1
|
Maggiolo AO, Mahajan S, Rees DC, Clemons WM. Intradimeric Walker A ATPases: Conserved Features of A Functionally Diverse Family. J Mol Biol 2023; 435:167965. [PMID: 37330285 DOI: 10.1016/j.jmb.2023.167965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 06/19/2023]
Abstract
Nucleoside-triphosphate hydrolases (NTPases) are a diverse, but essential group of enzymes found in all living organisms. NTPases that have a G-X-X-X-X-G-K-[S/T] consensus sequence (where X is any amino acid), known as the Walker A or P-loop motif, constitute a superfamily of P-loop NTPases. A subset of ATPases within this superfamily contains a modified Walker A motif, X-K-G-G-X-G-K-[S/T], wherein the first invariant lysine residue is essential to stimulate nucleotide hydrolysis. Although the proteins in this subset have vastly differing functions, ranging from electron transport during nitrogen fixation to targeting of integral membrane proteins to their correct membranes, they have evolved from a shared ancestor and have thus retained common structural features that affect their functions. These commonalities have only been disparately characterized in the context of their individual proteins systems, but have not been generally annotated as features that unite the members of this family. In this review, we report an analysis based on the sequences, structures, and functions of several members in this family that highlight their remarkable similarities. A principal feature of these proteins is their dependence on homodimerization. Since their functionalities are heavily influenced by changes that happen in conserved elements at the dimer interface, we refer to the members of this subclass as intradimeric Walker A ATPases.
Collapse
Affiliation(s)
- Ailiena O Maggiolo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Shivansh Mahajan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
2
|
Yakusheva EN, Titov DS. Structure and Function of Multidrug Resistance Protein 1. BIOCHEMISTRY (MOSCOW) 2018; 83:907-929. [DOI: 10.1134/s0006297918080047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Nessa A, Aziz QH, Thomas AM, Harmer SC, Tinker A, Hussain K. Molecular mechanisms of congenital hyperinsulinism due to autosomal dominant mutations in ABCC8. Hum Mol Genet 2015; 24:5142-53. [PMID: 26092864 DOI: 10.1093/hmg/ddv233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/16/2015] [Indexed: 11/12/2022] Open
Abstract
Congenital Hyperinsulinism (CHI) is a rare heterogeneous disease characterized by unregulated insulin secretion. Dominant mutations in ABCC8 causing medically unresponsive CHI have been reported; however, the molecular mechanisms are not clear. The molecular basis of medically unresponsive CHI due to dominant ABCC8 mutations has been studied in 10 patients, who were medically unresponsive to diazoxide (DZX), and nine of whom required a near-total pancreatectomy, and one partial pancreatectomy. DNA sequencing revealed seven dominant inactivating heterozygous missense mutations in ABCC8, including one novel and six previously reported but uncharacterized mutations. Two groups of mutations with different cellular mechanisms were characterized. Mutations in the transmembrane domain (TMD) were more responsive to channel activators such as DZX, MgADP and metabolic inhibition. The trafficking analysis has shown that nucleotide-binding domain two (NBD2) mutations are not retained in the endoplasmic reticulum (ER) and are present on the membrane. However, the TMD mutations were retained in the ER. D1506E was the most severe SUR1-NBD2 mutation. Homologous expression of D1506E revealed a near absence of KATP currents in the presence of DZX and intracellular MgADP. Heterozygous expression of D1506E showed a strong dominant-negative effect on SUR1\Kir6.2 currents. Overall, we define two groups of mutation with different cellular mechanisms. In the first group, channel complexes with mutations in NBD2 of SUR1 traffic normally but are unable to be activated by MgADP. In the second group, channels mutations in the TMD of SUR1 are retained in the ER and have variable functional impairment.
Collapse
Affiliation(s)
- Azizun Nessa
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Qadeer H Aziz
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK and
| | - Alison M Thomas
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK and
| | - Stephen C Harmer
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK and
| | - Andrew Tinker
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK and
| | - Khalid Hussain
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK, Genetics and Genomic Medicine, UCL Institute of Child Health, London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS, London WC1N 1EH, UK
| |
Collapse
|
4
|
Molecular modelling approaches for cystic fibrosis transmembrane conductance regulator studies. Int J Biochem Cell Biol 2014; 52:39-46. [DOI: 10.1016/j.biocel.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 12/30/2022]
|
5
|
Germann UA, Chambers TC. Molecular analysis of the multidrug transporter, P-glycoprotein. Cytotechnology 2012; 27:31-60. [PMID: 19002782 DOI: 10.1023/a:1008023629269] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity.
Collapse
Affiliation(s)
- U A Germann
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, MA, 02139-4242, U.S.A.,
| | | |
Collapse
|
6
|
Khushoo A, Yang Z, Johnson AE, Skach WR. Ligand-driven vectorial folding of ribosome-bound human CFTR NBD1. Mol Cell 2011; 41:682-92. [PMID: 21419343 PMCID: PMC3095512 DOI: 10.1016/j.molcel.2011.02.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/03/2010] [Accepted: 02/23/2011] [Indexed: 11/26/2022]
Abstract
The mechanism by which protein folding is coupled to biosynthesis is a critical, but poorly understood, aspect of protein conformational diseases. Here we use fluorescence resonance energy transfer (FRET) to characterize tertiary structural transitions of nascent polypeptides and show that the first nucleotide-binding domain (NBD1) of human CFTR, whose folding is defective in cystic fibrosis, folds via a cotranslational multistep pathway as it is synthesized on the ribosome. Folding begins abruptly as NBD1 residues 389-500 emerge from the ribosome exit tunnel, initiating compaction of a small, N-terminal α/β-subdomain. Real-time kinetics of synchronized nascent chains revealed that subdomain folding is rapid, occurs coincident with synthesis, and is facilitated by direct ATP binding to the nascent polypeptide. These findings localize the major CF defect late in the NBD1 folding pathway and establish a paradigm wherein a cellular ligand promotes vectorial domain folding by facilitating an energetically favored local peptide conformation.
Collapse
Affiliation(s)
- Amardeep Khushoo
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
7
|
Identification of an NTPase motif in classical swine fever virus NS4B protein. Virology 2011; 411:41-9. [PMID: 21236462 DOI: 10.1016/j.virol.2010.12.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/15/2010] [Accepted: 12/16/2010] [Indexed: 11/20/2022]
Abstract
Classical swine fever (CSF) is a highly contagious and often fatal disease of swine caused by CSF virus (CSFV), a positive-sense single-stranded RNA virus within the Pestivirus genus of the Flaviviridae family. Here, we have identified conserved sequence elements observed in nucleotide-binding motifs (NBM) that hydrolyze NTPs within the CSFV non-structural (NS) protein NS4B. Expressed NS4B protein hydrolyzes both ATP and GTP. Substitutions of critical residues within the identified NS4B NBM Walker A and B motifs significantly impair the ATPase and GTPase activities of expressed proteins. Similar mutations introduced into the genetic backbone of a full-length cDNA copy of CSFV strain Brescia rendered no infectious viruses or viruses with impaired replication capabilities, suggesting that this NTPase activity is critical for the CSFV cycle. Recovered mutant viruses retained a virulent phenotype, as parental strain Brescia, in infected swine. These results have important implications for developing novel antiviral strategies against CSFV infection.
Collapse
|
8
|
Ma JD, Tsunoda SM, Bertino JS, Trivedi M, Beale KK, Nafziger AN. Evaluation of in vivo P-glycoprotein phenotyping probes: a need for validation. Clin Pharmacokinet 2010; 49:223-37. [PMID: 20214407 DOI: 10.2165/11318000-000000000-00000] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Drug transporters are involved in clinically relevant drug-drug interactions. P-glycoprotein (P-gp) is an efflux transporter that displays genetic polymorphism. Phenotyping permits evaluation of real-time, in vivo P-gp activity and P-gp-mediated drug-drug interactions. Digoxin, fexofenadine, talinolol and quinidine are commonly used probe drugs for P-gp phenotyping. Although current regulatory guidance documents highlight methodologies for evaluating transporter-based drug-drug interactions, whether current probe drugs are suitable for phenotyping has not been established, and validation criteria are lacking. This review proposes validation criteria and evaluates P-gp probes to determine probe suitability. Based on these criteria, digoxin, fexofenadine, talinolol and quinidine have limitations to their use and are not recommended for P-gp phenotyping.
