1
|
Maciá Valero A, Tabatabaeifar F, Billerbeck S. Screening a 681-membered yeast collection for the secretion of proteins with antifungal activity. N Biotechnol 2025; 86:55-72. [PMID: 39875071 DOI: 10.1016/j.nbt.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Fungal pathogens pose a threat to human health and food security. Few antifungals are available and resistance to all has been reported. Novel strategies to control plant and human pathogens as well as food spoilers are urgently required. Environmental yeasts provide a functionally diverse, yet underexploited potential for fungal control based on their natural competition via the secretion of proteins and other small molecules such as iron chelators, volatile organic compounds or biosurfactants. However, there is a lack of standardized workflows to systematically access application-relevant yeast-based compounds and understand their molecular functioning. Towards this goal, we developed a workflow to identify and characterize yeast isolates that are active against spoilage yeasts and relevant human and plant pathogens, herein focusing on discovering yeasts that secrete antifungal proteins. The workflow includes the classification of the secreted molecules and cross-comparison of their antifungal capacity using an independent synthetic calibrant. Our workflow delivered a collection of 681 yeasts of which 212 isolates (31 %) displayed antagonism against at least one target strain. While 57.5 % of the active yeasts showed iron-depended antagonism, likely due to pulcherrimin-like iron chelators, 31.7 % secreted antifungal proteins. Those yeast candidates clustered within twelve OTUs, showed narrow and broad target spectra, and several showed a broad pH and temperature activity profile. Given the tools for yeast biotechnology and protein engineering available, our collection can serve as a rich starting point for genetic and molecular characterization of the various antifungal phenotypes, their mode of action and their future exploitation.
Collapse
Affiliation(s)
- Alicia Maciá Valero
- Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Fatemehalsadat Tabatabaeifar
- Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Sonja Billerbeck
- Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands; Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
2
|
Vepštaitė-Monstavičė I, Lukša-Žebelovič J, Apšegaitė V, Mozūraitis R, Lisicinas R, Stanevičienė R, Blažytė-Čereškienė L, Serva S, Servienė E. Profiles of Killer Systems and Volatile Organic Compounds of Rowanberry and Rosehip-Inhabiting Yeasts Substantiate Implications for Biocontrol. Foods 2025; 14:288. [PMID: 39856953 PMCID: PMC11765129 DOI: 10.3390/foods14020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Yeasts produce numerous antimicrobial agents such as killer toxins, volatile organic compounds (VOCs), and other secondary metabolites, establishing themselves in developing natural and sustainable biocontrol strategies for agriculture and food preservation. This study addressed the biocontrol potential of yeasts, isolated from spontaneous fermentations of rosehips (Rosa canina L.) and rowanberries (Sorbus aucuparia L.), focusing on their killer phenotypes and VOCs production. Yeasts were isolated using spontaneous fermentations with Hanseniaspora uvarum and Metschnikowia pulcherrima identified as the dominant species, comprising approximately 70% of the yeast population. Among 163 isolated strains, 20% demonstrated killing activity, with Saccharomyces cerevisiae exhibiting the strongest killing efficiency, as well as Pichia anomala and M. pulcherrima showing broad-spectrum antagonistic activity. This study identified dsRNA-encoded killer phenotypes in S. cerevisiae, S. paradoxus, and Torulaspora delbrueckii, revealing multiple distinct killer toxin types. The biocontrol potential of wild berry-inhabiting yeasts was demonstrated in a real food system, grape juice, where the S. cerevisiae K2-type killer strain significantly reduced fungal contaminants. The selected H. uvarum, M. pulcherrima, S. cerevisiae, and S. paradoxus yeast strains representing both berries were applied for VOC analysis and identification by gas chromatography-linked mass spectrometry. It was revealed that the patterns of emitted volatiles are yeast species-specific. Statistically significant differences between the individual VOCs were observed among killing phenotype-possessing vs. non-killer S. paradoxus yeasts, thus revealing the involvement of killer systems in multi-level biocontrol enablement. The performed studies deepen our understanding of potential yeast biocontrol mechanisms, highlight the importance of produced antimicrobials and volatiles in ensuring antagonistic efficacy, and prove the relevance of isolated biocontrol yeasts for improving food safety.
Collapse
Affiliation(s)
- Iglė Vepštaitė-Monstavičė
- Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania; (I.V.-M.); (S.S.)
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Juliana Lukša-Žebelovič
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Violeta Apšegaitė
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Raimondas Mozūraitis
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18B, 10691 Stockholm, Sweden
| | - Robertas Lisicinas
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Ramunė Stanevičienė
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Laima Blažytė-Čereškienė
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| | - Saulius Serva
- Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania; (I.V.-M.); (S.S.)
| | - Elena Servienė
- Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; (J.L.-Ž.); (V.A.); (R.M.); (R.L.); (R.S.); (L.B.-Č.)
| |
Collapse
|
3
|
Molina-Vera C, Morales-Tlalpan V, Chavez-Vega A, Uribe-López J, Trujillo-Barrientos J, Campos-Guillén J, Chávez-Servín JL, García-Gasca T, Saldaña C. The Killer Saccharomyces cerevisiae Toxin: From Origin to Biomedical Research. Microorganisms 2024; 12:2481. [PMID: 39770684 PMCID: PMC11727844 DOI: 10.3390/microorganisms12122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025] Open
Abstract
The killer systems of S. cerevisiae are defined by the co-infection of two viral agents, an M virus and a helper virus. Each killer toxin is determined by the type of M virus (ScV-M1, ScV-M2, ScV-M28, and ScV-Mlus), which encodes a specific toxin (K1, K2, K28, and Klus). Since their discovery, interest in their potential use as antimicrobial agents has driven research into the mechanisms of action of these toxins on susceptible cells. This review provides an overview of the key aspects of killer toxins, including their origin and the evolutionary implications surrounding the viruses involved in the killer system, as well as their potential applications in the biomedical field and as a biological control strategy. Special attention is given to the mechanisms of action described to date for the various S. cerevisiae killer toxins.
Collapse
Affiliation(s)
- Carlos Molina-Vera
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Verónica Morales-Tlalpan
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
- National Laboratory for Advanced Scientific Visualization (LAVIS-FCN-UAQ), Querétaro 76230, Mexico
| | - Amairani Chavez-Vega
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Jennifer Uribe-López
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Jessica Trujillo-Barrientos
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Juan Campos-Guillén
- Faculty of Chemistry, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76320, Mexico; (J.C.-G.); (J.L.C.-S.)
| | - Jorge Luis Chávez-Servín
- Faculty of Chemistry, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76320, Mexico; (J.C.-G.); (J.L.C.-S.)
| | - Teresa García-Gasca
- Molecular Biology Laboratory, Facultad de Ciencias Naturales, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76230, Mexico;
| | - Carlos Saldaña
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
- National Laboratory for Advanced Scientific Visualization (LAVIS-FCN-UAQ), Querétaro 76230, Mexico
| |
Collapse
|
4
|
Chan A, Hays M, Sherlock G. The Viral K1 Killer Yeast System: Toxicity, Immunity, and Resistance. Yeast 2024; 41:668-680. [PMID: 39853823 PMCID: PMC11849699 DOI: 10.1002/yea.3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Killer yeasts, such as the K1 killer strain of S. cerevisiae, express a secreted anti-competitive toxin whose production and propagation require the presence of two vertically-transmitted dsRNA viruses. In sensitive cells lacking killer virus infection, toxin binding to the cell wall results in ion pore formation, disruption of osmotic homeostasis, and cell death. However, the exact mechanism(s) of K1 toxin killing activity, how killer yeasts are immune to their own toxin, and which factors could influence adaptation and resistance to K1 toxin within formerly sensitive populations are still unknown. Here, we describe the state of knowledge about K1 killer toxin, including current models of toxin processing and killing activity, and a summary of known modifiers of K1 toxin immunity and resistance. In addition, we discuss two key signaling pathways, HOG (high osmolarity glycerol) and CWI (cell wall integrity), whose involvement in an adaptive response to K1 killer toxin in sensitive cells has been previously documented but requires further study. As both host-virus and sensitive-killer competition have been documented in killer systems like K1, further characterization of K1 killer yeasts may provide a useful model system for study of both intracellular genetic conflict and counter-adaptation between competing sensitive and killer populations.
