1
|
Schorn AJ, Martienssen R. Tie-Break: Host and Retrotransposons Play tRNA. Trends Cell Biol 2018; 28:793-806. [PMID: 29934075 DOI: 10.1016/j.tcb.2018.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 11/28/2022]
Abstract
tRNA fragments (tRFs) are a class of small, regulatory RNAs with diverse functions. 3'-Derived tRFs perfectly match long terminal repeat (LTR)-retroelements which use the 3'-end of tRNAs to prime reverse transcription. Recent work has shown that tRFs target LTR-retroviruses and -transposons for the RNA interference (RNAi) pathway and also inhibit mobility by blocking reverse transcription. The highly conserved tRNA primer binding site (PBS) in LTR-retroelements is a unique target for 3'-tRFs to recognize and block abundant but diverse LTR-retrotransposons that become transcriptionally active during epigenetic reprogramming in development and disease. 3'-tRFs are processed from full-length tRNAs under so far unknown conditions and potentially protect many cell types. tRFs appear to be an ancient link between RNAi, transposons, and genome stability.
Collapse
Affiliation(s)
- Andrea J Schorn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rob Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
2
|
Kim SH, Kong Y, Bae YA. Recurrent emergence of structural variants of LTR retrotransposon CsRn1 evolving novel expression strategy and their selective expansion in a carcinogenic liver fluke, Clonorchis sinensis. Mol Biochem Parasitol 2017; 214:14-26. [PMID: 28322871 DOI: 10.1016/j.molbiopara.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
Autonomous retrotransposons, in which replication and transcription are coupled, encode the essential gag and pol genes as a fusion or separate overlapping form(s) that are expressed in single transcripts regulated by a common upstream promoter. The element-specific expression strategies have driven development of relevant translational recoding mechanisms including ribosomal frameshifting to satisfy the protein stoichiometry critical for the assembly of infectious virus-like particles. Retrotransposons with different recoding strategies exhibit a mosaic distribution pattern across the diverse families of reverse transcribing elements, even though their respective distributions are substantially skewed towards certain family groups. However, only a few investigations to date have focused on the emergence of retrotransposons evolving novel expression strategy and causal genetic drivers of the structural variants. In this study, the bulk of genomic and transcribed sequences of a Ty3/gypsy-like CsRn1 retrotransposon in Clonorchis sinensis were analyzed for the comprehensive examination of its expression strategy. Our results demonstrated that structural variants with single open reading frame (ORF) have recurrently emerged from precedential CsRn1 copies encoding overlapping gag-pol ORFs by a single-nucleotide insertion in an upstream region of gag stop codon. In the parasite genome, some of the newly evolved variants appeared to undergo proliferative burst as active master lineages together with their ancestral copies. The genetic event was similarly observed in Opisthorchis viverrini, the closest neighbor of C. sinensis, whereas the resulting structural variants might have failed to overcome purifying selection and comprised minor remnant copies in the Opisthorchis genome.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Microbiology, College of Medicine, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Young-An Bae
- Department of Microbiology, College of Medicine, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
3
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
4
|
Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3. Viruses 2016; 8:v8070193. [PMID: 27428991 PMCID: PMC4974528 DOI: 10.3390/v8070193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation.
Collapse
|
5
|
Suresh S, Ahn HW, Joshi K, Dakshinamurthy A, Kananganat A, Garfinkel DJ, Farabaugh PJ. Ribosomal protein and biogenesis factors affect multiple steps during movement of the Saccharomyces cerevisiae Ty1 retrotransposon. Mob DNA 2015; 6:22. [PMID: 26664557 PMCID: PMC4673737 DOI: 10.1186/s13100-015-0053-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A large number of Saccharomyces cerevisiae cellular factors modulate the movement of the retrovirus-like transposon Ty1. Surprisingly, a significant number of chromosomal genes required for Ty1 transposition encode components of the translational machinery, including ribosomal proteins, ribosomal biogenesis factors, protein trafficking proteins and protein or RNA modification enzymes. RESULTS To assess the mechanistic connection between Ty1 mobility and the translation machinery, we have determined the effect of these mutations on ribosome biogenesis and Ty1 transcriptional and post-transcriptional regulation. Lack of genes encoding ribosomal proteins or ribosome assembly factors causes reduced accumulation of the ribosomal subunit with which they are associated. In addition, these mutations cause decreased Ty1 + 1 programmed translational frameshifting, and reduced Gag protein accumulation despite at least normal levels of Ty1 mRNA. Several ribosome subunit mutations increase the level of both an internally initiated Ty1 transcript and its encoded truncated Gag-p22 protein, which inhibits transposition. CONCLUSIONS Together, our results suggest that this large class of cellular genes modulate Ty1 transposition through multiple pathways. The effects are largely post-transcriptional acting at a variety of levels that may include translation initiation, protein stability and subcellular protein localization.
Collapse
Affiliation(s)
- Susmitha Suresh
- />Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, MD 21250 USA
- />Present address: Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California 94305 USA
| | - Hyo Won Ahn
- />Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Kartikeya Joshi
- />Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, MD 21250 USA
| | - Arun Dakshinamurthy
- />Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, MD 21250 USA
- />Present address: Department of Nanosciences and Technology, Karunya University, Karunya Nagar, Coimbatore, 641 114 Tamil Nadu India
| | - Arun Kananganat
- />Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, MD 21250 USA
| | - David J. Garfinkel
- />Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Philip J. Farabaugh
- />Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland Baltimore County, Baltimore, MD 21250 USA
| |
Collapse
|
6
|
The Ty1 Retrotransposon Restriction Factor p22 Targets Gag. PLoS Genet 2015; 11:e1005571. [PMID: 26451601 PMCID: PMC4599808 DOI: 10.1371/journal.pgen.1005571] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
A novel form of copy number control (CNC) helps maintain a low number of Ty1 retrovirus-like transposons in the Saccharomyces genome. Ty1 produces an alternative transcript that encodes p22, a trans-dominant negative inhibitor of Ty1 retrotransposition whose sequence is identical to the C-terminal half of Gag. The level of p22 increases with copy number and inhibits normal Ty1 virus-like particle (VLP) assembly and maturation through interactions with full length Gag. A forward genetic screen for CNC-resistant (CNCR) mutations in Ty1 identified missense mutations in GAG that restore retrotransposition in the presence of p22. Some of these mutations map within a predicted UBN2 domain found throughout the Ty1/copia family of long terminal repeat retrotransposons, and others cluster within a central region of Gag that is referred to as the CNCR domain. We generated multiple alignments of yeast Ty1-like Gag proteins and found that some Gag proteins, including those of the related Ty2 elements, contain non-Ty1 residues at multiple CNCR sites. Interestingly, the Ty2-917 element is resistant to p22 and does not undergo a Ty1-like form of CNC. Substitutions conferring CNCR map within predicted helices in Ty1 Gag that overlap with conserved sequence in Ty1/copia, suggesting that p22 disturbs a central function of the capsid during VLP assembly. When hydrophobic residues within predicted helices in Gag are mutated, Gag level remains unaffected in most cases yet VLP assembly and maturation is abnormal. Gag CNCR mutations do not alter binding to p22 as determined by co-immunoprecipitation analyses, but instead, exclude p22 from Ty1 VLPs. These findings suggest that the CNCR alleles enhance retrotransposition in the presence of p22 by allowing productive Gag-Gag interactions during VLP assembly. Our work also expands the strategies used by retroviruses for developing resistance to Gag-like restriction factors to now include retrotransposons. The presence of transposable elements in the eukaryotic genome threatens genomic stability and normal gene function, thus various defense mechanisms exist to silence element expression and target integration to benign locations in the genome. Even though the budding yeast Saccharomyces lacks many of the defense systems present in other eukaryotes, including RNAi, DNA methylation, and APOBEC3 proteins, they maintain low numbers of mobile elements in their genome. In the case of the Saccharomyces retrotransposon Ty1, a system called copy number control (CNC) helps determine the number of elements in the genome. Recently, we demonstrated that the mechanism of CNC relies on a trans-acting protein inhibitor of Ty1 expressed from the element itself. This protein inhibitor, called p22, impacts the replication of Ty1 as its copy number increases. To identify a molecular target of p22, mutagenized Ty1 was subjected to a forward genetic screen for CNC-resistance. Mutations in specific domains of Gag, including the UBN2 Gag motif and a novel region we have named the CNCR domain, confer CNCR by preventing the incorporation of p22 into assembling virus-like particles (VLPs), which restores maturation and completion of the Ty1 life cycle. The mechanism of Ty1 inhibition by p22 is conceptually similar to Gag-like restriction factors in mammals since they inhibit normal particle function. In particular, resistance to p22 and the enJS56A1 restriction factor of sheep involves exclusion of the restriction factor during particle assembly, although Ty1 CNCR achieves this in a way that is distinct from the Jaagsiekte retrovirus escape mutants. Our work introduces an intriguing variation on resistance mechanisms to retroviral restriction factors.
