1
|
Lee WP, Tsai KC, Liao SX, Huang YH, Hou MC, Lan KH. Ser38-His93-Asn91 triad confers resistance of JFH1 HCV NS5A-Y93H variant to NS5A inhibitors. FEBS J 2024; 291:1264-1274. [PMID: 38116713 DOI: 10.1111/febs.17039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
HCV NS5A is a dimeric phosphoprotein involved in HCV replication. NS5A inhibitors are among direct-acting antivirals (DAA) for HCV therapy. The Y93H mutant of NS5A is resistant to NS5A inhibitors, but the precise mechanism remains unclear. In this report, we proposed a Ser38-His93-Asn91 triad to dissect the mechanism. Using pymol 1.3 software, the homology structure of JFH1 NS5A was determined based on the dimer structure of genotype 1b extracted from the database Protein DataBank (www.ebi.ac.uk/pdbsum) with codes 1ZH1 and 3FQM/3FQQ. FLAG-NS5A-WT failed to form dimer in the absence of nonstructural proteins from subgenomic replicon (NS3-5A); however, FLAG-NS5A-Y93H was able to form dimer without the aid of NS3-5A. The Ser38-His93-Asn91 triad in the dimer of the Y93H variant predicts a structural crash of the cleft receiving the NS5A inhibitor daclatasvir. The dimerization assay revealed that the existence of JFH1-NS5A-1ZH1 and -3FQM homology dimers depended on each other for existence and that both NS5A-WT 1ZH1 and 3FQM dimers cooperated to facilitate RNA replication. However, NS5A-Y93H 1ZH1 alone could form dimer and conduct RNA replication in the absence of the 3FQM structure. In conclusion, this study provides novel insight into the functional significance of the Ser38-His93-Asn91 triad in resistance of the Y93H variant to NS5A inhibitors.
Collapse
Affiliation(s)
- Wei-Ping Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taiwan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- The Ph.D. Program for Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Shi-Xian Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keng-Hsin Lan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Lee WP, Liao SX, Huang YH, Hou MC, Lan KH. Akt1 is involved in HCV release by promoting endoplasmic reticulum-to-endosome transition of infectious virions. Life Sci 2024; 338:122412. [PMID: 38191051 DOI: 10.1016/j.lfs.2024.122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
AIMS Hepatitis C virus (HCV) relies on the viral and host factors to complete its life cycle. It has evolved to profit from Akt activation at some stage in its life cycle through various mechanisms, notably by activating lipogenesis, which is crucial for infectious virions production. MATERIALS AND METHODS By employing an Akt-specific inhibitor, the impact of Akt on intracellular and extracellular infectivity was investigated. To ascertain the role of Akt in the HCV life cycle, the two-part cell culture-derived HCV infection protocol utilizing Akt1 small interfering RNAs (siRNAs) was implemented. The impact of Akt1 on intracellular HCV transition was determined using membrane flotation assay and proximity ligation assay coupled with Anti-Rab7 immunoprecipitation and immunofluorescence. KEY FINDINGS Akt1 silencing reduced infectious virions release to a degree comparable to that of ApoE, a host component involved in the HCV assembly and release, suggesting Akt1 was critical in the late stage of the HCV life cycle. Extracellular infectivity of HCV was inhibited by brefeldin A, and the inhibitory effect was augmented by Akt1 silencing and partially restored by ectopic Akt1 expression. Immunofluorescence revealed that Akt1 inhibition suppressed the interaction between HCV core protein and lipid droplet. Akt1 silencing impeded the transition of HCV from the endoplasmic reticulum to the endosome and hence inhibited the secretion of HCV infectious virions from the late endosome. SIGNIFICANCE Our study demonstrates that Akt1 has an impact on the lipogenesis pathway and plays a critical role in the assembly and secretion of infectious HCV.
