1
|
Rau KK, Harrison BJ, Venkat G, Petruska SE, Taylor B, Hill CE, Petruska JC. Tissue damage-induced axon injury-associated responses in sensory neurons: requirements, prevention, and potential role in persistent post-surgical pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637320. [PMID: 39990499 PMCID: PMC11844497 DOI: 10.1101/2025.02.11.637320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Pain resulting from tissue damage, including surgical incision, is often only partially responsive to standard treatments focusing on inflammation, suggesting additional mechanisms are involved. Tissue damage leads to expression in dorsal root ganglion (DRG) sensory neurons of genes associated with axonal injury and regeneration, most notably activating transcription factor 3 (ATF3) and GAP-43. ATF3 expression is associated with sensitization of cellular physiology and enhanced amplitude/duration of a nociceptive reflex. It is unclear how tissue damage leads to these changes in the sensory neurons, but it could include direct damage to the tissue-innervating axons and inflammation-associated retrograde biochemical signalling. Using the CTM reflex to map innervation fields, we examined the necessity and sufficiency of incision, inflammation, and axonal conduction for induction of ATF3 in response to skin incision. Incision outside the innervation field, but close enough to induce inflammation inside the innervation field, was not sufficient to induce ATF3 expression in the field-innervating DRG. Incision inside the innervation field led to strong expression of ATF3. Anti-inflammatory treatments did not prevent this induction of ATF3. In rodent models of repeated injury - a major etiological factor for chronic pain - ATF3 expression was synergistically-increased and the threshold for paw-withdrawal to mechanical stimulation was significantly decreased for an extended duration. Together, these results suggest that actual damage to axons innervating the skin is both necessary and sufficient for induction of ATF3, expression of which appears additionally increased by repeated injury. Further, pre-treatment of the nerves innervating the incised skin with bupivacaine, a local anesthetic commonly used to reduce surgical pain, did not prevent induction of ATF3, indicating that conduction of action potentials is not necessary for induction of ATF3. We also determined that closure of incision with surgical glue significantly reduced incision-induced expression of GAP-43. Intriguingly, treatment with polyethylene glycol (PEG), known to enhance membrane integrity after injury among other effects, reduced incision-associated ATF3 expression and electrophysiological changes. These results suggest that pain resulting from tissue damage may arise from a mix of ATF3-/axonal-damage-associated mechanism as well as ATF3-independent inflammation-related mechanisms and therefore require a mix of approaches to achieve more complete control.
Collapse
|
2
|
Bendale GS, Azdell A, Miller J, Isaacs JE. Microhook Nerve Connector-Assisted Polyethylene Glycol Fusion for Immediate Restoration of Axon Continuity in a Rodent Model. J Hand Surg Am 2025:S0363-5023(25)00127-3. [PMID: 40257413 DOI: 10.1016/j.jhsa.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/21/2025] [Accepted: 03/02/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE The purpose of the study was to test the efficacy of polyethylene glycol (PEG) fusion in restoring axon continuity when repaired with a microhook nerve connector (MNC) coaptation aid versus conventional microsutures. Our hypothesis was that the MNC would provide precise nerve alignment and stable coaptation and would support a higher percentage of axon fusion. METHODS In a rodent sciatic nerve model, transected nerves were either repaired with microsutures only (n = 12), microsutures with PEG (n = 12), or a MNC with PEG (n = 12). At initial surgery, PEG fusion was confirmed using electrophysiology. For 3 weeks, gait videos were used to calculate the sciatic function index. At the end of 3 weeks, compound muscle action potentials and muscle strength data were obtained. In a subset of animals, retrograde labeling was performed distal to the repair site and used to confirm successful axon fusion. RESULTS Polyethylene glycol fusion was confirmed in all animals from the two PEG groups. At 3 weeks, the sciatic function index values were similar between the three groups. The microsuture-only group did not show any detectable muscle contractions or the presence of intact motor axons. Retrograde labeling demonstrated that partial motor axon continuity had been re-established via PEG fusion in all 8/8 PEG fused animals, muscle contractions were preserved in 13/16, and measurable compound muscle action potentials were recorded in 21/24. However, there were no statistically significant differences between the microsuture + PEG and the MNC + PEG groups. CONCLUSIONS In a small-diameter, direct-repair rodent model, at least some axons achieved PEG fusion. In this model, a MNC did not seem to improve PEG efficacy over suture-assisted PEG fusion. CLINICAL RELEVANCE Polyethylene glycol fusion either performed in conjunction with sutures or a MNC can, to a limited extent, restore axon continuity in cleanly transected, small-diameter nerves.
Collapse
Affiliation(s)
- Geetanjali S Bendale
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA.
| | - Andrew Azdell
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA
| | - Jonathan Miller
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA
| | - Jonathan E Isaacs
- Division of Hand Surgery, Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
3
|
Burrell JC, Ali ZS, Zager EL, Rosen JM, Tatarchuk MM, Cullen DK. Engineering the Future of Restorative Clinical Peripheral Nerve Surgery. Adv Healthc Mater 2025:e2404293. [PMID: 40166822 DOI: 10.1002/adhm.202404293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Peripheral nerve injury is a significant clinical challenge, often leading to permanent functional deficits. Standard interventions, such as autologous nerve grafts or distal nerve transfers, require sacrificing healthy nerve tissue and typically result in limited motor or sensory recovery. Nerve regeneration is complex and influenced by several factors: 1) the regenerative capacity of proximal neurons, 2) the ability of axons and support cells to bridge the injury, 3) the capacity of Schwann cells to maintain a supportive environment, and 4) the readiness of target muscles or sensory organs for reinnervation. Emerging bioengineering solutions, including biomaterials, drug delivery systems, fusogens, electrical stimulation devices, and tissue-engineered products, aim to address these challenges. Effective translation of these therapies requires a deep understanding of the physiology and pathology of nerve injury. This article proposes a comprehensive framework for developing restorative strategies that address all four major physiological responses in nerve repair. By implementing this framework, we envision a paradigm shift that could potentially enable full functional recovery for patients, where current approaches offer minimal hope.
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Oral and Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Zarina S Ali
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric L Zager
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph M Rosen
- Division of Plastic Surgery, Dartmouth-Hitchcock Medical Center, Dartmouth College, Lebanon, NH, 03766, USA
| | - Mykhailo M Tatarchuk
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Axonova Medical, LLC, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Nemani S, Chaker S, Ismail H, Yao J, Chang M, Kang H, Desai M, Weikert D, Bhandari PL, Drolet B, Sandvall B, Hill JB, Thayer W. Polyethylene Glycol-Mediated Axonal Fusion Promotes Early Sensory Recovery after Digital Nerve Injury: A Randomized Clinical Trial. Plast Reconstr Surg 2024; 154:1247-1256. [PMID: 38335500 DOI: 10.1097/prs.0000000000011334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND Peripheral nerve repair is limited by Wallerian degeneration coupled with the slow and inconsistent rates of nerve regrowth. In more proximal injuries, delayed nerve regeneration can cause debilitating muscle atrophy. Topical application of polyethylene glycol (PEG) during neurorrhaphy facilitates the fusion of severed axonal membranes, immediately restoring action potentials across the coaptation site. In preclinical animal models, PEG fusion resulted in remarkable early functional recovery. METHODS This is the first randomized clinical trial comparing functional outcomes between PEG fusion and standard neurorrhaphy. Participants with digital nerve transections were followed up at 2 weeks, 1 month, and 3 months postoperatively. The primary outcome was assessed using the Medical Research Council Classification (MRCC) rating for sensory recovery at each time point. Semmes-Weinstein monofilaments and static 2-point discrimination determined MRCC ratings. Postoperative quality of life was measured using the Michigan Hand Outcomes Questionnaire. RESULTS Forty-eight transected digital nerves (25 control and 23 PEG) across 22 patients were analyzed. PEG-fused nerves demonstrated significantly higher MRCC scores at 2 weeks (OR, 16.95; 95% CI, 1.79 to 160.38; P = 0.008) and 1 month (OR, 13.40; 95% CI, 1.64 to 109.77; P = 0.009). Participants in the PEG cohort also had significantly higher average Michigan Hand Outcomes Questionnaire scores at 2 weeks (Hodge g , 1.28; 95% CI, 0.23 to 2.30; P = 0.0163) and 1 month (Hodge g , 1.02; 95% CI, 0.04 to 1.99; P = 0.049). No participants had adverse events related to the study drug. CONCLUSION PEG fusion promotes early sensory recovery and improved patient well-being following peripheral nerve repair of digital nerves. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, II.
Collapse
Affiliation(s)
| | | | | | - Julia Yao
- From the Departments of Plastic Surgery
| | - Monal Chang
- Department of Radiology, National Taiwan University Hospital
| | | | - Mihir Desai
- Orthopedic Surgery, Vanderbilt University Medical Center
| | | | | | | | - Brinkley Sandvall
- From the Departments of Plastic Surgery
- Division of Pediatric Plastic Surgery, Baylor College of Medicine
| | | | | |
Collapse
|
5
|
Li Y, Zhang Q, Liu Z, Fu C, Ding J. Microenvironments‐Modulated Biomaterials Enhance Spinal Cord Injury Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202403900] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 05/14/2025]
Abstract
AbstractSpinal cord injury (SCI) results from various causes, including sports‐related incidents, degenerative cervical myelopathy, traffic accidents, and falls. SCI typically leads to sensory and motor dysfunction and even paralysis. Current treatments for SCI include systemic administration of high‐dose steroids and surgical decompression and stabilization. However, excessive use of glucocorticoids may increase susceptibility to infections and systemic bleeding. The long‐term effect of surgery intervention remains unclear, with ongoing debates regarding its timing, efficacy, and safety. Therefore, innovative approaches are urgently needed to alleviate secondary injuries and promote spinal recovery. One emerging therapeutic approach for SCI is modulating the microenvironments to achieve neuroprotection and neurogenesis during recovery. Several biomaterials with favorable physicochemical properties have been developed to enhance therapeutic effects by regulating microenvironments. This Review first discusses the pathology of SCI microenvironments and then introduces biomaterials‐based regulatory strategies targeting various microenvironmental components, including anti‐inflammation, anti‐oxidation, reduction of excitotoxicity, revascularization, neurogenesis, and scar density reduction. Additionally, the research and clinical application prospects for microenvironment regulation are presented.
