1
|
Tubular Mitochondrial Dysfunction, Oxidative Stress, and Progression of Chronic Kidney Disease. Antioxidants (Basel) 2022; 11:antiox11071356. [PMID: 35883847 PMCID: PMC9311633 DOI: 10.3390/antiox11071356] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected conditions, and CKD is projected to become the fifth leading global cause of death by 2040. New therapeutic approaches are needed. Mitochondrial dysfunction and oxidative stress have emerged as drivers of kidney injury in acute and chronic settings, promoting the AKI-to-CKD transition. In this work, we review the role of mitochondrial dysfunction and oxidative stress in AKI and CKD progression and discuss novel therapeutic approaches. Specifically, evidence for mitochondrial dysfunction in diverse models of AKI (nephrotoxicity, cytokine storm, and ischemia-reperfusion injury) and CKD (diabetic kidney disease, glomerulopathies) is discussed; the clinical implications of novel information on the key role of mitochondria-related transcriptional regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha, transcription factor EB (PGC-1α, TFEB), and carnitine palmitoyl-transferase 1A (CPT1A) in kidney disease are addressed; the current status of the clinical development of therapeutic approaches targeting mitochondria are updated; and barriers to the clinical development of mitochondria-targeted interventions are discussed, including the lack of clinical diagnostic tests that allow us to categorize the baseline renal mitochondrial dysfunction/mitochondrial oxidative stress and to monitor its response to therapeutic intervention. Finally, key milestones for further research are proposed.
Collapse
|
2
|
Abstract
Compared to the major histocompatibility complex (MHC) of typical mammals, the chicken BF/BL region is small and simple, with most of the genes playing central roles in the adaptive immune response. However, some genes of the chicken MHC are almost certainly involved in innate immunity, such as the complement component C4 and the lectin-like receptor/ligand gene pair BNK and Blec. The poorly expressed classical class I molecule BF1 is known to be recognised by natural killer (NK) cells and, analogous to mammalian immune responses, the classical class I molecules BF1 and BF2, the CD1 homologs and the butyrophilin homologs called BG may be recognised by adaptive immune lymphocytes with semi-invariant receptors in a so-called adaptate manner. Moreover, the TRIM and BG regions next to the chicken MHC, along with the genetically unlinked Y and olfactory/scavenger receptor regions on the same chromosome, have multigene families almost certainly involved in innate and adaptate responses. On this chicken microchromosome, the simplicity of the adaptive immune gene systems contrasts with the complexity of the gene systems potentially involved in innate immunity.
Collapse
|
3
|
Chen L, Fakiola M, Staines K, Butter C, Kaufman J. Functional Alleles of Chicken BG Genes, Members of the Butyrophilin Gene Family, in Peripheral T Cells. Front Immunol 2018; 9:930. [PMID: 29765375 PMCID: PMC5938342 DOI: 10.3389/fimmu.2018.00930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022] Open
Abstract
γδ T cells recognize a wide variety of ligands in mammals, among them members of the butyrophilin (BTN) family. Nothing is known about γδ T cell ligands in chickens, despite there being many such cells in blood and lymphoid tissues, as well as in mucosal surfaces. The major histocompatibility complex (MHC) of chickens was discovered because of polymorphic BG genes, part of the BTN family. All but two BG genes are located in the BG region, oriented head-to-tail so that unequal crossing-over has led to copy number variation (CNV) as well as hybrid (chimeric) genes, making it difficult to identify true alleles. One approach is to examine BG genes expressed in particular cell types, which likely have the same functions in different BG haplotypes and thus can be considered “functional alleles.” We cloned nearly full-length BG transcripts from peripheral T cells of four haplotypes (B2, B15, B19, and B21), and compared them to the BG genes of the B12 haplotype that previously were studied in detail. A dominant BG gene was found in each haplotype, but with significant levels of subdominant transcripts in three haplotypes (B2, B15, and B19). For three haplotypes (B15, B19, and B21), most sequences are closely-related to BG8, BG9, and BG12 from the B12 haplotype. We found that variation in the extracellular immunoglobulin-variable-like (Ig-V) domain is mostly localized to the membrane distal loops but without evidence for selection. However, variation in the cytoplasmic tail composed of many amino acid heptad repeats does appear to be selected (although not obviously localized), consistent with an intriguing clustering of charged and polar residues in an apparent α-helical coiled-coil. By contrast, the dominantly-expressed BG gene in the B2 haplotype is identical to BG13 from the B12 haplotype, and most of the subdominant sequences are from the BG5-BG7-BG11 clade. Moreover, alternative splicing leading to intron read-through results in dramatically truncated cytoplasmic tails, particularly for the dominantly-expressed BG gene of the B2 haplotype. The approach of examining “functional alleles” has yielded interesting data for closely-related genes, but also thrown up unexpected findings for at least one haplotype.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Michaela Fakiola