Collapse
Affiliation(s)
- Wei-Ping Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shi-Xian Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keng-Hsin Lan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Lee WP, Tsai KC, Liao SX, Huang YH, Hou MC, Lan KH. Ser235 phosphorylation of hepatitis C virus NS5A is required for NS5A dimerization and drug resistance. Life Sci 2024; 337:122338. [PMID: 38072190 DOI: 10.1016/j.lfs.2023.122338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/21/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Hepatitis C virus (HCV) infection is recognized as a major causative agent of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV non-structural protein 5A (NS5A) is a dimeric phosphoprotein with a hyperphosphorylated form to act as a switch that regulates HCV replication and assembly. NS5A inhibitors have been utilized as the scaffold for combination therapy of direct-acting antiviral agents (DAA). However, the mode of action of NS5A inhibitors is still unclear due to the lack of mechanistic detail regarding NS5A phosphorylation and dimerization in the HCV life cycle. It has been demonstrated that phosphorylation of NS5A at Ser235 is essential for RNA replication of the JFH1 strain. In this report, we found that NS5A phosphomimetic Ser235 substitution (Ser-to-Asp mutation) formed a dimer that was resistant to disruption by NS5A inhibitors as was the NS5A resistance-associated substitution Y93H. Phosphorylation of NS5A at Ser235 residue was required for the interaction of two NS5A-WT molecules in JFH1-based cell culture system but not absolutely required for dimerization of the NS5A-Y93H mutant. Interestingly, HCV nonstructural proteins from the subgenomic replicon NS3-5A was required for NS5A-WT dimerization but not required for NS5A-Y93H dimerization. Our data suggest that spontaneous Ser235 phosphorylation of NS5A and ensuing dimerization account for resistance of the JFH1/NS5A-Y93H mutant to NS5A inhibitors.
Collapse
Affiliation(s)
- Wei-Ping Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; The Ph.D. Program for Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shi-Xian Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keng-Hsin Lan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Nepal S, Holmstrom ED. Single-molecule-binding studies of antivirals targeting the hepatitis C virus core protein. J Virol 2023; 97:e0089223. [PMID: 37772835 PMCID: PMC10617558 DOI: 10.1128/jvi.00892-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE The hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly. Although several candidates have been identified, little is known about how they interact with the core protein or how those interactions alter the structure and thus the function of this viral protein. Our work biochemically characterizes several of these binding interactions, highlighting both similarities and differences as well as strengths and weaknesses. These insights bolster the notion that this viral protein is a viable target for novel therapeutics and will help to guide future developments of these candidate antivirals.
Collapse
Affiliation(s)
- Sudip Nepal
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Erik D. Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
5
|
Characterization of a multipurpose NS3 surface patch coordinating HCV replicase assembly and virion morphogenesis. PLoS Pathog 2022; 18:e1010895. [PMID: 36215335 PMCID: PMC9616216 DOI: 10.1371/journal.ppat.1010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/28/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
The hepatitis C virus (HCV) life cycle is highly regulated and characterized by a step-wise succession of interactions between viral and host cell proteins resulting in the assembly of macromolecular complexes, which catalyse genome replication and/or virus production. Non-structural (NS) protein 3, comprising a protease and a helicase domain, is involved in orchestrating these processes by undergoing protein interactions in a temporal fashion. Recently, we identified a multifunctional NS3 protease surface patch promoting pivotal protein-protein interactions required for early steps of the HCV life cycle, including NS3-mediated NS2 protease activation and interactions required for replicase assembly. In this work, we extend this knowledge by identifying further NS3 surface determinants important for NS5A hyperphosphorylation, replicase assembly or virion morphogenesis, which map to protease and helicase domain and form a contiguous NS3 surface area. Functional interrogation led to the identification of phylogenetically conserved amino acid positions exerting a critical function in virion production without affecting RNA replication. These findings illustrate that NS3 uses a multipurpose protein surface to orchestrate the step-wise assembly of functionally distinct multiprotein complexes. Taken together, our data provide a basis to dissect the temporal formation of viral multiprotein complexes required for the individual steps of the HCV life cycle.