Collapse
Affiliation(s)
- Angelina Chan
- Dept of Genetics, Stanford University, Stanford, CA 94305
| | - Michelle Hays
- Dept of Genetics, Stanford University, Stanford, CA 94305
| | - Gavin Sherlock
- Dept of Genetics, Stanford University, Stanford, CA 94305
| |
Collapse
|
5
|
Zhong V, Ketchum N, Mackenzie JK, Garcia X, Rowley PA. Inhibition of diastatic yeasts by Saccharomyces killer toxins to prevent hyperattenuation during brewing. Appl Environ Microbiol 2024; 90:e0107224. [PMID: 39264169 PMCID: PMC11497815 DOI: 10.1128/aem.01072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
Secondary fermentation in beer can result in undesirable consequences, such as off-flavors, increased alcohol content, hyperattenuation, gushing, and the spontaneous explosion of packaging. Strains of Saccharomyces cerevisiae var. diastaticus are a major contributor to such spoilage due to their production of extracellular glucoamylase enzyme encoded by the STA1 gene. Saccharomyces yeasts can naturally produce antifungal proteins named "killer" toxins that inhibit the growth of competing yeasts. Challenging diastatic yeasts with killer toxins revealed that 91% of strains are susceptible to the K1 killer toxin produced by S. cerevisiae. Screening of 192 killer yeasts identified novel K2 toxins that could inhibit all K1-resistant diastatic yeasts. Variant K2 killer toxins were more potent than the K1 and K2 toxins, inhibiting 95% of diastatic yeast strains tested. Brewing trials demonstrated that adding killer yeast during a simulated diastatic contamination event could prevent hyperattenuation. Currently, most craft breweries can only safeguard against diastatic yeast contamination by good hygiene and monitoring for the presence of diastatic yeasts. The detection of diastatic yeasts will often lead to the destruction of contaminated products and the aggressive decontamination of brewing facilities. Using killer yeasts in brewing offers an approach to safeguard against product loss and potentially remediate contaminated beer.IMPORTANCEThe rise of craft brewing means that more domestic beer in the marketplace is being produced in facilities lacking the means for pasteurization, which increases the risk of microbial spoilage. The most damaging spoilage yeasts are "diastatic" strains of Saccharomyces cerevisiae that cause increased fermentation (hyperattenuation), resulting in unpalatable flavors such as phenolic off-flavor, as well as over-carbonation that can cause exploding packaging. In the absence of a pasteurizer, there are no methods available that would avert the loss of beer due to contamination by diastatic yeasts. This manuscript has found that diastatic yeasts are sensitive to antifungal proteins named "killer toxins" produced by Saccharomyces yeasts, and in industrial-scale fermentation trials, killer yeasts can remediate diastatic yeast contamination. Using killer toxins to prevent diastatic contamination is a unique and innovative approach that could prevent lost revenue to yeast spoilage and save many breweries the time and cost of purchasing and installing a pasteurizer.
Collapse
Affiliation(s)
- Victor Zhong
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | | - James K. Mackenzie
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ximena Garcia
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
6
|
Bechard E, Arel E, Bride J, Louradour J, Bussy X, Elloumi A, Vigor C, Soule P, Oger C, Galano JM, Durand T, Le Guennec JY, Moha-Ou-Maati H, Demion M. Activation of hTREK-1 by polyunsaturated fatty acids involves direct interaction. Sci Rep 2024; 14:15244. [PMID: 38956407 PMCID: PMC11220079 DOI: 10.1038/s41598-024-66192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/28/2024] [Indexed: 07/04/2024] Open
Abstract
TREK-1 is a mechanosensitive channel activated by polyunsaturated fatty acids (PUFAs). Its activation is supposed to be linked to changes in membrane tension following PUFAs insertion. Here, we compared the effect of 11 fatty acids and ML402 on TREK-1 channel activation using the whole cell and the inside-out configurations of the patch-clamp technique. Firstly, TREK-1 activation by PUFAs is variable and related to the variable constitutive activity of TREK-1. We observed no correlation between TREK-1 activation and acyl chain length or number of double bonds suggesting that the bilayer-couple hypothesis cannot explain by itself the activation of TREK-1 by PUFAs. The membrane fluidity measurement is not modified by PUFAs at 10 µM. The spectral shift analysis in TREK-1-enriched microsomes indicates a KD,TREK1 at 44 µM of C22:6 n-3. PUFAs display the same activation and reversible kinetics than the direct activator ML402 and activate TREK-1 in both whole-cell and inside-out configurations of patch-clamp suggesting that the binding site of PUFAs is accessible from both sides of the membrane, as for ML402. Finally, we proposed a two steps mechanism: first, insertion into the membrane, with no fluidity or curvature modifications at 10 µM, and then interaction with TREK-1 channel to open it.
Collapse
Affiliation(s)
- Emilie Bechard
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Elodie Arel
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Jamie Bride
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Julien Louradour
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Xavier Bussy
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Anis Elloumi
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Claire Vigor
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | | | - Camille Oger
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, Université de Montpellier, UMR CNRS 5247, ENSCM, Montpellier, France
| | - Jean-Yves Le Guennec
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France
| | - Hamid Moha-Ou-Maati
- IGF, Université de Montpellier, UMR CNRS 5203, Inserm 1191, Montpellier, France
- INM, Inserm U1298, Montpellier, France
| | - Marie Demion
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, CHU Arnaud de Villeneuve, Bâtiment Craste de Paulet, 370 Avenue du Doyen Gaston Giraud, 34290, Montpellier Cedex 05, France.
| |
Collapse
|
7
|
Hough B, Steenkamp E, Wingfield B, Read D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023; 15:1202. [PMID: 37243288 PMCID: PMC10224137 DOI: 10.3390/v15051202] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Mycoviruses (viruses of fungi) are ubiquitous throughout the fungal kingdom and are currently classified into 23 viral families and the genus botybirnavirus by the International Committee on the Taxonomy of Viruses (ICTV). The primary focus of mycoviral research has been on mycoviruses that infect plant pathogenic fungi, due to the ability of some to reduce the virulence of their host and thus act as potential biocontrol against these fungi. However, mycoviruses lack extracellular transmission mechanisms and rely on intercellular transmission through the hyphal anastomosis, which impedes successful transmission between different fungal strains. This review provides a comprehensive overview of mycoviruses, including their origins, host range, taxonomic classification into families, effects on their fungal counterparts, and the techniques employed in their discovery. The application of mycoviruses as biocontrol agents of plant pathogenic fungi is also discussed.
Collapse
Affiliation(s)
| | | | - Brenda Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa; (B.H.); (E.S.); (D.R.)
| | | |
Collapse
|
8
|
Crabtree AM, Taggart NT, Lee MD, Boyer JM, Rowley PA. The prevalence of killer yeasts and double-stranded RNAs in the budding yeast Saccharomyces cerevisiae. FEMS Yeast Res 2023; 23:foad046. [PMID: 37935474 PMCID: PMC10664976 DOI: 10.1093/femsyr/foad046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Killer toxins are antifungal proteins produced by many species of "killer" yeasts, including the brewer's and baker's yeast Saccharomyces cerevisiae. Screening 1270 strains of S. cerevisiae for killer toxin production found that 50% are killer yeasts, with a higher prevalence of yeasts isolated from human clinical samples and winemaking processes. Since many killer toxins are encoded by satellite double-stranded RNAs (dsRNAs) associated with mycoviruses, S. cerevisiae strains were also assayed for the presence of dsRNAs. This screen identified that 51% of strains contained dsRNAs from the mycovirus families Totiviridae and Partitiviridae, as well as satellite dsRNAs. Killer toxin production was correlated with the presence of satellite dsRNAs but not mycoviruses. However, in most killer yeasts, whole genome analysis identified the killer toxin gene KHS1 as significantly associated with killer toxin production. Most killer yeasts had unique spectrums of antifungal activities compared to canonical killer toxins, and sequence analysis identified mutations that altered their antifungal activities. The prevalence of mycoviruses and killer toxins in S. cerevisiae is important because of their known impact on yeast fitness, with implications for academic research and industrial application of this yeast species.
Collapse
Affiliation(s)
- Angela M Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Nathan T Taggart
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Mark D Lee
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Josie M Boyer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| |
Collapse
|
9
|
Expression of the K74 Killer Toxin from Saccharomyces paradoxus Is Modulated by the Toxin-Encoding M74 Double-Stranded RNA 5' Untranslated Terminal Region. Appl Environ Microbiol 2022; 88:e0203021. [PMID: 35389250 DOI: 10.1128/aem.02030-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast killer toxins are widely distributed in nature, conferring a competitive advantage to the producer yeasts over nonkiller ones when nutrients are scarce. Most of these toxins are encoded on double-stranded RNAs (dsRNAs) generically called M. L-A members of the viral family Totiviridae act as helper viruses to maintain M, providing the virion proteins that separately encapsidate and replicate L-A and M genomes. M genomes are organized in three regions, a 5' region coding the preprotoxin, followed by an internal poly(A) stretch and a 3' noncoding region. In this work, we report the characterization of K74 toxin encoded on M74 dsRNA from Saccharomyces paradoxus Q74.4. In M74, there is a 5' upstream sequence of 141 nucleotides (nt), which contains regulatory signals for internal translation of the preprotoxin open reading frame (ORF) at the second AUG codon. The first AUG close to the 5' end is not functional. For K74 analysis, M74 viruses were first introduced into laboratory strains of Saccharomyces cerevisiae. We show here that the mature toxin is an α/β heterodimer linked by disulfide bonds. Though the toxin (or preprotoxin) confers immunity to the carrier, cells with increased K74 loads have a sick phenotype that may lead to cell death. Thus, a fine-tuning of K74 production by the upstream regulatory sequence is essential for the host cell to benefit from the toxin it produces and, at the same time, to safely avoid damage by an excess of toxin. IMPORTANCE Killer yeasts produce toxins to which they are immune by mechanisms not well understood. This self-immunity, however, is compromised in certain strains, which secrete an excess of toxin, leading to sick cells or suicidal phenotypes. Thus, a fine-tuning of toxin production has to be achieved to reach a balance between the beneficial effect of toxin production and the stress imposed on the host metabolism. K74 toxin from S. paradoxus is very active against Saccharomyces uvarum, among other yeasts, but an excess of toxin production is deleterious for the host. Here, we report that the presence of a 5' 141-nt upstream sequence downregulates K74 toxin precursor translation, decreasing toxin levels 3- to 5-fold. Thus, this is a special case of translation regulation performed by sequences on the M74 genome itself, which have been presumably incorporated into the viral RNA during evolution for that purpose.