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Karen Staines
- Pirbright Institute, Compton, United Kingdom.,School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Colin Butter
- Pirbright Institute, Compton, United Kingdom.,School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Chattaway J, Ramirez-Valdez RA, Chappell PE, Caesar JJE, Lea SM, Kaufman J. Different modes of variation for each BG lineage suggest different functions. Open Biol 2017; 6:rsob.160188. [PMID: 27628321 PMCID: PMC5043582 DOI: 10.1098/rsob.160188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/17/2016] [Indexed: 01/14/2023] Open
Abstract
Mammalian butyrophilins have various important functions, one for lipid binding but others as ligands for co-inhibition of αβ T cells or for stimulation of γδ T cells in the immune system. The chicken BG homologues are dimers, with extracellular immunoglobulin variable (V) domains joined by cysteines in the loop equivalent to complementarity-determining region 1 (CDR1). BG genes are found in three genomic locations: BG0 on chromosome 2, BG1 in the classical MHC (the BF-BL region) and many BG genes in the BG region just outside the MHC. Here, we show that BG0 is virtually monomorphic, suggesting housekeeping function(s) consonant with the ubiquitous tissue distribution. BG1 has allelic polymorphism but minimal sequence diversity, with the few polymorphic residues at the interface of the two V domains, suggesting that BG1 is recognized by receptors in a conserved fashion. Any phenotypic variation should be due to the intracellular region, with differential exon usage between alleles. BG genes in the BG region can generate diversity by exchange of sequence cassettes located in loops equivalent to CDR1 and CDR2, consonant with recognition of many ligands or antigens for immune defence. Unlike the mammalian butyrophilins, there are at least three modes by which BG genes evolve.
Collapse
Affiliation(s)
- John Chattaway
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | - Paul E Chappell
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Joseph J E Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
5
|
Miller MM, Taylor RL. Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult Sci 2016; 95:375-92. [PMID: 26740135 PMCID: PMC4988538 DOI: 10.3382/ps/pev379] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022] Open
Abstract
Nearly all genes presently mapped to chicken chromosome 16 (GGA 16) have either a demonstrated role in immune responses or are considered to serve in immunity by reason of sequence homology with immune system genes defined in other species. The genes are best described in regional units. Among these, the best known is the polymorphic major histocompatibility complex-B (MHC-B) region containing genes for classical peptide antigen presentation. Nearby MHC-B is a small region containing two CD1 genes, which encode molecules known to bind lipid antigens and which will likely be found in chickens to present lipids to specialized T cells, as occurs with CD1 molecules in other species. Another region is the MHC-Y region, separated from MHC-B by an intervening region of tandem repeats. Like MHC-B, MHC-Y is polymorphic. It contains specialized class I and class II genes and c-type lectin-like genes. Yet another region, separated from MHC-Y by the single nucleolar organizing region (NOR) in the chicken genome, contains olfactory receptor genes and scavenger receptor genes, which are also thought to contribute to immunity. The structure, distribution, linkages and patterns of polymorphism in these regions, suggest GGA 16 evolves as a microchromosome devoted to immune defense. Many GGA 16 genes are polymorphic and polygenic. At the moment most disease associations are at the haplotype level. Roles of individual MHC genes in disease resistance are documented in only a very few instances. Provided suitable experimental stocks persist, the availability of increasingly detailed maps of GGA 16 genes combined with new means for detecting genetic variability will lead to investigations defining the contributions of individual loci and more applications for immunogenetics in breeding healthy poultry.
Collapse
Affiliation(s)
- Marcia M Miller
- Beckman Research Institute, City of Hope, Department of Molecular and Cellular Biology, Duarte, CA 91010
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
6
|
Balic A, Garcia-Morales C, Vervelde L, Gilhooley H, Sherman A, Garceau V, Gutowska MW, Burt DW, Kaiser P, Hume DA, Sang HM. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage. Development 2014; 141:3255-65. [PMID: 25063453 PMCID: PMC4197536 DOI: 10.1242/dev.105593] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens.