Collapse
Affiliation(s)
- Joseph D Ma
- University of California, San Diego, La Jolla, 92093, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Ames GF, Mimura CS, Holbrook SR, Shyamala V. Traffic ATPases: a superfamily of transport proteins operating from Escherichia coli to humans. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:1-47. [PMID: 1533298 DOI: 10.1002/9780470123119.ch1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- G F Ames
- Department of Molecular and Cell Biology, University of California, Berkeley
| | | | | | | |
Collapse
|
10
|
Mir MA, Rajeswari HS, Veeraraghavan U, Ajitkumar P. Molecular characterisation of ABC transporter type FtsE and FtsX proteins of Mycobacterium tuberculosis. Arch Microbiol 2006; 185:147-58. [PMID: 16416128 DOI: 10.1007/s00203-005-0079-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/09/2005] [Accepted: 12/14/2005] [Indexed: 11/30/2022]
Abstract
Elicitation of drug resistance and various survival strategies inside host macrophages have been the hallmarks of Mycobacterium tuberculosis as a successful pathogen. ATP Binding Cassette (ABC) transporter type proteins are known to be involved in the efflux of drugs in bacterial and mammalian systems. FtsE, an ABC transporter type protein, in association with the integral membrane protein FtsX, is involved in the assembly of potassium ion transport proteins and probably of cell division proteins as well, both of which being relevant to tubercle bacillus. In this study, we cloned ftsE gene of M. tuberculosis, overexpressed and purified. The recombinant MtFtsE-6xHis protein and the native MtFtsE protein were found localized on the membrane of E. coli and M. tuberculosis cells, respectively. MtFtsE-6xHis protein showed ATP binding in vitro, for which the K42 residue in the Walker A motif was found essential. While MtFtsE-6xHis protein could partially complement growth defect of E. coli ftsE temperature-sensitive strain MFT1181, co-expression of MtFtsE and MtFtsX efficiently complemented the growth defect, indicating that the MtFtsE and MtFtsX proteins might be performing an associated function. MtFtsE and MtFtsX-6xHis proteins were found to exist as a complex on the membrane of E. coli cells co-expressing the two proteins.
Collapse
Affiliation(s)
- Mushtaq Ahmad Mir
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012, Bangalore, India
| | | | | | | |
Collapse
|
11
|
Seigneuret M, Garnier-Suillerot A. A structural model for the open conformation of the mdr1 P-glycoprotein based on the MsbA crystal structure. J Biol Chem 2003; 278:30115-24. [PMID: 12777401 DOI: 10.1074/jbc.m302443200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The validity of the structure of the Escherichia coli MsbA lipid transporter as a model from the mdr1 P-glycoprotein has been evaluated. Comparative sequence analyses, motif search and secondary structure prediction indicated that each of the two P-glycoprotein halves is structurally similar to the MsbA monomer and also suggested that the open dimer structure is valid for P-glycoprotein. Homology modeling was used to predict the structure of P-glycoprotein using MsbA as a template. The resulting modeled structure allowed a detailed study of the interactions between the intracellular domain and the nucleotide binding domain and suggested that these contacts are involved in mediating the coupling between nucleotide binding domain conformational changes and transmembrane helices reorientation during transport. In P-glycoprotein, the internal chamber open to the inner leaflet and the inner medium is significantly different in size and charge than in MsbA. These differences can be related to those of the transported substrates. Moreover an ensemble of 20 conserved aromatic residues appears to border the periphery of each side of the chamber in P-glycoprotein. These may be important for size selection and proper positioning of drugs for transport. The relevance of the modeled conformation to P-gp function is discussed.
Collapse
Affiliation(s)
- Michel Seigneuret
- Laboratoire de Physochimie Biomoléculaire et Cellulaire, UMR-CNRS 7033, Universitĕ Paris 6, France.
| | | |
Collapse
|
12
|
Schmitt L, Benabdelhak H, Blight MA, Holland IB, Stubbs MT. Crystal structure of the nucleotide-binding domain of the ABC-transporter haemolysin B: identification of a variable region within ABC helical domains. J Mol Biol 2003; 330:333-42. [PMID: 12823972 DOI: 10.1016/s0022-2836(03)00592-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ABC-transporter haemolysin B is a central component of the secretion machinery that translocates the toxin, haemolysin A, in a Sec-independent fashion across both membranes of E. coli. Here, we report the X-ray crystal structure of the nucleotide-binding domain (NBD) of HlyB. The molecule shares the common overall architecture of ABC-transporter NBDs. However, the last three residues of the Walker A motif adopt a 3(10) helical conformation, stabilized by a bound anion. In consequence, this results in an unusual interaction between the Walker A lysine residue and the Walker B glutamate residue. As these residues are normally required to be available for ATP binding, for catalysis and for dimer formation of ABC domains, we suggest that this conformation may represent a latent monomeric form of the NBD. Surprisingly, comparison of available NBD structures revealed a structurally diverse region (SDR) of about 30 residues within the helical arm II domain, unique to each of the eight NBDs analyzed. As this region interacts with the transmembrane part of ABC-transporters, the SDR helps to explain the selectivity and/or targeting of different NBDs to their cognate transmembrane domains.
Collapse
Affiliation(s)
- Lutz Schmitt
- Institut für Biochemie, Biozentrum N210, Johann Wolfgang Goethe Universität Frankfurt, Marie-Curie Str. 9, 60439, Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
13
|
Jones PM, George AM. Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Proc Natl Acad Sci U S A 2002; 99:12639-44. [PMID: 12237398 PMCID: PMC130513 DOI: 10.1073/pnas.152439599] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are membrane-bound molecular pumps that form one of the largest of all protein families. Several of them are central to phenomena of biomedical interest, including cystic fibrosis and resistance to chemotherapeutic drugs. ABC transporters share a common architecture comprising two hydrophilic nucleotide-binding domains (NBDs) and two hydrophobic transmembrane domains (TMDs) that form the substrate pathway across the membrane. The conformational changes in the NBDs induced by ATP hydrolysis and the means by which they are transmitted to the TMDs to effect substrate translocation remain largely unknown. We have performed a molecular dynamics simulation of HisP, the well studied NBD of the bacterial histidine permease, to identify hinges and switches of the NBD conformational transitions and subunit-subunit interfaces. This analysis reveals that the TMDs regulate ATP hydrolysis by controlling conformational transitions of the NBD helical domains, and identifies the conformational changes and the crucial TMD:NBD interface, by which the energy of ATP hydrolysis is transmitted to the TMDs. We also define the conformational transitions of the Q-loop, a key element of the NBD mechanism, and identify pathways by which Q-loop switching is coordinated with TMD and NBD conformational changes. We propose a model for the catalytic cycle of ABC transporters that shows how substrate-binding and transport by the TMDs may be coordinated and coupled with ATP binding and hydrolysis in the NBDs.
Collapse
Affiliation(s)
- Peter M Jones
- Department of Cell and Molecular Biology, University of Technology Sydney, P.O. Box 123 Broadway, Sydney NSW 2007, Australia
| | | |
Collapse
|
14
|
Lépine G, Ellen RP. MglA and mglB of Treponema denticola; similarity to ABC transport and spa genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 11:419-31. [PMID: 11328650 DOI: 10.3109/10425170009033992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mglA and mglB genes (td-mglA and td-mglB) of the oral spirochete Treponema denticola were sequenced. These two T. denticola genes are highly homologous to the E. coli and Treponema pallidum mglA and mglB genes which are part of the three gene beta-methylgalactoside transport operon, mglBAC. Both Td-mglA and td-mglB are also homologous to the high affinity ABC-type transporters for ribose and arabinose, and surface presentation antigens (spa) locus, part of the type III secretion systems in enteropathogens. Td-mglB and td-mglA are co-transcribed as a single mRNA in T. denticola as well as in E. coli cells as determined by reverse transcription PCR (RT-PCR). Homology to td-mglB and its expressed protein was found in other oral spirochetes as determined by Southern and western blot analysis.
Collapse
Affiliation(s)
- G Lépine
- University of Toronto, Faculty of Dentistry, Toronto, Ontario M5G 1G6, Canada.
| | | |
Collapse
|
15
|
Gaudet R, Wiley DC. Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing. EMBO J 2001; 20:4964-72. [PMID: 11532960 PMCID: PMC125601 DOI: 10.1093/emboj/20.17.4964] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The transporter associated with antigen processing (TAP) is an ABC transporter formed of two subunits, TAP1 and TAP2, each of which has an N-terminal membrane-spanning domain and a C-terminal ABC ATPase domain. We report the structure of the C-terminal ABC ATPase domain of TAP1 (cTAP1) bound to ADP. cTAP1 forms an L-shaped molecule with two domains, a RecA-like domain and a small alpha-helical domain. The diphosphate group of ADP interacts with the P-loop as expected. Residues thought to be involved in gamma-phosphate binding and hydrolysis show flexibility in the ADP-bound state as evidenced by their high B-factors. Comparisons of cTAP1 with other ABC ATPases from the ABC transporter family as well as ABC ATPases involved in DNA maintenance and repair reveal key regions and residues specific to each family. Three ATPase subfamilies are identified which have distinct adenosine recognition motifs, as well as distinct subdomains that may be specific to the different functions of each subfamily. Differences between TAP1 and TAP2 in the nucleotide-binding site may be related to the observed asymmetry during peptide transport.