Collapse
|
10
|
Vaginal Isolates of Candida glabrata Are Uniquely Susceptible to Ionophoric Killer Toxins Produced by Saccharomyces cerevisiae. Antimicrob Agents Chemother 2021; 65:e0245020. [PMID: 33972245 PMCID: PMC8218651 DOI: 10.1128/aac.02450-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Compared to other species of Candida yeasts, the growth of Candida glabrata is inhibited by many different strains of Saccharomyces killer yeasts. The ionophoric K1 and K2 killer toxins are broadly inhibitory to all clinical isolates of C. glabrata from patients with recurrent vulvovaginal candidiasis, despite high levels of resistance to clinically relevant antifungal therapeutics.
Collapse
|
11
|
Fredericks LR, Lee MD, Crabtree AM, Boyer JM, Kizer EA, Taggart NT, Roslund CR, Hunter SS, Kennedy CB, Willmore CG, Tebbe NM, Harris JS, Brocke SN, Rowley PA. The Species-Specific Acquisition and Diversification of a K1-like Family of Killer Toxins in Budding Yeasts of the Saccharomycotina. PLoS Genet 2021; 17:e1009341. [PMID: 33539346 PMCID: PMC7888664 DOI: 10.1371/journal.pgen.1009341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/17/2021] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.
Collapse
Affiliation(s)
- Lance R. Fredericks
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Mark D. Lee
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Angela M. Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Josephine M. Boyer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Emily A. Kizer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nathan T. Taggart
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cooper R. Roslund
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- iBEST Genomics Core, University of Idaho, Moscow, Idaho, United States of America
| | - Courtney B. Kennedy
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cody G. Willmore
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nova M. Tebbe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jade S. Harris
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Sarah N. Brocke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
12
|
Sheppard S, Dikicioglu D. Dynamic modelling of the killing mechanism of action by virus-infected yeasts. J R Soc Interface 2020; 16:20190064. [PMID: 30890050 DOI: 10.1098/rsif.2019.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Killer yeasts are microorganisms, which can produce and secrete proteinaceous toxins, a characteristic gained via infection by a virus. These toxins are able to kill sensitive cells of the same or a related species. From a biotechnological perspective, killer yeasts are beneficial due to their antifungal/antimicrobial activity, but also regarded as problematic for large-scale fermentation processes, whereby those yeasts would kill starter cultures species and lead to stuck fermentations. Here, we propose a mechanistic model of the toxin-binding kinetics pertaining to the killer population coupled with the toxin-induced death kinetics of the sensitive population to study toxic action. The dynamic model captured the transient toxic activity starting from the introduction of killer cells into the culture at the time of inoculation through to induced cell death. The kinetics of K1/K2 activity via its primary pathway of toxicity was 5.5 times faster than its activity at low concentration inducing the apoptotic pathway in sensitive cells. Conversely, we showed that the primary pathway for K28 was approximately three times slower than its equivalent apoptotic pathway, indicating the particular relevance of K28 in biotechnological applications where the toxin concentration is rarely above those limits to trigger the primary pathway of killer activity.
Collapse
Affiliation(s)
- Sean Sheppard
- 1 St John's College , St John's Street, Cambridge , UK
| | - Duygu Dikicioglu
- 2 Department of Chemical Engineering and Biotechnology, University of Cambridge , Cambridge , UK
| |
Collapse
|
13
|
Gier S, Schmitt MJ, Breinig F. Analysis of Yeast Killer Toxin K1 Precursor Processing via Site-Directed Mutagenesis: Implications for Toxicity and Immunity. mSphere 2020; 5:e00979-19. [PMID: 32051241 PMCID: PMC7021474 DOI: 10.1128/msphere.00979-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
K1 represents a heterodimeric A/B toxin secreted by virus-infected Saccharomyces cerevisiae strains. In a two-staged receptor-mediated process, the ionophoric activity of K1 leads to an uncontrolled influx of protons, culminating in the breakdown of the cellular transmembrane potential of sensitive cells. K1 killer yeast necessitate not only an immunity mechanism saving the toxin-producing cell from its own toxin but, additionally, a molecular system inactivating the toxic α subunit within the secretory pathway. In this study, different derivatives of the K1 precursor were constructed to analyze the biological function of particular structural components and their influence on toxin activity as well as the formation of protective immunity. Our data implicate an inactivation of the α subunit during toxin maturation and provide the basis for an updated model of K1 maturation within the host cell's secretory pathway.IMPORTANCE The killer phenotype in the baker's yeast Saccharomyces cerevisiae relies on two double-stranded RNA viruses that are persistently present in the cytoplasm. As they carry the same receptor populations as sensitive cells, killer yeast cells need-in contrast to various bacterial toxin producers-a specialized immunity mechanism. The ionophoric killer toxin K1 leads to the formation of cation-specific pores in the plasma membrane of sensitive yeast cells. Based on the data generated in this study, we were able to update the current model of toxin processing, validating the temporary inactivation of the toxic α subunit during maturation in the secretory pathway of the killer yeast.
Collapse
Affiliation(s)
- Stefanie Gier
- Molecular and Cell Biology, Saarland University, Saarbrücken, Germany
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Manfred J Schmitt
- Molecular and Cell Biology, Saarland University, Saarbrücken, Germany
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Frank Breinig
- Molecular and Cell Biology, Saarland University, Saarbrücken, Germany
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| |
Collapse
|
14
|
Yeast Viral Killer Toxin K1 Induces Specific Host Cell Adaptions via Intrinsic Selection Pressure. Appl Environ Microbiol 2020; 86:AEM.02446-19. [PMID: 31811035 DOI: 10.1128/aem.02446-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
The killer phenomenon in yeast (Saccharomyces cerevisiae) not only provides the opportunity to study host-virus interactions in a eukaryotic model but also represents a powerful tool to analyze potential coadaptional events and the role of killer yeast in biological diversity. Although undoubtedly having a crucial impact on the abundance and expression of the killer phenotype in killer-yeast harboring communities, the influence of a particular toxin on its producing host cell has not been addressed sufficiently. In this study, we describe a model system of two K1 killer yeast strains with distinct phenotypical differences pointing to substantial selection pressure in response to the toxin secretion level. Transcriptome and lipidome analyses revealed specific and intrinsic host cell adaptions dependent on the amount of K1 toxin produced. High basal expression of genes coding for osmoprotectants and stress-responsive proteins in a killer yeast strain secreting larger amounts of active K1 toxin implies a generally increased stress tolerance. Moreover, the data suggest that immunity of the host cell against its own toxin is essential for the balanced virus-host interplay providing valuable hints to elucidate the molecular mechanisms underlying K1 immunity and implicating an evolutionarily conserved role for toxin immunity in natural yeast populations.IMPORTANCE The killer phenotype in Saccharomyces cerevisiae relies on the cytoplasmic persistence of two RNA viruses. In contrast to bacterial toxin producers, killer yeasts necessitate a specific immunity mechanism against their own toxin because they bear the same receptor populations as sensitive cells. Although the killer phenomenon is highly abundant and has a crucial impact on the structure of yeast communities, the influence of a particular toxin on its host cell has been barely addressed. In our study, we used two derivatives secreting different amount of the killer toxin K1 to analyze potential coadaptional events in this particular host/virus system. Our data underline the dependency of the host cell's ability to cope with extracellular toxin molecules and intracellular K1 molecules provided by the virus. Therefore, this research significantly advances the current understanding of the evolutionarily conserved role of this molecular machinery as an intrinsic selection pressure in yeast populations.