Collapse
|
7
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
8
|
Krastanova O, Hadzhitodorov M, Pesheva M. Ty Elements of the YeastSaccharomyces Cerevisiae. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
9
|
Risler JK, Kenny AE, Palumbo RJ, Gamache ER, Curcio MJ. Host co-factors of the retrovirus-like transposon Ty1. Mob DNA 2012; 3:12. [PMID: 22856544 PMCID: PMC3522557 DOI: 10.1186/1759-8753-3-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Long-terminal repeat (LTR) retrotransposons have complex modes of mobility involving reverse transcription of their RNA genomes in cytoplasmic virus-like particles (VLPs) and integration of the cDNA copies into the host genome. The limited coding capacity of retrotransposons necessitates an extensive reliance on host co-factors; however, it has been challenging to identify co-factors that are required for endogenous retrotransposon mobility because retrotransposition is such a rare event. RESULTS To circumvent the low frequency of Ty1 LTR-retrotransposon mobility in Saccharomyces cerevisiae, we used iterative synthetic genetic array (SGA) analysis to isolate host mutations that reduce retrotransposition. Query strains that harbor a chromosomal Ty1his3AI reporter element and either the rtt101Δ or med1Δ mutation, both of which confer a hypertransposition phenotype, were mated to 4,847 haploid ORF deletion strains. Retrotransposition was measured in the double mutant progeny, and a set of 275 ORF deletions that suppress the hypertransposition phenotypes of both rtt101Δ and med1Δ were identified. The corresponding set of 275 retrotransposition host factors (RHFs) includes 45 previously identified Ty1 or Ty3 co-factors. More than half of the RHF genes have statistically robust human homologs (E < 1 x 10-10). The level of unintegrated Ty1 cDNA in 181 rhfΔ single mutants was altered <2-fold, suggesting that the corresponding co-factors stimulate retrotransposition at a step after cDNA synthesis. However, deletion of 43 RHF genes, including specific ribosomal protein and ribosome biogenesis genes and RNA degradation, modification and transport genes resulted in low Ty1 cDNA levels. The level of Ty1 Gag but not RNA was reduced in ribosome biogenesis mutants bud21Δ, hcr1Δ, loc1Δ, and puf6Δ. CONCLUSION Ty1 retrotransposition is dependent on multiple co-factors acting at different steps in the replication cycle. Human orthologs of these RHFs are potential, or in a few cases, presumptive HIV-1 co-factors in human cells. RHF genes whose absence results in decreased Ty1 cDNA include characterized RNA metabolism and modification genes, consistent with their having roles in early steps in retrotransposition such as expression, nuclear export, translation, localization, or packaging of Ty1 RNA. Our results suggest that Bud21, Hcr1, Loc1, and Puf6 promote efficient synthesis or stability of Ty1 Gag.
Collapse
Affiliation(s)
- Jenni K Risler
- Laboratory of Molecular Genetics, Wadsworth Center, Albany, NY, 12201, USA.
| | | | | | | | | |
Collapse
|
10
|
BUD22 affects Ty1 retrotransposition and ribosome biogenesis in Saccharomyces cerevisiae. Genetics 2010; 185:1193-205. [PMID: 20498295 DOI: 10.1534/genetics.110.119115] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A variety of cellular factors affect the movement of the retrovirus-like transposon Ty1. To identify genes involved in Ty1 virus-like particle (VLP) function, the level of the major capsid protein (Gag-p45) and its proteolytic precursor (Gag-p49p) was monitored in a subset of Ty1 cofactor mutants. Twenty-nine of 87 mutants contained alterations in the level of Gag; however, only bud22Delta showed a striking defect in Gag processing. BUD22 affected the +1 translational frameshifting event required to express the Pol proteins protease, integrase, and reverse transcriptase. Therefore, it is possible that the bud22Delta mutant may not produce enough functional Ty1 protease to completely process Gag-p49 to p45. Furthermore, BUD22 is required for 18S rRNA processing and 40S subunit biogenesis and influences polysome density. Together our results suggest that BUD22 is involved in a step in ribosome biogenesis that not only affects general translation, but also may alter the frameshifting efficiency of ribosomes, an event central to Ty1 retrotransposition.
Collapse
|
11
|
Nyswaner KM, Checkley MA, Yi M, Stephens RM, Garfinkel DJ. Chromatin-associated genes protect the yeast genome from Ty1 insertional mutagenesis. Genetics 2008; 178:197-214. [PMID: 18202368 PMCID: PMC2206071 DOI: 10.1534/genetics.107.082602] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Accepted: 11/13/2007] [Indexed: 11/18/2022] Open
Abstract
Chromosomal genes modulate Ty retrotransposon movement in the genome of Saccharomyces cerevisiae. We have screened a collection of 4739 deletion mutants to identify those that increase Ty1 mobility (Ty1 restriction genes). Among the 91 identified mutants, 80% encode products involved in nuclear processes such as chromatin structure and function, DNA repair and recombination, and transcription. However, bioinformatic analyses encompassing additional Ty1 and Ty3 screens indicate that 264 unique genes involved in a variety of biological processes affect Ty mobility in yeast. Further characterization of 33 of the mutants identified here show that Ty1 RNA levels increase in 5 mutants and the rest affect mobility post-transcriptionally. RNA and cDNA levels remain unchanged in mutants defective in transcription elongation, including ckb2Delta and elf1Delta, suggesting that Ty1 integration may be more efficient in these strains. Insertion-site preference at the CAN1 locus requires Ty1 restriction genes involved in histone H2B ubiquitination by Paf complex subunit genes, as well as BRE1 and RAD6, histone H3 acetylation by RTT109 and ASF1, and transcription elongation by SPT5. Our results indicate that multiple pathways restrict Ty1 mobility and histone modifications may protect coding regions from insertional mutagenesis.