Collapse
|
6
|
Tariq M, Shoukat AB, Akbar S, Hameed S, Naqvi MZ, Azher A, Saad M, Rizwan M, Nadeem M, Javed A, Ali A, Aziz S. Epidemiology, risk factors, and pathogenesis associated with a superbug: A comprehensive literature review on hepatitis C virus infection. SAGE Open Med 2022; 10:20503121221105957. [PMID: 35795865 PMCID: PMC9252020 DOI: 10.1177/20503121221105957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/20/2022] [Indexed: 12/20/2022] Open
Abstract
Viral hepatitis is a major public health concern. It is associated with life threatening conditions including liver cirrhosis and hepatocellular carcinoma. Hepatitis C virus infects around 71 million people annually, resultantly 700,000 deaths worldwide. Extrahepatic associated chronic hepatitis C virus accounts for one fourth of total healthcare load. This review included a total of 150 studies that revealed almost 19 million people are infected with hepatitis C virus and 240,000 new cases are being reported each year. This trend is continually rising in developing countries like Pakistan where intravenous drug abuse, street barbers, unsafe blood transfusions, use of unsterilized surgical instruments and recycled syringes plays a major role in virus transmission. Almost 123–180 million people are found to be hepatitis C virus infected or carrier that accounts for 2%–3% of world’s population. The general symptoms of hepatitis C virus infection include fatigue, jaundice, dark urine, anorexia, fever malaise, nausea and constipation varying on severity and chronicity of infection. More than 90% of hepatitis C virus infected patients are treated with direct-acting antiviral agents that prevent progression of liver disease, decreasing the elevation of hepatocellular carcinoma. Standardizing the healthcare techniques, minimizing the street practices, and screening for viral hepatitis on mass levels for early diagnosis and prompt treatment may help in decreasing the burden on already fragmented healthcare system. However, more advanced studies on larger populations focusing on mode of transmission and treatment protocols are warranted to understand and minimize the overall infection and death stigma among masses.
Collapse
Affiliation(s)
- Mehlayl Tariq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abu Bakar Shoukat
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sedrah Akbar
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samaia Hameed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muniba Zainab Naqvi
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Azher
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Saad
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,BreathMAT Lab, IAD, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan
| | - Muhammad Rizwan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Nadeem
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anum Javed
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asad Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Punjab, Pakistan
| | - Shahid Aziz
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,BreathMAT Lab, IAD, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan
| |
Collapse
|
7
|
Direct-Acting Antiviral Agents for Hepatitis C Virus Infection-From Drug Discovery to Successful Implementation in Clinical Practice. Viruses 2022; 14:v14061325. [PMID: 35746796 PMCID: PMC9231290 DOI: 10.3390/v14061325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Today, hepatitis C virus infection affects up to 1.5 million people per year and is responsible for 29 thousand deaths per year. In the 1970s, the clinical observation of unclear, transfusion-related cases of hepatitis ignited scientific curiosity, and after years of intensive, basic research, the hepatitis C virus was discovered and described as the causative agent for these cases of unclear hepatitis in 1989. Even before the description of the hepatitis C virus, clinicians had started treating infected individuals with interferon. However, intense side effects and limited antiviral efficacy have been major challenges, shaping the aim for the development of more suitable and specific treatments. Before direct-acting antiviral agents could be developed, a detailed understanding of viral properties was necessary. In the years after the discovery of the new virus, several research groups had been working on the hepatitis C virus biology and finally revealed the replication cycle. This knowledge was the basis for the later development of specific antiviral drugs referred to as direct-acting antiviral agents. In 2011, roughly 22 years after the discovery of the hepatitis C virus, the first two drugs became available and paved the way for a revolution in hepatitis C therapy. Today, the treatment of chronic hepatitis C virus infection does not rely on interferon anymore, and the treatment response rate is above 90% in most cases, including those with unsuccessful pretreatments. Regardless of the clinical and scientific success story, some challenges remain until the HCV elimination goals announced by the World Health Organization are met.