Collapse
Affiliation(s)
| | - Don C. Wiley
- Department of Molecular and Cellular Biology,
Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA Corresponding author e-mail:
| |
Collapse
|
16
|
Chen JM, Cutler C, Jacques C, Boeuf G, Denamur E, Lecointre G, Mercier B, Cramb G, Férec C. A combined analysis of the cystic fibrosis transmembrane conductance regulator: implications for structure and disease models. Mol Biol Evol 2001; 18:1771-88. [PMID: 11504857 DOI: 10.1093/oxfordjournals.molbev.a003965] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, nearly 1,000 variants have been identified in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in classic and atypical cystic fibrosis (CF) patients worldwide, and an enormous wealth of information concerning the structure and function of the protein has also been accumulated. These data, if evaluated together in a sequence comparison of all currently available CFTR homologs, are likely to refine the global structure-function relationship of the protein, which will, in turn, facilitate interpretation of the identified mutations in the gene. Based on such a combined analysis, we had recently defined a "functional R domain" of the CFTR protein. First, presenting two full-length cDNA sequences (termed sCFTR-I and sCFTR-II) from the Atlantic salmon (Salmo salar) and an additional partial coding sequence from the eastern gray kangaroo (Macropus giganteus), this study went further to refine the boundaries of the two nucleotide-binding domains (NBDs) and the COOH-terminal tail (C-tail), wherein NBD1 was defined as going from P439 to G646, NBD2 as going from A1225 to E1417, and the C-tail as going from E1418 to L1480. This approach also provided further insights into the differential roles of the two halves of CFTR and highlighted several well-conserved motifs that may be involved in inter- or intramolecular interactions. Moreover, a serious concern that a certain fraction of missense mutations identified in the CFTR gene may not have functional consequences was raised. Finally, phylogenetic analysis of all the full-length CFTR amino acid sequences and an extended set of exon 13--coding nucleotide sequences reinforced the idea that the rabbit may represent a better CF model than the mouse and strengthened the assertion that a long-branch attraction artifact separates the murine rodents from the rabbit and the guinea pig, the other Glires.
Collapse
Affiliation(s)
- J M Chen
- Institut National de la Santé et de la Recherche Médicale EMI 01 15, Etablissement Français du Sang-Bretagne, Universite de Bretagne Occidentale, and Centre Hospitalier Universitaire, Brest, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Beckwith CS, McGee DJ, Mobley HL, Riley LK. Cloning, expression, and catalytic activity of Helicobacter hepaticus urease. Infect Immun 2001; 69:5914-20. [PMID: 11500473 PMCID: PMC98713 DOI: 10.1128/iai.69.9.5914-5920.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Helicobacter hepaticus causes disease in the liver and lower intestinal tract of mice. It is strongly urease positive, although it does not live in an acidic environment. The H. hepaticus urease gene cluster was expressed in Escherichia coli with and without coexpression of the Helicobacter pylori nickel transporter NixA. As for H. pylori, it was difficult to obtain enzymatic activity from recombinant H. hepaticus urease; special conditions including NiCl2 supplementation were required. The H. hepaticus urease cluster contains a homolog of each gene in the H. pylori urease cluster, including the urea transporter gene ureI. Downstream genes were homologs of the nik nickel transport operon of E. coli. Nongastric H. hepaticus produces urease similar to that of H. pylori.
Collapse
Affiliation(s)
- C S Beckwith
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|
18
|
Karpowich N, Martsinkevich O, Millen L, Yuan YR, Dai PL, MacVey K, Thomas PJ, Hunt JF. Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 2001; 9:571-86. [PMID: 11470432 DOI: 10.1016/s0969-2126(01)00617-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND ATP binding cassette (ABC) transporters are ubiquitously distributed transmembrane solute pumps that play a causative role in numerous diseases. Previous structures have defined the fold of the ABC and established the flexibility of its alpha-helical subdomain. But the nature of the mechanical changes that occur at each step of the chemical ATPase cycle have not been defined. RESULTS Crystal structures were determined of the MJ1267 ABC from Methanococcus jannaschii in Mg-ADP-bound and nucleotide-free forms. Comparison of these structures reveals an induced-fit effect at the active site likely to be a consequence of nucleotide binding. In the Mg-ADP-bound structure, the loop following the Walker B moves toward the Walker A (P-loop) coupled to backbone conformational changes in the intervening "H-loop", which contains an invariant histidine. These changes affect the region believed to mediate intercassette interaction in the ABC transporter complex. Comparison of the Mg-ADP-bound structure of MJ1267 to the ATP-bound structure of HisP suggests that an outward rotation of the alpha-helical subdomain is coupled to the loss of a molecular contact between the gamma-phosphate of ATP and an invariant glutamine in a segment connecting this subdomain to the core of the cassette. CONCLUSIONS The induced-fit effect and rotation of the alpha-helical subdomain may play a role in controlling the nucleotide-dependent change in cassette-cassette interaction affinity believed to represent the power-stroke of ABC transporters. Outward rotation of the alpha-helical subdomain also likely facilitates Mg-ADP release after hydrolysis. The MJ1267 structures therefore define features of the nucleotide-dependent conformational changes that drive transmembrane transport in ABC transporters.
Collapse
Affiliation(s)
- N Karpowich
- Department of Biological Sciences, 702A Fairchild Center, MC2434, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zou X, Hwang TC. ATP hydrolysis-coupled gating of CFTR chloride channels: structure and function. Biochemistry 2001; 40:5579-86. [PMID: 11341822 DOI: 10.1021/bi010133c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- X Zou
- Department of Biochemistry, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | |
Collapse
|
20
|
Ames GF, Nikaido K, Wang IX, Liu PQ, Liu CE, Hu C. Purification and characterization of the membrane-bound complex of an ABC transporter, the histidine permease. J Bioenerg Biomembr 2001; 33:79-92. [PMID: 11456221 DOI: 10.1023/a:1010797029183] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The bacterial histidine permease, an ABC transporter, from Salmonella typhimurium is composed of a membrane-bound complex, HisQMP2, comprising two hydrophobic subunits (HisQ and HisM), two copies of an ATP-hydrolyzing subunit, HisP, and a soluble receptor, HisJ. We describe the purification and characterization of HisQMP2 using a 6-histidines extension at the carboxy terminus of HisP [HisQMP2(his6)]. The purification is rapid and effective, giving a seven-fold purification with a yield of 85 and 98% purity. Two procedures are described differing in the detergent used (decanoylsucrose and octylglucoside, respectively) and in the presence of phospholipid. HisQMP2(his6) has ATPase and transport activities upon reconstitution into proteoliposomes (PLS). HisQMP2(his6) has a low level ATPase activity (intrinsic activity), which is stimulated to a different extent by the receptor--liganded and unliganded. Its pH optimum is 7.8-8.0, it requires a cation for activity and it displays cooperativity for ATP. The effect of various ATP analogs was analyzed. Determination of the molecular size of HisQMP2(his6) indicates that it is a monomer. The permeability properties of two kinds of reconstituted PLS preparations are described.