Collapse
|
15
|
Wagener J, Striegler K, Wagener N. α- and β-1,3-Glucan Synthesis and Remodeling. Curr Top Microbiol Immunol 2020; 425:53-82. [PMID: 32193600 DOI: 10.1007/82_2020_200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucans are characteristic and major constituents of fungal cell walls. Depending on the species, different glucan polysaccharides can be found. These differ in the linkage of the D-glucose monomers which can be either in α- or β-conformation and form 1,3, 1,4 or 1,6 O-glycosidic bonds. The linkages and polymer lengths define the physical properties of the glucan macromolecules, which may form a scaffold for other cell wall structures and influence the rigidity and elasticity of the wall. β-1,3-glucan is essential for the viability of many fungal pathogens. Therefore, the β-1,3-glucan synthase complex represents an excellent and primary target structure for antifungal drugs. Fungal cell wall β-glucan is also an important pathogen-associated molecular pattern (PAMP). To hide from innate immunity, many fungal pathogens depend on the synthesis of cell wall α-glucan, which functions as a stealth molecule to mask the β-glucans itself or links other masking structures to the cell wall. Here, we review the current knowledge about the biosynthetic machineries that synthesize β-1,3-glucan, β-1,6-glucan, and α-1,3-glucan. We summarize the discovery of the synthases, major regulatory traits, and the impact of glucan synthesis deficiencies on the fungal organisms. Despite all efforts, many aspects of glucan synthesis remain yet unresolved, keeping research directed toward cell wall biogenesis an exciting and continuously challenging topic.
Collapse
Affiliation(s)
- Johannes Wagener
- Institut Für Hygiene Und Mikrobiologie, University of Würzburg, Würzburg, Germany. .,National Reference Center for Invasive Fungal Infections (NRZMyk), Jena, Germany.
| | - Kristina Striegler
- Institut Für Hygiene Und Mikrobiologie, University of Würzburg, Würzburg, Germany
| | - Nikola Wagener
- Department of Cell Biology, Medical Faculty, University of Munich, Martinsried, Germany
| |
Collapse
|
16
|
Substitution of cysteines in the yeast viral killer toxin K1 precursor reveals novel insights in heterodimer formation and immunity. Sci Rep 2019; 9:13127. [PMID: 31511600 PMCID: PMC6739482 DOI: 10.1038/s41598-019-49621-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
The killer toxin K1 is a virally encoded fungal A/B toxin acting by disrupting plasma membrane integrity. The connection of α and β constitutes a critical feature for toxin biology and for decades the formation of three disulphide bonds linking the major toxin subunits was accepted as status quo. Due to the absence of experimental evidence, the involvement of each cysteine in heterodimer formation, K1 lethality and immunity was systematically analysed. Substitution of any cysteine in α led to a complete loss of toxin dimer secretion and toxicity, whereas K1 toxin derivatives carrying mutations of C248, C312 or the double mutation C248-312 were active against spheroplasted cells. Importantly, substitution of the C95 and C107 in the toxin precursor completely abolished the mediation of functional immunity. In contrast, K1 toxicity, i.e. its ionophoric effect, does not depend on the cysteine residues at all. In contrast to the literature, our data imply the formation of a single disulphide bond involving C92 in α and C239 in β. This finding not only refines the current model stated for decades but also provides new opportunities to elucidate the mechanisms underlying K1 toxicity and immunity at the molecular level.
Collapse
|
17
|
Gier S, Simon M, Nordström K, Khalifa S, Schulz MH, Schmitt MJ, Breinig F. Transcriptome Kinetics of Saccharomyces cerevisiae in Response to Viral Killer Toxin K1. Front Microbiol 2019; 10:1102. [PMID: 31156606 PMCID: PMC6531845 DOI: 10.3389/fmicb.2019.01102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/30/2019] [Indexed: 11/29/2022] Open
Abstract
The K1 A/B toxin secreted by virus-infected Saccharomyces cerevisiae strains kills sensitive cells via disturbance of cytoplasmic membrane functions. Despite decades of research, the mechanisms underlying K1 toxicity and immunity have not been elucidated yet. In a novel approach, this study aimed to characterize transcriptome changes in K1-treated sensitive yeast cells in a time-dependent manner. Global transcriptional profiling revealed substantial cellular adaptations in target cells resulting in 1,189 differentially expressed genes in total. Killer toxin K1 induced oxidative, cell wall and hyperosmotic stress responses as well as rapid down-regulation of transcription and translation. Essential pathways regulating energy metabolism were also significantly affected by the toxin. Remarkably, a futile cycle of the osmolytes trehalose and glycogen was identified probably representing a critical feature of K1 intoxication. In silico analysis suggested several transcription factors involved in toxin-triggered signal transduction. The identified transcriptome changes provide valuable hints to illuminate the still unknown molecular events leading to K1 toxicity and immunity implicating an evolutionarily conserved response at least initially counteracting ionophoric toxin action.
Collapse
Affiliation(s)
- Stefanie Gier
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Martin Simon
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany.,Molecular Cell Dynamics, Saarland University, Saarbrücken, Germany
| | - Karl Nordström
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Salem Khalifa
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Marcel H Schulz
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Manfred J Schmitt
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Frank Breinig
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| |
Collapse
|
18
|
Saccharomyces paradoxus K66 Killer System Evidences Expanded Assortment of Helper and Satellite Viruses. Viruses 2018; 10:v10100564. [PMID: 30332789 PMCID: PMC6213463 DOI: 10.3390/v10100564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022] Open
Abstract
The Saccharomycetaceae yeast family recently became recognized for expanding of the repertoire of different dsRNA-based viruses, highlighting the need for understanding of their cross-dependence. We isolated the Saccharomyces paradoxus AML-15-66 killer strain from spontaneous fermentation of serviceberries and identified helper and satellite viruses of the family Totiviridae, which are responsible for the killing phenotype. The corresponding full dsRNA genomes of viruses have been cloned and sequenced. Sequence analysis of SpV-LA-66 identified it to be most similar to S. paradoxus LA-28 type viruses, while SpV-M66 was mostly similar to the SpV-M21 virus. Sequence and functional analysis revealed significant differences between the K66 and the K28 toxins. The structural organization of the K66 protein resembled those of the K1/K2 type toxins. The AML-15-66 strain possesses the most expressed killing property towards the K28 toxin-producing strain. A genetic screen performed on S. cerevisiae YKO library strains revealed 125 gene products important for the functioning of the S. paradoxus K66 toxin, with 85% of the discovered modulators shared with S. cerevisiae K2 or K1 toxins. Investigation of the K66 protein binding to cells and different polysaccharides implies the β-1,6 glucans to be the primary receptors of S. paradoxus K66 toxin. For the first time, we demonstrated the coherent habitation of different types of helper and satellite viruses in a wild-type S. paradoxus strain.
Collapse
|
19
|
Jagdale SS, Joshi RS. Enemies with benefits: mutualistic interactions of viruses with lower eukaryotes. Arch Virol 2018; 163:821-830. [PMID: 29307090 DOI: 10.1007/s00705-017-3686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022]
Abstract
Viruses represent some of the deadliest pathogens known to science. Recently they have been reported to have mutualistic interactions with their hosts, providing them direct or indirect benefits. The mutualism and symbiogenesis of such viruses with lower eukaryotic partners such as fungi, yeast, and insects have been reported but the full mechanism of interaction often remains an enigma. In many instances, these viral interactions provide resistance against several biotic and abiotic stresses, which could be the prime reason for the ecological success and positive selection of the hosts. These viruses modulate host metabolism and behavior, so both can obtain maximum benefits from the environment. They bring about micro- and macro-level changes in the hosts, benefiting their adaptation, reproduction, development, and survival. These virus-host interactions can be bilateral or tripartite with a variety of interacting partners. Exploration of these interactions can shed light on one of the well-coordinated biological phenomena of co-evolution and can be highly utilized for various applications in agriculture, fermentation and the pharmaceutical industries.
Collapse
Affiliation(s)
- Shounak S Jagdale
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Rakesh S Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
20
|
Gier S, Schmitt MJ, Breinig F. Expression of K1 Toxin Derivatives in Saccharomyces cerevisiae Mimics Treatment with Exogenous Toxin and Provides a Useful Tool for Elucidating K1 Mechanisms of Action and Immunity. Toxins (Basel) 2017; 9:toxins9110345. [PMID: 29076990 PMCID: PMC5705960 DOI: 10.3390/toxins9110345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
Killer toxin K1 is a heterodimeric protein toxin secreted by Saccharomyces cerevisiae strains infected with the M1 double-stranded RNA ‘killer’ virus. After binding to a primary receptor at the level of the cell wall, K1 interacts with its secondary plasma membrane receptor Kre1p, eventually leading to an ionophoric disruption of membrane function. Although it has been under investigation for decades, neither the particular mechanisms leading to toxicity nor those leading to immunity have been elucidated. In this study, we constructed derivatives of the K1α subunit and expressed them in sensitive yeast cells. We show that these derivatives are able to mimic the action of externally applied K1 toxin in terms of growth inhibition and pore formation within the membrane, leading to a suicidal phenotype that could be abolished by co-expression of the toxin precursor, confirming a mechanistic similarity of external and internal toxin action. The derivatives were successfully used to investigate a null mutant completely resistant to externally applied toxin. They provide a valuable tool for the identification of so far unknown gene products involved in K1 toxin action and/or immunity.
Collapse
Affiliation(s)
- Stefanie Gier
- Center for Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany.
- Molecular and Cell Biology, Campus A1.5, Saarland University, D-66123 Saarbrücken, Germany.
| | - Manfred J Schmitt
- Center for Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany.