Collapse
|
8
|
Alzahrani N, Wu MJ, Sousa CF, Kalinina OV, Welsch C, Yi M. SPCS1-Dependent E2-p7 processing determines HCV Assembly efficiency. PLoS Pathog 2022; 18:e1010310. [PMID: 35130329 PMCID: PMC8853643 DOI: 10.1371/journal.ppat.1010310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/17/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies identified signal peptidase complex subunit 1 (SPCS1) as a proviral host factor for Flaviviridae viruses, including HCV. One of the SPCS1’s roles in flavivirus propagation was attributed to its regulation of signal peptidase complex (SPC)-mediated processing of flavivirus polyprotein, especially C-prM junction. However, whether SPCS1 also regulates any SPC-mediated processing sites within HCV polyprotein remains unclear. In this study, we determined that loss of SPCS1 specifically impairs the HCV E2-p7 processing by the SPC. We also determined that efficient separation of E2 and p7, regardless of its dependence on SPC-mediated processing, leads to SPCS1 dispensable for HCV assembly These results suggest that SPCS1 regulates HCV assembly by facilitating the SPC-mediated processing of E2-p7 precursor. Structural modeling suggests that intrinsically delayed processing of the E2-p7 is likely caused by the structural rigidity of p7 N-terminal transmembrane helix-1 (p7/TM1/helix-1), which has mostly maintained membrane-embedded conformations during molecular dynamics (MD) simulations. E2-p7-processing-impairing p7 mutations narrowed the p7/TM1/helix-1 bending angle against the membrane, resulting in closer membrane embedment of the p7/TM1/helix-1 and less access of E2-p7 junction substrate to the catalytic site of the SPC, located well above the membrane in the ER lumen. Based on these results we propose that the key mechanism of action of SPCS1 in HCV assembly is to facilitate the E2-p7 processing by enhancing the E2-p7 junction site presentation to the SPC active site. By providing evidence that SPCS1 facilitates HCV assembly by regulating SPC-mediated cleavage of E2-p7 junction, equivalent to the previously established role of this protein in C-prM junction processing in flavivirus, this study establishes the common role of SPCS1 in Flaviviridae family virus propagation as to exquisitely regulate the SPC-mediated processing of specific, suboptimal target sites.
Collapse
Affiliation(s)
- Nabeel Alzahrani
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ming-Jhan Wu
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Carla F. Sousa
- Drug Bioinformatics Group, HIPS, HZI, Saarbrücken, Germany
| | - Olga V. Kalinina
- Drug Bioinformatics Group, HIPS, HZI, Saarbrücken, Germany
- Medical Faculty, Saarland University, Homburg, Germany
| | - Christoph Welsch
- Department of Internal Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| | - MinKyung Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
In the 1970s, an unknown virus was suspected for documented cases of transfusion-associated hepatitis, a phenomenon called non-A, non-B hepatitis. In 1989, the infectious transmissible agent was identified and named hepatitis C virus (HCV) and, soon enough, the first diagnostic HCV antibody test was developed, which led to a dramatic decrease in new infections. Today, HCV infection remains a global health burden and a major cause of liver cirrhosis, hepatocellular carcinoma and liver transplantation. However, tremendous advances have been made over the decades, and HCV became the first curable, chronic viral infection. The introduction of direct antiviral agents revolutionized antiviral treatment, leading to viral eradication in more than 98% of all patients infected with HCV. This Perspective discusses the history of HCV research, which reads like a role model for successful translational research: starting from a clinical observation, specific therapeutic agents were developed, which finally were implemented in national and global elimination programmes.
