polypyrimidine tract (PPT) or a fully active dys-ESE19 is sufficient for proper splicing. Each of these two cis-elements has enough activity for proper exon 19 splicing suggesting that the PPT, which is believed to be an essential cis-element for splicing, is dispensable when the downstream exon contains a strong ESE. This compensation was only seen in living cells but not in 'in vitro splicing'. This suggests the possibility that the previous splicing experiments using an in vitro splicing system could underestimate the activity of ESEs.
Collapse
Affiliation(s)
- Yasuaki Habara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Kyriakopoulou C, Larsson P, Liu L, Schuster J, Söderbom F, Kirsebom LA, Virtanen A. U1-like snRNAs lacking complementarity to canonical 5' splice sites. RNA (NEW YORK, N.Y.) 2006; 12:1603-11. [PMID: 16829670 PMCID: PMC1557696 DOI: 10.1261/rna.26506] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We have detected a surprising heterogeneity among human spliceosomal U1 small nuclear RNA (snRNA). Most interestingly, we have identified three U1 snRNA variants that lack complementarity to the canonical 5' splice site (5'SS) GU dinucleotide. Furthermore, we have observed heterogeneity among the identified variant U1 snRNA genes caused by single nucleotide polymorphism (SNP). The identified snRNAs were ubiquitously expressed in a variety of human tissues representing different stages of development and displayed features of functional spliceosomal snRNAs, i.e., trimethylated cap structures, association with Sm proteins and presence in nuclear RNA-protein complexes. The unanticipated heterogeneity among spliceosomal snRNAs could contribute to the complexity of vertebrates by expanding the coding capacity of their genomes.
Collapse
|
35
|
De la Rosa-Rios MA, Martínez-Salazar M, Martínez-Garcia M, González-Bonilla C, Villegas-Sepúlveda N. The intron 1 of HPV 16 has a suboptimal branch point at a guanosine. Virus Res 2006; 118:46-54. [PMID: 16343675 DOI: 10.1016/j.virusres.2005.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 11/11/2005] [Accepted: 11/11/2005] [Indexed: 11/28/2022]
Abstract
The branch point sequence (BPS) of intron 1 of the HPV-16 was determined via RT-PCR in a cell free system, using lariat intermediates obtained by in vitro splicing reactions. We used synthetic E6/E7 transcripts and HeLa nuclear protein extracts to obtain the splicing intermediates. Then, a divergent oligonucleotide primer set, pairing on the lariat RNA that encompassed the 2'-5' phosphodiester bond formed between the 5' end of the intron and the BPS, was used for cDNA synthesis and PCR amplification. Subsequent RT-PCR assays revealed four splicing intermediates, made up of a major intermediary corresponding to the BPS and four cryptic branched sequences. Only intermediates bound at the 5' end of the intron are probably the authentic branch point sequence, and all of them branch at guanosine 328 instead of the typical adenosine. Unusually, the BPS of intron 1 of HPV-16 is a suboptimal sequence (AGUGAGU) that differs from the eukaryotic consensus BPS, which correlates with the splicing profile observed for early transcripts of HPV-16 in tumors and tumor derived cell lines. The implications of this unusual branch point sequence for splicing of the HPV-16 pre-mRNA are discussed.
Collapse
|
36
|
Bermingham JR, Shearin H, Pennington J, O'Moore J, Jaegle M, Driegen S, van Zon A, Darbas A, Ozkaynak E, Ryu EJ, Milbrandt J, Meijer D. The claw paw mutation reveals a role for Lgi4 in peripheral nerve development. Nat Neurosci 2005; 9:76-84. [PMID: 16341215 DOI: 10.1038/nn1598] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 10/18/2005] [Indexed: 12/24/2022]
Abstract
Peripheral nerve development results from multiple cellular interactions between axons, Schwann cells and the surrounding mesenchymal tissue. The delayed axonal sorting and hypomyelination throughout the peripheral nervous system of claw paw (clp) mutant mice suggest that the clp gene product is critical for these interactions. Here we identify the clp mutation as a 225-bp insertion in the Lgi4 gene. Lgi4 encodes a secreted and glycosylated leucine-rich repeat protein and is expressed in Schwann cells. The clp mutation affects Lgi4 mRNA splicing, resulting in a mutant protein that is retained in the cell. Additionally, siRNA-mediated downregulation of Lgi4 in wild-type neuron-Schwann cell cocultures inhibits myelination, whereas exogenous Lgi4 restores myelination in clp/clp cultures. Thus, the abnormalities observed in clp mice are attributable to the loss of Lgi4 function, and they identify Lgi4 as a new component of Schwann cell signaling pathway(s) that controls axon segregation and myelin formation.