Collapse
Affiliation(s)
- Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Carla Garcia-Morales
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Hazel Gilhooley
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Adrian Sherman
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Valerie Garceau
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Maria W Gutowska
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Pete Kaiser
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Helen M Sang
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
7
|
Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns. PLoS Genet 2014; 10:e1004417. [PMID: 24901252 PMCID: PMC4046983 DOI: 10.1371/journal.pgen.1004417] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 04/14/2014] [Indexed: 11/19/2022] Open
Abstract
Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells), correlating with two different kinds of promoters and 5′ untranslated regions (5′UTR). However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood. Many immune genes are multigene families, presumably in response to pathogen variation. Some multigene families undergo expansion and contraction, leading to copy number variation (CNV), presumably due to more intense selection. Recently, the butyrophilin family in humans and other mammals has come under scrutiny, due to genetic associations with autoimmune diseases as well as roles in immune co-regulation and antigen presentation. Butyrophilin genes exhibit allelic polymorphism, but gene number appears stable within a species. We found that the BG homologues in chickens are very different, with great changes between haplotypes. We characterised one haplotype in detail, showing that there are two single BG genes, one on chromosome 2 and the other in the major histocompatibility complex (BF-BL region) on chromosome 16, and a family of BG genes in a tandem array in the BG region nearby. These genes have specific expression in cells and tissues, but overall are expressed in either haemopoietic cells or tissues. The two singletons have relatively stable evolutionary histories, but the BG region undergoes dynamic expansion and contraction, with the production of hybrid genes. Thus, chicken BG genes appear to evolve much more quickly than their closest homologs in mammals, presumably due to increased pressure from pathogens.
Collapse
|
8
|
Bauer MM, Reed KM. Extended sequence of the turkey MHC B-locus and sequence variation in the highly polymorphic B-G loci. Immunogenetics 2011; 63:209-21. [DOI: 10.1007/s00251-010-0501-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/01/2010] [Indexed: 11/25/2022]
|
9
|
SHIINA T, HOSOMICHI K, HANZAWA K. Comparative genomics of the poultry major histocompatibility complex. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00333.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H. Comparative Genomic Analysis of Two Avian (Quail and Chicken) MHC Regions. THE JOURNAL OF IMMUNOLOGY 2004; 172:6751-63. [PMID: 15153492 DOI: 10.4049/jimmunol.172.11.6751] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We mapped two different quail Mhc haplotypes and sequenced one of them (haplotype A) for comparative genomic analysis with a previously sequenced haplotype of the chicken Mhc. The quail haplotype A spans 180 kb of genomic sequence, encoding a total of 41 genes compared with only 19 genes within the 92-kb chicken Mhc. Except for two gene families (B30 and tRNA), both species have the same basic set of gene family members that were previously described in the chicken "minimal essential" Mhc. The two Mhc regions have a similar overall organization but differ markedly in that the quail has an expanded number of duplicated genes with 7 class I, 10 class IIB, 4 NK, 6 lectin, and 8 B-G genes. Comparisons between the quail and chicken Mhc class I and class II gene sequences by phylogenetic analysis showed that they were more closely related within species than between species, suggesting that the quail Mhc genes were duplicated after the separation of these two species from their common ancestor. The proteins encoded by the NK and class I genes are known to interact as ligands and receptors, but unlike in the quail and the chicken, the genes encoding these proteins in mammals are found on different chromosomes. The finding of NK-like genes in the quail Mhc strongly suggests an evolutionary connection between the NK C-type lectin-like superfamily and the Mhc, providing support for future studies on the NK, lectin, class I, and class II interaction in birds.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Iglesias GM, Soria LA, Goto RM, Jar AM, Miquel MC, Lopez OJ, Miller MM. Genotypic variability at the major histocompatibility complex (B and Rfp-Y) in Camperos broiler chickens. Anim Genet 2003; 34:88-95. [PMID: 12648091 DOI: 10.1046/j.1365-2052.2003.00944.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evidence for the importance of major histocompatibility complex (MHC) genotype in immunological fitness of chickens continues to accumulate. The MHC B haplotypes contribute resistance to Marek's and other diseases of economic importance. The Rfp-Y, a second cluster of MHC genes in the chicken, may also contribute to disease resistance. Nevertheless, the MHC B and Rfp-Y haplotypes segregating in broiler chickens are poorly documented. The Camperos, free-range broiler chickens developed in Argentina, provide an opportunity to evaluate MHC diversity in a genetically diverse broiler stock. Camperos are derived by cross-breeding parental stocks maintained essentially without selection since their founding. We analysed 51 DNA samples from the Camperos and their parental lines for MHC B and Rfp-Y variability by restriction fragment pattern (rfp) and SSCP typing methods for B-G, B-F (class Ia), B-Lbeta (class II) and Y-F (class Ib) diversity. We found evidence for 38 B-G genotypes. The Camperos B-G patterns were not shared with White Leghorn controls, nor were any of a limited number of Camperos B-G gene sequences identical to published B-G sequences. The SSCP assays provided evidence for the presence of at least 28 B-F and 29 B-Lbeta genotypes. When considered together B-F, B-L, and B-G patterns provide evidence for 40 Camperos B genotypes. We found even greater Rfp-Y diversity. The Rfp-Y class I-specific probe, 163/164f, revealed 44 different rfps among the 51 samples. We conclude that substantial MHC B and Rfp-Y diversity exists within broiler chickens that might be drawn upon in selecting for desirable immunological traits.