Collapse
Affiliation(s)
- Yuehong Li
- Department of Spine Surgery Center of Orthopedics The First Hospital of Jilin University 1 Xinmin Street Changchun 130061 P. R. China
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Qingzheng Zhang
- Department of Spine Surgery Center of Orthopedics The First Hospital of Jilin University 1 Xinmin Street Changchun 130061 P. R. China
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Zongtai Liu
- Department of Spine Surgery Center of Orthopedics The First Hospital of Jilin University 1 Xinmin Street Changchun 130061 P. R. China
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Changfeng Fu
- Department of Spine Surgery Center of Orthopedics The First Hospital of Jilin University 1 Xinmin Street Changchun 130061 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China 96 Jinzhai Road Hefei 230026 P. R. China
| |
Collapse
|
6
|
Mencel ML, Bittner GD. Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies. Front Physiol 2023; 14:1114779. [PMID: 37008019 PMCID: PMC10050709 DOI: 10.3389/fphys.2023.1114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Neuroscientists and Cell Biologists have known for many decades that eukaryotic cells, including neurons, are surrounded by a plasmalemma/axolemma consisting of a phospholipid bilayer that regulates trans-membrane diffusion of ions (including calcium) and other substances. Cells often incur plasmalemmal damage via traumatic injury and various diseases. If the damaged plasmalemma is not rapidly repaired within minutes, activation of apoptotic pathways by calcium influx often results in cell death. We review publications reporting what is less-well known (and not yet covered in neuroscience or cell biology textbooks): that calcium influx at the lesion sites ranging from small nm-sized holes to complete axonal transection activates parallel biochemical pathways that induce vesicles/membrane-bound structures to migrate and interact to restore original barrier properties and eventual reestablishment of the plasmalemma. We assess the reliability of, and problems with, various measures (e.g., membrane voltage, input resistance, current flow, tracer dyes, confocal microscopy, transmission and scanning electron microscopy) used individually and in combination to assess plasmalemmal sealing in various cell types (e.g., invertebrate giant axons, oocytes, hippocampal and other mammalian neurons). We identify controversies such as plug versus patch hypotheses that attempt to account for currently available data on the subcellular mechanisms of plasmalemmal repair/sealing. We describe current research gaps and potential future developments, such as much more extensive correlations of biochemical/biophysical measures with sub-cellular micromorphology. We compare and contrast naturally occurring sealing with recently-discovered artificially-induced plasmalemmal sealing by polyethylene glycol (PEG) that bypasses all natural pathways for membrane repair. We assess other recent developments such as adaptive membrane responses in neighboring cells following injury to an adjacent cell. Finally, we speculate how a better understanding of the mechanisms involved in natural and artificial plasmalemmal sealing is needed to develop better clinical treatments for muscular dystrophies, stroke and other ischemic conditions, and various cancers.
Collapse
Affiliation(s)
- Marshal L. Mencel
- Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
- *Correspondence: George D. Bittner,
| |
Collapse
|
7
|
Lopez S, Bittner GD, Treviño RC. Rapid and effective fusion repair of severed digital nerves using neurorrhaphy and bioengineered solutions including polyethylene glycol: A case report. Front Cell Neurosci 2023; 16:1087961. [PMID: 36744063 PMCID: PMC9892895 DOI: 10.3389/fncel.2022.1087961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Peripheral nerve injuries (PNIs) that consist of simple nerve severance often result in severe motor impairment and permanent loss of function. Such patients face significant costs and pose major burdens to healthcare systems. Currently, the most promising surgical technique to achieve the best clinical outcome after such PNIs is immediate primary coaptation of severed nerve ends by microsutures (neurorrhaphy). However, recovery is often poor and delayed for many months due to Wallerian degeneration (WD) and slow (1-2 mm/day) axonal outgrowths from severed proximal axons that may not properly reinnervate denervated afferent/efferent targets that have atrophied. In contrast, recent pre-clinical studies using polyethylene glycol (PEG) to facilitate primary nerve repair have greatly improved the rate and extent of sensory and motor recovery and prevented much WD and muscle atrophy. That is, PEG-fused axons rapidly establish proximal-distal axoplasmic/axolemmal continuity, which do not undergo WD and maintain the structure and function of neuromuscular junction (NMJ). PEG-fused axons rapidly reinnervate denervated NMJs, thereby preventing muscle atrophy associated with monthslong denervation due to slowly regenerating axonal outgrowths. We now describe PEG-mediated fusion repair of a digital nerve in each of two patients presenting with a digital laceration resulting in total loss of sensation. The first patient's tactile perception improved markedly at 3 days postoperatively (PO). Two-point discrimination improved from greater than 10 mm at initial presentation to 4 mm at 11-week PO, and the Semmes-Weinstein monofilament score improved from greater than 6.65 to 2.83 mm, a near-normal level. The second patient had severe PO edema and scar development requiring a hand compression glove and scar massage, which began improving at 11-week PO. The sensory function then improved for 4 months PO, with both two-point discrimination and Semmes-Weinstein scores approaching near-normal levels at the final follow-up. These case study data are consistent with data from animal models. All these data suggest that PEG-fusion technologies could produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation PNIs with autografts, anucleated nerve allografts, or conduits in which the patient outcome is solely dependent upon axon regeneration over months or years.
Collapse
Affiliation(s)
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States,*Correspondence: George D. Bittner,
| | | |
Collapse
|
8
|
Burrell JC, Das S, Laimo FA, Katiyar KS, Browne KD, Shultz RB, Tien VJ, Vu PT, Petrov D, Ali ZS, Rosen JM, Cullen DK. Engineered neuronal microtissue provides exogenous axons for delayed nerve fusion and rapid neuromuscular recovery in rats. Bioact Mater 2022; 18:339-353. [PMID: 35415305 PMCID: PMC8965778 DOI: 10.1016/j.bioactmat.2022.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022] Open
Abstract
Nerve injury requiring surgical repair often results in poor functional recovery due to the inability of host axons to re-grow long distances and reform meaningful connections with the target muscle. While surgeons can re-route local axon fascicles to the target muscle, there are no technologies to provide an exogenous source of axons without sacrificing healthy nerves. Accordingly, we have developed tissue engineered neuromuscular interfaces (TE-NMIs) as the first injectable microtissue containing motor and sensory neurons in an anatomically-inspired architecture. TE-NMIs provide axon tracts that are intended to integrate with denervated distal structures and preserve regenerative capacity during prolonged periods without host innervation. Following implant, we found that TE-NMI axons promoted Schwann cell maintenance, integrated with distal muscle, and preserved an evoked muscle response out to 20-weeks post nerve transection in absence of innervation from host axons. By repopulating the distal sheath with exogenous axons, TE-NMIs also enabled putative delayed fusion with proximal host axons, a phenomenon previously not achievable in delayed repair scenarios due to distal axon degeneration. Here, we found immediate electrophysiological recovery after fusion with proximal host axons and improved axon maturation and muscle reinnervation at 24-weeks post-transection (4-weeks following delayed nerve fusion). These findings show that TE-NMIs provide the potential to improve functional recovery following delayed nerve repair.
Collapse
Affiliation(s)
- Justin C. Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Suradip Das
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Franco A. Laimo
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Kritika S. Katiyar
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| | - Kevin D. Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Robert B. Shultz
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| | - Vishal J. Tien
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Phuong T. Vu
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zarina S. Ali
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M. Rosen
- Dartmouth-Hitchcock Medical Center, Division of Plastic Surgery, Dartmouth College, Lebanon, NH, USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| |
Collapse
|
9
|
Petrov D, Burrell JC, Browne KD, Laimo FA, Roberts SE, Ali ZS, Cullen DK. Neurorrhaphy in Presence of Polyethylene Glycol Enables Immediate Electrophysiological Conduction in Porcine Model of Facial Nerve Injury. Front Surg 2022; 9:811544. [PMID: 35341161 PMCID: PMC8948462 DOI: 10.3389/fsurg.2022.811544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 01/09/2023] Open
Abstract
Facial nerve trauma often leads to disfiguring facial muscle paralysis. Despite several promising advancements, facial nerve repair procedures often do not lead to complete functional recovery. Development of novel repair strategies requires testing in relevant preclinical models that replicate key clinical features. Several studies have reported that fusogens, such as polyethylene glycol (PEG), can improve functional recovery by enabling immediate reconnection of injured axons; however, these findings have yet to be demonstrated in a large animal model. We first describe a porcine model of facial nerve injury and repair, including the relevant anatomy, surgical approach, and naive nerve morphometry. Next, we report positive findings from a proof-of-concept experiment testing whether a neurorrhaphy performed in conjunction with a PEG solution maintained electrophysiological nerve conduction at an acute time point in a large animal model. The buccal branch of the facial nerve was transected and then immediately repaired by direct anastomosis and PEG application. Immediate electrical conduction was recorded in the PEG-fused nerves (n = 9/9), whereas no signal was obtained in a control cohort lacking calcium chelating agent in one step (n = 0/3) and in the no PEG control group (n = 0/5). Nerve histology revealed putative-fused axons across the repair site, whereas no positive signal was observed in the controls. Rapid electrophysiological recovery following nerve fusion in a highly translatable porcine model of nerve injury supports previous studies suggesting neurorrhaphy supplemented with PEG may be a promising strategy for severe nerve injury. While acute PEG-mediated axon conduction is promising, additional work is necessary to determine if physical axon fusion occurs and the longer-term fate of distal axon segments as related to functional recovery.