Collapse
Affiliation(s)
- Katherine M Nyswaner
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, Science Applications International Corporation, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | | | | | | | |
Collapse
|
12
|
S-phase checkpoint pathways stimulate the mobility of the retrovirus-like transposon Ty1. Mol Cell Biol 2007; 27:8874-85. [PMID: 17923678 DOI: 10.1128/mcb.01095-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mobility of the Ty1 retrotransposon in the yeast Saccharomyces cerevisiae is restricted by a large collection of proteins that preserve the integrity of the genome during replication. Several of these repressors of Ty1 transposition (Rtt)/genome caretakers are orthologs of mammalian retroviral restriction factors. In rtt/genome caretaker mutants, levels of Ty1 cDNA and mobility are increased; however, the mechanisms underlying Ty1 hypermobility in most rtt mutants are poorly characterized. Here, we show that either or both of two S-phase checkpoint pathways, the replication stress pathway and the DNA damage pathway, partially or strongly stimulate Ty1 mobility in 19 rtt/genome caretaker mutants. In contrast, neither checkpoint pathway is required for Ty1 hypermobility in two rtt mutants that are competent for genome maintenance. In rtt101delta mutants, hypermobility is stimulated through the DNA damage pathway components Rad9, Rad24, Mec1, Rad53, and Dun1 but not Chk1. We provide evidence that Ty1 cDNA is not the direct target of the DNA damage pathway in rtt101delta mutants; instead, levels of Ty1 integrase and reverse transcriptase proteins, as well as reverse transcriptase activity, are significantly elevated. We propose that DNA lesions created in the absence of Rtt/genome caretakers trigger S-phase checkpoint pathways to stimulate Ty1 reverse transcriptase activity.
Collapse
|
13
|
Wilhelm FX, Wilhelm M, Gabriel A. Reverse transcriptase and integrase of the Saccharomyces cerevisiae Ty1 element. Cytogenet Genome Res 2005; 110:269-87. [PMID: 16093680 DOI: 10.1159/000084960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022] Open
Abstract
Integrase (IN) and reverse transcriptase (RT) play a central role in transposition of retroelements. The mechanism of integration by IN and the steps of the replication process mediated by RT are briefly described here. Recently, active recombinant forms of Ty1 IN and RT have been obtained. This has allowed a more detailed understanding of their biochemical and structural properties and has made possible combined in vitro and in vivo analyses of their functions. A focus of this review is to discuss some of the results obtained thus far with these two recombinant proteins and to propose future directions.
Collapse
Affiliation(s)
- F-X Wilhelm
- Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France.
| | | | | |
Collapse
|
14
|
Dewannieux M, Dupressoir A, Harper F, Pierron G, Heidmann T. Identification of autonomous IAP LTR retrotransposons mobile in mammalian cells. Nat Genet 2004; 36:534-9. [PMID: 15107856 DOI: 10.1038/ng1353] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 03/22/2004] [Indexed: 11/09/2022]
Abstract
Mammalian genomes contain two main classes of retrotransposons, the well-characterized long and short interspersed nuclear elements, which account for approximately 30% of the genome, and the long terminal repeat (LTR) retrotransposons, which resemble the proviral integrated form of retroviruses, except for the absence of an envelope gene in some cases. Genetic studies confirmed mobility of the latter class of elements in mice, with a high proportion of phenotypic mutations consequent to transposition of the intracisternal A particle (IAP) family of LTR retrotransposons. Using the mouse genome sequence and an efficient ex vivo retrotransposition assay, we identified functional, master IAP copies that encode all the enzymatic and structural proteins necessary for their autonomous transposition in heterologous cells. By introducing mutations, we found that the three genes gag, prt and pol are all required for retrotransposition and identified the IAP gene products by electron microscopy in the form of intracellular A-type particles in the transfected cells. These prototypic elements, devoid of an envelope gene, are the first LTR retrotransposons autonomous for transposition to be identified in mammals. Their high rates of retrotransposition indicate that they are potent insertional mutagens that could serve as safe (noninfectious) genetic tools in a large panel of cells.
Collapse
Affiliation(s)
- Marie Dewannieux
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR8122 CNRS, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | |
Collapse
|
15
|
Meskauskas A, Harger JW, Jacobs KLM, Dinman JD. Decreased peptidyltransferase activity correlates with increased programmed -1 ribosomal frameshifting and viral maintenance defects in the yeast Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2003; 9:982-92. [PMID: 12869709 PMCID: PMC1240118 DOI: 10.1261/rna.2165803] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 05/22/2003] [Indexed: 05/20/2023]
Abstract
Increased efficiencies of programmed -1 ribosomal frameshifting in yeast cells expressing mutant forms of ribosomal protein L3 are unable to maintain the dsRNA "Killer" virus. Here we demonstrate that changes in frameshifting and virus maintenance in these mutants correlates with decreased peptidyltransferase activities. The mutants did not affect Ty1-directed programmed +1 ribosomal frameshifting or nonsense-mediated mRNA decay. Independent experiments demonstrate similar programmed -1 ribosomal frameshifting specific defects in cells lacking ribosomal protein L41, which has previously been shown to result in peptidyltransferase defects in yeast. These findings are consistent with the hypothesis that decreased peptidyltransferase activity should result in longer ribosome pause times after the accommodation step of the elongation cycle, allowing more time for ribosomal slippage at programmed -1 ribosomal frameshift signals.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
16
|
Stahl G, Ben Salem S, Li Z, McCarty G, Raman A, Shah M, Farabaugh PJ. Programmed +1 translational frameshifting in the yeast Saccharomyces cerevisiae results from disruption of translational error correction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:249-58. [PMID: 12762026 DOI: 10.1101/sqb.2001.66.249] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- G Stahl
- Department of Biological Sciences, Program in Molecular and Cell Biology, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Retrotransposition of the Ty1 element of Saccharomyces cerevisiae is temperature sensitive. Transposition activity of Ty1 is abolished at temperatures above 34 degrees C. In this report, we show that the major block to transposition at high temperature is the inhibition of processing of the Gag-Pol-p199 polyprotein and the concomitant reduction of reverse transcriptase (RT) activity. Expression of a Ty1 protease construct in Escherichia coli shows that protease enzymatic activity is inherently temperature sensitive. In yeast, Gag processing is only partially inhibited at high temperature, while cleavage of the Gag-Pol polyprotein is completely inhibited. Sites of proteolytic processing are differentially susceptible to cleavage during growth at high temperature. Overall levels of the Gag-Pol polyprotein are reduced at high temperature, although the efficiency of the requisite +1 frameshifting event appears to be increased. RT activity is inherently relatively temperature resistant, yet no cDNA is made at high temperature and the amount of RT activity is greatly reduced in virus-like particles formed at high temperature. Taken together, these results suggest that alterations in Ty1 proteins that occur at high temperature affect both protease activity and RT activity, such that Ty1 transposition is abolished.