Collapse
Affiliation(s)
- John R Bermingham
- McLaughlin Research Institute, 1520 23rd Street South, Great Falls, Montana 59405, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chusainow J, Ajuh PM, Trinkle-Mulcahy L, Sleeman JE, Ellenberg J, Lamond AI. FRET analyses of the U2AF complex localize the U2AF35/U2AF65 interaction in vivo and reveal a novel self-interaction of U2AF35. RNA (NEW YORK, N.Y.) 2005; 11:1201-14. [PMID: 16043505 PMCID: PMC1370804 DOI: 10.1261/rna.7277705] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have analyzed the interaction between the U2AF subunits U2AF35 and U2AF65 in vivo using fluorescence resonance energy transfer (FRET) microscopy. U2 snRNP Auxiliary Factor (U2AF) is an essential pre-mRNA splicing factor complex, comprising 35-kDa (U2AF35) and 65-kDa (U2AF65) subunits. U2AF65 interacts directly with the polypyrimidine tract and promotes binding of U2 snRNP to the pre-mRNA branchpoint, while U2AF35 associates with the conserved AG dinucleotide at the 3' end of the intron and has multiple functions in the splicing process. Using two different approaches for measuring FRET, we have identified and spatially localized sites of direct interaction between U2AF35 and U2AF65 in vivo in live cell nuclei. While U2AF is thought to function as a heterodimeric complex, the FRET data have also revealed a novel U2AF35 self-interaction in vivo, which is confirmed in vitro using biochemical assays. These results suggest that the stoichiometry of the U2AF complex may, at least in part, differ in vivo from the expected heterodimeric complex. The data show that FRET studies offer a valuable approach for probing interactions between pre-mRNA splicing factors in vivo.
Collapse
Affiliation(s)
- Janet Chusainow
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
38
|
Lei H, Day INM, Vořechovský I. Exonization of AluYa5 in the human ACE gene requires mutations in both 3' and 5' splice sites and is facilitated by a conserved splicing enhancer. Nucleic Acids Res 2005; 33:3897-906. [PMID: 16027113 PMCID: PMC1175817 DOI: 10.1093/nar/gki707] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ancient Alu elements have been shown to be included in mature transcripts by point mutations that improve their 5′ or 3′ splice sites. We have examined requirements for exonization of a younger, disease-associated AluYa5 in intron 16 of the human ACE gene. A single G>C transversion in position −3 of the new Alu exon was insufficient for Alu exonization and a significant inclusion in mRNA was only observed when improving several potential splice donor sites in the presence of 3′ CAG. Since complete Alu exonization was not achieved by optimizing traditional splicing signals, including the branch site, we tested whether auxiliary elements in AluYa5 were required for constitutive inclusion. Exonization was promoted by a SELEX-predicted heptamer in Alu consensus sequence 222–228 and point mutations in highly conserved nucleotides of this heptamer decreased Alu inclusion. In addition, we show that Alu exonization was facilitated by a subset of serine/arginine-rich (SR) proteins through activation of the optimized 3′ splice site. Finally, the haplotype- and allele-specific ACE minigenes generated similar splicing patterns in both ACE-expressing and non-expressing cells, suggesting that previously reported allelic association with plasma ACE activity and cardiovascular disease is not attributable to differential splicing of introns 16 and 17.