Collapse
Affiliation(s)
- G F Ames
- Department of Molecular and Cell Biology, University of California at Berkeley, 94720-3202, USA
| | | | | | | | | | | |
Collapse
|
21
|
Urbatsch IL, Julien M, Carrier I, Rousseau ME, Cayrol R, Gros P. Mutational analysis of conserved carboxylate residues in the nucleotide binding sites of P-glycoprotein. Biochemistry 2000; 39:14138-49. [PMID: 11087362 DOI: 10.1021/bi001128w] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutagenesis was used to investigate the functional role of six pairs of aspartate and glutamate residues (D450/D1093, E482/E1125, E552/E1197, D558/D1203, D592/D1237, and E604/E1249) that are highly conserved in the nucleotide binding sites of P-glycoprotein (Mdr3) and of other ABC transporters. Removal of the charge in E552Q/E1197Q and D558N/D1203N produced proteins with severely impaired biological activity when the proteins were analyzed in yeast cells for cellular resistance to FK506 and restoration of mating in a ste6Delta mutant. Mutations at other acidic residues had no apparent effect in the same assays. These four mutants were expressed in Pichia pastoris, purified to homogeneity, and biochemically characterized with respect to ATPase activity. Studies with purified proteins showed that mutants D558N and D1203N retained 14 and 30% of the drug-stimulated ATPase activity of wild-type (WT) Mdr3, respectively, and vanadate trapping of 8-azido[alpha-(32)P]nucleotide confirmed slower basal and drug-stimulated 8-azido-ATP hydrolysis compared to that for WT Mdr3. The E552Q and E1197Q mutants showed no drug-stimulated ATPase activity. Surprisingly, drugs did stimulate vanadate trapping of 8-azido[alpha-(32)P]nucleotide in E552Q and E1197Q at a level similar to that of WT Mdr3. This suggests that formation of the catalytic transition state can occur in these mutants, and that the bond between the beta- and gamma-phosphates is hydrolyzed. In addition, photolabeling by 8-azido[alpha-(32)P]nucleotide in the presence or absence of drug was also detected in the absence of vanadate in these mutants. These results suggest that steps after the transition state, possibly involved in release of MgADP, are severely impaired in these mutant enzymes.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/physiology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/isolation & purification
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- ATP-Binding Cassette Transporters/physiology
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/metabolism
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Animals
- Azides/metabolism
- Binding Sites/genetics
- Carboxylic Acids/metabolism
- Conserved Sequence
- DNA Mutational Analysis
- Drug Resistance, Multiple
- Genetic Vectors/metabolism
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oligonucleotides/metabolism
- Photoaffinity Labels/metabolism
- Pichia/genetics
- Pichia/metabolism
- Vanadates/metabolism
Collapse
Affiliation(s)
- I L Urbatsch
- Department of Biochemistry, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | | | | | | | | | |
Collapse
|
22
|
Kreimer DI, Chai KP, Ferro-Luzzi Ames G. Nonequivalence of the nucleotide-binding subunits of an ABC transporter, the histidine permease, and conformational changes in the membrane complex. Biochemistry 2000; 39:14183-95. [PMID: 11087367 DOI: 10.1021/bi001066+] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The membrane-bound complex of the Salmonella typhimurium histidine permease, an ABC transporter (or traffic ATPase), is composed of two membrane proteins, HisQ and HisM, and two identical copies of an ATP-hydrolyzing protein, HisP. We have developed a technique that monitors quantitatively the sulfhydryl modification levels within the intact complex, and we have used it to investigate whether the HisP subunits behave identically within the complex. We show here that they interact differently with various thiol-specific reagents, thus indicating that, despite being identical, they are arranged asymmetrically. The possible basis of this asymmetry is discussed. We have also analyzed the occurrence of conformational changes during various stages of the activity cycle using thiol-specific reagents, fluorescence measurements, and circular dichroism spectroscopy. Cys-51, located close to the ATP-binding pocket, reflects conformational changes upon binding of ATP but does not participate in changes involved in signaling and translocation. The latter are shown to cause secondary structure alterations, as indicated by changes in alpha-helices; tertiary structure alterations also occur, as shown by fluorescence studies.
Collapse
Affiliation(s)
- D I Kreimer
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
23
|
Lu NT, Pedersen PL. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region. Arch Biochem Biophys 2000; 375:7-20. [PMID: 10683244 DOI: 10.1006/abbi.1999.1656] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is known to function as a regulated chloride channel and, when genetically impaired, to cause the disease cystic fibrosis. The novel studies reported here were undertaken to gain greater molecular insight into possible interactions among CFTR's soluble domains, which include two nucleotide binding domains (NBF1 and NBF2) and a regulatory domain (R). The NBF1+R and NBF2 regions of CFTR were highly expressed in Escherichia coli, purified to near homogeneity under denaturing conditions, and refolded. Both refolded proteins bound TNP-ATP and TNP-ADP, which could be readily replaced with ATP. Four different approaches were then used to determine whether the NBF1+R and NBF2 proteins interact. First, the purified NBF2 protein was labeled near its C-terminus with a fluorescent probe, 7-diethyl amino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM). Addition of the unlabeled NBF1+R to the CPM-labeled NBF2 caused a red-shift in lambda(max) of the CPM fluorescence, consistent with a direct interaction between the two proteins. Second, when the NBF1+R protein, the NBF2 protein, and a mixture of the two proteins were folded separately and analyzed by molecular sieve chomatography, the mixture was found to elute prior to either NBF1+R or NBF2. Third, na-tive-PAGE gel studies revealed that the mixture of the NBF1+R and NBF2 domains migrated as a single band with an R(F) value between that of NBF1+R and NBF2. Fourth, trypsin digestion of a mixture of the NBF1+R and NBF2 proteins occurred at a slower rate than that for the individual proteins. Finally, studies were carried out to determine whether an NBF1+R/NBF2 interaction could be demonstrated after expressing one of the two proteins in soluble, native form, thus avoiding the inclusion body, denaturation, and renaturation approach. Specifically, the NBF1+R protein was overexpressed in E. coli in fusion with glutathione-S-transferase near a thrombin cleavage site. Following binding of the GST-(NBF1+R) fusion protein to a GST Sepharose affinity column, added NBF2 was shown to bind and then to coelute with NBF1+R upon addition of glutathione or thrombin. Collectively, these experiments demonstrate that CFTR's NBF1+R region and its NBF2 domain, after folding separately as distinct units, have a strong propensity to interact and that this interaction is stable in the absence of added nucleotides or exogenously induced phosphorylation. These findings, together with the additional observation that the NBF1+R/NBF2 interaction induces a change in the C-terminus of NBF2, which resides within the C-terminal region of CFTR, may have important implications not only for the function of CFTR per se, but its interaction with other proteins.
Collapse
Affiliation(s)
- N T Lu
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, Maryland, 21205-2185, USA
| | | |
Collapse
|
24
|
Sharom FJ, Liu R, Romsicki Y, Lu P. Insights into the structure and substrate interactions of the P-glycoprotein multidrug transporter from spectroscopic studies. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1461:327-45. [PMID: 10581365 DOI: 10.1016/s0005-2736(99)00166-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The P-glycoprotein multidrug transporter is a 170-kDa efflux pump which exports a diverse group of natural products, chemotherapeutic drugs, and hydrophobic peptides across the plasma membrane, driven by ATP hydrolysis. The transporter has been proposed to interact with its drug substrates within the membrane environment; however, much remains to be learned about the nature and number of the drug binding site(s). The two nucleotide binding domains are responsible for ATP binding and hydrolysis, which is coupled to drug movement across the membrane. In recent years, P-glycoprotein has been purified and functionally reconstituted in amounts large enough to allow biophysical studies. The use of spectroscopic techniques has led to insights into both its secondary and tertiary structure, and its interaction with nucleotides and drugs. In this review, we will summarise what has been learned by application to purified P-glycoprotein of fluorescence spectroscopy, circular dichroism spectroscopy and infra-red spectroscopy.
Collapse
Affiliation(s)
- F J Sharom
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ont., Canada.
| | | | | | | |
Collapse
|
25
|
Jones PM, George AM. Subunit interactions in ABC transporters: towards a functional architecture. FEMS Microbiol Lett 1999; 179:187-202. [PMID: 10518715 DOI: 10.1111/j.1574-6968.1999.tb08727.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ABC superfamily is a diverse group of integral membrane proteins involved in the ATP-dependent transport of solutes across biological membranes in both prokaryotes and eukaryotes. Although ABC transporters have been studied for over 30 years, very little is known about the mechanism by which the energy of ATP hydrolysis is used to transport substrate across the membrane. The recent report of the high resolution crystal structure of HisP, the nucleotide-binding subunit of the histidine permease complex of Salmonella typhimurium, represents a significant breakthrough toward the elucidation of the mechanism of solute translocation by ABC transporters. In this review, we use data from the crystallographic structures of HisP and other nucleotide-binding proteins, combined with sequence analysis of a subset of atypical ABC transporters, to argue a new model for the dimerisation of the nucleotide-binding domains that embraces the notion that the C motif from one subunit forms part of the ATP-binding site in the opposite subunit. We incorporate this dimerisation of the ATP-binding domains into our recently reported beta-barrel model for P-glycoprotein and present a general model for the cooperative interaction of the two nucleotide-binding domains and the translocation of mechanical energy to the transmembrane domains in ABC transporters.
Collapse
Affiliation(s)
- P M Jones
- Department of Cell and Molecular Biology, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, N.S. W., Australia
| | | |
Collapse
|
26
|
Nikaido K, Ames GF. One intact ATP-binding subunit is sufficient to support ATP hydrolysis and translocation in an ABC transporter, the histidine permease. J Biol Chem 1999; 274:26727-35. [PMID: 10480876 DOI: 10.1074/jbc.274.38.26727] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound complex of the Salmonella typhimurium histidine permease, a member of the ABC transporters (or traffic ATPases) superfamily, is composed of two integral membrane proteins, HisQ and HisM, and two copies of an ATP-binding subunit, HisP, which hydrolyze ATP, thus supplying the energy for translocation. The three-dimensional structure of HisP has been resolved. Extensive evidence indicates that the HisP subunits form a dimer. We investigated the mechanism of action of such a dimer, both within the complex and in soluble form, by creating heterodimers between the wild type and mutant HisP proteins. The data strongly suggest that within the complex both subunits hydrolyze ATP and that one subunit is activated by the other. In a heterodimer containing one wild type and one hydrolysis defective subunit both hydrolysis and ligand translocation occur at half the rate of the wild type. Soluble HisP also hydrolyzes ATP if one subunit is inactive; its specific activity is identical to that of the wild type, indicating that only one of the subunits in a soluble dimer is involved in hydrolysis. We show that the activating ability varies depending on the nature of the substitution of a well conserved residue, His-211.