Collapse
Affiliation(s)
- Michael P. Manns
- grid.10423.340000 0000 9529 9877Hannover Medical School, Hannover, Germany
| | - Benjamin Maasoumy
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Valutite DE, Semenov AV, Ostankova YV, Kozlov KV, Borisov AG, Nazarov VD, Totolian AA. Detection of drug resistance mutations of hepatitis C virus in patients with failure of the treatment with direct acting antivirals. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2021; 98:18-27. [DOI: 10.36233/0372-9311-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Background. The development of direct acting antivirals (DAAs) has spurred a revolution in treatment of patients with chronic hepatitis C. However, there are cases showing no response to treatment. In 5% of cases, the viral breakthrough is most likely caused by DAA resistance mutations in the hepatitis C virus genome.The purpose of the study is to detect drug resistance mutations of hepatitis C virus in patients with DAA treatment failure.Materials and methods. The study was performed on plasma samples from 3 patients diagnosed with chronic hepatitis C virus infection and demonstrating DAA virological treatment failure. All isolates had genotype 1b. Drug resistance mutations were detected by using direct sequencing of NS3, NS5A, and NS5B genome regions. The detection technique was developed at the Pasteur Research Institute of Epidemiology and Microbiology.Results. Drug resistance mutations were detected in all cases. By using the Geno2pheno [hcv] 0.92 tool, nucleotide substitutions were detected in different viral genome regions and presumably caused resistance or decreased sensitivity to antivirals both present and absent in the sofosbuvir + daclatasvir combination therapy. Antiviral treatment failure in patients with chronic hepatitis C is caused by drug resistance mutations.Conclusions. The developed technique is efficient for detection of drug resistance mutations in NS3, NS5A, and NS5B regions in cases of virological failure of DAA treatment.
Collapse
|
11
|
Ye J. Regulated Alternative Translocation: A Mechanism Regulating Transmembrane Proteins Through Topological Inversion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:183-190. [PMID: 32986129 DOI: 10.1007/5584_2020_585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Transmembrane proteins must adopt a proper topology to execute their functions. In mammalian cells, a transmembrane protein is believed to adopt a fixed topology. This assumption has been challenged by recent reports that ceramide or related sphingolipids regulate some transmembrane proteins by inverting their topology. Ceramide inverts the topology of certain newly synthesized polytopic transmembrane proteins by altering the direction through which their first transmembrane helices are translocated across membranes. Thus, this regulatory mechanism has been designated as Regulated Alternative Translocation (RAT). The physiological importance of this topological regulation has been demonstrated by the finding that ceramide-induced RAT of TM4SF20 (Transmembrane 4 L6 family member 20) is crucial for the effectiveness of doxorubicin-based chemotherapy, and that dihydroceramide-induced RAT of CCR5 (C-C chemokine receptor type 5), a G protein-coupled receptor, is required for lipopolysaccharide (LPS) to inhibit chemotaxis of macrophages. These observations suggest that topological inversion through RAT could be an emerging mechanism to regulate transmembrane proteins.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Shimotohno K. HCV Assembly and Egress via Modifications in Host Lipid Metabolic Systems. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a036814. [PMID: 32122916 PMCID: PMC7778218 DOI: 10.1101/cshperspect.a036814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) proliferates by hijacking the host lipid machinery. In vitro replication systems revealed many aspects of the virus life cycle; in particular, viral utilization of host lipid metabolism during HCV proliferation. HCV interacts with lipid droplets (LDs) before starting the process of virus capsid formation at the lipid-rich endoplasmic reticulum (ER) membrane compartment. HCV buds into the ER via lipoprotein assembly and secretion. Exchangeable apolipoproteins, represented by apolipoprotein E (apoE), play pivotal roles in enhancing HCV-specific infectivity. HCV virions are likely to interact with other lipoproteins circulating in blood vessels and incorporate apolipoproteins as well as lipids. This review focuses on virus assembly and egress by briefly describing the recent advances in this area.