Collapse
Affiliation(s)
- Joseph F Lawler
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
18
|
Lawler JF, Merkulov GV, Boeke JD. A nucleocapsid functionality contained within the amino terminus of the Ty1 protease that is distinct and separable from proteolytic activity. J Virol 2002; 76:346-54. [PMID: 11739699 PMCID: PMC135695 DOI: 10.1128/jvi.76.1.346-354.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ty1 is the most successful of the five endogenous yeast retrotransposons. The life cycle of Ty1 dictates that a number of nucleocapsid (NC)-facilitated events occur although the protein(s) responsible for these events has not been identified. The positioning of the NC peptide is conserved at the carboxy terminus of the Gag protein among most long terminal repeat (LTR)-containing retroelements. An analogous region of Ty1 that simultaneously encodes part of Gag, protease (PR), and the C-terminal p4 peptide was mutagenized. Some of these mutations result in smaller-than-normal virus-like particles (VLPs). The mutants were also found to impair an NC-like functionality contained within the amino terminus of the protease that is distinct and separable from its proteolytic activity. Remarkably, these mutants have distinct defects in reverse transcription.
Collapse
Affiliation(s)
- Joseph F Lawler
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
19
|
Bryk M, Banerjee M, Conte D, Curcio MJ. The Sgs1 helicase of Saccharomyces cerevisiae inhibits retrotransposition of Ty1 multimeric arrays. Mol Cell Biol 2001; 21:5374-88. [PMID: 11463820 PMCID: PMC87260 DOI: 10.1128/mcb.21.16.5374-5388.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ty1 retrotransposons in the yeast Saccharomyces cerevisiae are maintained in a genetically competent but transpositionally dormant state. When located in the ribosomal DNA (rDNA) locus, Ty1 elements are transcriptionally silenced by the specialized heterochromatin that inhibits rDNA repeat recombination. In addition, transposition of all Ty1 elements is repressed at multiple posttranscriptional levels. Here, we demonstrate that Sgs1, a RecQ helicase required for genome stability, inhibits the mobility of Ty1 elements by a posttranslational mechanism. Using an assay for the mobility of Ty1 cDNA via integration or homologous recombination, we found that the mobility of both euchromatic and rDNA-Ty1 elements was increased 32- to 79-fold in sgs1Delta mutants. Increased Ty1 mobility was not due to derepression of silent rDNA-Ty1 elements, since deletion of SGS1 reduced the mitotic stability of rDNA-Ty1 elements but did not stimulate their transcription. Furthermore, deletion of SGS1 did not significantly increase the levels of total Ty1 RNA, protein, or cDNA and did not alter the level or specificity of Ty1 integration. Instead, Ty1 cDNA molecules recombined at a high frequency in sgs1Delta mutants, resulting in transposition of heterogeneous Ty1 multimers. Formation of Ty1 multimers required the homologous recombination protein Rad52 but did not involve recombination between Ty1 cDNA and genomic Ty1 elements. Therefore, Ty1 multimers that transpose at a high frequency in sgs1Delta mutants are formed by intermolecular recombination between extrachromosomal Ty1 cDNA molecules before or during integration. Our data provide the first evidence that the host cell promotes retrotransposition of monomeric Ty1 elements by repressing cDNA recombination.
Collapse
Affiliation(s)
- M Bryk
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York at Albany, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
20
|
Irwin PA, Voytas DF. Expression and processing of proteins encoded by the Saccharomyces retrotransposon Ty5. J Virol 2001; 75:1790-7. [PMID: 11160677 PMCID: PMC114088 DOI: 10.1128/jvi.75.4.1790-1797.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroelements (retrotransposons and retroviruses) have two genes in common: gag, which specifies structural proteins that form a virus or virus-like particle, and pol, which specifies catalytic proteins required for replication. For many retroelements, gag and pol are present on separate reading frames. Their expression is highly regulated, and the ratio of Gag to Pol is critical for retroelement replication. The Saccharomyces retrotransposon Ty5 contains a single open reading frame, and we characterized Gag and Pol expression by generating transpositionally active Ty5 elements with epitope tags at the N terminus or C terminus or within the integrase coding region. Immunoblot analysis identified two Gag species (Gag-p27 and Gag-p37), reverse transcriptase (Pol-p59), and integrase (Pol-p80), all of which are largely insoluble in the absence of urea or ionic detergent. These proteins result from proteolytic processing of a polyprotein, because elements with mutations in the presumed active site of Ty5 protease express a single tagged protein (Gag-Pol-p182). Protease mutants are also transpositionally inactive. In a time course experiment, we monitored protein expression, proteolytic processing, and transposition of a Ty5 element with identical epitope tags at its N and C termini. Both transposition and the abundance of Gag-p27 increased over time. In contrast, the levels of Gag-p37 and reverse transcriptase peaked after approximately 14 h of induction and then gradually decreased. This may be due to differences in stability of Gag-p27 relative to Gag-p37 and reverse transcriptase. The ratio of Ty5 Gag to Pol averaged 5:1 throughout the time course experiment, suggesting that differential protein stability regulates the amounts of these proteins.
Collapse
Affiliation(s)
- P A Irwin
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011-3260, USA
| | | |
Collapse
|
21
|
Hudak KA, Hammell AB, Yasenchak J, Tumer NE, Dinman JD. A C-terminal deletion mutant of pokeweed antiviral protein inhibits programmed +1 ribosomal frameshifting and Ty1 retrotransposition without depurinating the sarcin/ricin loop of rRNA. Virology 2001; 279:292-301. [PMID: 11145910 DOI: 10.1006/viro.2000.0647] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein characterized by its ability to depurinate the sarcin/ricin (S/R) loop of the large rRNA of prokaryotic and eukaryotic ribosomes. Here, a series of PAP mutants were used to examine the relationship between depurination of the S/R loop and inhibition of +1 programmed ribosomal frameshifting (PRF) and to define PAP sequences critical for inhibition of +1 PRF and Ty1 retrotransposition in the yeast Saccharomyces cerevisiae. Using three different classes of mutants we present evidence that strong binding of a C-terminal PAP mutant (PAPc) to ribosomes is sufficient to inhibit +1 PRF and Ty1 retrotransposition in the absence of S/R loop depurination. PAPc did not affect the totivirus ScV-L-A and HIV-1-directed -1 PRF efficiencies or the ability of cells to maintain the M(1)-dependent killer phenotype, demonstrating the specificity of the effect of PAPc on +1 PRF.
Collapse
Affiliation(s)
- K A Hudak
- Biotechnology Center for Agriculture and the Environment and Department of Plant Pathology, Cook College, Rutgers University, New Brunswick, New Jersey, 08903-0231, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Rpb5-H147R is an AT-GC transition replacing CAC(His) by CGC(Arg) at a conserved and critical position of ABC27 (Rpb5p), one of the five common and essential subunits shared by all three eukaryotic RNA polymerases. This mutation is viable at 25 degrees C, but has a lethal phenotype at 34 degrees C. A search for dosage-dependent suppressors identified five distinct clones that all bear a copy of the tRNA(His)GUG gene. Suppression was also observed with a small genomic insert bearing this tRNA gene and no other coding sequences, under conditions where there is a sevenfold increase in the cellular concentration of tRNA(His)GUG. Overexpressing tRNA(Arg)ICG, which normally decodes the suppressed CGC codon, counteracted suppression. Suppression is codon specific because it was abolished when replacing CGC by its synonymous codons CGA, CGU, or AGA, but was not detectably affected by several nucleotide substitutions modifying the surrounding sequence and is thus largely insensitive to the nucleotide context. It is proposed that overexpressing tRNA(His)GUG extends its decoding properties from CAC(His) to the noncognate CGC(Arg) codon through an illegitimate U x G pairing at the middle base of the anticodon. Accordingly, tRNA(His)GUG would compete with tRNA(Arg)ICG for chain elongation and generate a significant level of misreading errors under normal growth conditions.