Collapse
Affiliation(s)
- Dmitriy Petrov
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Franco A. Laimo
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Sanford E. Roberts
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Zarina S. Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Nuelle JAV, Bozynski C, Stoker A. Innovations in Peripheral Nerve Injury: Current Concepts and Emerging Techniques to Improve Recovery. MISSOURI MEDICINE 2022; 119:129-135. [PMID: 36036028 PMCID: PMC9339399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the surgical advances in treatment of peripheral nerve injuries, consistent recovery of function is limited suggesting that a multimodal approach is required to optimize nerve regeneration. This approach should include advanced surgical repair techniques, as well as tissue engineering, cellular therapies, and application of local and systemic modulators of neuroregeneration. Further research is needed to advance these therapies from the laboratory to clinical practice, and to further understand how these treatments and techniques can act in concert to optimize functional nerve regeneration.
Collapse
Affiliation(s)
- Julia A V Nuelle
- Department of Orthopaedic Surgery, University of Missouri - Columbia School of Medicine
| | - Chantelle Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri - Columbia, Columbia, Missouri
| | - Aaron Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri - Columbia, Columbia, Missouri
| |
Collapse
|
11
|
Bittner GD, Bushman JS, Ghergherehchi CL, Roballo KCS, Shores JT, Smith TA. Typical and atypical properties of peripheral nerve allografts enable novel strategies to repair segmental-loss injuries. J Neuroinflammation 2022; 19:60. [PMID: 35227261 PMCID: PMC8886977 DOI: 10.1186/s12974-022-02395-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
We review data showing that peripheral nerve injuries (PNIs) that involve the loss of a nerve segment are the most common type of traumatic injury to nervous systems. Segmental-loss PNIs have a poor prognosis compared to other injuries, especially when one or more mixed motor/sensory nerves are involved and are typically the major source of disability associated with extremities that have sustained other injuries. Relatively little progress has been made, since the treatment of segmental loss PNIs with cable autografts that are currently the gold standard for repair has slow and incomplete (often non-existent) functional recovery. Viable peripheral nerve allografts (PNAs) to repair segmental-loss PNIs have not been experimentally or clinically useful due to their immunological rejection, Wallerian degeneration (WD) of anucleate donor graft and distal host axons, and slow regeneration of host axons, leading to delayed re-innervation and producing atrophy or degeneration of distal target tissues. However, two significant advances have recently been made using viable PNAs to repair segmental-loss PNIs: (1) hydrogel release of Treg cells that reduce the immunological response and (2) PEG-fusion of donor PNAs that reduce the immune response, reduce and/or suppress much WD, immediately restore axonal conduction across the donor graft and re-innervate many target tissues, and restore much voluntary behavioral functions within weeks, sometimes to levels approaching that of uninjured nerves. We review the rather sparse cellular/biochemical data for rejection of conventional PNAs and their acceptance following Treg hydrogel and PEG-fusion of PNAs, as well as cellular and systemic data for their acceptance and remarkable behavioral recovery in the absence of tissue matching or immune suppression. We also review typical and atypical characteristics of PNAs compared with other types of tissue or organ allografts, problems and potential solutions for PNA use and storage, clinical implications and commercial availability of PNAs, and future possibilities for PNAs to repair segmental-loss PNIs.
Collapse
Affiliation(s)
- George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Jared S Bushman
- School of Pharmacy, University of Wyoming, Laramie, WY, 82072, USA
| | - Cameron L Ghergherehchi
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tyler A Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
12
|
Batista LL, Malta SM, Guerra Silva HC, Borges LDF, Rocha LO, da Silva JR, Rodrigues TS, Venturini G, Padilha K, da Costa Pereira A, Espindola FS, Ueira-Vieira C. Kefir metabolites in a fly model for Alzheimer's disease. Sci Rep 2021; 11:11262. [PMID: 34045626 PMCID: PMC8160324 DOI: 10.1038/s41598-021-90749-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia among elderly individuals worldwide, leading to a strong motor-cognitive decline and consequent emotional distress and codependence. It is traditionally characterized by amyloidogenic pathway formation of senile plaques, and recent studies indicate that dysbiosis is also an important factor in AD's pathology. To overcome dysbiosis, probiotics-as kefir-have shown to be a great therapeutic alternative for Alzheimer's disease. In this present work, we explored kefir as a probiotic and a metabolite source as a modulator of microbiome and amyloidogenic pathway, using a Drosophila melanogaster model for AD (AD-like flies). Kefir microbiota composition was determined through 16S rRNA sequencing, and the metabolome of each fraction (hexane, dichloromethane, ethyl acetate, and n-butanol) was investigated. After treatment, flies had their survival, climbing ability, and vacuolar lesions accessed. Kefir and fraction treated flies improved their climbing ability survival rate and neurodegeneration index. In conclusion, we show that kefir in natura, as well as its fractions may be promising therapeutic source against AD, modulating amyloidogenic related pathways.
Collapse
Affiliation(s)
| | - Serena Mares Malta
- Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | - Lays Oliveira Rocha
- Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | | | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | | | - Carlos Ueira-Vieira
- Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
13
|
Vargas SA, Bittner GD. Natural mechanisms and artificial PEG-induced mechanism that repair traumatic damage to the plasmalemma in eukaryotes. CURRENT TOPICS IN MEMBRANES 2019; 84:129-167. [PMID: 31610860 DOI: 10.1016/bs.ctm.2019.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eukaryotic tissues are composed of individual cells surrounded by a plasmalemma that consists of a phospholipid bilayer with hydrophobic heads that bind cell water. Bound-water creates a thermodynamic barrier that impedes the fusion of a plasmalemma with other membrane-bound intracellular structures or with the plasmalemma of adjacent cells. Plasmalemmal damage consisting of small or large holes or complete transections of a cell or axon results in calcium influx at the lesion site. Calcium activates fusogenic pathways that have been phylogenetically conserved and that lower thermodynamic barriers for fusion of membrane-bound structures. Calcium influx also activates phylogenetically conserved sealing mechanisms that mobilize the gradual accumulation and fusion of vesicles/membrane-bound structures that seal the damaged membrane. These naturally occurring sealing mechanisms for different cells vary based on the type of lesion, the type of cell, the proximity of intracellular membranous structures to the lesion and the relation to adjacent cells. The reliability of different measures to assess plasmalemmal sealing need be carefully considered for each cell type. Polyethylene glycol (PEG) bypasses calcium and naturally occurring fusogenic pathways to artificially fuse adjacent cells (PEG-fusion) or artificially seal transected axons (PEG-sealing). PEG-fusion techniques can also be used to rapidly rejoin the closely apposed, open ends of severed axons. PEG-fused axons do not (Wallerian) degenerate and PEG-fused nerve allografts are not immune-rejected, and enable behavioral recoveries not observed for any other clinical treatment. A better understanding of natural and artificial mechanisms that induce membrane fusion should provide better clinical treatment for many disorders involving plasmalemmal damage.
Collapse
Affiliation(s)
- Sara A Vargas
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United states
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United states.
| |
Collapse
|
14
|
Messineo E, Pollins A, Thayer W. Optimization and evaluation of an in vitro model of PEG-mediated fusion of nerve cell bodies. J Clin Neurosci 2019; 63:189-195. [DOI: 10.1016/j.jocn.2019.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 01/27/2023]
|
15
|
Aghaie T, Jazayeri MH, Avan A, Anissian A, Salari AA. Gold nanoparticles and polyethylene glycol alleviate clinical symptoms and alter cytokine secretion in a mouse model of experimental autoimmune encephalomyelitis. IUBMB Life 2019; 71:1313-1321. [PMID: 30957389 DOI: 10.1002/iub.2045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022]
Abstract
Gold nanoparticles (GNPs) are attractive nanoparticles with unique electronic and optical properties in the nanotechnology field and are widely used in various biomedical fields. Studies have shown that these particles also exhibit antioxidant and anti-inflammatory properties. On the other hand, polyethylene glycol (PEG) that used to stabilize GNPs also exhibits antioxidant and anti-inflammatory properties due to their membrane resealing properties. The aim of this study was to evaluate the ameliorative effect of GNPs and PEG in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). EAE was induced in female C57BL/6 mice with injection of an emulsion of myelin oligodendrocyte glycoprotein (MOG35-55) peptide and Freund's adjuvant. GNPs measuring 25 nm were prepared, and their size was determined using transmission electron microscopy (TEM), then intraperitoneal injection of GNPs and PEG (MW 1500; 30% w/v) was initiated after immunization and continued until the day 27 postimmunization (13 injections in total). The EAE clinical scores and body weights were evaluated. We analyzed cental nervous system's cell infiltration and demyelinated lesions using hematoxylin and eosin and luxol fast blue staining, respectively. Also, interleukin-23 and interleukin-27 were examined using the ELISA technique. The severity of MS symptoms was significantly decreased in the treated groups with GNPs and PEG. Histological examination of the spinal cord showed that the number and severity of cells' infiltration and demyelinated lesions decreased significantly, and also the cytokine levels of IL-23 and IL-27 altered in treated groups. These results show that GNPs and PEG ameliorate the clinical course of EAE in mice. Our findings demonstrate proof of principle for potential of GNPs and PEG as novel agents for therapeutic approaches in the alleviated clinical symptoms of MS. © 2019 IUBMB Life, 71(9):1313-1321, 2019.