Collapse
|
13
|
Ye J. Transcription factors activated through RIP (regulated intramembrane proteolysis) and RAT (regulated alternative translocation). J Biol Chem 2020; 295:10271-10280. [PMID: 32487748 DOI: 10.1074/jbc.rev120.012669] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Transmembrane proteins are membrane-anchored proteins whose topologies are important for their functions. These properties enable regulation of certain transmembrane proteins by regulated intramembrane proteolysis (RIP) and regulated alternative translocation (RAT). RIP enables a protein fragment of a transmembrane precursor to function at a new location, and RAT leads to an inverted topology of a transmembrane protein by altering the direction of its translocation across membranes during translation. RIP mediated by site-1 protease (S1P) and site-2 protease (S2P) is involved in proteolytic activation of membrane-bound transcription factors. In resting cells, these transcription factors remain in the endoplasmic reticulum (ER) as inactive transmembrane precursors. Upon stimulation by signals within the ER, they are translocated from the ER to the Golgi. There, they are cleaved first by S1P and then by S2P, liberating their N-terminal domains from membranes and enabling them to activate genes in the nucleus. This signaling pathway regulates lipid metabolism, unfolded protein responses, secretion of extracellular matrix proteins, and cell proliferation. Remarkably, ceramide-induced RIP of cAMP response element-binding protein 3-like 1 (CREB3L1) also involves RAT. In resting cells, RIP of CREB3L1 is blocked by transmembrane 4 L6 family member 20 (TM4SF20). Ceramide inverts the orientation of newly synthesized TM4SF20 in membranes through RAT, converting TM4SF20 from an inhibitor to an activator of RIP of CREB3L1. Here, I review recent insights into RIP of membrane-bound transcription factors, focusing on CREB3L1 activation through both RIP and RAT, and discuss current open questions about these two signaling pathways.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Saberi A, Gulyaeva AA, Brubacher JL, Newmark PA, Gorbalenya AE. A planarian nidovirus expands the limits of RNA genome size. PLoS Pathog 2018; 14:e1007314. [PMID: 30383829 PMCID: PMC6211748 DOI: 10.1371/journal.ppat.1007314] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/02/2018] [Indexed: 12/28/2022] Open
Abstract
RNA viruses are the only known RNA-protein (RNP) entities capable of autonomous replication (albeit within a permissive host environment). A 33.5 kilobase (kb) nidovirus has been considered close to the upper size limit for such entities; conversely, the minimal cellular DNA genome is in the 100–300 kb range. This large difference presents a daunting gap for the transition from primordial RNP to contemporary DNA-RNP-based life. Whether or not RNA viruses represent transitional steps towards DNA-based life, studies of larger RNA viruses advance our understanding of the size constraints on RNP entities and the role of genome size in virus adaptation. For example, emergence of the largest previously known RNA genomes (20–34 kb in positive-stranded nidoviruses, including coronaviruses) is associated with the acquisition of a proofreading exoribonuclease (ExoN) encoded in the open reading frame 1b (ORF1b) in a monophyletic subset of nidoviruses. However, apparent constraints on the size of ORF1b, which encodes this and other key replicative enzymes, have been hypothesized to limit further expansion of these viral RNA genomes. Here, we characterize a novel nidovirus (planarian secretory cell nidovirus; PSCNV) whose disproportionately large ORF1b-like region including unannotated domains, and overall 41.1-kb genome, substantially extend the presumed limits on RNA genome size. This genome encodes a predicted 13,556-aa polyprotein in an unconventional single ORF, yet retains canonical nidoviral genome organization and expression, as well as key replicative domains. These domains may include functionally relevant substitutions rarely or never before observed in highly conserved sites of RdRp, NiRAN, ExoN and 3CLpro. Our evolutionary analysis suggests that PSCNV diverged early from multi-ORF nidoviruses, and acquired additional genes, including those typical of large DNA viruses or hosts, e.g. Ankyrin and Fibronectin type II, which might modulate virus-host interactions. PSCNV's greatly expanded genome, proteomic complexity, and unique features–impressive in themselves–attest to the likelihood of still-larger RNA genomes awaiting discovery. RNA viruses are the only known RNA-protein (RNP) entities capable of autonomous replication. The upper genome size for such entities was assumed to be <35 kb; conversely, the minimal cellular DNA genome is in the 100–300 kilobase (kb) range. This large difference presents a daunting gap for the proposed evolution of contemporary DNA-RNP-based life from primordial RNP entities. Here, we describe a nidovirus from planarians, named planarian secretory cell nidovirus (PSCNV), whose 41.1 kb genome is 23% larger than any riboviral genome yet discovered. This increase is nearly equivalent in size to the entire poliovirus genome, and it equips PSCNV with an unprecedented extra coding capacity to adapt. PSCNV has broken apparent constraints on the size of the genomic subregion that encodes core replication machinery in other nidoviruses, including coronaviruses, and has acquired genes not previously observed in RNA viruses. This virus challenges and advances our understanding of the limits to RNA genome size.