- Molecular and Cell Biology, Campus A1.5, Saarland University, D-66123 Saarbrücken, Germany.
| | - Frank Breinig
- Center for Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany.
- Molecular and Cell Biology, Campus A1.5, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
21
|
Becker B, Schmitt MJ. Yeast Killer Toxin K28: Biology and Unique Strategy of Host Cell Intoxication and Killing. Toxins (Basel) 2017; 9:toxins9100333. [PMID: 29053588 PMCID: PMC5666379 DOI: 10.3390/toxins9100333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 01/18/2023] Open
Abstract
The initial discovery of killer toxin-secreting brewery strains of Saccharomyces cerevisiae (S. cerevisiae) in the mid-sixties of the last century marked the beginning of intensive research in the yeast virology field. So far, four different S. cerevisiae killer toxins (K28, K1, K2, and Klus), encoded by cytoplasmic inherited double-stranded RNA viruses (dsRNA) of the Totiviridae family, have been identified. Among these, K28 represents the unique example of a yeast viral killer toxin that enters a sensitive cell by receptor-mediated endocytosis to reach its intracellular target(s). This review summarizes and discusses the most recent advances and current knowledge on yeast killer toxin K28, with special emphasis on its endocytosis and intracellular trafficking, pointing towards future directions and open questions in this still timely and fascinating field of killer yeast research.
Collapse
Affiliation(s)
- Björn Becker
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany.
| | - Manfred J Schmitt
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
22
|
Variation and Distribution of L-A Helper Totiviruses in Saccharomyces sensu stricto Yeasts Producing Different Killer Toxins. Toxins (Basel) 2017; 9:toxins9100313. [PMID: 29019944 PMCID: PMC5666360 DOI: 10.3390/toxins9100313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Yeasts within the Saccharomyces sensu stricto cluster can produce different killer toxins. Each toxin is encoded by a medium size (1.5-2.4 Kb) M dsRNA virus, maintained by a larger helper virus generally called L-A (4.6 Kb). Different types of L-A are found associated to specific Ms: L-A in K1 strains and L-A-2 in K2 strains. Here, we extend the analysis of L-A helper viruses to yeasts other than S. cerevisiae, namely S. paradoxus, S. uvarum and S. kudriavzevii. Our sequencing data from nine new L-A variants confirm the specific association of each toxin-producing M and its helper virus, suggesting co-evolution. Their nucleotide sequences vary from 10% to 30% and the variation seems to depend on the geographical location of the hosts, suggesting cross-species transmission between species in the same habitat. Finally, we transferred by genetic methods different killer viruses from S. paradoxus into S. cerevisiae or viruses from S. cerevisiae into S. uvarum or S. kudriavzevii. In the foster hosts, we observed no impairment for their stable transmission and maintenance, indicating that the requirements for virus amplification in these species are essentially the same. We also characterized new killer toxins from S. paradoxus and constructed "superkiller" strains expressing them.
Collapse
|
23
|
Belda I, Ruiz J, Alonso A, Marquina D, Santos A. The Biology of Pichia membranifaciens Killer Toxins. Toxins (Basel) 2017; 9:toxins9040112. [PMID: 28333108 PMCID: PMC5408186 DOI: 10.3390/toxins9040112] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
The killer phenomenon is defined as the ability of some yeast to secrete toxins that are lethal to other sensitive yeasts and filamentous fungi. Since the discovery of strains of Saccharomyces cerevisiae capable of secreting killer toxins, much information has been gained regarding killer toxins and this fact has substantially contributed knowledge on fundamental aspects of cell biology and yeast genetics. The killer phenomenon has been studied in Pichia membranifaciens for several years, during which two toxins have been described. PMKT and PMKT2 are proteins of low molecular mass that bind to primary receptors located in the cell wall structure of sensitive yeast cells, linear (1→6)-β-d-glucans and mannoproteins for PMKT and PMKT2, respectively. Cwp2p also acts as a secondary receptor for PMKT. Killing of sensitive cells by PMKT is characterized by ionic movements across plasma membrane and an acidification of the intracellular pH triggering an activation of the High Osmolarity Glycerol (HOG) pathway. On the contrary, our investigations showed a mechanism of killing in which cells are arrested at an early S-phase by high concentrations of PMKT2. However, we concluded that induced mortality at low PMKT2 doses and also PMKT is indeed of an apoptotic nature. Killer yeasts and their toxins have found potential applications in several fields: in food and beverage production, as biocontrol agents, in yeast bio-typing, and as novel antimycotic agents. Accordingly, several applications have been found for P. membranifaciens killer toxins, ranging from pre- and post-harvest biocontrol of plant pathogens to applications during wine fermentation and ageing (inhibition of Botrytis cinerea, Brettanomyces bruxellensis, etc.).
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Alejandro Alonso
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
24
|
Saber A, Alipour B, Faghfoori Z, Yari Khosroushahi A. Cellular and molecular effects of yeast probiotics on cancer. Crit Rev Microbiol 2016; 43:96-115. [PMID: 27561003 DOI: 10.1080/1040841x.2016.1179622] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cancer is one of the main causes of human deaths worldwide. The exact mechanisms of initiation and progression of malignancies are not clear yet, but there is a common agreement about the role of colonic microbiota in the etiology of different cancers. Probiotics have been examined for their anti-cancer effects, and different mechanisms have been suggested about their antitumor functions. Nonpathogenic yeasts, as members of probiotics family, can be effective on gut microbiota dysbiosis. Generally safe yeasts have shown so many beneficial effects on human health. Probiotic yeasts influence physiology, metabolism, and immune homeostasis in the colon and contribute to cancer treatment due to possessing anti-inflammatory, anti-proliferative and anti-cancer properties. This study reviews some of the health-beneficial effects of probiotic yeasts and their biological substances like folic acid and β-glucan on cancer and focuses on the possible cellular and molecular mechanisms of probiotic yeasts such as influencing pathogenic bacteria, inactivation of carcinogenic compounds, especially those derived from food, improvement of intestinal barrier function, modulation of immune responses, antitoxic function, apoptosis, and anti-proliferative effects.
Collapse
Affiliation(s)
- Amir Saber
- a Biotechnology Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Biochemistry and Diet Therapy , Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Beitollah Alipour
- c Department of Biochemistry and Diet Therapy , Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,d Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zeinab Faghfoori
- e Faculty of Medicine, Semnan University of Medical Sciences , Semnan , Iran
| | - Ahmad Yari Khosroushahi
- f Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran.,g Department of Pharmacognosy , Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
25
|
Orentaite I, Poranen MM, Oksanen HM, Daugelavicius R, Bamford DH. K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow003. [PMID: 26818855 DOI: 10.1093/femsyr/fow003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 11/14/2022] Open
Abstract
Saccharomyces cerevisiae cells produce killer toxins, such as K1, K2 and K28, that can modulate the growth of other yeasts giving advantage for the killer strains. Here we focused on the physiological changes induced by K2 toxin on a non-toxin-producing yeast strain as well as K1, K2 and K28 killer strains. Potentiometric measurements were adjusted to observe that K2 toxin immediately acts on the sensitive cells leading to membrane permeability. This correlated with reduced respiration activity, lowered intracellular ATP content and decrease in cell viability. However, we did not detect any significant ATP leakage from the cells treated by killer toxin K2. Strains producing heterologous toxins K1 and K28 were less sensitive to K2 than the non-toxin producing one suggesting partial cross-protection between the different killer systems. This phenomenon may be connected to the observed differences in respiratory activities of the killer strains and the non-toxin-producing strain at low pH. This might also have practical consequences in wine industry; both as beneficial ones in controlling contaminating yeasts and non-beneficial ones causing sluggish fermentation.
Collapse
Affiliation(s)
- Irma Orentaite
- Department of Biochemistry, Vytautas Magnus University, Vileikos g. 8, Kaunas 44404, Lithuania
| | - Minna M Poranen
- Department of Biosciences, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| | - Hanna M Oksanen
- Department of Biosciences, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland Institute of Biotechnology, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| | - Rimantas Daugelavicius
- Department of Biochemistry, Vytautas Magnus University, Vileikos g. 8, Kaunas 44404, Lithuania
| | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland Institute of Biotechnology, University of Helsinki, Viikinkaari 9, Helsinki 00014, Finland
| |
Collapse
|
26
|
Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin. EUKARYOTIC CELL 2015; 14:406-14. [PMID: 25710965 DOI: 10.1128/ec.00287-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/18/2015] [Indexed: 11/20/2022]
Abstract
Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property.
Collapse
|
27
|
Abstract
Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast.