Collapse
Affiliation(s)
- F Navarro
- Service de Biochimie & Génétique Moléculaire, Gif sur Yvette, France
| | | |
Collapse
|
23
|
Hammell AB, Taylor RC, Peltz SW, Dinman JD. Identification of Putative Programmed −1 Ribosomal Frameshift Signals in Large DNA Databases. Genome Res 1999. [DOI: 10.1101/gr.9.5.417] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cis-acting elements that promote efficient ribosomal frameshifting in the −1 (5′) direction have been well characterized in several viral systems. Results from many studies have convincingly demonstrated that the basic molecular mechanisms governing programmed −1 ribosomal frameshifting are almost identical from yeast to humans. We are interested in testing the hypothesis that programmed −1 ribosomal frameshifting can be used to control cellular gene expression. Toward this end, a computer program was designed to search large DNA databases for consensus −1 ribosomal frameshift signals. The results demonstrated that consensus programmed −1 ribosomal frameshift signals can be identified in a substantial number of chromosomally encoded mRNAs and that they occur with frequencies from two- to sixfold greater than random in all of the databases searched. A preliminary survey of the databases resulting from the computer searches found that consensus frameshift signals are present in at least 21 homologous genes from different species, 2 of which are nearly identical, suggesting evolutionary conservation of function. We show that four previously described missense alleles of genes that are linked to human diseases would disrupt putative programmed −1 ribosomal frameshift signals, suggesting that the frameshift signal may be involved in the normal expression of these genes. We also demonstrate that signals found in the yeastRAS1 and the human CCR5 genes were able to promote significant levels of programmed −1 ribosomal frameshifting. The significance of these frameshifting signals in controlling gene expression is not known, however.
Collapse
|
24
|
Hammell AB, Taylor RC, Peltz SW, Dinman JD. Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases. Genome Res 1999; 9:417-27. [PMID: 10330121 PMCID: PMC310776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The cis-acting elements that promote efficient ribosomal frameshifting in the -1 (5') direction have been well characterized in several viral systems. Results from many studies have convincingly demonstrated that the basic molecular mechanisms governing programmed -1 ribosomal frameshifting are almost identical from yeast to humans. We are interested in testing the hypothesis that programmed -1 ribosomal frameshifting can be used to control cellular gene expression. Toward this end, a computer program was designed to search large DNA databases for consensus -1 ribosomal frameshift signals. The results demonstrated that consensus programmed -1 ribosomal frameshift signals can be identified in a substantial number of chromosomally encoded mRNAs and that they occur with frequencies from two- to sixfold greater than random in all of the databases searched. A preliminary survey of the databases resulting from the computer searches found that consensus frameshift signals are present in at least 21 homologous genes from different species, 2 of which are nearly identical, suggesting evolutionary conservation of function. We show that four previously described missense alleles of genes that are linked to human diseases would disrupt putative programmed -1 ribosomal frameshift signals, suggesting that the frameshift signal may be involved in the normal expression of these genes. We also demonstrate that signals found in the yeast RAS1 and the human CCR5 genes were able to promote significant levels of programmed -1 ribosomal frameshifting. The significance of these frameshifting signals in controlling gene expression is not known, however.
Collapse
Affiliation(s)
- A B Hammell
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey (UMDNJ), Robert Wood Johnson Medical School, and The Graduate Programs in Molecular Bioscience Rutgers/UMDNJ, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
26
|
Ivanov IP, Gesteland RF, Matsufuji S, Atkins JF. Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly +1 in fission yeast, but -2 in budding yeast. RNA (NEW YORK, N.Y.) 1998; 4:1230-1238. [PMID: 9769097 PMCID: PMC1369695 DOI: 10.1017/s1355838298980864] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The coding sequence for mammalian ornithine decarboxylase antizyme is in two different partially overlapping reading frames with no independent ribosome entry to the second ORF. Immediately before the stop codon of the first ORF, a proportion of ribosomes undergo a quadruplet translocation event to shift to the +1 reading frame of the second and main ORF. The proportion that frameshifts is dependent on the polyamine level and, because the product antizyme is a negative regulator of intracellular polyamine levels, the frameshifting acts to complete an autoregulatory circuit by sensing polyamine levels. An mRNA element just 5' of the shift site and a 3' pseudoknot are important for efficient frameshifting. Previous work has shown that a cassette with the mammalian shift site and associated signals directs efficient shifting in the budding yeast Saccharomyces cerevisiae at the same codon to the correct frame, but that the shift is -2 instead of +1. The product contains an extra amino acid corresponding to the shift site. The present work shows efficient frameshifting also occurs in the fission yeast, Schizosaccharomyces pombe. This frameshifting is 80% +1 and 20% -2. The response of S. pombe translation apparatus to the mammalian antizyme recoding signals is more similar to that of the mammalian system than to that of S. cerevisiae. S. pombe provides a good model system for genetic studies on the mechanism of at least this type of programmed mammalian frameshifting.
Collapse
Affiliation(s)
- I P Ivanov
- Department of Human Genetics, University of Utah, Salt Lake City 84112-5330, USA
| | | | | | | |
Collapse
|
27
|
Hung M, Patel P, Davis S, Green SR. Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication. J Virol 1998; 72:4819-24. [PMID: 9573247 PMCID: PMC110024 DOI: 10.1128/jvi.72.6.4819-4824.1998] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
The recent development and use of protease inhibitors have demonstrated the essential role that combination therapy will play in the treatment of individuals infected with the human immunodeficiency virus type 1 (HIV-1). Past clinical experience suggests that due to the appearance of resistant HIV-1 variants, additional therapeutics will be required in the future. To identify new options for combination therapy, it is of paramount importance to pursue novel targets for drug development. Ribosomal frameshifting is one potential target that has not been fully explored. Data presented here demonstrate that small molecules can stimulate frameshifting, leading to an imbalance in the ratio of Gag to Gag-Pol and inhibiting HIV-1 replication at what appears to be the point of viral particle assembly. Thus, we propose that frameshifting represents a new target for the identification of novel anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- M Hung
- RiboGene Inc., Hayward, California 94545, USA
| | | | | | | |
Collapse
|
28
|
Dinman JD, Ruiz-Echevarria MJ, Peltz SW. Translating old drugs into new treatments: ribosomal frameshifting as a target for antiviral agents. Trends Biotechnol 1998; 16:190-6. [PMID: 9586242 PMCID: PMC7127214 DOI: 10.1016/s0167-7799(97)01167-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Programmed ribosomal frameshifting is used by many viruses to regulate the production of structural and enzymatic proteins. Altering the frameshifting efficiencies disrupts the virus life cycle and eliminates or reduces virus production. Ribosomal frameshifting therefore provides a unique target on which antiviral agents can function. This article describes a series of rapid assay strategies that have been developed and used to identify potential antiviral agents that target programmed -1 ribosomal frameshifting.