Collapse
Affiliation(s)
- K Nikaido
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
27
|
Salamov AA, Suwa M, Orengo CA, Swindells MB. Genome analysis: Assigning protein coding regions to three-dimensional structures. Protein Sci 1999; 8:771-7. [PMID: 10211823 PMCID: PMC2144302 DOI: 10.1110/ps.8.4.771] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We describe the results of a procedure for maximizing the number of sequences that can be reliably linked to a protein of known three-dimensional structure. Unlike other methods, which try to increase sensitivity through the use of fold recognition software, we only use conventional sequence alignment tools, but apply them in a manner that significantly increases the number of relationships detected. We analyzed 11 genomes and found that, depending on the genome, between 23 and 32% of the ORFs had significant matches to proteins of known structure. In all cases, the aligned region consisted of either >100 residues or >50% of the smaller sequence. Slightly higher percentages could be attained if smaller motifs were also included. This is significantly higher than most previously reported methods, even those that have a fold-recognition component. We survey the biochemical and structural characteristics of the most frequently occurring proteins, and discuss the extent to which alignment methods can realistically assign function to gene products.
Collapse
|
28
|
Abstract
Control of CTFR Channel Gating by Phosphorylation and Nucleotide Hydrolysis. Physiol. Rev. 79, Suppl.: S77-S107, 1999. - The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is the protein product of the gene defective in cystic fibrosis, the most common lethal genetic disease among Caucasians. Unlike any other known ion channel, CFTR belongs to the ATP-binding cassette superfamily of transporters and, like all other family members, CFTR includes two cytoplasmic nucleotide-binding domains (NBDs), both of which bind and hydrolyze ATP. It appears that in a single open-close gating cycle, an individual CFTR channel hydrolyzes one ATP molecule at the NH2-terminal NBD to open the channel, and then binds and hydrolyzes a second ATP molecule at the COOH-terminal NBD to close the channel. This complex coordinated behavior of the two NBDs is orchestrated by multiple protein kinase A-dependent phosphorylation events, at least some of which occur within the third large cytoplasmic domain, called the regulatory domain. Two or more kinds of protein phosphatases selectively dephosphorylate distinct sites. Under appropriately controlled conditions of progressive phosphorylation or dephosphorylation, three functionally different phosphoforms of a single CFTR channel can be distinguished on the basis of channel opening and closing kinetics. Recording single CFTR channel currents affords an unprecedented opportunity to reproducibly examine, and manipulate, individual ATP hydrolysis cycles in a single molecule, in its natural environment, in real time.
Collapse
Affiliation(s)
- D C Gadsby
- Laboratory of Cardiac/Membrane Physiology, and Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, USA
| | | |
Collapse
|
29
|
Cotten JF, Welsh MJ. Covalent modification of the nucleotide binding domains of cystic fibrosis transmembrane conductance regulator. J Biol Chem 1998; 273:31873-9. [PMID: 9822656 DOI: 10.1074/jbc.273.48.31873] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytosolic nucleotide binding domains of cystic fibrosis transmembrane conductance regulator (NBD1 and NBD2) mediate ATP-dependent opening and closing of the Cl- channel pore. To learn more about NBD structure and function, we introduced a cysteine residue into the Walker A motif or the LSGGQ motif of each NBD and examined modification by N-ethylmaleimide (NEM). Covalent modification of either Walker A motif partially inhibited cystic fibrosis transmembrane conductance regulator channel activity, decreasing the open state probability by prolonging the long closed duration. An increase in cytosolic ATP concentration slowed the rate of modification. The data suggest that both NBDs interact with ATP to influence channel opening and that inhibition by NEM modification was in part due to decreased ATP binding. When cysteine was placed in the NBD2 Walker A motif, it was modified more rapidly than when it was placed in NBD1, suggesting that the NBDs are not structurally or functionally identical. Modification of a cysteine inserted in the LSGGQ motif of either NBD1 or NBD2 also inhibited channel activity. The rate of modification was comparable with that of a thiol in free solution, suggesting that the LSGGQ motif resides in a surface-exposed position in both NBDs.
Collapse
Affiliation(s)
- J F Cotten
- Howard Hughes Medical Institute and Departments of Internal Medicine and Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
30
|
Clancy JP, Hong JS, Bebök Z, King SA, Demolombe S, Bedwell DM, Sorscher EJ. Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain 1 (NBD-1) and CFTR truncated within NBD-1 target to the epithelial plasma membrane and increase anion permeability. Biochemistry 1998; 37:15222-30. [PMID: 9790686 DOI: 10.1021/bi980436f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the traffic ATPase family that includes multiple proteins characterized by (1) ATP binding, (2) conserved transmembrane (TM) motifs and nucleotide binding domains (NBDs), and (3) molecular transport of small molecules across the cell membrane. While CFTR NBD-1 mediates ATP binding and hydrolysis, the membrane topology and function of this domain in living eukaryotic cells remains uncertain. In these studies, we have expressed wild-type CFTR NBD-1 (amino acids 433-586) or NBD-1 containing the DeltaF508 mutation transiently in COS-7 cells and established that the domain is situated across the plasma membrane by four independent assays; namely, extracellular chymotrypsin digestion, surface protein biotinylation, confocal immunofluorescent microscopy, and functional measurements of cell membrane anion permeability. Functional studies indicate that basal halide permeability is enhanced above control conditions following wild-type or DeltaF508 NBD-1 expression in three different epithelial cell lines. Furthermore, when clinically relevant CFTR proteins truncated within NBD-1 (R553X or G542X) are expressed, surface localization and enhanced halide permeability are again established. Together, these findings suggest that isolated CFTR NBD-1 (with or without the DeltaF508 mutation) is capable of targeting the epithelial cell membrane and enhancing cellular halide permeability. Furthermore, CFTR truncated at position 553 or 542 and possessing the majority of NBD-1 demonstrates surface localization and also confers increased halide permeability. These findings indicate that targeting to the plasma membrane and assumption of a transmembrane configuration are innate properties of the CFTR NBD-1. The results also support the notion that components of the halide-selective pore of CFTR reside within NBD-1.
Collapse
Affiliation(s)
- J P Clancy
- Department of Cell Biology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham 35294, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Mourez M, Jéhanno M, Schneider E, Dassa E. In vitro interaction between components of the inner membrane complex of the maltose ABC transporter of Escherichia coli: modulation by ATP. Mol Microbiol 1998; 30:353-63. [PMID: 9791180 DOI: 10.1046/j.1365-2958.1998.01070.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interactions between domains of ATP-binding cassette (ABC) transporters are of great functional importance and yet are poorly understood. To gain further knowledge of these protein-protein interactions, we studied the inner membrane complex of the maltose transporter of Escherichia coli. We focused on interactions between the nucleotide-binding protein, MalK, and the transmembrane proteins, MalF and MalG. We incubated purified MalK with inverted membrane vesicles containing MalF and MalG. MalK bound specifically to MalF and MalG and reconstituted a functional complex. We used this approach and limited proteolysis with trypsin to show that binding and hydrolysis of ATP, inducing conformational changes in MalK, modulate its interaction with MalF and MalG. MalK in the reconstituted complex was less sensitive to protease added from the cytoplasmic side of the membrane, and one proteolytic cleavage site located in the middle of a putative helical domain of MalK was protected. These results suggest that the putative helical domain of the nucleotide-binding domains is involved, through its conformational changes, in the coupling between the transmembrane domains and ATP binding/hydrolysis at the nucleotide-binding domains.