Collapse
Affiliation(s)
| | | | - Igor Vořechovský
- To whom correspondence should be addressed. Tel: +44 2380 796425, Fax: +44 2380 794264;
| |
Collapse
|
39
|
Hovhannisyan RH, Carstens RP. A novel intronic cis element, ISE/ISS-3, regulates rat fibroblast growth factor receptor 2 splicing through activation of an upstream exon and repression of a downstream exon containing a noncanonical branch point sequence. Mol Cell Biol 2005; 25:250-63. [PMID: 15601847 PMCID: PMC538792 DOI: 10.1128/mcb.25.1.250-263.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutually exclusive splicing of fibroblast growth factor receptor 2 (FGFR2) exons IIIb and IIIc yields two receptor isoforms, FGFR2-IIIb and -IIIc, with distinctly different ligand binding properties. Several RNA cis elements in the intron (intron 8) separating these exons have been described that are required for splicing regulation. Using a heterologous splicing reporter, we have identified a new regulatory element in this intron that confers cell-type-specific inclusion of an unrelated exon that mirrors its ability to promote cell-type-specific inclusion of exon IIIb. This element promoted inclusion of exon IIIb while at the same time silencing exon IIIc inclusion in cells expressing FGFR2-IIIb; hence, we have termed this element ISE/ISS-3 (for "intronic splicing enhancer-intronic splicing silencer 3"). Silencing of exon IIIc splicing by ISE/ISS-3 was shown to require a branch point sequence (BPS) using G as the primary branch nucleotide. Replacing a consensus BPS with A as the primary branch nucleotide resulted in constitutive splicing of exon IIIc. Our results suggest that the branch point sequence constitutes an important component that can contribute to the efficiency of exon definition of alternatively spliced cassette exons. Noncanonical branch points may thus facilitate cell-type-specific silencing of regulated exons by flanking cis elements.
Collapse
Affiliation(s)
- Ruben H Hovhannisyan
- University of Pennsylvania School of Medicine, 700 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104-6144, USA
| | | |
Collapse
|
40
|
Yang C, McPheeters DS, Yu YT. Psi35 in the branch site recognition region of U2 small nuclear RNA is important for pre-mRNA splicing in Saccharomyces cerevisiae. J Biol Chem 2004; 280:6655-62. [PMID: 15611063 DOI: 10.1074/jbc.m413288200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudouridine 35 (psi35) in the branch site recognition region of yeast U2 small nuclear RNA is absolutely conserved in all eukaryotes examined. Pus7p catalyzes pseudouridylation at position 35 in Saccharomyces cerevisiae U2. The pus7 deletion strain, although viable in rich medium, is growth-disadvantaged under certain conditions. To clarify the function of U2 psi35 in yeast, we used this pus7 deletion strain to screen a collection of mutant U2 small nuclear RNAs, each containing a point mutation near the branch site recognition sequence, for a synthetic growth defect phenotype. The screen identified two U2 mutants, one containing a U40 --> G40 substitution (U40G) and another having a U40 deletion (U40Delta). Yeast strains carrying either of these U2 mutations grew as well as the wild-type strain in the selection medium, but they exhibited a temperature-sensitive growth defect phenotype when coupled with the pus7 deletion (pus7Delta). A subsequent temperature shift assay and a conditional pus7 depletion (via GAL promoter shutoff) in the U2-U40 mutant genetic background caused pre-mRNA accumulation, suggesting that psi35 is required for pre-mRNA splicing under certain conditions.