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Molecular Genetics and Microbiology, and the Graduate Program in Molecular Biosciences, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Maria J Ruiz-Echevarria
- Department of Molecular Genetics and Microbiology, and the Graduate Program in Molecular Biosciences, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Stuart W Peltz
- Department of Molecular Genetics and Microbiology, and the Graduate Program in Molecular Biosciences, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
Labudova O, Lubec G. cAMP upregulates the transposable element mys-1: a possible link between signaling and mobile DNA. Life Sci 1998; 62:431-7. [PMID: 9449233 DOI: 10.1016/s0024-3205(97)01136-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mys represents one of the many families of transposable elements abundant in the mammalian genome. Transposable elements (transposons, retrotransposons, Tr) are best described as "mobile DNA". Mechanisms for the transposition process have been well-described and recently two human Tr have been identified as the progenitors of disease producing insertions. A functional role, however, has never been proposed. Studying overexpression of genes induced by cAMP using the technique of subtractive hybridization, a clone Sch. p15 was isolated and sequenced. Computer assisted analysis of the sequence revealed strong homology to mys-1. In a parallel clone cAMP related and cAMP inducible genes were found by this technique. The fact that a mammalian Tr is modulated by the cell's signalling / second messenger system made us hypothesize that transposition may well be under physiological control and that Tr may play physiological roles as e.g. rearranging, reshuffling or programmed erasing of genes. Although methodologically sound, the interpretation of our data remains hypothetical due to the absence of any previous studies on transposition function in eukaryotes.
Collapse
Affiliation(s)
- O Labudova
- University of Vienna, Dpt of Pediatrics, Austria
| | | |
Collapse
|
30
|
Tumer NE, Parikh BA, Li P, Dinman JD. The pokeweed antiviral protein specifically inhibits Ty1-directed +1 ribosomal frameshifting and retrotransposition in Saccharomyces cerevisiae. J Virol 1998; 72:1036-42. [PMID: 9444997 PMCID: PMC124575 DOI: 10.1128/jvi.72.2.1036-1042.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Programmed ribosomal frameshifting is a molecular mechanism that is used by many RNA viruses to produce Gag-Pol fusion proteins. The efficiency of these frameshift events determines the ratio of viral Gag to Gag-Pol proteins available for viral particle morphogenesis, and changes in ribosomal frameshift efficiencies can severely inhibit virus propagation. Since ribosomal frameshifting occurs during the elongation phase of protein translation, it is reasonable to hypothesize that agents that affect the different steps in this process may also have an impact on programmed ribosomal frameshifting. We examined the molecular mechanisms governing programmed ribosomal frameshifting by using two viruses of the yeast Saccharomyces cerevisiae. Here, we present evidence that pokeweed antiviral protein (PAP), a single-chain ribosomal inhibitory protein that depurinates an adenine residue in the alpha-sarcin loop of 25S rRNA and inhibits translocation, specifically inhibits Ty1-directed +1 ribosomal frameshifting in intact yeast cells and in an in vitro assay system. Using an in vivo assay for Ty1 retrotransposition, we show that PAP specifically inhibits Ty1 retrotransposition, suggesting that Ty1 viral particle morphogenesis is inhibited in infected cells. PAP does not affect programmed -1 ribosomal frameshift efficiencies, nor does it have a noticeable impact on the ability of cells to maintain the M1-dependent killer virus phenotype, suggesting that -1 ribosomal frameshifting does not occur after the peptidyltransferase reaction. These results provide the first evidence that PAP has viral RNA-specific effects in vivo which may be responsible for the mechanism of its antiviral activity.
Collapse
Affiliation(s)
- N E Tumer
- Center for Agricultural Molecular Biology, and Department of Plant Pathology, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231, USA
| | | | | | | |
Collapse
|
31
|
Brachmann CB, Boeke JD. Mapping the multimerization domains of the Gag protein of yeast retrotransposon Ty1. J Virol 1997; 71:812-7. [PMID: 8985422 PMCID: PMC191123 DOI: 10.1128/jvi.71.1.812-817.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The two-hybrid system was used to define regions of the Ty1 Gag protein responsible for multimerization. Gag truncations lacking the first 146 or the last 97 amino acids (Gag is 440 amino acids in length) interact. A severely C-terminally truncated molecule (lacking the last 207 amino acids) was the smallest truncation to interact, suggesting that some protein-protein interactions between Gag molecules are mediated through the first 233 amino acids. However, an internal deletion of amino acids 147 to 233 does not abolish Gag-Gag interaction, indicating that more than one region can mediate Gag interaction. Surprisingly, we found that a truncation lacking the last 97 amino acids interacts with itself but not with full-length Gag. This is apparently due to an artifact of the two-hybrid assay, since these same molecules coassemble with wild-type Gag into Ty1 virus-like particles.
Collapse
Affiliation(s)
- C B Brachmann
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
32
|
Luschnig C, Bachmair A. RNA packaging of yeast retrotransposon Ty1 in the heterologous host, Escherichia coli. Biol Chem 1997; 378:39-46. [PMID: 9049063 DOI: 10.1515/bchm.1997.378.1.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Expression of components of the yeast retrotransposon Ty1 in E. coli was used to study early steps of retrotransposition. We find that polypeptides encompassing the capsid-forming component of Ty1 can assemble into particles in the heterologous host. Ty RNA can be detected in particle fractions. RNA packaging depends on features in the 5' part of Ty RNA, because deletion of 5' proximal sequences leads to decreased packaging efficiency. Protein domains required for the RNA packaging process reside between amino acids 146 and 394 of the capsid protein. The data presented also indicate that several early steps in the Ty1 life cycle can occur in a cellular environment which differs from yeast cytoplasm, supporting the notion that these steps are independent of host factors.
Collapse
Affiliation(s)
- C Luschnig
- Department of Cytology and Genetics, University of Vienna, Austria
| | | |
Collapse
|
33
|
Abstract
Saccharomyces cerevisiae is host to the dsRNA viruses L-A (including its killer toxin-encoding satellite, M) and L-BC, the 20S and 23S ssRNA replicons, and the putative prions, [URE3] and [PSI]. review the genetic and biochemical evidence indicating that [URE3] and [PSI] are prion forms of Ure2p and Sup35p, respectively. Each has an N-terminal domain involved in propagation or generation of the prion state and a C-terminal domain responsible for the protein's normal function, nitrogen regulation, or translation termination, respectively. The L-A dsRNA virus expression, replication, and RNA packaging are reviewed. L-A uses a -1 ribosomal frameshift to produce a Gag-Pol fusion protein. The host SK12, SK13 and SK18 proteins block translation of nonpoly(A) mRNAs (such as viral mRNA). Mutants deficient in 60S ribosomal subunits replicate L-A poorly, but not if cells are also ski-. Interaction of 60S subunits with the 3' polyA is suggested. SKI1/XRN1 is a 5'--> 3' exoribonuclease that degrades uncapped mRNAs. The viral Gag protein decapitates cellular mRNAs apparently to decoy this enzyme from working on viral mRNA.
Collapse
Affiliation(s)
- R B Wickner
- National Institute of Diabetes, Digestive and Kidney Disease, National Institute of Health, Bethesda, Maryland 20892-0830, USA
| |
Collapse
|
34
|
Matsufuji S, Matsufuji T, Wills NM, Gesteland RF, Atkins JF. Reading two bases twice: mammalian antizyme frameshifting in yeast. EMBO J 1996; 15:1360-70. [PMID: 8635469 PMCID: PMC450040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Programmed translational frameshifting is essential for the expression of mammalian ornithine decarboxylase antizyme, a protein involved in the regulation of intracellular polyamines. A cassette containing antizyme frameshift signals is found to direct high-level (16%) frameshifting in yeast, Saccharomyces cerevisiae. In contrast to +1 frameshifting in the mammalian system, in yeast the same frame is reached by -2 frameshifting. Two bases are read twice. The -2 frameshifting is likely to be mediated by slippage of mRNA and re-pairing with the tRNA in the P-site. The downstream pseudoknot stimulates frameshifting by 30-fold compared with 2.5-fold in reticulocyte lysates. When the length of the spacer between the shift site and the pseudoknot is extended by three nucleotides, +1 and -2 frameshifting become equal.