Collapse
|
28
|
McBride RC, Boucher N, Park DS, Turner PE, Townsend JP. Yeast response to LA virus indicates coadapted global gene expression during mycoviral infection. FEMS Yeast Res 2013; 13:162-79. [PMID: 23122216 DOI: 10.1111/1567-1364.12019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022] Open
Abstract
Viruses that infect fungi have a ubiquitous distribution and play an important role in structuring fungal communities. Most of these viruses have an unusual life history in that they are propagated exclusively via asexual reproduction or fission of fungal cells. This asexual mode of transmission intimately ties viral reproductive success to that of its fungal host and should select for viruses that have minimal deleterious impact on the fitness of their hosts. Accordingly, viral infections of fungi frequently do not measurably impact fungal growth, and in some instances, increase the fitness of the fungal host. Here we determine the impact of the loss of coinfection by LA virus and the virus-like particle M1 upon global gene expression of the fungal host Saccharomyces cerevisiae and provide evidence supporting the idea that coevolution has selected for viral infection minimally impacting host gene expression.
Collapse
Affiliation(s)
- Robert C McBride
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
29
|
Servienė E, Lukša J, Orentaitė I, Lafontaine DLJ, Urbonavičius J. Screening the budding yeast genome reveals unique factors affecting K2 toxin susceptibility. PLoS One 2012; 7:e50779. [PMID: 23227207 PMCID: PMC3515549 DOI: 10.1371/journal.pone.0050779] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Background Understanding how biotoxins kill cells is of prime importance in biomedicine and the food industry. The budding yeast (S. cerevisiae) killers serve as a convenient model to study the activity of biotoxins consistently supplying with significant insights into the basic mechanisms of virus-host cell interactions and toxin entry into eukaryotic target cells. K1 and K2 toxins are active at the cell wall, leading to the disruption of the plasma membrane and subsequent cell death by ion leakage. K28 toxin is active in the cell nucleus, blocking DNA synthesis and cell cycle progression, thereby triggering apoptosis. Genome-wide screens in the budding yeast S. cerevisiae identified several hundred effectors of K1 and K28 toxins. Surprisingly, no such screen had been performed for K2 toxin, the most frequent killer toxin among industrial budding yeasts. Principal Findings We conducted several concurrent genome-wide screens in S. cerevisiae and identified 332 novel K2 toxin effectors. The effectors involved in K2 resistance and hypersensitivity largely map in distinct cellular pathways, including cell wall and plasma membrane structure/biogenesis and mitochondrial function for K2 resistance, and cell wall stress signaling and ion/pH homeostasis for K2 hypersensitivity. 70% of K2 effectors are different from those involved in K1 or K28 susceptibility. Significance Our work demonstrates that despite the fact that K1 and K2 toxins share some aspects of their killing strategies, they largely rely on different sets of effectors. Since the vast majority of the host factors identified here is exclusively active towards K2, we conclude that cells have acquired a specific K2 toxin effectors set. Our work thus indicates that K1 and K2 have elaborated different biological pathways and provides a first step towards the detailed characterization of K2 mode of action.
Collapse
Affiliation(s)
- Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
- * E-mail: (ES); (DLJL)
| | - Juliana Lukša
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Vilnius, Lithuania
| | - Irma Orentaitė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Vilnius, Lithuania
- Department of Biochemistry and Biotechnologies, Vytautas Magnus University, Kaunas, Lithuania
| | - Denis L. J. Lafontaine
- Fonds de la Recherche Scientifique, Université Libre de Bruxelles, Charleroi-Gosselies, Belgium
- Center for Microscopy and Molecular Imaging, Académie Wallonie-Bruxelles, Charleroi-Gosselies, Belgium
- * E-mail: (ES); (DLJL)
| | - Jaunius Urbonavičius
- Center for Microscopy and Molecular Imaging, Académie Wallonie-Bruxelles, Charleroi-Gosselies, Belgium
| |
Collapse
|
30
|
Santos A, Alonso A, Belda I, Marquina D. Cell cycle arrest and apoptosis, two alternative mechanisms for PMKT2 killer activity. Fungal Genet Biol 2012; 50:44-54. [PMID: 23137543 DOI: 10.1016/j.fgb.2012.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/12/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Pichia membranifaciens CYC 1086 secretes a unique 30kDa killer toxin (PMKT2) that inhibits a variety of spoilage yeasts and fungi of agronomical interest. The cytocidal effect of PMKT2 on Saccharomyces cerevisiae cells was studied. Metabolic events associated with the loss of S. cerevisiae viability caused by PMKT2 were qualitatively identical to those reported for K28 killer toxin activity, but different to those reported for PMKT. At higher doses, none of the cellular events accounting for the action of PMKT, the killer toxin secreted by P. membranifaciens CYC 1106, was observed for PMKT2. Potassium leakage, sodium influx and the decrease of intracellular pH were not among the primary effects of PMKT2. We report here that this protein is unable to form ion-permeable channels in liposome membranes, suggesting that channel formation is not the mechanism of cytotoxic action of PMKT2. Nevertheless, flow cytometry studies have revealed a cell cycle arrest at an early S-phase with an immature bud and pre-replicated 1n DNA content. By testing the sensitivity of cells arrested at different stages in the cell cycle, we hoped to identify the execution point for lethality more precisely. Cells arrested at the G1-phase by α-factor or arrested at G2-phase by the spindle poison methyl benzimidazol-2-yl-carbamate (MBC) were protected against the toxin. Cells released from the arrest in both cases were killed by PMKT2 at a similar rate. Nevertheless, cells released from MBC-arrest were able to grow for a short time, and then viability dropped rapidly. These findings suggest that cells released from G2-phase are initially able to divide, but die in the presence of PMKT2 after initiating the S-phase in a new cycle, adopting a terminal phenotype within that cycle. By contrast, low doses of PMKT and PMKT2 were able to generate the same cellular response. The evidence presented here shows that treating yeast with low doses of PMKT2 leads to the typical membranous, cytoplasmic, mitochondrial and nuclear markers of apoptosis, namely, the production of reactive oxygen species, DNA strand breaks, metacaspase activation and cytochrome c release.
Collapse
Affiliation(s)
- Antonio Santos
- Department of Microbiology, Complutense University of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
31
|
Lauff DB, Santa-María GE. Potassium deprivation is sufficient to induce a cell death program in Saccharomyces cerevisiae. FEMS Yeast Res 2010; 10:497-507. [DOI: 10.1111/j.1567-1364.2010.00628.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Holz CM, Stahl U. Ribosomally synthesized antimicrobial peptides in prokaryotic and eukaryotic organisms. FOOD BIOTECHNOL 2009. [DOI: 10.1080/08905439509549888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Santos A, San Mauro M, Bravo E, Marquina D. PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis. MICROBIOLOGY-SGM 2009; 155:624-634. [PMID: 19202111 DOI: 10.1099/mic.0.023663-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pichia membranifaciens CYC 1086 secretes a killer toxin (PMKT2) that is inhibitory to a variety of spoilage yeasts and fungi of agronomical interest. The killer toxin in the culture supernatant was concentrated by ultrafiltration and purified to homogeneity by two successive steps, including native electrophoresis and HPLC gel filtration. Biochemical characterization of the toxin showed it to be a protein with an apparent molecular mass of 30 kDa and an isoelectric point of 3.7. At pH 4.5, optimal killer activity was observed at temperatures up to 20 degrees C. Above approximately this pH, activity decreased sharply and was barely noticeable at pH 6. The toxin concentrations present in the supernatant during optimal production conditions exerted a fungicidal effect on a variety of fungal and yeast strains. The results obtained suggest that PMKT2 has different physico-chemical properties from PMKT as well as different potential uses in the biocontrol of spoilage yeasts. PMKT2 was able to inhibit Brettanomyces bruxellensis while Saccharomyces cerevisiae was fully resistant, indicating that PMKT2 could be used in wine fermentations to avoid the development of the spoilage yeast without deleterious effects on the fermentative strain. In small-scale fermentations, PMKT2, as well as P. membranifaciens CYC 1086, was able to inhibit B. bruxellensis, verifying the biocontrol activity of PMKT2 in simulated winemaking conditions.
Collapse
Affiliation(s)
- A Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - M San Mauro
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - E Bravo
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - D Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
34
|
Schmitt MJ, Reiter J. Viral induced yeast apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1413-7. [DOI: 10.1016/j.bbamcr.2008.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 11/17/2022]
|
35
|
Abstract
The ability of rare types to invade populations is important for the maintenance of diversity and spread of beneficial variants. Spatial structure promotes strategies of interference competition by limiting diffusion of interference toxins and resources, often allowing interference competitors to invade when rare. Consistent with previous results in other microbial systems, toxin production by Saccharomyces cerevisiae is advantageous in spatially structured, high-density environments, but not in unstructured environments. However, at low density and at low frequency, rare toxin producers cannot invade populations of common, sensitive, toxin nonproducers. This is because the likelihood of interaction between toxin producers and sensitives depends upon the density and frequency of both competitors.