Collapse
Affiliation(s)
- Chunxing Yang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
41
|
Lehmann-Blount KA, Williamson JR. Shape-specific nucleotide binding of single-stranded RNA by the GLD-1 STAR domain. J Mol Biol 2004; 346:91-104. [PMID: 15663930 DOI: 10.1016/j.jmb.2004.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 11/12/2004] [Accepted: 11/17/2004] [Indexed: 10/26/2022]
Abstract
Proteins containing the STAR RNA-binding domain fulfill vital roles in RNA biogenesis, yet a detailed understanding of STAR domain RNA binding specificity is lacking. In Caenorhabditis elegans, the STAR protein GLD-1 directly binds the 28 nucleotide recognition element TGE within the 3' untranslated region of tra-2 mRNA. The GLD-1:TGE interaction promotes translational silencing of tra-2 mRNA, marking a pivotal event in the spermatogenesis to oogenesis switch in C.elegans hermaphrodites. By measuring the binding affinities of both GLD-1 and TGE mutants, we have explored the molecular determinants of STAR domain specificity. Site-directed GLD-1 mutants were guided by sequence homology with human splicing factor 1 (SF1), for which an RNA:protein complex structure is available in the work done by Liu et al. The RNA binding affinity of 11 mutant GLD-1 proteins was measured, and their binding specificity was assessed with a series of TGE RNAs containing natural or modified nucleotides. This combinatorial analysis of both RNA and protein mutants revealed a diverse array of specificities of individual nucleotide-binding pockets along the interface. At nucleotide position 18, adenosine appears to be specified by the overall shape of a pocket lined with aliphatic side-chains. At position 19, the high preference for cytidine is dependent on both the length of an amino acid side-chain and the identity of terminal functional groups. The nucleotide 21 binding pocket exhibits low discrimination for cytidine, and accommodates most nucleobases. The highly hydrophobic binding interface and apparent small number of hydrogen bonding read-out interactions at these positions is consistent with our finding that few amino acids seem to function individually in establishing binding specificity. Rather, specificity is conferred by the shape of the nucleotide-binding pocket. Our data provide the first detailed, quantitative analysis of the STAR domain, and highlight features of STAR:RNA recognition that are distinct among single-stranded RNA-binding proteins.
Collapse
Affiliation(s)
- Katrina A Lehmann-Blount
- Department of Molecular Biology, The Scripps Research Institute, MB-33, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
42
|
Královicová J, Houngninou-Molango S, Krämer A, Vorechovsky I. Branch site haplotypes that control alternative splicing. Hum Mol Genet 2004; 13:3189-202. [PMID: 15496424 DOI: 10.1093/hmg/ddh334] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the allele-dependent expression of transcripts encoding soluble HLA-DQbeta chains is determined by branchpoint sequence (BPS) haplotypes in DQB1 intron 3. BPS RNAs associated with low inclusion of the transmembrane exon in mature transcripts showed impaired binding to splicing factor 1 (SF1), indicating that alternative splicing of DQB1 is controlled by differential BPS recognition early during spliceosome assembly. We also demonstrate that naturally occurring human BPS point mutations that alter splicing and lead to recognizable phenotypes cluster in BP and in position -2 relative to BP, implicating impaired SF1-BPS interactions in disease-associated BPS substitutions. Coding DNA variants produced smaller fluctuations of exon inclusion levels than random exonic substitutions, consistent with a selection against coding mutations that alter their own exonization. Finally, proximal splicing in this multi-allelic reporter system was promoted by at least seven SR proteins and repressed by hnRNPs F, H and I, supporting an extensive antagonism of factors balancing the splice site selection. These results provide the molecular basis for the haplotype-specific expression of soluble DQbeta, improve prediction of intronic point mutations and indicate how extraordinary, selection-driven DNA variability in HLA affects pre-mRNA splicing.