Collapse
Affiliation(s)
- M Mourez
- Unité de Programmation Moléculaire et Toxicologie Génétique, CNRS URA 1444, Institut Pasteur, 25, rue du Dr Roux, F75645 Paris Cedex 15, France
| | | | | | | |
Collapse
|
32
|
Dong M, Ladavière L, Penin F, Deléage G, Baggetto LG. Secondary structure of P-glycoprotein investigated by circular dichroism and amino acid sequence analysis. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1371:317-34. [PMID: 9630701 DOI: 10.1016/s0005-2736(98)00032-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P-glycoprotein (Pgp) is a plasma membrane protein known as an ATP-dependent drug-efflux pump that confers multidrug resistance to tumor cells. Structural analysis of Pgp was investigated by circular dichroism (CD) for the first time and in combination with amino acid sequence analysis. CD of highly purified Pgp from human, rat and murine Pgp-overexpressing drug resistant cells revealed slight variations in the spectral shape when recorded in the presence of dodecyl maltoside (DM). These species-dependent variations in CD shapes resulted from the interaction of the oligosaccharidic part with the protein core since they were abolished either in the presence of sodium dodecyl sulfate (SDS) or after deglycosylation, the latter not altering the Pgp ATP-dependent drug transport activity. Whatever the level of Pgp glycosylation and the detergent used (SDS or DM), the content in secondary structure deduced from deconvolution of CD spectra is almost the same for the three sources of Pgp and estimated to 43% alpha-helix, 16% beta-sheet, 15% beta-turn and 26% of other structures. These data, which constitute the first report of Pgp structure analysis by circular dichroism, are consistent with the 48% alpha-helix and 16% beta-sheets global contents predicted by using recently reported efficient secondary structure prediction methods. This consistency reinforces the reliability of the probable nature and localization of predicted Pgp secondary structure elements. This provides a good framework for precise 3D structure modeling of Pgp by homology with proteins of known 3D structure, as it is illustrated here for the A motifs of the ATP-binding domains of Pgp.
Collapse
Affiliation(s)
- M Dong
- Institut de Biologie et Chimie des Protéines, UPR 412 CNRS, 7 Passage du Vercors F-69367, Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
33
|
Bono JL, Tilly K, Stevenson B, Hogan D, Rosa P. Oligopeptide permease in Borrelia burgdorferi: putative peptide-binding components encoded by both chromosomal and plasmid loci. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 4):1033-1044. [PMID: 9579077 DOI: 10.1099/00221287-144-4-1033] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To elucidate the importance of oligopeptide permease for Borrelia burgdorferi, the agent of Lyme disease, a chromosomal locus in B. burgdorferi that encodes homologues of all five subunits of oligopeptide permease has been identified and characterized. B. burgdorferi has multiple copies of the gene encoding the peptide-binding component, OppA; three reside at the chromosomal locus and two are on plasmids. Northern analyses indicate that each oppA gene is independently transcribed, although the three chromosomal oppA genes are also expressed as bi- and tri-cistronic messages. Induction of one of the plasmid-encoded oppA genes was observed following an increase in temperature, which appears to be an important cue for adaptive responses in vivo. The deduced amino acid sequences suggest that all five borrelial oppA homologues are lipoproteins, but the protease-resistance of at least one of them in intact bacteria is inconsistent with outer-surface localization. Insertional inactivation of a plasmid-encoded oppA gene demonstrates that it is not essential for growth in culture.
Collapse
Affiliation(s)
- James L Bono
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 South Fourth Street, Hamilton, MT 59840, USA
| | - Kit Tilly
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 South Fourth Street, Hamilton, MT 59840, USA
| | - Brian Stevenson
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 South Fourth Street, Hamilton, MT 59840, USA
| | - Dan Hogan
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 South Fourth Street, Hamilton, MT 59840, USA
| | - Patricia Rosa
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 South Fourth Street, Hamilton, MT 59840, USA
| |
Collapse
|
34
|
Gallet X, Festy F, Ducarme P, Brasseur R, Thomas-Soumarmon A. Topological model of membrane domain of the cystic fibrosis transmembrane conductance regulator. J Mol Graph Model 1998; 16:72-82, 97-8. [PMID: 9879057 DOI: 10.1016/s1093-3263(98)00015-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator is a cAMP-regulated chloride channel. We used molecular modelling to predict 3-D models for the CFTR membrane domain. Hydropathy and residue conservation in all CFTRs as well as in other proteins suggested that the membrane domain is a 12-helix bundle. If the domain is enclosing a channel for chloride, it could be made of five helices. We propose two structural models in which both lumenal and cytoplasmic entrances to the chloride pore have a ring of positively charged residues. The inner surface of the channel is covered with neutral polar plus one or two charged residues. Helices that are not directly involved in the chloride channel could organise to form a second channel; a dimeric symmetrical structure is proposed. Analysis raised interest for helix 5: this hydrophobic fragment is conserved in all CFTRs and aligns with segments present in several different ion channels and transporters. The existence of an FFXXFFXXF motif is proposed. Helix 5 could be an important domain of CFTRs. The models agree with available data from pathological mutations but does not account for the membrane insertion of a hydrophilic fragment of NBDI.
Collapse
Affiliation(s)
- X Gallet
- Faculté des Sciences Agronomiques, Centre de Biophysique Moléculaire Numérique, Gembloux, Belgium
| | | | | | | | | |
Collapse
|
35
|
Schneider E, Hunke S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 1998; 22:1-20. [PMID: 9640644 DOI: 10.1111/j.1574-6976.1998.tb00358.x] [Citation(s) in RCA: 372] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Members of the superfamily of adenosine triphosphate (ATP)-binding-cassette (ABC) transport systems couple the hydrolysis of ATP to the translocation of solutes across a biological membrane. Recognized by their common modular organization and two sequence motifs that constitute a nucleotide binding fold, ABC transporters are widespread among all living organisms. They accomplish not only the uptake of nutrients in bacteria but are involved in diverse processes, such as signal transduction, protein secretion, drug and antibiotic resistance, antigen presentation, bacterial pathogenesis and sporulation. Moreover, some human inheritable diseases, like cystic fibrosis, adrenoleukodystrophy and Stargardt's disease are caused by defective ABC transport systems. Thus, albeit of major significance, details of the molecular mechanism by which these systems exert their functions are still poorly understood. In this review, recent data concerning the properties and putative role of the ATP-hydrolyzing subunits/domains are summarized and compared between bacterial and eukaryotic systems.
Collapse
Affiliation(s)
- E Schneider
- Humboldt-Universität zu Berlin, Institut für Biologie/Bakterienphysiologie, Germany. erwin=
| | | |
Collapse
|
36
|
Abstract
The recent completion of the Escherichia coli genome sequence (Blattner et al., 1997) has permitted an analysis of the complement of genomically encoded ATP-binding cassette (ABC) proteins. A total of 79 ABC proteins makes this the largest paralogous family of proteins in E. coli. These 79 proteins include 97 ABC domains (as some proteins include more than one ABC domain) and are components of 69 independent functional systems (as many systems involve more than one ABC domain). The ABC domains are often, but not exclusively, the energy-generating domains of multicomponent membrane-bound transporters. Thus, 57 of the 69 systems are ABC transporters, of which 44 are periplasmic-binding protein-dependent uptake systems and 13 are presumed exporters. The genes encoding these ABC transporters occupy almost 5% of the genome. Of the 12 systems that are not obviously transport related, the function of only one, the excision repair protein UvrA, is known. A phylogenetic analysis suggests that the majority of ABC proteins can be assigned to 10 subfamilies. Together with statistical and, importantly, biological evidence, this analysis provides insight into the evolution and function of the ABC proteins.
Collapse
Affiliation(s)
- K J Linton
- CRC Drug Resistance Group, Nuffield Department of Clinical Biochemistry and Imperial Cancer Research Fund Laboratories, John Radcliffe Hospital, University of Oxford, UK.
| | | |
Collapse
|
37
|
Liu PQ, Ames GF. In vitro disassembly and reassembly of an ABC transporter, the histidine permease. Proc Natl Acad Sci U S A 1998; 95:3495-500. [PMID: 9520394 PMCID: PMC19864 DOI: 10.1073/pnas.95.7.3495] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1997] [Accepted: 01/09/1998] [Indexed: 02/06/2023] Open
Abstract
The membrane-bound complex of the Salmonella typhimurium periplasmic histidine permease, a member of the ABC transporters (or traffic ATPases) superfamily, is composed of two integral membrane proteins, HisQ and HisM, and two copies of an ATP-binding subunit, HisP. The complex hydrolyzes ATP upon induction of the activity by the liganded soluble receptor, the periplasmic histidine-binding protein, HisJ. Here we take advantage of the modular organization of this system to show that the nucleotide-binding component can be stripped off the integral membrane components, HisQ and HisM. The complex can be reconstituted by using the HisP-depleted membranes containing HisQ and HisM and pure soluble HisP. We show that HisP has high affinity for the HisP-depleted complex, HisQM, and that two HisP molecules are recruited independently of each other for each HisQM unit. The in vitro reassembled complex has entirely normal properties, responding to HisJ and ATPase inhibitors with the same characteristics as the original complex and in contrast to those of soluble HisP. These results show that HisP is absolutely required for ATP hydrolysis, that HisQM cannot hydrolyze ATP, that HisP depends on HisQM to relay the inducing signal from the soluble receptor, HisJ, and that HisQM regulates the ATPase activity of HisP. We also show that HisP changes conformation upon exposure to phospholipids.