Collapse
Affiliation(s)
- S Matsufuji
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, 84112, USA
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- R B Wickner
- Section on Genetics of Simple Eukaryotes, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892-0830, USA.
| |
Collapse
|
36
|
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA.
| |
Collapse
|
37
|
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA.
| |
Collapse
|
38
|
Atwood A, Lin JH, Levin HL. The retrotransposon Tf1 assembles virus-like particles that contain excess Gag relative to integrase because of a regulated degradation process. Mol Cell Biol 1996; 16:338-46. [PMID: 8524313 PMCID: PMC231008 DOI: 10.1128/mcb.16.1.338] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The retrotransposon Tf1, isolated from Schizosaccharomyces pombe, contains a single open reading frame with sequences encoding Gag, protease, reverse transcriptase, and integrase (IN). Tf1 has previously been shown to possess significant transposition activity. Although Tf1 proteins do assemble into virus-like particles, the assembly does not require readthrough of a translational reading frame shift or stop codon, common mechanisms used by retroelements to express Gag in molar excess of the polymerase proteins. This study was designed to determine if Tf1 particles contain equal amounts of Gag and polymerase proteins or whether they contain the typical molar excess of Gag. After using two separate methods to calibrate the strength of our antibodies, we found that both S. pombe extracts and partially purified Tf1 particles contained a 26-fold molar excess of Gag relative to IN. Knowing that Gag and IN are derived from the same Tf1 primary translation product, we concluded that the excess Gag most likely resulted from specific degradation of IN. We obtained evidence of regulated IN degradation in comparisons of Tf1 protein extracted from log-phase cells and that extracted from stationary-phase cells. The log-phase cells contained equal molar amounts of Gag and IN, whereas cells approaching stationary phase rapidly degraded IN, leaving an excess of Gag. Analysis of the reverse transcripts indicated that the bulk of reverse transcription occurred within the particles that possess a molar excess of Gag.
Collapse
Affiliation(s)
- A Atwood
- Laboratory of Molecular Genetics, National Institutes of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
39
|
Sandmeyer SB, Menees TM. Morphogenesis at the retrotransposon-retrovirus interface: gypsy and copia families in yeast and Drosophila. Curr Top Microbiol Immunol 1996; 214:261-96. [PMID: 8791731 DOI: 10.1007/978-3-642-80145-7_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S B Sandmeyer
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717, USA
| | | |
Collapse
|
40
|
Abstract
Proper maintenance of translational reading frame by ribosomes is essential for cell growth and viability. In the last 10 years it has been shown that a number of viruses induce ribosomes to shift reading frame in order to regulate the expression of gene products having enzymatic functions. Studies on ribosomal frameshifting in viruses of yeast have been particularly enlightening. The roles of viral mRNA sequences and secondary structures have been elucidated and a picture of how these interact with host chromosomal gene products is beginning to emerge. The efficiency of ribosomal frameshifting is important for viral particle assembly, and has identified ribosomal frameshifting as a potential target for antiviral agents. The availability of mutants of host chromosomal gene products involved in maintaining the efficiency of ribosomal frameshifting bodes well for the use of yeast in future studies of ribosomal frameshifting.
Collapse
Affiliation(s)
- J D Dinman
- Section on Genetics of Simple Eukaryotes, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Abstract
Chromosomal mutants (maintenance of frame = mof) in which the efficiency of -1 ribosomal frameshifting is increased can be isolated using constructs in which lacZ expression is dependent upon a -1 shift of reading frame. We isolate a new mof mutation, mof9, in Saccharomyces cerevisiae and show that it is complemented by both single and multi-copy 5 S rDNA clones. Two independent insertion mutations in the rDNA locus (rDNA::LEU2 and rDNA::URA3) also display the Mof- phenotype and are also complemented by single and multi-copy 5 S rDNA clones. Mutant 5 S rRNAs expressed from a plasmid as 20-50% of total 5 S rRNA in a wild-type host also induced the Mof- phenotype. The increase in frameshifting is greatest when the lacZ reporter gene is expressed on a high copy, episomal vector. No differences were found in 5 S rRNA copy number or electrophoretic mobilities in mof9 strains. Both mof9 and rDNA::LEU2 increase the efficiency of +1 frameshifting as well but have no effect on readthrough of UAG or UAA termination codons, indicating that not all translational specificity is affected. These data suggest a role for 5 S rRNA in the maintenance of frame in translation.
Collapse
Affiliation(s)
- J D Dinman
- Section on Genetics of Simple Eukaryotes, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
42
|
Farabaugh PJ. Post-transcriptional regulation of transposition by Ty retrotransposons of Saccharomyces cerevisiae. J Biol Chem 1995; 270:10361-4. [PMID: 7737964 DOI: 10.1074/jbc.270.18.10361] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA
| |
Collapse
|
43
|
Balasundaram D, Dinman JD, Tabor CW, Tabor H. SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae. J Bacteriol 1994; 176:7126-8. [PMID: 7961484 PMCID: PMC197094 DOI: 10.1128/jb.176.22.7126-7128.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously showed that a mutant of Saccharomyces cerevisiae, which cannot make spermidine as a result of a deletion in the SPE2 gene (spe2 delta), exhibits a marked elevation in +1 ribosomal frameshifting efficiency in response to the Ty1 frameshift sequence, CUU AGG C. In the present study, we found that spermidine deprivation alone does not result in increased +1 ribosomal frameshifting efficiency. The high level of +1 ribosomal frameshifting efficiency in spe2 delta cells is the result of the combined effects of both spermidine deprivation and the large increase in the level of intracellular putrescine resulting from the derepression of the gene for ornithine decarboxylase (SPE1) in spermidine-deficient strains.
Collapse
Affiliation(s)
- D Balasundaram
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892-0830
| | | | | | | |
Collapse
|
44
|
Abstract
Mutations within the TYB gene of Ty1 encoding integrase (IN) as well as alterations in its substrate, a linear DNA molecule, were examined for their effects on in vitro IN activity, using a recently developed physical assay. Five different codon-insertion mutations, two frameshift mutations, and one missense mutation, previously identified as transposition-deficient mutations, were tested. Virus-like particles, the source of IN, from two different protease mutants and a reverse transcriptase mutant exhibited near-normal to normal IN activity. Two frameshift mutations mapping within the phylogenetically variable C-terminal domain of IN resulted in significant in vitro IN activity. In contrast, three mutations within the amino-terminal conserved domain of IN completely abolished IN activity. When the substrate termini were mutated, we found that substrates with as few as 4 bp of Ty1 termini were capable of efficiently generating integration products. Surprisingly, certain substrates that lacked obvious similarity to Ty1 termini were also readily integrated into both linear and circular targets, whereas others were not used as substrates at all. Termini rich in adenosine residues were among the more active substrates; however, certain substrates lacking terminal adenosine residues can form small quantities of integration products, including complete integration reactions.