Collapse
Affiliation(s)
- Jana Královicová
- University of Southampton School of Medicine, Division of Human Genetics, Southampton SO16 6YD, UK
| | | | | | | |
Collapse
|
43
|
Chamary JV, Hurst LD. Similar rates but different modes of sequence evolution in introns and at exonic silent sites in rodents: evidence for selectively driven codon usage. Mol Biol Evol 2004; 21:1014-23. [PMID: 15014158 DOI: 10.1093/molbev/msh087] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammals divergence at fourfold degenerate sites in codons (K(4)) and intronic sequence (K(i)) are both used to estimate the mutation rate, under the supposition that both evolve neutrally. Does it matter which of these we use? Using either class of sequence can be defended because (1) K(4) is the same as K(i) (at least in rodents) and (2) there is no selectively driven codon usage (hence no systematic selection on third sites). Here we re-examine these findings using 560 introns (for 136 genes) in the mouse-rat comparison, aligned by eye and using a new maximum likelihood protocol. We find that the rate of evolution at fourfold sites and at intronic sites is similar in magnitude, but only after eliminating putatively constrained sites from introns (first introns and sites flanking intron-exon junctions). Any approximate congruence between the two rates is not, however, owing to an underlying similarity in the mode of sequence evolution. Some dinucleotides are hypermutable and differently abundant in exons and introns (e.g., CpGs). More importantly, after controlling for relative abundance, all dinucleotides starting with A or T are more prevalent in mismatches in exons than in introns, whereas C-starting dinucleotides (except CG) are more common in introns. Although C content at intronic sites is lower than at flanking fourfold sites, G content is similar, demonstrating that there exists a strong strand-specific preference for C nucleotides that is unique to exons. Transcription-coupled mutational processes and biased gene conversion cannot explain this, as they should affect introns and flanking exons equally. Therefore, by elimination, we propose this to be strong evidence for selectively driven codon usage in mammals.
Collapse
Affiliation(s)
- Jean-Vincent Chamary
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | |
Collapse
|
44
|
Martínez-Contreras R, Galindo JM, Aguilar-Rojas A, Valdés J. Two exonic elements in the flanking constitutive exons control the alternative splicing of the alpha exon of the ZO-1 pre-mRNA. ACTA ACUST UNITED AC 2004; 1630:71-83. [PMID: 14654237 DOI: 10.1016/j.bbaexp.2003.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The 240-bp alpha exon of the tight junction (TJ) protein ZO-1 pre-mRNA is alternatively spliced. Expression of both ZO-1alpha+/ZO-1alpha- isoforms results in hermetic TJs, and these become leaky when ZO-1alpha- expression prevails. The alpha exon inclusion/skipping mechanism was studied by in vivo RT-PCR splicing assays in neural and epithelial cells, utilizing a canine minigene construct containing the alpha exon, and the flanking introns and exons. Inclusion of the alpha exon always occurs in wild-type MDCK cells and it is detectable in transfected HeLa cells. However, the alpha exon is skipped in transfected neural cells. Accordingly, both 5' and 3' splice sites surrounding the alpha exon appear to be suboptimal and no cis-acting splicing control elements were found in this exon. Deletion analysis revealed an 83-bp splicing enhancer in the downstream exon and a 35-bp splicing silencer at the beginning of the upstream exon. In epithelial cells all constructs rendered alpha exon inclusion. We conclude that, in neural cells, skipping of the alpha exon depends on two antagonistic exonic elements located in the flanking constitutive exons.
Collapse
Affiliation(s)
- Rebeca Martínez-Contreras
- Departmento de Fisiología, Biofísica y Neurociencias, CINVESTAV-México, Apartado Postal 14-740, DF 07000, México
| | | | | | | |
Collapse
|
45
|
Carriero S, Damha MJ. Inhibition of pre-mRNA splicing by synthetic branched nucleic acids. Nucleic Acids Res 2003; 31:6157-67. [PMID: 14576302 PMCID: PMC275466 DOI: 10.1093/nar/gkg824] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 08/27/2003] [Accepted: 09/10/2003] [Indexed: 11/15/2022] Open
Abstract
The cellular transformation of a precursor mRNA (pre-mRNA) into its mature or functional form proceeds by way of a splicing reaction, in which the exons are ligated to form the mature linear RNA and the introns are excised as branched or lariat RNAs. We have prepared a series of branched compounds (bRNA and bDNA), and studied the effects of such molecules on the efficiency of mammalian pre-mRNA splicing in vitro. Y-shaped RNAs containing an unnatural L-2'-deoxycytidine unit (L-dC) at the 3' termini are highly stabilized against exonuclease hydrolysis in HeLa nuclear extracts, and are potent inhibitors of the splicing pathway. A bRNA containing internal 2'-O-methyl ribopyrimidine units and L-dC at the 3' ends was at least twice as potent as the most potent of the bRNAs containing no 2' modifications, with an IC50 of approximately 5 micro M. Inhibitory activity was maintained in a branched molecule containing an arabino-adenosine branchpoint which, unlike the native bRNAs, resisted cleavage by the lariat- debranching enzyme. The data obtained suggest that binding and sequestering of a branch recognition factor by the branched nucleic acids is an early event, which occurs prior to the first chemical step of splicing. Probably, an early recognition element preferentially binds to the synthetic branched molecules over the native pre-mRNA. As such, synthetic bRNAs may prove to be invaluable tools for the purification and identification of the putative branchpoint recognition factor.