Collapse
Affiliation(s)
- G M Iglesias
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
12
|
Nishibori M, Nakaki S, Tsudzuki M, Yamamoto Y. Utility of three restriction fragment length polymorphism probes for genotyping of the chicken major histocompatibility complex class IV region. Poult Sci 2000; 79:305-11. [PMID: 10735194 DOI: 10.1093/ps/79.3.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Three chicken B-G cDNA probes (gene 8.5, bg28, and bg32.1) were used to detect restriction fragment length polymorphisms (RFLP) in the chicken MHC class IV (B-G). By using inbred and selected chicken lines with different B haplotypes identified by hemagglutination, we identified B haplotypes (B2, B9, B11, B12, B15, B19, B21, B31, and B32) by RFLP using the three probes following digestion of genomic DNA with four restriction endonucleases (BglII, EcoRI, HaeIII, and PvuII). The GSP inbred line, previously shown to contain B-F21 by the use of a monoclonal antibody, did not contain B-G21, based on RFLP tests, whereas line N had B-F21 and B-G21. Consequently, the RFLP typing with the clone of B-G cDNA was able to determine the B haplotype in more detail than typing by hemagglutination. In inbred and selected lines, three B-G cDNA are useful DNA probes for RFLP to identify B genotypes. Two families of chickens with segregating B haplotypes were analyzed by RFLP using these probes; however, identification of the B genotype by this method was difficult in the randomly bred population. Genotypic comparisons of RFLP with gene 8.5 and BglII and bg 28 as probes and digestion by the endonucleases EcoRI, HaeIII, and PvuII between the parents and their offspring were generally compatible within the expectations of Mendelian inheritance.
Collapse
Affiliation(s)
- M Nishibori
- Faculty of Applied Biological Science, Hiroshima University, Higashi-hiroshima, Japan.
| | | | | | | |
Collapse
|
13
|
Yonash N, Kaiser MG, Heller ED, Cahaner A, Lamont SJ. Major histocompatibility complex (MHC) related cDNA probes associated with antibody response in meat-type chickens. Anim Genet 1999; 30:92-101. [PMID: 10376299 DOI: 10.1046/j.1365-2052.1999.00431.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The major histocompatibility complex (MHC) region was examined as a set of candidate genes for association between DNA markers and antibody response. Intercross F2 families of chickens were generated from a cross between high (HC) and low (LC) Escherichia coli(i) antibody lines. Restriction fragment length polymorphism (RFLP) analysis was conducted by using three MHC-related cDNA probes: chicken MHC class IV (B-G), chicken MHC class I (B-F), and human MHC-linked Tap2. Association between RFLP bands and three antibody response traits (E. coli, sheep red blood cells and Newcastle disease virus) were determined by two methods: by statistically analyzing each band separately and also by analyzing all bands obtained from the three probes by using multiple regression analysis to account for the multiple comparisons. The MHC class IV probe was the highest in polymorphisms but had the lowest number of bands associated with antibody response. The MHC class I probe yielded 15 polymorphic bands of which four exhibited association with antibody response traits. The Tap2 probe yielded 20 different RFLP bands of which five were associated with antibody production. Some Tap2 bands were associated with multiple antibody response traits. The multiband analysis of the three probes' bands revealed more significant effects than the analysis of each band separately. This study illustrates the efficacy of using multiple MHC region probes as candidate markers for quantitative trait loci (QTLs) controlling antibody response in chickens.