Collapse
Affiliation(s)
- Tayebe Aghaie
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mir Hadi Jazayeri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Anissian
- Department of Veterinary Pathology, Islamic Azad University, Abhar, Iran
| | - Ali-Akbar Salari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Stoica SI, Tănase I, Ciobanu V, Onose G. Initial researches on neuro-functional status and evolution in chronic ethanol consumers with recent traumatic spinal cord injury. J Med Life 2019; 12:97-112. [PMID: 31406510 PMCID: PMC6685305 DOI: 10.25122/jml-2019-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/21/2019] [Indexed: 12/01/2022] Open
Abstract
We found differences related to the neuro-functional deficiency and clinical progress, among non-consumers and chronic consumers of ethanol, with recent traumatic spinal cord injury (SCI). We present a synthesis of related data on lesion mechanisms in post-traumatic myelogenous disorders, namely some of the alcohols and their actions on the nervous system, with details on the influences exerted, in such afflictions, by the chronic consumption of ethanol. The subject is not frequently approached - according to a literature review with systematic elements, which we have done before - thus constituting a niche that deserves to be further explored. The applicative component of the article highlights statistical data resulted from a retrospective study regarding the specialized casuistry from the Neuromuscular Recovery Clinic of the "Bagdasar Arseni" Emergency Clinical Hospital, following the comparative analysis of two groups of patients with recent SCI: non-consumers - the control group (n=780) - and chronic ethanol consumers - the study group (n=225) - with the addition of a prospective pilot component. Data processing has been achieved with SPSS 24. The American Spinal Injury Association Impairment Scale (AIS) mean motor scores differ significantly (tests: Mann-Whitney and t) between the control and study group in favor of the second, both at admission (p<0.001) and at discharge (p<0.001). AIS mean sensitive scores differ between the two lots, and also in favor of the study, but statistically significant only at discharge (p=0.048); the difference at admission is not significant (p=0.51) - possibly because of alcoholic-nutritional polyneuropathy. These findings, with numerous related details, later presented in the text, are surprising, which requires further studies and attempts of understanding.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| | - Ioana Tănase
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| | - Vlad Ciobanu
- Politehnica University of Bucharest (PUB), Bucharest, Romania
| | - Gelu Onose
- “Carol Davila” University of Medicine and Pharmacy (UMPCD), Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), Bucharest, Romania
| |
Collapse
|
17
|
Ren X, Kim CY, Canavero S. Bridging the gap: Spinal cord fusion as a treatment of chronic spinal cord injury. Surg Neurol Int 2019; 10:51. [PMID: 31528389 PMCID: PMC6743693 DOI: 10.25259/sni-19-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/06/2019] [Indexed: 12/15/2022] Open
Abstract
Despite decades of animal experimentation, human translation with cell grafts, conduits, and other strategies has failed to cure patients with chronic spinal cord injury (SCI). Recent data show that motor deficits due to spinal cord transection in animal models can be reversed by local application of fusogens, such as Polyethylene glycol (PEG). Results proved superior at short term over all other treatments deployed in animal studies, opening the way to human trials. In particular, removal of the injured spinal cord segment followed by PEG fusion of the two ends along with vertebral osteotomy to shorten the spine holds the promise for a cure in many cases.
Collapse
Affiliation(s)
- Xiaoping Ren
- Hand and Microsurgery Center, Second Affiliated Hospital of Harbin Medical University, Nangang, Harbin, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Nangang, Harbin, China
- Heilongjiang Medical Science Institute, Harbin Medical University, Nangang, Harbin, China
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Sergio Canavero
- HEAVEN-GEMINI International Collaborative Group, Turin, Italy
| |
Collapse
|
18
|
Paskal AM, Paskal W, Pietruski P, Wlodarski PK. Polyethylene Glycol: The Future of Posttraumatic Nerve Repair? Systemic Review. Int J Mol Sci 2019; 20:E1478. [PMID: 30909624 PMCID: PMC6471459 DOI: 10.3390/ijms20061478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injury is a common posttraumatic complication. The precise surgical repair of nerve lesion does not always guarantee satisfactory motor and sensory function recovery. Therefore, enhancement of the regeneration process is a subject of many research strategies. It is believed that polyethylene glycol (PEG) mediates axolemmal fusion, thus enabling the direct restoration of axon continuity. It also inhibits Wallerian degeneration and recovers nerve conduction. This systemic review, performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, describes and summarizes published studies on PEG treatment efficiency in various nerve injury types and repair techniques. Sixteen original experimental studies in animal models and one in humans were analyzed. PEG treatment superiority was reported in almost all experiments (based on favorable electrophysiological, histological, or behavioral results). To date, only one study attempted to transfer the procedure into the clinical phase. However, some technical aspects, e.g., the maximal delay between trauma and successful treatment, await determination. PEG therapy is a promising prospect that may improve the surgical treatment of peripheral nerve injuries in the clinical practice.
Collapse
Affiliation(s)
- Adriana M Paskal
- Laboratory of Centre for Preclinical Research, Department of Research Methodology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland.
| | - Wiktor Paskal
- Laboratory of Centre for Preclinical Research, Department of Research Methodology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland.
| | - Piotr Pietruski
- Timeless Plastic Surgery Clinic, gen. Romana Abrahama 18/322, 03-982 Warsaw, Poland.
| | - Pawel K Wlodarski
- Laboratory of Centre for Preclinical Research, Department of Research Methodology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland.
| |
Collapse
|
19
|
Rodemer W, Selzer ME. Role of axon resealing in retrograde neuronal death and regeneration after spinal cord injury. Neural Regen Res 2019; 14:399-404. [PMID: 30539805 PMCID: PMC6334596 DOI: 10.4103/1673-5374.245330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Spinal cord injury leads to persistent behavioral deficits because mammalian central nervous system axons fail to regenerate. A neuron's response to axon injury results from a complex interplay of neuron-intrinsic and environmental factors. The contribution of axotomy to the death of neurons in spinal cord injury is controversial because very remote axotomy is unlikely to result in neuronal death, whereas death of neurons near an injury may reflect environmental factors such as ischemia and inflammation. In lampreys, axotomy due to spinal cord injury results in delayed apoptosis of spinal-projecting neurons in the brain, beyond the extent of these environmental factors. This retrograde apoptosis correlates with delayed resealing of the axon, and can be reversed by inducing rapid membrane resealing with polyethylene glycol. Studies in mammals also suggest that polyethylene glycol may be neuroprotective, although the mechanism(s) remain unclear. This review examines the early, mechanical, responses to axon injury in both mammals and lampreys, and the potential of polyethylene glycol to reduce injury-induced pathology. Identifying the mechanisms underlying a neuron's response to axotomy will potentially reveal new therapeutic targets to enhance regeneration and functional recovery in humans with spinal cord injury.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA, USA
| | - Michael E Selzer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation); Department of Neurology, the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
20
|
Fusogens: Chemical Agents That Can Rapidly Restore Function After Nerve Injury. J Surg Res 2019; 233:36-40. [DOI: 10.1016/j.jss.2018.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/03/2018] [Accepted: 07/03/2018] [Indexed: 11/17/2022]
|
21
|
Lin YF, Xie Z, Zhou J, Chen HH, Shao WW, Lin HD. Effect of exogenous spastin combined with polyethylene glycol on sciatic nerve injury. Neural Regen Res 2019; 14:1271-1279. [PMID: 30804259 PMCID: PMC6425831 DOI: 10.4103/1673-5374.251336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Polyethylene glycol can connect the distal and proximal ends of an injured nerve at the cellular level through axonal fusion to avoid Wallerian degeneration of the injured distal nerve and promote peripheral nerve regeneration. However, this method can only prevent Wallerian degeneration in 10% of axons because the cytoskeleton is not repaired in a timely fashion. Reconstruction of the cytoskeletal trunk and microtubule network has been suggested to be the key for improving the efficiency of axonal fusion. As a microtubule-severing protein, spastin has been used to enhance cytoskeletal reconstruction. Therefore, we hypothesized that spastin combined with polyethylene glycol can more effectively promote peripheral nerve regeneration. A total of 120 male Sprague-Dawley rats were randomly divided into sham, suture, polyethylene glycol, and polyethylene glycol + spastin groups. In suture group rats, only traditional nerve anastomosis of the end-to-end suture was performed after transection of the sciatic nerve. In polyethylene glycol and polyethylene glycol + spastin groups, 50 μL of polyethylene glycol or 25 μL of polyethylene glycol + 25 μL of spastin, respectively, were injected immediately under the epineurium of the distal suture. Sensory fiber regeneration distance, which was used to assess early nerve regeneration at 1 week after surgery, was shortest in the suture group, followed by polyethylene glycol group and greatest in the polyethylene glycol + spastin group. Behavioral assessment of motor function recovery in rats showed that limb function was restored in polyethylene glycol and polyethylene glycol + spastin groups at 8 weeks after surgery. At 1, 2, 4 and 8 weeks after surgery, sciatic functional index values and percentages of gastrocnemius muscle wet weight were highest in the sham group, followed by polyethylene glycol + spastin and polyethylene glycol groups, and lowest in the suture group. Masson staining was utilized to assess the morphology of muscle tissue. Morphological changes in skeletal muscle were detectable in suture, polyethylene glycol, and polyethylene glycol + spastin groups at 1, 2, 4, and 8 weeks after surgery. Among them, muscular atrophy of the suture group was most serious, followed by polyethylene glycol and polyethylene glycol + spastin groups. Ultrastructure of distal sciatic nerve tissue, as detected by transmission electron microscopy, showed a pattern of initial destruction, subsequent disintegration, and gradual repair in suture, polyethylene glycol, and polyethylene glycol + spastin groups at 1, 2, 4, and 8 weeks after surgery. As time proceeded, axonal ultrastructure gradually recovered. Indeed, the polyethylene glycol + spastin group was similar to the sham group at 8 weeks after surgery. Our findings indicate that the combination of polyethylene glycol and spastin can promote peripheral nerve regeneration. Moreover, the effect of this combination was better than that of polyethylene glycol alone, and both were superior to the traditional neurorrhaphy. This study was approved by the Animal Ethics Committee of the Second Military Medical University, China (approval No. CZ20170216) on March 16, 2017.