Collapse
Affiliation(s)
- Duncan Greig
- Department of Biology, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, United Kingdom.
| | | |
Collapse
|
36
|
Valis K, Masek T, Novotná D, Pospísek M, Janderová B. Immunity to killer toxin K1 is connected with the Golgi-to-vacuole protein degradation pathway. Folia Microbiol (Praha) 2006; 51:196-202. [PMID: 17004650 DOI: 10.1007/bf02932122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Killer strains of Saccharomyces cerevisiae producing killer toxin K1 kill sensitive cells but are resistant to their own toxin. It is assumed that in the producer, an effective interaction between the external toxin and its plasma membrane receptor or the final effector is not possible on the grounds of a conformation change of the receptor or its absence in a membrane. Therefore, it is possible that some mutants with defects in intracellular protein transport and degradation can show a suicidal phenotype during K1 toxin production. We have examined these mutants in a collection of S. cerevisiae strains with deletions in various genes transformed by the pYX213+M1 vector carrying cDNA coding for the K1 toxin under the control of the GAL1 promoter. Determination of the quantity of dead cells in colony population showed that (1) the toxin production from the vector did not support full immunity of producing cells, (2) the suicidal phenotype was not connected with a defect in endocytosis or autophagy, (3) deletants in genes VPS1, VPS23, VPS51 and VAC8 required for the protein degradation pathway between the Golgi body and the vacuole exhibited the highest mortality. These results suggest that interacting molecule(s) on the plasma membrane in the producer might be diverted from the secretion pathway to degradation in the vacuole.
Collapse
Affiliation(s)
- K Valis
- Department of Genetics and Microbiology, Faculty ofScience, Charles University, 128 44 Prague, Czechia
| | | | | | | | | |
Collapse
|
37
|
Miyamoto M, Onozato N, Selvakumar D, Kimura T, Furuichi Y, Komiyama T. The role of the histidine-35 residue in the cytocidal action of HM-1 killer toxin. Microbiology (Reading) 2006; 152:2951-2958. [PMID: 17005976 DOI: 10.1099/mic.0.29100-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diethylpyrocarbonate modification and site-directed mutagenesis studies of histidine-35 in HM-1 killer toxin (HM-1) have shown that a specific feature, the imidazole side chain of histidine-35, is essential for the expression of the killing activity. In subcellular localization experiments, wild-type HM-1 was in the membrane fraction of Saccharomyces cerevisiae BJ1824, but not the HM-1 analogue in which histidine-35 was replaced by alanine (H35A HM-1). Neither wild-type nor H35A HM-1 was detected in cellular fractions of HM-1-resistant yeast S. cerevisiae BJ1824 rhk1Δ : : URA3 and HM-1-insensitive yeast Candida albicans even after 1 h incubation. H35A HM-1 inhibited the activity of partially purified 1,3-β-glucan synthase from S. cerevisiae A451, and its extent was almost the same as wild-type HM-1. Co-immunoprecipitation experiments showed that wild-type and H35A HM-1 directly interact with the 1,3-β-glucan synthase complex. These results strongly suggest that histidine-35 has an important role in the cytocidal action of HM-1 that participates in the binding process to the HM-1 receptor protein on the cell membrane, but it is not essential for the interaction with, and inhibition of, 1,3-β-glucan synthase.
Collapse
Affiliation(s)
- Masahiko Miyamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashizima, Niigata 956-8603, Japan
| | - Naohiko Onozato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashizima, Niigata 956-8603, Japan
| | - Dakshnamurthy Selvakumar
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashizima, Niigata 956-8603, Japan
| | - Tetsuya Kimura
- Faculty of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | | | - Tadazumi Komiyama
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashizima, Niigata 956-8603, Japan
| |
Collapse
|
38
|
Cheng WC, Berman SB, Ivanovska I, Jonas EA, Lee SJ, Chen Y, Kaczmarek LK, Pineda F, Hardwick JM. Mitochondrial factors with dual roles in death and survival. Oncogene 2006; 25:4697-705. [PMID: 16892083 DOI: 10.1038/sj.onc.1209596] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At least in mammals, we have some understanding of how caspases facilitate mitochondria-mediated cell death, but the biochemical mechanisms by which other factors promote or inhibit programmed cell death are not understood. Moreover, most of these factors are only studied after treating cells with a death stimulus. A growing body of new evidence suggests that cell death regulators also have 'day jobs' in healthy cells. Even caspases, mitochondrial fission proteins and pro-death Bcl-2 family proteins appear to have normal cellular functions that promote cell survival. Here, we review some of the supporting evidence and stretch beyond the evidence to seek an understanding of the remaining questions.
Collapse
Affiliation(s)
- W-C Cheng
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Since the discovery of toxin-secreting killer yeasts more than 40 years ago, research into this phenomenon has provided insights into eukaryotic cell biology and virus-host-cell interactions. This review focuses on the most recent advances in our understanding of the basic biology of virus-carrying killer yeasts, in particular the toxin-encoding killer viruses, and the intracellular processing, maturation and toxicity of the viral protein toxins. The strategy of using eukaryotic viral toxins to effectively penetrate and eventually kill a eukaryotic target cell will be discussed, and the cellular mechanisms of self-defence and protective immunity will also be addressed.
Collapse
Affiliation(s)
- Manfred J Schmitt
- Applied Molecular Biology, University of the Saarland, D-66041 Saarbrücken, Germany.
| | | |
Collapse
|
40
|
Danthi P, Hansberger MW, Campbell JA, Forrest JC, Dermody TS. JAM-A-independent, antibody-mediated uptake of reovirus into cells leads to apoptosis. J Virol 2006; 80:1261-70. [PMID: 16415003 PMCID: PMC1346953 DOI: 10.1128/jvi.80.3.1261-1270.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apoptosis plays a major role in the cytopathic effect induced by reovirus following infection of cultured cells and newborn mice. Strain-specific differences in the capacity of reovirus to induce apoptosis segregate with the S1 and M2 gene segments, which encode attachment protein sigma1 and membrane penetration protein mu1, respectively. Virus strains that bind to both junctional adhesion molecule-A (JAM-A) and sialic acid are the most potent inducers of apoptosis. In addition to receptor binding, events in reovirus replication that occur during or after viral disassembly but prior to initiation of viral RNA synthesis also are required for reovirus-induced apoptosis. To determine whether reovirus infection initiated in the absence of JAM-A and sialic acid results in apoptosis, Chinese hamster ovary (CHO) cells engineered to express Fc receptors were infected with reovirus using antibodies directed against viral outer-capsid proteins. Fc-mediated infection of CHO cells induced apoptosis in a sigma1-independent manner. Apoptosis following this uptake mechanism requires acid-dependent proteolytic disassembly, since treatment of cells with the weak base ammonium chloride diminished the apoptotic response. Analysis of T1L x T3D reassortant viruses revealed that the mu1-encoding M2 gene segment is the only viral determinant of the apoptosis-inducing capacity of reovirus when infection is initiated via Fc receptors. Additionally, a temperature-sensitive, membrane penetration-defective M2 mutant, tsA279.64, is an inefficient inducer of apoptosis. These data suggest that signaling pathways activated by binding of sigma1 to JAM-A and sialic acid are dispensable for reovirus-mediated apoptosis and that the mu1 protein plays an essential role in stimulating proapoptotic signaling.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Pediatrics, and Elizabeth B. Lamb Center for Pediatric Research, D7235 MCN, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
41
|
Breinig F, Sendzik T, Eisfeld K, Schmitt MJ. Dissecting toxin immunity in virus-infected killer yeast uncovers an intrinsic strategy of self-protection. Proc Natl Acad Sci U S A 2006; 103:3810-5. [PMID: 16505373 PMCID: PMC1533781 DOI: 10.1073/pnas.0510070103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toxin-secreting "killer" yeasts were initially identified >40 years ago in Saccharomyces cerevisiae strains infected with a double-stranded RNA "killer" virus. Despite extensive research conducted on yeast killer toxins, the mechanism of protecting immunity by which toxin-producing cells evade the lethal activities of these proteins has remained elusive. Here, we identify the mechanism leading to protecting immunity in a killer yeast secreting a viral alpha/beta protein toxin (K28) that enters susceptible cells by receptor-mediated endocytosis and, after retrograde transport into the cytosol, blocks DNA synthesis, resulting in both cell-cycle arrest and caspase-mediated apoptosis. We demonstrate that toxin immunity is effected within the cytosol of a toxin-secreting yeast and occurs via the formation of complexes between reinternalized toxin and unprocessed precursor moieties that are subsequently ubiquitinated and proteasomally degraded, eliminating the active form of the toxin. Interference with cellular ubiquitin homeostasis, either through overexpression of mutated ubiquitin (Ub-RR(48/63)) or by blocking deubiquitination, prevents ubiquitination of toxin and results in an impaired immunity and the expression of a suicidal phenotype. The results presented here reveal the uniquely elegant and efficient strategy that killer cells have developed to circumvent the lethal effects of the toxin they produce.