Collapse
Affiliation(s)
- Sandra Carriero
- Department of Chemistry, Otto Maass Chemistry Building, McGill University, 801 Sherbrooke St West, Montreal, QC, H3A 2K6, Canada
| | | |
Collapse
|
46
|
Förch P, Merendino L, Martínez C, Valcárcel J. U2 small nuclear ribonucleoprotein particle (snRNP) auxiliary factor of 65 kDa, U2AF65, can promote U1 snRNP recruitment to 5' splice sites. Biochem J 2003; 372:235-40. [PMID: 12558503 PMCID: PMC1223361 DOI: 10.1042/bj20021202] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 01/06/2003] [Accepted: 01/31/2003] [Indexed: 02/02/2023]
Abstract
The splicing factor U2AF(65), U2 small nuclear ribonucleoprotein particle (snRNP) auxillary factor of 65 kDa, binds to pyrimidine-rich sequences at 3' splice sites to recruit U2 snRNP to pre-mRNAs. We report that U2AF(65) can also promote the recruitment of U1 snRNP to weak 5' splice sites that are followed by uridine-rich sequences. The arginine- and serine-rich domain of U2AF(65) is critical for U1 recruitment, and we discuss the role of its RNA-RNA annealing activity in this novel function of U2AF(65).
Collapse
Affiliation(s)
- Patrik Förch
- Gene Expression Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
47
|
O'Keefe RT. Mutations in U5 snRNA loop 1 influence the splicing of different genes in vivo. Nucleic Acids Res 2002; 30:5476-84. [PMID: 12490716 PMCID: PMC140076 DOI: 10.1093/nar/gkf692] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The U5 snRNA loop 1 is characterized by the conserved sequence G1C2C3U4U5U6Y7A8Y9 and is essential for the alignment of exons during the second step of pre-mRNA splicing in Saccharo myces cerevisiae. Despite this sequence conservation the size, rather than sequence, of loop 1 is critical for exon alignment in vitro. To determine the in vivo requirements for U5 loop 1 a library of loop 1 sequences was transformed into a yeast strain where the endogenous U5 gene was deleted. Comparison of viable mutations in loop 1 revealed that position 6 was invariant and positions 5 and 7 displayed some sequence conservation. These data indicate positions 5, 6 and 7 in loop 1 are important for U5 function in vivo. A screen for mutations that suppress the temperature-sensitive phenotype of three loop 1 mutants produced eight intragenic suppressors all containing alterations in loop 1. Further analysis of these temperature-sensitive mutants revealed that each displayed distinct cell cycle arrest phenotypes and pre-mRNA splicing inhibition patterns. The cell cycle arrest is likely attributed to inefficient splicing of alpha-tubulin pre-mRNA in one mutant and actin pre-mRNA in another. These results suggest that various mutations in loop 1 may affect the splicing of different pre-mRNAs in vivo.