Collapse
Affiliation(s)
- N Yonash
- Department of Genetics, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
14
|
Bikle DD, Munson S, Komuves L. Zipper protein, a B-G protein with the ability to regulate actin/myosin 1 interactions in the intestinal brush border. J Biol Chem 1996; 271:9075-83. [PMID: 8621557 DOI: 10.1074/jbc.271.15.9075] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We recently identified a 28-kDa protein in the intestinal brush border that resembled tropomyosin in terms of size, homology, and alpha helical content. This protein contained 27 heptad repeats, nearly all of which began with leucine, leading to its name zipper protein. Subsequent analysis, however, indicated that both a 49-kDa and a 28-kDa immunoreactive protein existed in intestinal brush-border extracts. Using 5'-rapid amplification of cDNA ends analysis, we extended the N-terminal sequence of zipper protein to the apparent translation start site. This additional sequence contained a putative transmembrane domain and two potential tryptic cleavage sites C-terminal to the transmembrane domain which would release a 28-kDa cytoplasmic protein if utilized. The additional sequence was highly homologous to members of the B-G protein family, a family with no known function. Immunoelectron microscopy showed that zipper protein was confined to the membrane of the microvillus where it was in close association with brush-border myosin 1 (BBM1). Recombinant zipper protein (28-kDa cytoplasmic portion) blocked the binding of actin to BBM1 and inhibited actin-stimulated BBM1 ATPase activity. In contrast, zipper protein had no effect on endogenous or K/EDTA-stimulated BBM1 ATPase activity. Furthermore, zipper protein displaced tropomyosin from binding to actin, suggesting that these homologous proteins bind to the same sites on the actin molecule. We conclude that zipper protein is a transmembrane protein of the B-G family localized to the intestinal epithelial cell microvillus. The extended cytoplasmic tail either in the intact molecule or after tryptic cleavage may participate in regulating the binding and, thus, activation of BBM1 by actin in a manner similar to tropomyosin.
Collapse
Affiliation(s)
- D D Bikle
- Department of Medicine, University of California, San Francisco, 94121, USA
| | | | | |
Collapse
|
15
|
Jarvi SI, Goto RM, Briles WE, Miller MM. Characterization of Mhc genes in a multigenerational family of ring-necked pheasants. Immunogenetics 1996; 43:125-35. [PMID: 8550096 DOI: 10.1007/bf00176673] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Little is known about the major histocompatibility (Mhc) genes of birds in different taxonomic groups or about how Mhc genes may be organized in avian species divergent by evolution or habitat. Yet it seems likely that much might be learned from birds about the evolution, organization, and function of this intricate complex of polymorphic genes. In this study a close relative of the chicken, the ring-necked pheasant (Phasianus colchicus), was examined for the presence and organization of Mhc B-G genes. The patterns of restriction fragments revealed by chicken B-G probes in Southern hybridizations and the patterns of pheasant erythrocyte polypeptides revealed in immunoblots by antisera raised against chicken B-G polypeptides provide genetic, molecular, and biochemical data confirming earlier serological evidence for the presence of B-G genes in the pheasant, and hence, the presence of a family of B-G genes in at least a second species of birds. The high polymorphism exhibited by the pheasant B-G gene family allowed genetic differences among individuals within the small experimental population in this study to be detected easily by restriction fragment patterns. Further evidence was found for the organization of the pheasant Mhc class I and class II genes into genetically independent clusters. Whether these gene clusters are fully comparable to the B and Rfp-Y systems in the chicken or whether yet another organization of Mhc genes has been encountered in the pheasant remains to be determined.
Collapse
Affiliation(s)
- S I Jarvi
- Department of Molecular Biochemistry, Beckman Research Institute of the City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- J Trowsdale
- Human Immunogenetics Laboratory, Imperial Cancer Research Fund, London, UK
| |
Collapse
|
17
|
Briles WE, Goto RM, Auffray C, Miller MM. A polymorphic system related to but genetically independent of the chicken major histocompatibility complex. Immunogenetics 1993; 37:408-14. [PMID: 8436415 DOI: 10.1007/bf00222464] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Analyses of the major histocompatibility complex (Mhc) in chickens have shown inconsistencies between serologically defined haplotypes and haplotypes defined by the restriction fragment patterns of Mhc class I and class II genes in Southern hybridizations. Often more than one pattern of restriction fragments for Mhc class I and/or class II genes has been found among DNA samples collected from birds homozygous for a single serologically defined B haplotype. Such findings have been interpreted as evidence for variability within the Mhc haplotypes of chickens not detected previously with serological methods. In this study of a fully pedigreed family over three generations, the heterogeneity observed in restriction fragment patterns was found to be the result of the presence of a second, independently segregating polymorphic Mhc-like locus, designated Rfp-Y. Three alleles (haplotypes) are identified in this new system.