Collapse
Affiliation(s)
- Yao-Fa Lin
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Zheng Xie
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jun Zhou
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai; Department of Orthopedics, The Second People's Hospital of Karamay, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Hui-Hao Chen
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Wan-Wan Shao
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Hao-Dong Lin
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Aghaie T, Jazayeri MH, Manian M, Khani L, Erfani M, Rezayi M, Ferns GA, Avan A. Gold nanoparticle and polyethylene glycol in neural regeneration in the treatment of neurodegenerative diseases. J Cell Biochem 2018; 120:2749-2755. [DOI: 10.1002/jcb.27415] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Tayebe Aghaie
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Mir Hadi Jazayeri
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
- Immunology Research Center, Iran University of Medical Sciences Tehran Iran
| | - Mostafa Manian
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - leila Khani
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Marjan Erfani
- Department of Neurology Ghaem Hospital, Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Rezayi
- Metabolic syndrome Research center, Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer Brighton UK
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
23
|
Abstract
Background The management of peripheral nerve injuries remains a large challenge for plastic surgeons. With the inability to fuse axonal endings, results after microsurgical nerve repair have been inconsistent. Our current nerve repair strategies rely upon the slow and lengthy process of axonal regeneration (~1 mm/d). Polyethylene glycol (PEG) has been investigated as a potential axonal fusion agent; however, the percentage of axonal fusion has been inconsistent. The purpose of this study was to identify a PEG delivery device to standardize outcomes after attempted axonal fusion with PEG. Materials and Methods We used a rat sciatic nerve injury model in which we completely transected and repaired the left sciatic nerve to evaluate the efficacy of PEG fusion over a span of 12 weeks. In addition, we evaluated the effectiveness of a delivery device's ability to optimize results after PEG fusion. Results We found that PEG rapidly (within minutes) restores axonal continuity as assessed by electrophysiology, fluorescent retrograde tracer, and diffusion tensor imaging. Immunohistochemical analysis shows that motor axon counts are significantly increased at 1 week, 4 weeks, and 12 weeks postoperatively in PEG-treated animals. Furthermore, PEG restored behavioral functions up to 50% compared with animals that received the criterion standard epineurial repair (control animals). Conclusions The ability of PEG to rapidly restore nerve function after neurotmesis could have vast implications on the clinical management of traumatic injuries to peripheral nerves.
Collapse
|
24
|
Zhang G, Rodemer W, Lee T, Hu J, Selzer ME. The Effect of Axon Resealing on Retrograde Neuronal Death after Spinal Cord Injury in Lamprey. Brain Sci 2018; 8:E65. [PMID: 29661988 PMCID: PMC5924401 DOI: 10.3390/brainsci8040065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 02/05/2023] Open
Abstract
Failure of axon regeneration in the central nervous system (CNS) of mammals is due to both extrinsic inhibitory factors and to neuron-intrinsic factors. The importance of intrinsic factors is illustrated in the sea lamprey by the 18 pairs of large, individually identified reticulospinal (RS) neurons, whose axons are located in the same spinal cord tracts but vary greatly in their ability to regenerate after spinal cord transection (TX). The neurons that are bad regenerators also undergo very delayed apoptosis, signaled early by activation of caspases. We noticed that the neurons with a low probability of axon regeneration tend to be larger than the good regenerators. We postulate that the poorly regenerating larger neurons have larger caliber axons, which reseal more slowly, allowing more prolonged entry of toxic signals (e.g., Ca++) into the axon at the injury site. To test this hypothesis, we used a dye-exclusion assay, applying membrane-impermeable dyes to the cut ends of spinal cords at progressively longer post-TX intervals. Axons belonging to the very small neurons (not individually identified) of the medial inferior RS nucleus resealed within 15 min post-TX. Almost 75% of axons belonging to the medium-sized identified RS neurons resealed within 3 h. At this time, only 36% of the largest axons had resealed, often taking more than 24 h to exclude the dye. There was an inverse relationship between an RS neuron's size and the probability that its axon would regenerate (r = -0.92) and that the neuron would undergo delayed apoptosis, as indicated by staining with a fluorescently labeled inhibitor of caspases (FLICA; r = 0.73). The artificial acceleration of resealing with polyethylene glycol (PEG) reduced retrograde neuronal apoptosis by 69.5% at 2 weeks after spinal cord injury (SCI), suggesting that axon resealing is a critical determinant of cell survival. Ca++-free Ringer's solution with EGTA prolonged the sealing time and increased apoptotic signaling, suggesting that factors other than Ca++ diffusion into the injured tip contribute to retrograde death signaling. A longer distance of the lesion from the cell body reduced apoptotic signaling independent of the axon sealing time.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - William Rodemer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - Taemin Lee
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - Jianli Hu
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - Michael E Selzer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
- Department of Neurology, the Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
25
|
Salomone R, Jácomo AL, Nascimento SBD, Lezirovitz K, Hojaij FC, Costa HJZR, Bento RF. Polyethylene glycol fusion associated with antioxidants: A new promise in the treatment of traumatic facial paralysis. Head Neck 2018. [PMID: 29522265 DOI: 10.1002/hed.25122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recent studies in invertebrates have taught us that early cell membrane regeneration is determinant for axonal recovery and survival after trauma. Many authors obtained extraordinary results in neural regeneration using polyethylene glycol fusion protocols, which also involved microsutures and antioxidants. METHODS Sixty rats were evaluated with functional and histological protocol after facial nerve neurotmesis. Groups A and B had their stumps coapted with microsuture after 24 hours of neurotmesis and groups C and D after 72 hours. In addition to the microstructure, groups B and D used the polyethylene glycol-fusion protocol for the modulation of the Ca+2 . RESULTS At the sixth week, the latency of group D and duration of group B was lower than groups A and C (P = .011). The axonal diameter of the groups that used polyethylene glycol-fusion was higher than those who did not use polyethylene glycol-fusion (P ≤ .001). CONCLUSION Although not providing a functional improvement, polyethylene glycol-fusion slowed down demyelination.
Collapse
Affiliation(s)
- Raquel Salomone
- Department of Otorhinolaryngology, University of São Paulo Medical School, São Paulo, Brazil
| | - Alfredo Luiz Jácomo
- Department of Surgery, Discipline of Human Structural Topography, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Karina Lezirovitz
- Department of Otorhinolaryngology, University of São Paulo Medical School, São Paulo, Brazil
| | - Flávio Carneiro Hojaij
- Department of Surgery, Discipline of Human Structural Topography, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Ricardo Ferreira Bento
- Department of Otorhinolaryngology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
26
|
Poellmann MJ, Lee RC. Repair and Regeneration of the Wounded Cell Membrane. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Abstract
BACKGROUND Peripheral nerve injury can have a devastating impact on our military and veteran population. Current strategies for peripheral nerve repair include techniques such as nerve tubes, nerve grafts, tissue matrices, and nerve growth guides to enhance the number of regenerating axons. Even with such advanced techniques, it takes months to regain function. In animal models, polyethylene glycol (PEG) therapy has shown to improve both physiologic and behavioral outcomes after nerve transection by fusion of a portion of the proximal axons to the distal axon stumps. The objective of this study was to show the efficacy of PEG fusion in humans and to retrospectively compare PEG fusion to standard nerve repair. METHODS Patients with traumatic lacerations involving digital nerves were treated with PEG after standard microsurgical neurorrhaphy. Sensory assessment after injury was performed at 1 week, 2 weeks, 1 month, and 2 months using static two-point discrimination and Semmes-Weinstein monofilament testing. The Medical Research Council Classification (MRCC) for Sensory Recovery Scale was used to evaluate the level of injury. The PEG fusion group was compared to patient-matched controls whose data were retrospectively collected. RESULTS Four PEG fusions were performed on four nerve transections in two patients. Polyethylene glycol therapy improves functional outcomes and speed of nerve recovery in clinical setting assessed by average MRCC score in week 1 (2.8 vs 1.0, p = 0.03). At 4 weeks, MRCC remained superior in the PEG fusion group (3.8 vs 1.3, p = 0.01). At 8 weeks, there was improvement in both groups with the PEG fusion cohort remaining statistically better (4.0 vs 1.7, p = 0.01). CONCLUSION Polyethylene glycol fusion is a novel therapy for peripheral nerve repair with proven effectiveness in animal models. Clinical studies are still in early stages but have had encouraging results. Polyethylene glycol fusion is a potential revolutionary therapy in peripheral nerve repair but needs further investigation. LEVEL OF EVIDENCE Therapeutic study, level IV.
Collapse
|
28
|
Bamba R, Riley DC, Boyer RB, Pollins AC, Shack RB, Thayer WP. Polyethylene glycol restores axonal conduction after corpus callosum transection. Neural Regen Res 2017; 12:757-760. [PMID: 28616031 PMCID: PMC5461612 DOI: 10.4103/1673-5374.206645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups (P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.
Collapse
Affiliation(s)
- Ravinder Bamba
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Surgery, Georgetown University, Washington, DC, USA
| | - D Colton Riley
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Georgetown University School of Medicine, Washington, DC, USA
| | - Richard B Boyer
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Bruce Shack
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
29
|
Hoffman AN, Bamba R, Pollins AC, Thayer WP. Analysis of polyethylene glycol (PEG) fusion in cultured neuroblastoma cells via flow cytometry: Techniques & optimization. J Clin Neurosci 2016; 36:125-128. [PMID: 27825612 DOI: 10.1016/j.jocn.2016.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/15/2016] [Indexed: 12/15/2022]
Abstract
Polyethylene glycol (PEG) has long been used as a membrane fusogen, but recently it has been adopted as a technique for peripheral nerve repair. Vertebrate models using PEG fusion have shown improved outcomes when PEG is applied during repair of severed peripheral nerves. The cellular mechanism of PEG fusion in the peripheral nerve repair model has not previously been assessed via flow cytometry. PEG fusion was assessed in this experiment by dying B35 rat neuroblastoma cells with different color fluorescent labels. The different color cells were combined and PEG was applied in concentrations of 50%, 75% and 100%. The amount of cell fusion was assessed via flow cytometry as the percentage of double positive cells. Results showed increasing fusion and decreasing viability with increasing concentrations of PEG.
Collapse
Affiliation(s)
- Ashley N Hoffman
- Vanderbilt School of Medicine, 1161 21st Ave S # T1217, Nashville, TN 37232, United States.
| | - Ravinder Bamba
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1161 21st Ave South, MCN S-2221, Nashville, TN, United States.
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1161 21st Ave South, MCN S-2221, Nashville, TN, United States.