Collapse
Affiliation(s)
- Raymond T O'Keefe
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
48
|
Simpson CG, Thow G, Clark GP, Jennings SN, Watters JA, Brown JWS. Mutational analysis of a plant branchpoint and polypyrimidine tract required for constitutive splicing of a mini-exon. RNA (NEW YORK, N.Y.) 2002; 8:47-56. [PMID: 11873758 PMCID: PMC1370234 DOI: 10.1017/s1355838202015546] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The branchpoint sequence and associated polypyrimidine tract are firmly established splicing signals in vertebrates. In plants, however, these signals have not been characterized in detail. The potato invertase mini-exon 2 (9 nt) requires a branchpoint sequence positioned around 50 nt upstream of the 5' splice site of the neighboring intron and a U11 element found adjacent to the branchpoint in the upstream intron (Simpson et al., RNA, 2000, 6:422-433). Utilizing the sensitivity of this plant splicing system, these elements have been characterized by systematic mutation and analysis of the effect on inclusion of the mini-exon. Mutation of the branchpoint sequence in all possible positions demonstrated that branchpoints matching the consensus, CURAY, were most efficient at supporting splicing. Branchpoint sequences that differed from this consensus were still able to permit mini-exon inclusion but at greatly reduced levels. Mutation of the downstream U11 element suggested that it functioned as a polypyrimidine tract rather than a UA-rich element, common to plant introns. The minimum sequence requirement of the polypyrimidine tract for efficient splicing was two closely positioned groups of uridines 3-4 nt long (<6 nt apart) that, within the context of the mini-exon system, required being close (<14 nt) to the branchpoint sequence. The functional characterization of the branchpoint sequence and polypyrimidine tract defines these sequences in plants for the first time, and firmly establishes polypyrimidine tracts as important signals in splicing of at least some plant introns.
Collapse
Affiliation(s)
- Craig G Simpson
- Unit of Gene Expression, Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Liu Z, Luyten I, Bottomley MJ, Messias AC, Houngninou-Molango S, Sprangers R, Zanier K, Krämer A, Sattler M. Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science 2001; 294:1098-102. [PMID: 11691992 DOI: 10.1126/science.1064719] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During spliceosome assembly, splicing factor 1 (SF1) specifically recognizes the intron branch point sequence (BPS) UACUAAC in the pre-mRNA transcripts. We show that the KH-QUA2 region of SF1 defines an enlarged KH (hn RNP K) fold which is necessary and sufficient for BPS binding. The 3' part of the BPS (UAAC), including the conserved branch point adenosine (underlined), is specifically recognized in a hydrophobic cleft formed by the Gly-Pro-Arg-Gly motif and the variable loop of the KH domain. The QUA2 region recognizes the 5' nucleotides of the BPS (ACU). The branch point adenosine acting as the nucleophile in the first biochemical step of splicing is deeply buried. BPS RNA recognition suggests how SF1 may facilitate subsequent formation of the prespliceosomal complex A.
Collapse
Affiliation(s)
- Z Liu
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Suzuki MG, Ohbayashi F, Mita K, Shimada T. The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:1201-1211. [PMID: 11583933 DOI: 10.1016/s0965-1748(01)00067-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have previously reported that Bmdsx, a homologue of the sex-determining gene, doublesex (dsx), was found to be sex-specifically expressed in various tissues at larval, pupal, and adult stages in the silkworm, Bombyx mori, and was alternatively spliced to yield male- and female-specific mRNAs. To reveal sex-specific differences in splicing patterns of Bmdsx pre-mRNA, the genomic sequence was determined and compared with male- and female-specific Bmdsx cDNA sequences. The open reading frame (ORF) consisted of five exons. Exons 3 and 4 were specifically incorporated into the female type of Bmdsx mRNA. On the other hand, exon 2 was spliced to exon 5 to produce the male type mRNA of Bmdsx. As in the case of Drosophila dsx, the OD2 domain was separated by a female-specific intron into sex-independent and sex-dependent regions. Sex-specific splicing occurred in equivalent positions in the Drosophila dsx gene. However, unlike Drosophila dsx, the female-specific introns showed no weak 3' splice sites, and the TRA/TRA-2 binding site related sequences were not found in the female-specific exon, nor even in any other regions of the Bmdsx gene. Moreover, an in vitro splicing reaction consisting of HeLa cell nuclear extracts showed that the female-type of Bmdsx mRNA represented the default splicing. These findings suggest that the structural features of the sex-specific splicing patterns of Bmdsx pre-mRNA are similar to those of Drosophila dsx but the regulation of sex-specific alternative splicing of Bmdsx pre-mRNA is different.
Collapse
Affiliation(s)
- M G Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, 113-8657, Tokyo, Japan
| | | | | | | |
Collapse
|