Collapse
Affiliation(s)
- Amir Saberi
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Anastasia A. Gulyaeva
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - John L. Brubacher
- Department of Biology, Canadian Mennonite University, Winnipeg, Canada
| | - Phillip A. Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail: (PAN); (AEG)
| | - Alexander E. Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- * E-mail: (PAN); (AEG)
| |
Collapse
|
15
|
Honda T. Potential Links between Hepadnavirus and Bornavirus Sequences in the Host Genome and Cancer. Front Microbiol 2017; 8:2537. [PMID: 29312227 PMCID: PMC5742130 DOI: 10.3389/fmicb.2017.02537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
Various viruses leave their sequences in the host genomes during infection. Such events occur mainly in retrovirus infection but also sometimes in DNA and non-retroviral RNA virus infections. If viral sequences are integrated into the genomes of germ line cells, the sequences can become inherited as endogenous viral elements (EVEs). The integration events of viral sequences may have oncogenic potential. Because proviral integrations of some retroviruses and/or reactivation of endogenous retroviruses are closely linked to cancers, viral insertions related to non-retroviral viruses also possibly contribute to cancer development. This article focuses on genomic viral sequences derived from two non-retroviral viruses, whose endogenization is already reported, and discusses their possible contributions to cancer. Viral insertions of hepatitis B virus play roles in the development of hepatocellular carcinoma. Endogenous bornavirus-like elements, the only non-retroviral RNA virus-related EVEs found in the human genome, may also be involved in cancer formation. In addition, the possible contribution of the interactions between viruses and retrotransposons, which seem to be a major driving force for generating EVEs related to non-retroviral RNA viruses, to cancers will be discussed. Future studies regarding the possible links described here may open a new avenue for the development of novel therapeutics for tumor virus-related cancers and/or provide novel insights into EVE functions.
Collapse
Affiliation(s)
- Tomoyuki Honda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
16
|
Denolly S, Mialon C, Bourlet T, Amirache F, Penin F, Lindenbach B, Boson B, Cosset FL. The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types. PLoS Pathog 2017; 13:e1006774. [PMID: 29253880 PMCID: PMC5749900 DOI: 10.1371/journal.ppat.1006774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/02/2018] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.
Collapse
Affiliation(s)
- Solène Denolly
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Chloé Mialon
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Thomas Bourlet
- GIMAP, EA 3064, Faculté de Médecine, Université de Saint-Etienne, Univ Lyon, Saint Etienne, France
| | - Fouzia Amirache
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François Penin
- IBCP—Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Univ Lyon, Lyon, France
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
| | - Bertrand Boson
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François-Loïc Cosset
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
17
|
Jin G, Lee J, Lee K. Chemical genetics-based development of small molecules targeting hepatitis C virus. Arch Pharm Res 2017; 40:1021-1036. [PMID: 28856597 DOI: 10.1007/s12272-017-0949-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today's advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni®, Zepatier®, Technivie®, and Epclusa®. A number of reviews have been recently published describing the structure-activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug's mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.