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1161 21st Ave South, MCN S-2221, Nashville, TN, United States.
| |
Collapse
|
30
|
Bittner GD, Spaeth CS, Poon AD, Burgess ZS, McGill CH. Repair of traumatic plasmalemmal damage to neurons and other eukaryotic cells. Neural Regen Res 2016; 11:1033-42. [PMID: 27630671 PMCID: PMC4994430 DOI: 10.4103/1673-5374.187019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The repair (sealing) of plasmalemmal damage, consisting of small holes to complete transections, is critical for cell survival, especially for neurons that rarely regenerate cell bodies. We first describe and evaluate different measures of cell sealing. Some measures, including morphological/ultra-structural observations, membrane potential, and input resistance, provide very ambiguous assessments of plasmalemmal sealing. In contrast, measures of ionic current flow and dye barriers can, if appropriately used, provide more accurate assessments. We describe the effects of various substances (calcium, calpains, cytoskeletal proteins, ESCRT proteins, mUNC-13, NSF, PEG) and biochemical pathways (PKA, PKC, PLC, Epac, cytosolic oxidation) on plasmalemmal sealing probability, and suggest that substances, pathways, and cellular events associated with plasmalemmal sealing have undergone a very conservative evolution. During sealing, calcium ion influx mobilizes vesicles and other membranous structures (lysosomes, mitochondria, etc.) in a continuous fashion to form a vesicular plug that gradually restricts diffusion of increasingly smaller molecules and ions over a period of seconds to minutes. Furthermore, we find no direct evidence that sealing occurs through the collapse and fusion of severed plasmalemmal leaflets, or in a single step involving the fusion of one large wound vesicle with the nearby, undamaged plasmalemma. We describe how increases in perikaryal calcium levels following axonal transection account for observations that cell body survival decreases the closer an axon is transected to the perikaryon. Finally, we speculate on relationships between plasmalemmal sealing, Wallerian degeneration, and the ability of polyethylene glycol (PEG) to seal cell membranes and rejoin severed axonal ends – an important consideration for the future treatment of trauma to peripheral nerves. A better knowledge of biochemical pathways and cytoplasmic structures involved in plasmalemmal sealing might provide insights to develop treatments for traumatic nerve injuries, stroke, muscular dystrophy, and other pathologies.
Collapse
Affiliation(s)
- George D Bittner
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | | | - Andrew D Poon
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Zachary S Burgess
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
31
|
Bittner GD, Schallert T, Peduzzi JD. Degeneration, Trophic Interactions, and Repair of Severed Axons: A Reconsideration of Some Common Assumptions. Neuroscientist 2016. [DOI: 10.1177/107385840000600207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We suggest that several interrelated properties of severed axons (degeneration, trophic dependencies, initial repair, and eventual repair) differ in important ways from commonly held assumptions about those properties. Specifically, (1) axotomy does not necessarily produce rapid degeneration of distal axonal segments because (2) the trophic maintenance of nerve axons does not necessarily depend entirely on proteins transported from the perikaryon—but instead axonal proteins can be trophically maintained by slowing their degradation and/or by acquiring new proteins via axonal synthesis or transfer from adjacent cells (e.g., glia). (3) The initial repair of severed distal or proximal segments occurs by barriers (seals) formed amid accumulations of vesicles and/or myelin delaminations induced by calcium influx at cut axonal ends—rather than by collapse and fusion of cut axolemmal leaflets. (4) The eventual repair of severed mammalian CNS axons does not necessarily have to occur by neuritic outgrowths, which slowly extend from cut proximal ends to possibly reestablish lost functions weeks to years after axotomy—but instead complete repair can be induced within minutes by polyethylene glycol to rejoin (fuse) the cut ends of surviving proximal and distal stumps. Strategies to repair CNS lesions based on fusion techniques combined with rehabilitative training and induced axonal outgrowth may soon provide therapies that can at least partially restore lost CNS functions.
Collapse
Affiliation(s)
- George D. Bittner
- School of Biological Sciences (Neurobiology Section) and Institute of Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Timothy Schallert
- School of Biological Sciences (Neurobiology Section) and Institute of Neuroscience, Department of Pyschology, The University of Texas at Austin, Austin, Texas
| | - Jean D. Peduzzi
- School of Optometry, Department of Physiological Optics, Injury Control and Vision Science Research Centers, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
32
|
Boyer RB, Kelm ND, Riley DC, Sexton KW, Pollins AC, Shack RB, Dortch RD, Nanney LB, Does MD, Thayer WP. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury. Neurosurg Focus 2016; 39:E9. [PMID: 26323827 DOI: 10.3171/2015.6.focus1590] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries.
Collapse
Affiliation(s)
- Richard B Boyer
- Departments of 1 Biomedical Engineering and.,Plastic Surgery, Vanderbilt University Medical Center
| | - Nathaniel D Kelm
- Departments of 1 Biomedical Engineering and.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; and
| | | | - Kevin W Sexton
- Plastic Surgery, Vanderbilt University Medical Center;,Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - R Bruce Shack
- Plastic Surgery, Vanderbilt University Medical Center
| | - Richard D Dortch
- Departments of 1 Biomedical Engineering and.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; and
| | | | - Mark D Does
- Departments of 1 Biomedical Engineering and.,Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; and
| | - Wesley P Thayer
- Departments of 1 Biomedical Engineering and.,Plastic Surgery, Vanderbilt University Medical Center
| |
Collapse
|
33
|
Bamba R, Riley DC, Kelm ND, Does MD, Dortch RD, Thayer WP. A novel technique using hydrophilic polymers to promote axonal fusion. Neural Regen Res 2016; 11:525-8. [PMID: 27212898 PMCID: PMC4870894 DOI: 10.4103/1673-5374.180724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily repaired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.
Collapse
Affiliation(s)
- Ravinder Bamba
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Surgery, Georgetown University, Washington, DC, USA
| | - D Colton Riley
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Georgetown University School of Medicine, Washington, DC, USA
| | - Nathaniel D Kelm
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Mark D Does
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Richard D Dortch
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
34
|
Sui B, Tang S, Woodward AW, Kim B, Belfield KD. A BODIPY‐Based Water‐Soluble Fluorescent Probe for Mitochondria Targeting. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600238] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Binglin Sui
- College of Science and Liberal ArtsNew Jersey Institute of Technology07102NewarkNew JerseyUSA
| | - Simon Tang
- Department of ChemistryUniversity of Central Florida32816OrlandoFloridaUSA
| | - Adam W. Woodward
- Department of ChemistryUniversity of Central Florida32816OrlandoFloridaUSA
| | - Bosung Kim
- Department of ChemistryUniversity of Central Florida32816OrlandoFloridaUSA
| | - Kevin D. Belfield
- College of Science and Liberal ArtsNew Jersey Institute of Technology07102NewarkNew JerseyUSA
- School of Chemistry and Chemical EngineeringShaanxi Normal University710062Xi'anP. R. China
| |
Collapse
|
35
|
Ghergherehchi CL, Bittner GD, Hastings RL, Mikesh M, Riley DC, Trevino RC, Schallert T, Thayer WP, Bhupanapadu Sunkesula SR, Ha TAN, Munoz N, Pyarali M, Bansal A, Poon AD, Mazal AT, Smith TA, Wong NS, Dunne PJ. Effects of extracellular calcium and surgical techniques on restoration of axonal continuity by polyethylene glycol fusion following complete cut or crush severance of rat sciatic nerves. J Neurosci Res 2016; 94:231-45. [PMID: 26728662 DOI: 10.1002/jnr.23704] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 01/10/2023]
Abstract
Complete crush or cut severance of sciatic nerve axons in rats and other mammals produces immediate loss of axonal continuity. Loss of locomotor functions subserved by those axons is restored only after months, if ever, by outgrowths regenerating at ∼1 mm/day from the proximal stumps of severed axonal segments. The distal stump of a severed axon typically begins to degenerate in 1-3 days. We recently developed a polyethylene glycol (PEG) fusion technology, consisting of sequential exposure of severed axonal ends to hypotonic Ca(2+) -free saline, methylene blue, PEG in distilled water, and finally Ca(2+) -containing isotonic saline. This study examines factors that affect the PEG fusion restoration of axonal continuity within minutes, as measured by conduction of action potentials and diffusion of an intracellular fluorescent dye across the lesion site of rat sciatic nerves completely cut or crush severed in the midthigh. Also examined are factors that affect the longer-term PEG fusion restoration of lost behavioral functions within days to weeks, as measured by the sciatic functional index. We report that exposure of cut-severed axonal ends to Ca(2+) -containing saline prior to PEG fusion and stretch/tension of proximal or distal axonal segments of cut-severed axons decrease PEG fusion success. Conversely, trimming cut-severed ends in Ca(2+) -free saline just prior to PEG fusion increases PEG fusion success. PEG fusion prevents or retards the Wallerian degeneration of cut-severed axons, as assessed by measures of axon diameter and G ratio. PEG fusion may produce a paradigm shift in the treatment of peripheral nerve injuries. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | | | - Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - D Colton Riley
- Department of Neuroscience, University of Texas at Austin, Austin, Texas.,Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Richard C Trevino
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Tim Schallert
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee
| | | | - Tu-Anh N Ha
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Nicolas Munoz
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Monika Pyarali
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Aakarshita Bansal
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Andrew D Poon
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Alexander T Mazal
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Tyler A Smith
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Nicole S Wong
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Patrick J Dunne
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
36
|
Mokarizadeh A, Mehrshad A, Mohammadi R. Local Polyethylene Glycol in Combination with Chitosan Based Hybrid Nanofiber Conduit Accelerates Transected Peripheral Nerve Regeneration. J INVEST SURG 2015; 29:167-74. [PMID: 26684915 DOI: 10.3109/08941939.2015.1098758] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The incapability to promptly improve behavioral function after discontinuation of peripheral nerves is a current problem in clinical practice. Effect of local polyethylene glycol in combination with chitosan-based hybrid nanofiber conduit was assessed. STUDY DESIGN A 10-mm sciatic nerve defect was bridged using a chitosan-based hybrid nanofiber conduit (Chitosan) filled with phosphate-buffered saline. In authograft group (AUTO), a segment of sciatic nerve was transected and reimplanted reversely. In polyethylene glycol-treated group (CHIT/PEG), the conduit was filled with polyethylene glycol solution. The regenerated fibers were studied within 12 weeks after surgery. RESULTS The behavioral and functional tests confirmed faster recovery of the regenerated axons in PEG-treated group compared to Chitosan group (p < .05). The mean ratios of gastrocnemius muscles weight were measured. There was statistically significant difference between the muscle weight ratios of CHIT/PEG and Chitosan groups (p < .05). Morphometric indices of regenerated fibers showed number and diameter of the myelinated fibers were significantly higher in CHIT/PEG than in Chitosan. In immuohistochemistry, the location of reactions to S-100 in CHIT/PEG was clearly more positive than Chitosan group. CONCLUSION polyethylene glycol solution when loaded in a chitosan-based hybrid nanofiber conduit resulted in acceleration of functional recovery and quantitative morphometric indices of sciatic nerve.