Collapse
Affiliation(s)
- Frank Breinig
- Angewandte Molekularbiologie, Universität des Saarlandes, D-66041 Saarbrücken, Germany
| | - Tanja Sendzik
- Angewandte Molekularbiologie, Universität des Saarlandes, D-66041 Saarbrücken, Germany
| | - Katrin Eisfeld
- Angewandte Molekularbiologie, Universität des Saarlandes, D-66041 Saarbrücken, Germany
| | - Manfred J. Schmitt
- Angewandte Molekularbiologie, Universität des Saarlandes, D-66041 Saarbrücken, Germany
- To whom correspondence should be addressed at:
Angewandte Molekularbiologie, FR 8.3, Gebäude A 1.5, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany. E-mail:
| |
Collapse
|
42
|
Izgü F, Altinbay D, Sertkaya A. Enzymic activity of the K5-type yeast killer toxin and its characterization. Biosci Biotechnol Biochem 2006; 69:2200-6. [PMID: 16306703 DOI: 10.1271/bbb.69.2200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
K5-type yeast killer toxin secreted by P. anomala NCYC 434 cells has a broad killing spectrum. Competitive inhibiton of killer activity showed that glucans, mainly the beta-1,3 glucan, represent the primary toxin binding site within the cell wall of sensitive cells. Its hydrolytic activity on laminarin in an exo-like fashion revealed that the toxin exerts its killing effect by exo-beta-1,3-glucanase activity. Its specific activity on laminarin was 120 U/mg, and the Michaelis constants K(m) and V(max) for laminarin hydrolysis were 0.25 mg/ml and 370 micromol/min/mg. The toxin exerted its cytocidal effect after 2 h contact with the target cells. Production of the toxin by the cells was induced only when they were grown in culture media rich in beta-glucan sources, and the addition of glucose increased the specific production rate. The enzymic activity of the toxin was fully inhibited by Hg(+2), but increased with some other metal ions, most of all by Pb(+2).
Collapse
Affiliation(s)
- Fatih Izgü
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | | | | |
Collapse
|
43
|
Ivanovska I, Hardwick JM. Viruses activate a genetically conserved cell death pathway in a unicellular organism. ACTA ACUST UNITED AC 2005; 170:391-9. [PMID: 16061692 PMCID: PMC2171480 DOI: 10.1083/jcb.200503069] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Given the importance of apoptosis in the pathogenesis of virus infections in mammals, we investigated the possibility that unicellular organisms also respond to viral pathogens by activating programmed cell death. The M1 and M2 killer viruses of Saccharomyces cerevisiae encode pore-forming toxins that were assumed to kill uninfected yeast cells by a nonprogrammed assault. However, we found that yeast persistently infected with these killer viruses induce a programmed suicide pathway in uninfected (nonself) yeast. The M1 virus-encoded K1 toxin is primarily but not solely responsible for triggering the death pathway. Cell death is mediated by the mitochondrial fission factor Dnm1/Drp1, the K+ channel Tok1, and the yeast metacaspase Yca1/Mca1 encoded by the target cell and conserved in mammals. In contrast, cell death is inhibited by yeast Fis1, a pore-forming outer mitochondrial membrane protein. This virus-host relationship in yeast resembles that of pathogenic human viruses that persist in their infected host cells but trigger programmed death of uninfected cells.
Collapse
Affiliation(s)
- Iva Ivanovska
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
44
|
Santos A, Del Mar Alvarez M, Mauro MS, Abrusci C, Marquina D. The transcriptional response of Saccharomyces cerevisiae to Pichia membranifaciens killer toxin. J Biol Chem 2005; 280:41881-92. [PMID: 16204237 DOI: 10.1074/jbc.m507014200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional response of Saccharomyces cerevisiae to Pichia membranifaciens killer toxin (PMKT) was investigated. We explored the global gene expression responses of the yeast S. cerevisiae to PMKT using DNA microarrays, real time quantitative PCR, and Northern blot. We identified 146 genes whose expression was significantly altered in response to PMKT in a non-random functional distribution. The majority of induced genes, most of them related to the high osmolarity glycerol (HOG) pathway, were core environmental stress response genes, showing that the coordinated transcriptional response to PMKT is related to changes in ionic homeostasis. Hog1p was observed to be phosphorylated in response to PMKT implicating the HOG signaling pathway. Individually deleted mutants of both up- (99) and down-regulated genes (47) were studied for altered sensitivity; it was observed that the deletion of up-regulated genes generated hypersensitivity (82%) to PMKT. Deletion of down-regulated genes generated wild-type (36%), resistant (47%), and hypersensitive (17%) phenotypes. This is the first study that shows the existence of a transcriptional response to the poisoning effects of a killer toxin.
Collapse
Affiliation(s)
- Antonio Santos
- Department of Microbiology, Biology Faculty, University of Madrid, Spain
| | | | | | | | | |
Collapse
|
45
|
Reiter J, Herker E, Madeo F, Schmitt MJ. Viral killer toxins induce caspase-mediated apoptosis in yeast. ACTA ACUST UNITED AC 2005; 168:353-8. [PMID: 15668299 PMCID: PMC2171720 DOI: 10.1083/jcb.200408071] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In yeast, apoptotic cell death can be triggered by various factors such as H2O2, cell aging, or acetic acid. Yeast caspase (Yca1p) and cellular reactive oxygen species (ROS) are key regulators of this process. Here, we show that moderate doses of three virally encoded killer toxins (K1, K28, and zygocin) induce an apoptotic yeast cell response, although all three toxins differ significantly in their primary killing mechanisms. In contrast, high toxin concentrations prevent the occurrence of an apoptotic cell response and rather cause necrotic, toxin-specific cell killing. Studies with Δyca1 and Δgsh1 deletion mutants indicate that ROS accumulation as well as the presence of yeast caspase 1 is needed for apoptosis in toxin-treated yeast cells. We conclude that in the natural environment of toxin-secreting killer yeasts, where toxin concentration is usually low, induction of apoptosis might play an important role in efficient toxin-mediated cell killing.
Collapse
Affiliation(s)
- Jochen Reiter
- Applied Molecular Biology, University of the Saarland, D-66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
46
|
Imai K, Noda Y, Adachi H, Yoda K. A novel endoplasmic reticulum membrane protein Rcr1 regulates chitin deposition in the cell wall of Saccharomyces cerevisiae. J Biol Chem 2004; 280:8275-84. [PMID: 15590673 DOI: 10.1074/jbc.m409428200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Congo red binds to the cell wall and inhibits the growth of yeast. In a screening for multicopy suppressor genes of Congo red hypersensitivity of erd1Delta mutant, we found that a previously uncharacterized gene, YBR005w, makes most of the Saccharomyces cerevisiae strains resistant to Congo red. This gene was named RCR1 (resistance to Congo red 1). An rcr1Delta null mutant showed an increased sensitivity to Congo red. RCR1 encodes a novel ER membrane protein with a single transmembrane domain. Molecular dissection suggested that the transmembrane domain and a part of the C-terminal polypeptide are sufficient for the activity. We examined the effect of RCR1 in various null mutants of genes related to the cell wall. The resistance of mutants to Congo red correlates with a reduction of chitin content. Multicopy RCR1 caused a significant decrease in the chitin content while the amount of alkali-soluble glucan did not change. The binding of Calcofluor white to the cell wall significantly decreased in these cells. Our results show that RCR1 regulates the chitin deposition and add firm genetic and biochemical evidences that the primary target of Congo red is chitin in S. cerevisiae.
Collapse
Affiliation(s)
- Keita Imai
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
47
|
Comitini F, Pietro ND, Zacchi L, Mannazzu I, Ciani M. Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: purification and characterization. MICROBIOLOGY-SGM 2004; 150:2535-2541. [PMID: 15289550 DOI: 10.1099/mic.0.27145-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The killer toxin secreted by Kluyveromyces phaffii (KpKt) is active against spoilage yeast under winemaking conditions and thus has potential applications in the biocontrol of undesired micro-organisms in the wine industry. Biochemical characterization and N-terminal sequencing of the purified toxin show that KpKt is a glycosylated protein with a molecular mass of 33 kDa. Moreover, it shows 93% and 80% identity to a beta-1,3-glucanase of Saccharomyces cerevisiae and a beta-1,3-glucan transferase of Candida albicans, respectively, and it is active on laminarin and glucan, thus showing a beta-glucanase activity. Competitive inhibition of killer activity by cell-wall polysaccharides suggests that glucan (beta-1,3 and beta-1,6 branched glucans) represents the first receptor site of the toxin on the envelope of the sensitive target. Flow cytometry analysis of the sensitive target after treatment with KpKt and K1 toxin of S. cerevisiae, known to cause loss of cell viability via formation of pores in the cell membrane, suggests a different mode of action for KpKt.
Collapse
Affiliation(s)
- Francesca Comitini
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Natalia Di Pietro
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Laura Zacchi
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Ilaria Mannazzu
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
48
|
Weiler F, Schmitt MJ. Zygocin – a monomeric protein toxin secreted by virus-infected Zygosaccharomyces bailii. MICROBIAL PROTEIN TOXINS 2004. [DOI: 10.1007/b100896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
49
|
|
50
|
Weiler F, Schmitt MJ. Zygocin, a secreted antifungal toxin of the yeast Zygosaccharomyces bailii, and its effect on sensitive fungal cells. FEMS Yeast Res 2003. [DOI: 10.1111/j.1567-1364.2003.tb00140.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|