Collapse
Affiliation(s)
- P Q Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
38
|
Hoedemaeker FJ, Davidson AR, Rose DR. A model for the nucleotide-binding domains of ABC transporters based on the large domain of aspartate aminotransferase. Proteins 1998. [DOI: 10.1002/(sici)1097-0134(19980215)30:3<275::aid-prot7>3.0.co;2-j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Shyng S, Ferrigni T, Nichols CG. Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J Gen Physiol 1997; 110:643-54. [PMID: 9382893 PMCID: PMC2229399 DOI: 10.1085/jgp.110.6.643] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1997] [Accepted: 10/03/1997] [Indexed: 02/05/2023] Open
Abstract
KATP channels were reconstituted in COSm6 cells by coexpression of the sulfonylurea receptor SUR1 and the inward rectifier potassium channel Kir6.2. The role of the two nucleotide binding folds of SUR1 in regulation of KATP channel activity by nucleotides and diazoxide was investigated. Mutations in the linker region and the Walker B motif (Walker, J.E., M.J. Saraste, M.J. Runswick, and N.J. Gay. 1982. EMBO [Eur. Mol. Biol. Organ.] J. 1:945-951) of the second nucleotide binding fold, including G1479D, G1479R, G1485D, G1485R, Q1486H, and D1506A, all abolished stimulation by MgADP and diazoxide, with the exception of G1479R, which showed a small stimulatory response to diazoxide. Analogous mutations in the first nucleotide binding fold, including G827D, G827R, and Q834H, were still stimulated by diazoxide and MgADP, but with altered kinetics compared with the wild-type channel. None of the mutations altered the sensitivity of the channel to inhibition by ATP4-. We propose a model in which SUR1 sensitizes the KATP channel to ATP inhibition, and nucleotide hydrolysis at the nucleotide binding folds blocks this effect. MgADP and diazoxide are proposed to stabilize this desensitized state of the channel, and mutations at the nucleotide binding folds alter the response of channels to MgADP and diazoxide by altering nucleotide hydrolysis rates or the coupling of hydrolysis to channel activation.
Collapse
Affiliation(s)
- S Shyng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
40
|
Nikaido K, Liu PQ, Ames GF. Purification and characterization of HisP, the ATP-binding subunit of a traffic ATPase (ABC transporter), the histidine permease of Salmonella typhimurium. Solubility, dimerization, and ATPase activity. J Biol Chem 1997; 272:27745-52. [PMID: 9346917 DOI: 10.1074/jbc.272.44.27745] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleotide-binding subunit, HisP, of the histidine permease, a traffic ATPase (ABC transporter), has been purified as a soluble protein and characterized. Addition of a 6-histidine extension (HisP(His6)) allows a rapid and effective metal affinity purification, giving a 30-fold purification with a yield of 50%. HisP(his6) is indistinguishable from underivatized HisP when incorporated into the permease membrane-bound complex, HisQMP2. Purified HisP(his6) has a strong tendency to precipitate; 5 mM ATP and 20% glycerol maintain it in solution at a high protein concentration. HisP(his6) is active as a dimer, binds ATP with a Kd value of 205 microM, and hydrolyzes it at a rate comparable to that of HisQMP2; in contrast to the latter, it does not display cooperativity for ATP. HisP(his6) has been characterized with respect to substrate and inhibitor specificity and various physico-chemical characteristics. Its pH optimum is 7 and it requires a cation for activity, with Co2+ and Mn2+ being more effective than Mg2+ at lower concentrations but inhibitory in the higher concentration range. In contrast to the intact complex, HisP(his6) is not inhibited by vanadate but is inhibited by N-ethylmaleimide. Neither the soluble receptor, HisJ, nor the transport substrate, histidine, has any effect on the activity.
Collapse
Affiliation(s)
- K Nikaido
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | |
Collapse
|
41
|
Davies TG, Theodoulou FL, Hallahan DL, Forde BG. Cloning and characterisation of a novel P-glycoprotein homologue from barley. Gene 1997; 199:195-202. [PMID: 9358056 DOI: 10.1016/s0378-1119(97)00367-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
P-glycoproteins are members of a large superfamily of transport proteins (the 'traffic ATPases') that utilize ATP to translocate a wide range of substrates across biological membranes. Using a PCR-based approach, and degenerate oligonucleotides corresponding to conserved motifs, two 300-bp cDNA fragments (pBMDR1 and pBMDR2) with a significant sequence similarity to mammalian P-glycoproteins were amplified from barley (Hordeum vulgare) root poly A+ RNA and used as probes to screen a barley root cDNA library. A single full-length clone pHVMDR2 coding for a polypeptide of 1232 residues (c. 134 kDa) was isolated. Comparison of this barley sequence with Arabidopsis ATPGP1 and human MDR1 and MDR3 P-glycoprotein sequences showed that the barley cDNA has 44%, 37% and 38% amino acid (aa) identity, respectively, with these sequences, and conserved structural features. RNase protection analysis showed that HVMDR2 mRNA is expressed at low levels in both barley roots and leaves. Southern blot analyses indicated that there is a small multigene family related to P-glycoproteins in barley. Possible functions for these barley P-glycoproteins are discussed.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Dosage
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Hordeum/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Leaves/chemistry
- Plant Roots/chemistry
- RNA, Messenger/analysis
- RNA, Plant/chemistry
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- T G Davies
- Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, Hertfordshire, UK.
| | | | | | | |
Collapse
|
42
|
Clancy JP, Bebök Z, Sorscher EJ. Purification, characterization, and expression of CFTR nucleotide-binding domains. J Bioenerg Biomembr 1997; 29:475-82. [PMID: 9511932 DOI: 10.1023/a:1022487024031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleotide binding domains (NBDs) within CFTR were initially predicted to lie in the cell cytoplasm, and to gate anion permeability through a pore that was present in membrane spanning alpha helices of the overall polypeptide. Our studies designed to characterize CFTR suggest several important features of the isolated nucleotide binding domain. NBD-1 appears to bind nucleotides with similar affinity to the full-length CFTR protein. In solution, the domain contains a high beta sheet content and self-associates into ordered polymers with molecular mass greater than 300,000 Daltons. The domain is very lipophilic, disrupts liposomes, and readily enters the planar lipid bilayer. Clinically important mutations in the domain may disrupt the nucleotide binding capabilities of the protein, either through a direct effect on the nucleotide binding site, or through effects that influence the overall folding of the domain in vitro. Finally, after expression in human epithelial cells (including epithelial cells from a CF patient), the first nucleotide binding domain targets the plasma membrane even in the absence of other constituents of full-length CFTR and mediates anion permeability in these cells.
Collapse
Affiliation(s)
- J P Clancy
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, USA
| | | | | |
Collapse
|
43
|
Bear CE, Li C, Galley K, Wang Y, Garami E, Ramjeesingh M. Coupling of ATP hydrolysis with channel gating by purified, reconstituted CFTR. J Bioenerg Biomembr 1997; 29:465-73. [PMID: 9511931 DOI: 10.1023/a:1022435007193] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel situated on the apical membrane of epithelial cells. Our recent studies of purified, reconstituted CFTR revealed that it also functions as an ATPase and that there may be coupling between ATP hydrolysis and channel gating. Both the ATP turnover rate and channel gating are slow, in the range of 0.2 to 1 s(-1), and both activities are suppressed in a disease-causing mutation situated in a putative nucleotide binding motif. Our future studies using purified protein will be directed toward understanding the structural basis and mechanism for coupling between hydrolysis and channel function.
Collapse
Affiliation(s)
- C E Bear
- Department of Physiology, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Ko YH, Pedersen PL. Frontiers in research on cystic fibrosis: understanding its molecular and chemical basis and relationship to the pathogenesis of the disease. J Bioenerg Biomembr 1997; 29:417-27. [PMID: 9511927 DOI: 10.1023/a:1022402105375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years a new family of transport proteins called ABC transporters has emerged. One member of this novel family, called CFTR (cystic fibrosis transmembrane conductance regulator), has received special attention because of its association with the disease cystic fibrosis (CF). This is an inherited disorder affecting about 1 in 2000 Caucasians by impairing epithelial ion transport, particularly that of chloride. Death may occur in severe cases because of chronic lung infections, especially by Pseudomonas aeruginosa, which cause a slow decline in pulmonary function. The prospects of ameliorating the symptoms of CF and even curing the disease were greatly heightened in 1989 following the cloning of the CFTR gene and the discovery that the mutation (deltaF508), which causes most cases of CF, is localized within a putative ATP binding/ATP hydrolysis domain. The purpose of this introductory review in this minireview series is to summarize what we and others have learned during the past eight years about the structure and function of the first nucleotide binding domain (NBF1 or NBD1) of the CFTR protein and the effect thereon of disease-causing mutations. The relationship of these new findings to the pathogenesis of CF is also discussed.