Collapse
Affiliation(s)
- Aram Mokarizadeh
- a Faculty of Medicine, Department of Immunology , Kurdistan University of Medical Sciences , Sanandaj , Iran.,b Cellular & Molecular Research Center , Kurdistan University of Medical Sciences , Sanandaj , Iran
| | - Ali Mehrshad
- c Faculty of Veterinary Medicine, Department of Clinical Sciences , Urmia Branch, Islamic Azad University , Urmia , Iran
| | - Rahim Mohammadi
- d Faculty of Veterinary Medicine, Department of Surgery and Diagnostic Imaging , Urmia University , Urmia , Iran
| |
Collapse
|
37
|
Zhang Z, Ohl M, Diallo SO, Jalarvo NH, Hong K, Han Y, Smith GS, Do C. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide. PHYSICAL REVIEW LETTERS 2015; 115:198301. [PMID: 26588420 DOI: 10.1103/physrevlett.115.198301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 05/25/2023]
Abstract
The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li(+). Detailed analysis of MD trajectories suggests that Li(+) is favorably found at the surface of the hydration layer, and the probability to find the caged Li(+) configuration formed by the PEO is lower than for the noncaged Li(+)-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li(+) hydration complexes. Performing the MD simulation with different ions (Na(+) and K(+)) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.
Collapse
Affiliation(s)
- Zhe Zhang
- Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Michael Ohl
- Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Souleymane O Diallo
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Niina H Jalarvo
- Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Kunlun Hong
- Center For Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Youngkyu Han
- Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gregory S Smith
- Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Changwoo Do
- Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
38
|
Bittner GD, Sengelaub DR, Trevino RC, Peduzzi JD, Mikesh M, Ghergherehchi CL, Schallert T, Thayer WP. The curious ability of polyethylene glycol fusion technologies to restore lost behaviors after nerve severance. J Neurosci Res 2015; 94:207-30. [PMID: 26525605 DOI: 10.1002/jnr.23685] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023]
Abstract
Traumatic injuries to PNS and CNS axons are not uncommon. Restoration of lost behaviors following severance of mammalian peripheral nerve axons (PNAs) relies on regeneration by slow outgrowths and is typically poor or nonexistent when after ablation or injuries close to the soma. Behavioral recovery after severing spinal tract axons (STAs) is poor because STAs do not naturally regenerate. Current techniques to enhance PNA and/or STA regeneration have had limited success and do not prevent the onset of Wallerian degeneration of severed distal segments. This Review describes the use of a recently developed polyethylene glycol (PEG) fusion technology combining concepts from biochemical engineering, cell biology, and clinical microsurgery. Within minutes after microsuturing carefully trimmed cut ends and applying a well-specified sequence of solutions, PEG-fused axons exhibit morphological continuity (assessed by intra-axonal dye diffusion) and electrophysiological continuity (assessed by conduction of action potentials) across the lesion site. Wallerian degeneration of PEG-fused PNAs is greatly reduced as measured by counts of sensory and/or motor axons and maintenance of axonal diameters and neuromuscular synapses. After PEG-fusion repair, cut-severed, crush-severed, or ablated PNAs or crush-severed STAs rapidly (within days to weeks), more completely, and permanently restore PNA- or STA-mediated behaviors compared with nontreated or conventionally treated animals. PEG-fusion success is enhanced or decreased by applying antioxidants or oxidants, trimming cut ends or stretching axons, and exposure to Ca(2+) -free or Ca(2+) -containing solutions, respectively. PEG-fusion technology employs surgical techniques and chemicals already used by clinicians and has the potential to produce a paradigm shift in the treatment of traumatic injuries to PNAs and STAs.
Collapse
Affiliation(s)
- G D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - D R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - R C Trevino
- Department of Orthopedic Surgery, Wellspan Health, York, Pennsylvania
| | - J D Peduzzi
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - M Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - C L Ghergherehchi
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - T Schallert
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - W P Thayer
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee
| |
Collapse
|
39
|
Riley DC, Bittner GD, Mikesh M, Cardwell NL, Pollins AC, Ghergherehchi CL, Bhupanapadu Sunkesula SR, Ha TN, Hall BTD, Poon AD, Pyarali M, Boyer RB, Mazal AT, Munoz N, Trevino RC, Schallert T, Thayer WP. Polyethylene glycol-fused allografts produce rapid behavioral recovery after ablation of sciatic nerve segments. J Neurosci Res 2014; 93:572-83. [PMID: 25425242 DOI: 10.1002/jnr.23514] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/19/2014] [Accepted: 10/09/2014] [Indexed: 11/08/2022]
Abstract
Restoration of neuronal functions by outgrowths regenerating at ∼1 mm/day from the proximal stumps of severed peripheral nerves takes many weeks or months, if it occurs at all, especially after ablation of nerve segments. Distal segments of severed axons typically degenerate in 1-3 days. This study shows that Wallerian degeneration can be prevented or retarded, and lost behavioral function can be restored, following ablation of 0.5-1-cm segments of rat sciatic nerves in host animals. This is achieved by using 0.8-1.1-cm microsutured donor allografts treated with bioengineered solutions varying in ionic and polyethylene glycol (PEG) concentrations (modified PEG-fusion procedure), being careful not to stretch any portion of donor or host sciatic nerves. The data show that PEG fusion permanently restores axonal continuity within minutes, as initially assessed by action potential conduction and intracellular diffusion of dye. Behavioral functions mediated by the sciatic nerve are largely restored within 2-4 weeks, as measured by the sciatic functional index. Increased restoration of sciatic behavioral functions after ablating 0.5-1-cm segments is associated with greater numbers of viable myelinated axons within and distal to PEG-fused allografts. Many such viable myelinated axons are almost certainly spared from Wallerian degeneration by PEG fusion. PEG fusion of donor allografts may produce a paradigm shift in the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- D C Riley
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee; Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kwon S, Chen ZCY, Noh H, Lee JH, Liu H, Cha JN, Xiang J. Selective functionalization and loading of biomolecules in crystalline silicon nanotube field-effect-transistors. NANOSCALE 2014; 6:7847-7852. [PMID: 24926535 DOI: 10.1039/c4nr01508h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Crystalline silicon nanotubes (Si NTs) provide distinctive advantages as electrical and biochemical analysis scaffolds through their unique morphology and electrical tunability compared to solid nanowires or amorphous/non-conductive nanotubes. Such potential is investigated in this report. Gate-dependent four-probe current-voltage analysis reveals electrical properties such as resistivity to differ by nearly 3 orders of magnitude between crystalline and amorphous Si NTs. Analysis of transistor transfer characteristics yields a field effect mobility of 40.0 cm(2) V(-1) s(-1) in crystalline Si NTs. The hollow morphology also allows selective inner/outer surface functionalization and loading capability either as a carrier for molecular targets or as a nanofluidic channel for biomolecular assays. We present for the first time a demonstration of internalization of fluorescent dyes (rhodamine) and biomolecules (BSA) in Si NTs as long as 22 μm in length.
Collapse
Affiliation(s)
- Soonshin Kwon
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ping X, Jiang K, Lee SY, Cheng JX, Jin X. PEG-PDLLA micelle treatment improves axonal function of the corpus callosum following traumatic brain injury. J Neurotrauma 2014; 31:1172-9. [PMID: 24579802 PMCID: PMC4082361 DOI: 10.1089/neu.2013.3147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The initial pathological changes of diffuse axonal injury following traumatic brain injury (TBI) include membrane disruption and loss of ionic homeostasis, which further lead to dysfunction of axonal conduction and axon disconnection. Resealing the axolemma is therefore a potential therapeutic strategy for the early treatment of TBI. Monomethoxy poly (ethylene glycol)-poly (D, L-lactic acid) di-block copolymer micelles (mPEG-PDLLA) have been shown to restore depressed compound action potentials (CAPs) of spinal axons and promote functional recovery after spinal cord injury. Here, we evaluate the effect of the micelles on repairing the injured cortical axons following TBI. Adult mice subjected to controlled cortical impact (CCI) were treated with intravenous injection of the micelles at 0 h or 4 h after injury. Evoked CAPs were recorded from the corpus callosum of coronal cortical slices at 2 days after injury. The CCI caused significant decreases in the amplitudes of two CAP peaks that were respectively generated by the faster myelinated axons and slower unmyelinated axons. Micelle treatment at both 0 h and 4 h after CCI resulted in significant increases in both CAP peak amplitudes. Injection of fluorescent dye-labeled micelles revealed high fluorescent staining in cortical gray and white matters underneath the impact site. Labeling membrane-perforated neurons by injecting a membrane impermeable dye Texas Red-labeled dextran into lateral ventricles at 2 h post-CCI revealed that immediate micelle injection after CCI did not reduce the number of dye-stained cortical neurons and dentate granule cells of the hippocampus, indicating its ineffectiveness in repairing plasma membrane of neuronal somata. We conclude that intravenous administration of mPEG-PDLLA micelles immediately or at 4 h after TBI allows brain penetration via the compromised blood brain-barrier, and thereby improves the function of both myelinated and unmyelinated axons of the corpus callosum.