Collapse
|
45
|
Pélisson A, Song SU, Prud'homme N, Smith PA, Bucheton A, Corces VG. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J 1994; 13:4401-11. [PMID: 7925283 PMCID: PMC395367 DOI: 10.1002/j.1460-2075.1994.tb06760.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Gypsy displays striking similarities to vertebrate retroviruses, including the presence of a yet uncharacterized additional open reading frame (ORF3) and the recent evidence for infectivity. It is mobilized with high frequency in the germline of the progeny of females homozygous for the flamenco permissive mutation. We report the characterization of a gypsy subgenomic ORF3 RNA encoding typical retroviral envelope proteins. In females, env expression is strongly repressed by one copy of the non-permissive allele of flamenco. A less dramatic reduction in the accumulation of other transcripts and retrotranscripts is also observed. These effects correlate well with the inhibition of gypsy transposition in the progeny of these females, and are therefore likely to be responsible for this phenomenon. The effects of flamenco on gypsy expression are apparently restricted to the somatic follicle cells that surround the maternal germline. Moreover, permissive follicle cells display a typically polarized distribution of gypsy RNAs and envelope proteins, both being mainly accumulated at the apical pole, close to the oocyte. We propose a model suggesting that gypsy germinal transposition might occur only in individuals that have maternally inherited enveloped gypsy particles due to infection of the maternal germline by the soma.
Collapse
Affiliation(s)
- A Pélisson
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Mutations within the TYB gene of Ty1 encoding integrase (IN) as well as alterations in its substrate, a linear DNA molecule, were examined for their effects on in vitro IN activity, using a recently developed physical assay. Five different codon-insertion mutations, two frameshift mutations, and one missense mutation, previously identified as transposition-deficient mutations, were tested. Virus-like particles, the source of IN, from two different protease mutants and a reverse transcriptase mutant exhibited near-normal to normal IN activity. Two frameshift mutations mapping within the phylogenetically variable C-terminal domain of IN resulted in significant in vitro IN activity. In contrast, three mutations within the amino-terminal conserved domain of IN completely abolished IN activity. When the substrate termini were mutated, we found that substrates with as few as 4 bp of Ty1 termini were capable of efficiently generating integration products. Surprisingly, certain substrates that lacked obvious similarity to Ty1 termini were also readily integrated into both linear and circular targets, whereas others were not used as substrates at all. Termini rich in adenosine residues were among the more active substrates; however, certain substrates lacking terminal adenosine residues can form small quantities of integration products, including complete integration reactions.
Collapse
Affiliation(s)
- L T Braiterman
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
47
|
Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control. Mol Cell Biol 1994. [PMID: 8264629 DOI: 10.1128/mcb.14.1.606] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translational control of the GCN4 gene involves two short open reading frames in the mRNA leader (uORF1 and uORF4) that differ greatly in the ability to allow reinitiation at GCN4 following their own translation. The low efficiency of reinitiation characteristic of uORF4 can be reconstituted in a hybrid element in which the last codon of uORF1 and 10 nucleotides 3' to its stop codon (the termination region) are substituted with the corresponding nucleotides from uORF4. To define the features of these 13 nucleotides that determine their effects on reinitiation, we separately randomized the sequence of the third codon and termination region of the uORF1-uORF4 hybrid and selected mutant alleles with the high-level reinitiation that is characteristic of uORF1. The results indicate that many different A+U-rich triplets present at the third codon of uORF1 can overcome the inhibitory effect of the termination region derived from uORF4 on the efficiency of reinitiation at GCN4. Efficient reinitiation is not associated with codons specifying a particular amino acid or isoacceptor tRNA. Similarly, we found that a diverse collection of A+U-rich sequences present in the termination region of uORF1 could restore efficient reinitiation at GCN4 in the presence of the third codon derived from uORF4. To explain these results, we propose that reinitiation can be impaired by stable base pairing between nucleotides flanking the uORF1 stop codon and either the tRNA which pairs with the third codon, the rRNA, or sequences located elsewhere in GCN4 mRNA. We suggest that these interactions delay the resumption of scanning following peptide chain termination at the uORF and thereby lead to ribosome dissociation from the mRNA.
Collapse
|
48
|
Balasundaram D, Dinman JD, Wickner RB, Tabor CW, Tabor H. Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty1 retrotransposition in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1994; 91:172-6. [PMID: 8278359 PMCID: PMC42908 DOI: 10.1073/pnas.91.1.172] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Polyamines have been implicated in nucleic acid-related functions and in protein biosynthesis. RNA sequences that specifically direct ribosomes to shift reading frame in the -1 and +1 directions may be used to probe the mechanisms controlling translational fidelity. We examined the effects of spermidine on translational fidelity by an in vivo assay in which changes in beta-galactosidase activity are dependent on yeast retrovirus Ty +1 and yeast double-stranded RNA virus L-A -1 ribosomal frameshifting signals. In spe2 delta mutants of Saccharomyces cerevisiae, which cannot make spermidine as a result of a deletion in the SPE2 gene, there is a marked elevation in +1 but no change in -1 ribosomal frameshifting. The increase in +1 ribosomal frameshifting efficiency is accompanied by a striking decrease in Ty1 retrotransposition.
Collapse
Affiliation(s)
- D Balasundaram
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
49
|
Dinman JD, Wickner RB. Translational maintenance of frame: mutants of Saccharomyces cerevisiae with altered -1 ribosomal frameshifting efficiencies. Genetics 1994; 136:75-86. [PMID: 8138178 PMCID: PMC1205794 DOI: 10.1093/genetics/136.1.75] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A special site on the (+) strand of the L-A dsRNA virus induces about 2% of ribosomes translating the gag open reading frame to execute a -1 frameshift and thus produce the viral gag-pol fusion protein. Using constructs in which a -1 ribosomal frameshift at this site was necessary for expression of lacZ we isolated chromosomal mutants in which the efficiency of frameshifting was increased. These mutants comprise eight genes, named mof (maintenance of frame). The mof1-1, mof2-1, mof4-1, mof5-1 and mof6-1 strains cannot maintain M1 dsRNA at 30 degrees, but, paradoxically, do not lose L-A. The mof2-1, mof5-1 and mof6-1 strains are temperature sensitive for growth at 37 degrees, and all three show striking cell cycle phenotypes. The mof2-1 strains arrest with mother and daughter cells almost equal in size, mof5-1 arrests with multiple buds and mof6-1 arrests as single large unbudded cells. mof2-1 and mof5-1 strains are also Pet-. The mof mutations show differential effects on various frameshifting signals.
Collapse
Affiliation(s)
- J D Dinman
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
50
|
Fu C, Parker J. A ribosomal frameshifting error during translation of the argI mRNA of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:434-41. [PMID: 7515462 PMCID: PMC7087753 DOI: 10.1007/bf00280474] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using fusions between the Escherichia coli genes argI and lacZ, it has been demonstrated that ribosomal frameshifting occurs at a frequency of between 3% and 16% within the argI mRNA, soon after the initiation codon. The frameshift involves a phenylalanyl-tRNA shifting into the +1 frame at the sequence UUU-U/C. The shift does not occur if the in-frame phenylalanine codon UUU is replaced by UUC. The level of frameshifting is higher in dense cultures and is not dependent on phenylalanine starvation. In the wild-type argI gene this frameshifting event would be an error, leading to a truncated, non-functional protein. Therefore, it is unlike the numerous examples of required frameshifting events that have been described in other genes.
Collapse
Affiliation(s)
- C Fu
- Department of Microbiology, Southern Illinois University, Carbondale 62901
| | | |
Collapse
|