Collapse
Affiliation(s)
- Y H Ko
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
45
|
Liu CE, Liu PQ, Ames GF. Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). J Biol Chem 1997; 272:21883-91. [PMID: 9268321 DOI: 10.1074/jbc.272.35.21883] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The superfamily of traffic ATPases (ABC transporters) includes bacterial periplasmic transport systems (permeases) and eukaryotic transporters. The histidine permease of Salmonella typhimurium is composed of a membrane-bound complex (HisQMP2) containing four subunits, and of a soluble receptor, the histidine-binding protein (HisJ). Transport is energized by ATP. In this article the ATPase activity of HisQMP2 has been characterized, using a novel assay that is independent of transport. The assay uses Mg2+ ions to permeabilize membrane vesicles or proteoliposomes, thus allowing access of ATP to both sides of the bilayer. HisQMP2 displays a low level of intrinsic ATPase activity in the absence of HisJ; unliganded HisJ stimulates the activity and liganded HisJ stimulates to an even higher level. All three levels of activity display positive cooperativity for ATP with a Hill coefficient of 2 and a K0. 5 value of 0.6 mM. The activity has been characterized with respect to pH, salt, phospholipids, substrate, and inhibitor specificity. Free histidine has no effect. The activity is inhibited by orthovanadate, but not by N-ethylmaleimide, bafilomycin A1, or ouabain. Several nucleotide analogs, ADP, 5'-adenylyl-beta, gamma-imidodiphosphate, adenosine 5'-(beta,gammaimino)triphosphate, and adenosine 5'-O-(3-thio)triphosphate, inhibit the activity. Unliganded HisJ does not compete with liganded HisJ for the stimulation of the ATPase activity of HisQMP2.
Collapse
Affiliation(s)
- C E Liu
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
46
|
Stein A, Hunke S, Schneider E. Mutational analysis eliminates Glu64 and Glu94 as candidates for 'catalytic carboxylate' in the bacterial ATP-binding-cassette protein MalK. FEBS Lett 1997; 413:211-4. [PMID: 9280284 DOI: 10.1016/s0014-5793(97)00913-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MalK is the ATP-hydrolyzing subunit of the binding protein-dependent ATP-binding-cassette (ABC) transport system for maltose from Salmonella typhimurium. In a recent hypothesis, Glu64 and Glu94 of MalK were proposed as candidates for 'catalytic carboxylate', common to ATP- and GTP-hydrolyzing proteins [Yoshida and Amano (1995) FEBS Lett. 359, 1-5]. Substitution of both residues and, additionally, Glu74 by either glutamine or glycine and valine, respectively, had no deleterious effect on maltose transport. Thus, our data disprove the above notion.
Collapse
Affiliation(s)
- A Stein
- Humboldt-Universität zu Berlin, Institut für Biologie/Bakterienphysiologie, Germany
| | | | | |
Collapse
|
47
|
Bolhuis H, van Veen HW, Poolman B, Driessen AJ, Konings WN. Mechanisms of multidrug transporters. FEMS Microbiol Rev 1997; 21:55-84. [PMID: 9299702 DOI: 10.1111/j.1574-6976.1997.tb00345.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drug resistance, mediated by various mechanisms, plays a crucial role in the failure of the drug-based treatment of various infectious diseases. As a result, these infectious diseases re-emerge rapidly and cause many victims every year. Another serious threat is imposed by the development of multidrug resistance (MDR) in eukaryotic (tumor) cells, where many different drugs fail to perform their therapeutic function. One of the causes of the occurrence of MDR in these cells is the action of transmembrane transport proteins that catalyze the active extrusion of a large number of structurally and functionally unrelated compounds out of the cell. The mode of action of these MDR transporters and their apparent lack of substrate specificity is poorly understood and has been subject to many speculations. In this review we will summarize our current knowledge about the occurrence, mechanism and molecular basis of (multi-)drug resistance especially as found in bacteria.
Collapse
Affiliation(s)
- H Bolhuis
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Mao Q, Scarborough GA. Purification of functional human P-glycoprotein expressed in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1327:107-18. [PMID: 9247172 DOI: 10.1016/s0005-2736(97)00050-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A system for expression and facile purification of the human P-glycoprotein (Pgp) from the yeast Saccharomyces cerevisiae is described. The wild-type human mdr1 cDNA was cloned into a high copy number yeast expression vector under the control of the constitutive promoter of the yeast plasma membrane H+-ATPase. Western blots of membranes from the stable transformants confirmed that the Pgp is expressed in yeast cells in amounts approximately 0.4% of the total yeast membrane protein. Density gradient sedimentation analysis of the yeast membranes indicated that the expressed Pgp is localized in the plasma membrane. Yeast cells transformed with the Pgp expression plasmid acquire increased resistance to valinomycin, suggesting that the expressed Pgp is properly folded and functional. The expressed Pgp can be solubilized from the yeast membranes with lysophosphatidylcholine, and when tagged with ten histidines at its C-terminus, can be readily purified to about 90% homogeneity by Ni2+ affinity chromatography. About 50 microg of the Pgp can be purified from 20 mg of crude yeast membranes. The purified human Pgp exhibits a verapamil-stimulated ATPase activity and the maximal activity is 2.5 +/- 0.5 micromol/min per mg of Pgp, suggesting that the purified Pgp from yeast is highly functional. The Pgp expressed in yeast has the same electrophoretic mobility (ca. 130 kDa) as the Pgp produced in Sf9 insect cells and is unaffected by N-glycosidase treatment, suggesting that it is not glycosylated. Because of the relative ease of growing yeast in massive quantities this expression system appears to be excellent for producing this membrane transporter at levels sufficient for further biochemical and biophysical studies, and for site-directed mutagenesis studies as well.
Collapse
Affiliation(s)
- Q Mao
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
49
|
Mourez M, Hofnung M, Dassa E. Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J 1997; 16:3066-77. [PMID: 9214624 PMCID: PMC1169925 DOI: 10.1093/emboj/16.11.3066] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cytoplasmic membrane proteins of bacterial binding protein-dependent transporters belong to the superfamily of ABC transporters. The hydrophobic proteins display a conserved, at least 20 amino acid EAA---G---------I-LP region exposed in the cytosol, the EAA region. We mutagenized the EAA regions of MalF and MalG proteins of the Escherichia coli maltose transport system. Substitutions at the same positions in MalF and MalG have different phenotypes, indicating that EAA regions do not act symmetrically. Mutations in malG or malF that slightly affect or do not affect transport, determine a completely defective phenotype when present together. This suggests that EAA regions of MalF and MalG may interact during transport. Maltose-negative mutants fall into two categories with respect to the cellular localization of the MalK ATPase: in the first, MalK is membrane-bound, as in wild-type strains, while in the second, it is cytosolic, as in strains deleted in the malF and malG genes. From maltose-negative mutants of the two categories, we isolated suppressor mutations within malK that restore transport. They map mainly in the putative helical domain of MalK, suggesting that EAA regions may constitute a recognition site for the ABC ATPase helical domain.
Collapse
Affiliation(s)
- M Mourez
- Unité de Programmation Moléculaire et Toxicologie Génétique, CNRS URA 1444, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
50
|
Theiss P, Wise KS. Localized frameshift mutation generates selective, high-frequency phase variation of a surface lipoprotein encoded by a mycoplasma ABC transporter operon. J Bacteriol 1997; 179:4013-22. [PMID: 9190819 PMCID: PMC179212 DOI: 10.1128/jb.179.12.4013-4022.1997] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The wall-less mycoplasmas have revealed unusual microbial strategies for adaptive variation of antigenic membrane proteins exposed during their surface colonization of host cells. In particular, high-frequency mutations affecting the expression of selected surface lipoproteins have been increasingly documented for this group of organisms. A novel manifestation of mutational phase variation is shown here to occur in Mycoplasma fermentans, a chronic human infectious agent and possible AIDS-associated pathogen. A putative ABC type transport operon encoding four gene products is identified. The 3' distal gene encoding P78, a known surface-exposed antigen and the proposed substrate-binding lipoprotein of the transporter, is subject to localized hypermutation in a short homopolymeric tract of adenine residues located in the N-terminal coding region of the mature product. High-frequency, reversible insertion/deletion frameshift mutations lead to selective phase variation in P78 expression, whereas the putative nucleotide-binding protein, P63, encoded by the most 5' gene of the operon, is continually expressed. Mutation-based phase variation in specific surface-exposed microbial transporter components may provide an adaptive advantage for immune evasion, while continued expression of other elements of the same transporter may preserve essential metabolic functions and confer alternative substrate specificity. These features could be critical in mycoplasmas, where limitations in both transcriptional regulators and transport systems may prevail. This study also documents that P63 contains an uncharacteristic hydrophobic sequence between predicted nucleotide binding motifs and displays an amphiphilic character in detergent fractionation. Both features are consistent with an evolutionary adaptation favoring integral association of this putative energy-transducing component with the single mycoplasma membrane.
Collapse
Affiliation(s)
- P Theiss
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, 65212, USA
| | | |
Collapse
|