Collapse
Affiliation(s)
- Xingjie Ping
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kewen Jiang
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Neurology, Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Seung-Young Lee
- Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Ji-Xing Cheng
- Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
42
|
Rijsdijk M, van Wijck AJM, Kalkman CJ, Yaksh TL. The effects of glucocorticoids on neuropathic pain: a review with emphasis on intrathecal methylprednisolone acetate delivery. Anesth Analg 2014; 118:1097-112. [PMID: 24781577 DOI: 10.1213/ane.0000000000000161] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylprednisolone acetate (MPA) has a long history of use in the treatment of sciatic pain and other neuropathic pain syndromes. In several of these syndromes, MPA is administered in the epidural space. On a limited basis, MPA has also been injected intrathecally in patients suffering from postherpetic neuralgia and complex regional pain syndrome. The reports on efficacy of intrathecal administration of MPA in neuropathic pain patients are contradictory, and safety is debated. In this review, we broadly consider mechanisms whereby glucocorticoids exert their action on spinal cascades relevant to the pain arising after nerve injury and inflammation. We then focus on the characteristics of the actions of MPA in pharmacokinetics, efficacy, and safety when administered in the intrathecal space.
Collapse
Affiliation(s)
- Mienke Rijsdijk
- From the *Department of Anesthesiology, Pain Clinic, University Medical Center Utrecht, Utrecht, The Netherlands; and †Department of Anesthesiology, University of California San Diego, San Diego, California
| | | | | | | |
Collapse
|
43
|
Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury. Neurosci Bull 2013; 29:460-6. [PMID: 23893430 DOI: 10.1007/s12264-013-1364-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022] Open
Abstract
The integrity of the neuronal membrane is crucial for its function and cellular survival; thus, ineffective repair of damaged membranes may be one of the key elements underlying the neuronal degeneration and overall functional loss that occurs after spinal cord injury (SCI). it has been shown that polyethylene glycol (PEG) can reseal axonal membranes following various injuries in multiple in vitro and in vivo injury models. in addition, PEG may also directly prevent the effects of mitochondria-derived oxidative stress on intracellular components. Thus, PEG repairs mechanically injured cells by at least two distinct pathways: resealing of the disrupted plasma membrane and direct protection of mitochondria. Besides repairing primary membrane damage, PEG treatment also results in significant attenuation of oxidative stress, likely due to its capacity to reseal the membrane, thereby breaking the cycle of cellular damage and free-radical production. Based on this, in addition to the practicality of its application, we expect that PEG may be established as an effective treatment for SCI where membrane disruption and mitochondrial damage are implicated.
Collapse
|
44
|
Abstract
Nerve glue is an attractive alternative to sutures to improve the results of nerve repair. Improved axon alignment, reduced scar and inflammation, greater and faster reinnervation, and better functional results have been reported with the use of nerve glue. The different types of nerve glue and the evidence to support or oppose their use are reviewed. Although the ideal nerve glue has yet to be developed, fibrin sealants can be used as nerve glue in select clinical situations. Technology to allow suture-free nerve repair is one development that can potentially improve functional nerve recovery and the outcomes of upper extremity reconstruction.
Collapse
Affiliation(s)
- Raymond Tse
- Division of Plastic Surgery, Department of Surgery, University of Washington, WA 98105, USA.
| | | |
Collapse
|
45
|
Sexton KW, Pollins AC, Cardwell NL, Del Corral GA, Bittner GD, Shack RB, Nanney LB, Thayer WP. Hydrophilic polymers enhance early functional outcomes after nerve autografting. J Surg Res 2012; 177:392-400. [PMID: 22521220 DOI: 10.1016/j.jss.2012.03.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/07/2012] [Accepted: 03/22/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Approximately 12% of operations for traumatic neuropathy are for patients with segmental nerve loss, and less than 50% of these injuries obtain meaningful functional recovery. Polyethylene glycol (PEG) therapy has been shown to improve functional outcomes after nerve severance, and we hypothesized this therapy could also benefit nerve autografting. METHODS We used a segmental rat sciatic nerve injury model in which we repaired a 0.5-cm defect with an autograft using microsurgery. We treated experimental animals with solutions containing methylene blue (MB) and PEG; control animals did not receive PEG. We recorded compound action potentials (CAPs) before nerve transection, after solution therapy, and at 72 h postoperatively. The animals underwent behavioral testing at 24 and 72 h postoperatively. After we euthanized the animals, we fixed the nerves, sectioned and immunostained them to allow for quantitative morphometric analysis. RESULTS The introduction of hydrophilic polymers greatly improved morphological and functional recovery of rat sciatic axons at 1-3 d after nerve autografting. Polyethylene glycol therapy restored CAPs in all animals, and CAPs were still present 72 h postoperatively. No CAPS were detectable in control animals. Foot Fault asymmetry scores and sciatic functional index scores were significantly improved for PEG therapy group at all time points (P < 0.05 and P < 0.001; P < 0.001 and P < 0.01). Sensory and motor axon counts were increased distally in nerves treated with PEG compared with control (P = 0.019 and P = 0.003). CONCLUSIONS Polyethylene glycol therapy improves early physiologic function, behavioral outcomes, and distal axonal density after nerve autografting.
Collapse
Affiliation(s)
- Kevin W Sexton
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bittner G, Keating C, Kane J, Britt J, Spaeth C, Fan J, Zuzek A, Wilcott R, Thayer W, Winograd J, Gonzalez-Lima F, Schallert T. Rapid, effective, and long-lasting behavioral recovery produced by microsutures, methylene blue, and polyethylene glycol after completely cutting rat sciatic nerves. J Neurosci Res 2012; 90:967-80. [DOI: 10.1002/jnr.23023] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/04/2011] [Accepted: 12/13/2011] [Indexed: 01/05/2023]
|
47
|
Spaeth CS, Robison T, Fan JD, Bittner GD. Cellular mechanisms of plasmalemmal sealing and axonal repair by polyethylene glycol and methylene blue. J Neurosci Res 2012; 90:955-66. [PMID: 22302626 DOI: 10.1002/jnr.23022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/04/2011] [Accepted: 12/15/2011] [Indexed: 11/09/2022]
Abstract
Mammalian neurons and all other eukaryotic cells endogenously repair traumatic injury within minutes by a Ca²⁺-induced accumulation of vesicles that interact and fuse with each other and the plasmalemma to seal any openings. We have used uptake or exclusion of extracellular fluorescent dye to measure the ability of rat hippocampal B104 cells or rat sciatic nerves to repair (seal) transected neurites in vitro or transected axons ex vivo. We report that endogenous sealing in both preparations is enhanced by Ca²⁺-containing solutions and is decreased by Ca²⁺-free solutions containing antioxidants such as dithiothreitol (DTT), melatonin (MEL), methylene blue (MB), and various toxins that decrease vesicular interactions. In contrast, the fusogen polyethylene glycol (PEG) at 10-50 mM artificially seals the cut ends of B104 cells and rat sciatic axons within seconds and is not affected by Ca²⁺ or any of the substances that affect endogenous sealing. At higher concentrations, PEG decreases sealing of transected axons and disrupts the plasmalemma of intact cells. These PEG-sealing data are consistent with the hypothesis that lower concentrations of PEG directly seal a damaged plasmalemma. We have considered these and other data to devise a protocol using a well-specified series of solutions that vary in tonicity, Ca²⁺, MB, and PEG content. These protocols rapidly and consistently repair (PEG-fuse) rat sciatic axons in completely cut sciatic nerves in vivo rapidly and dramatically to restore long-lasting morphological continuity, action potential conduction, and behavioral functions.
Collapse
Affiliation(s)
- C S Spaeth
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | | | | | | |
Collapse
|
48
|
Lee YS, Collins G, Arinzeh TL. Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomater 2011; 7:3877-86. [PMID: 21810489 DOI: 10.1016/j.actbio.2011.07.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 01/09/2023]
Abstract
Neural tissue engineering may be a promising option for neural repair treatment, for which a well-designed scaffold is essential. Smart materials that can stimulate neurite extension and outgrowth have been investigated as potential scaffolding materials. A piezoelectric polymer polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) was used to fabricate electrospun aligned and random scaffolds having nano- or micron-sized fiber dimensions. The advantage of using a piezoelectric polymer is its intrinsic electrical properties. The piezoelectric characteristics of PVDF-TrFE scaffolds were shown to be enhanced by annealing. Dorsal root ganglion (DRG) neurons attached to all fibrous scaffolds. Neurites extended radially on random scaffolds, whereas aligned scaffolds directed neurite outgrowth for all fiber dimensions. Neurite extension was greatest on aligned, annealed PVDF-TrFE having micron-sized fiber dimensions in comparison with annealed and as-spun random PVDF-TrFE scaffolds. DRG on micron-sized aligned, as-spun and annealed PVDF-TrFE also had the lowest aspect ratio amongst all scaffolds, including non-piezoelectric PVDF and collagen-coated substrates. Findings from this study demonstrate the potential use of a piezoelectric fibrous scaffold for neural repair applications.
Collapse
Affiliation(s)
- Yee-Shuan Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | | | | |
Collapse
|
49
|
Das AK, Hsu DY, Hong PD. Dynamic Viscosity of PEG:PEG-ran
-PPG Blends through Stress Relaxation. MACROMOL THEOR SIMUL 2011. [DOI: 10.1002/mats.201000053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Ellis-Behnke RG, Schneider GE. Peptide amphiphiles and porous biodegradable scaffolds for tissue regeneration in the brain and spinal cord. Methods Mol Biol 2011; 726:259-81. [PMID: 21424455 DOI: 10.1007/978-1-61779-052-2_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many promising strategies have been developed for controlling the release of drugs from scaffolds, yet there are still challenges that need to be addressed in order for these scaffolds to serve as successful treatments. The RADA4 self-assembling peptide spontaneously forms nanofibers, creating a scaffold-like tissue-bridging structure that provides a three-dimensional environment for the migration of living cells. We have found that RADA4: (1) facilitates the regeneration of axons in the brain of young and adult hamsters, leading to functional return of behavior and (2) demonstrates robust migration of host cells and growth of blood vessels and axons, leading to the repair of injured spinal cords in rats.
Collapse
Affiliation(s)
- Rutledge G Ellis-Behnke
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|