Collapse
Affiliation(s)
- W E Briles
- Department of Biological Sciences, Northern Illinois University, DeKalb 60115
| | | | | | | |
Collapse
|
18
|
Miller MM, Goto R, Young S, Chirivella J, Hawke D, Miyada CG. Immunoglobulin variable-region-like domains of diverse sequence within the major histocompatibility complex of the chicken. Proc Natl Acad Sci U S A 1991; 88:4377-81. [PMID: 1903541 PMCID: PMC51662 DOI: 10.1073/pnas.88.10.4377] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The highly polymorphic B-G antigens are considered to be part of the major histocompatibility complex (MHC) of the chicken, the B system of histocompatibility, because they are encoded in a family of genes tightly linked with the genes encoding MHC class I and class II antigens. To better understand these unusual MHC antigens, full-length B-G cDNA clones were isolated from B21 embryonic erythroid cell cDNA library, restriction-mapped, and sequenced. Five transcript types were identified. Analysis of the deduced amino acid sequences suggests that the B-G polypeptides are composed of single extracellular domains that resemble immunoglobulin domains of the variable-region (V) type, single membrane-spanning domains typical of integral membrane proteins, and long cytoplasmic tails. Sequence diversity among the five transcript types was found in all domains, notably including the B-G immunoglobulin V-like domains. The cytoplasmic tails of the B-G antigens are made up entirely of units of seven amino acid residues (heptads) that are typical of an alpha-helical coiled-coil conformation. The heptads vary in number and sequence between the different transcripts. The presence within B-G polypeptides of polymorphic immunoglobulin V-like domains warrants further investigations to determine the degree and nature of variability within this domain in these unusual MHC antigens.
Collapse
Affiliation(s)
- M M Miller
- Department of Molecular Biochemistry, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010-0269
| | | | | | | | | | | |
Collapse
|
19
|
Salomonsen J, Eriksson H, Skjødt K, Lundgreen T, Simonsen M, Kaufman J. The "adjuvant effect" of the polymorphic B-G antigens of the chicken major histocompatibility complex analyzed using purified molecules incorporated in liposomes. Eur J Immunol 1991; 21:649-58. [PMID: 2009909 DOI: 10.1002/eji.1830210317] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The polymorphic B-G region of the chicken major histocompatibility complex has previously been shown to mediate an "adjuvant effect" on the humoral response to other erythrocyte alloantigens. We demonstrate here that B-G molecules purified with monoclonal antibodies exert this adjuvant effect on the production of alloantibodies to chicken class I (B-F) molecules, when the two are in the same liposome. The adjuvant effect may in part be mediated by antibodies, since the antibody response to B-G molecules occurs much faster than the response to B-F molecules, and conditions in which antibodies to B-G are present increase the speed of the response to B-F molecules. We also found that the presence of B-G molecules in separate liposomes results in a lack of response to B-F molecules. In the light of this and other data, we consider the possible roles for the polymorphic B-G molecules, particularly for the generation of B cell diversity, in the immune systems of birds and other animals.
Collapse
Affiliation(s)
- J Salomonsen
- Institute for Experimental Immunology, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
20
|
Chicken major histocompatibility complex-encoded B-G antigens are found on many cell types that are important for the immune system. Proc Natl Acad Sci U S A 1991; 88:1359-63. [PMID: 1996336 PMCID: PMC51017 DOI: 10.1073/pnas.88.4.1359] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
B-G antigens are a polymorphic multigene family of cell surface molecules encoded by the chicken major histocompatibility complex (MHC). They have previously been described only on cells of the erythroid lineage. By using flow cytometry, section staining, and immunoprecipitation with monoclonal antibodies and rabbit antisera to B-G molecules and by using Northern blots with B-G cDNA clones, we demonstrate here that B-G molecules and RNA are present in many other cell types: thrombocytes, peripheral B and T lymphocytes, bursal B cells and thymocytes, and stromal cells in the bursa, thymus, and caecal tonsil of the intestine. The reactions also identify at least one polymorphic B-G determinant encoded by the B-F/B-L region of the chicken MHC. The serology and tissue distribution of B-G molecules are as complex as those of mammalian MHC class I and class II molecules. These facts, taken with certain functional data, lead us to suggest that B-G molecules have an important role in the selection of B cells in the chicken bursa.
Collapse
|