Collapse
Affiliation(s)
- Guanghai Jin
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jisu Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
18
|
Moriishi K. The potential of signal peptide peptidase as a therapeutic target for hepatitis C. Expert Opin Ther Targets 2017; 21:827-836. [PMID: 28820612 DOI: 10.1080/14728222.2017.1369959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kohji Moriishi
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
19
|
Abstract
Hepatitis C virus (HCV) consists of envelope proteins, core proteins, and genome RNA. The structural genes and non-structural genes in the open reading frame of its genome encode functional proteins essential to viral life cycles, ranging from virus attachment to progeny virus secretion. After infection, the host cells suffer damage from virus-induced oxidative stress, steatosis, and activation of proto-oncogenes. Every process during the viral life cycle can be considered as targets for direct acting antivirals. However, protective immunity cannot be easily acquired for the volatility in HCV antigenic epitopes. Understanding its molecular characteristics, especially pathogenesis and targets the drugs act on, not only helps professionals to make optimal therapeutic decisions, but also helps clinicians who do not specialize in infectious diseases/hepatology to provide better management for patients. This review serves to provide an insight for clinicians and this might provide a possible solution for any possible collision.
Collapse
Affiliation(s)
- Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China. E-mail.
| | | |
Collapse
|
20
|
Extracellular Interactions between Hepatitis C Virus and Secreted Apolipoprotein E. J Virol 2017; 91:JVI.02227-16. [PMID: 28539442 DOI: 10.1128/jvi.02227-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
Interactions between hepatitis C virus (HCV) and lipoproteins in humans play an important role in the efficient establishment of chronic infection. Apolipoprotein E (ApoE) on the HCV envelope mediates virus attachment to host cells as well as immune evasion. This interaction is thought to occur in hepatocytes, as ApoE plays dual functions in HCV assembly and maturation as well as cell attachment. In the present study, we found that secreted ApoE (sApoE) can also bind to viral particles via its C-terminal domain after HCV is released from the cell. Furthermore, the binding affinity of interactions between the sApoE N terminus and cell surface receptors affected HCV infectivity in a dose-dependent manner. The extracellular binding of sApoE to HCV is dependent on HCV envelope proteins, and recombinant HCV envelope proteins are also able to bind to sApoE. These results suggest that extracellular interactions between HCV and sApoE may potentially complicate vaccine development and studies of viral pathogenesis.IMPORTANCE End-stage liver disease caused by chronic HCV infection remains a clinical challenge, and there is an urgent need for a prophylactic method of controlling HCV infection. Because host immunity against HCV is poorly understood, additional investigations of host-virus interactions in the context of HCV are important. HCV is primarily transmitted through blood, which is rich in lipoproteins. Therefore, it is of interest to further determine how HCV interacts with lipoproteins in human blood. In this study, we found that secreted ApoE (sApoE), an exchangeable component found in lipoproteins, participates in extracellular interactions with HCV virions. More significantly, different variants of sApoE differentially affect HCV infection efficiency in a dose-dependent manner. These findings provide greater insight into HCV infection and host immunity and could help propel the development of new strategies for preventing HCV infection.
Collapse
|
21
|
Pène V, Lemasson M, Harper F, Pierron G, Rosenberg AR. Role of cleavage at the core-E1 junction of hepatitis C virus polyprotein in viral morphogenesis. PLoS One 2017; 12:e0175810. [PMID: 28437468 PMCID: PMC5402940 DOI: 10.1371/journal.pone.0175810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
In hepatitis C virus (HCV) polyprotein sequence, core protein terminates with E1 envelope signal peptide. Cleavage by signal peptidase (SP) separates E1 from the complete form of core protein, anchored in the endoplasmic reticulum (ER) membrane by the signal peptide. Subsequent cleavage of the signal peptide by signal-peptide peptidase (SPP) releases the mature form of core protein, which preferentially relocates to lipid droplets. Both of these cleavages are required for the HCV infectious cycle, supporting the idea that HCV assembly begins at the surface of lipid droplets, yet SPP-catalyzed cleavage is dispensable for initiation of budding in the ER. Here we have addressed at what step(s) of the HCV infectious cycle SP-catalyzed cleavage at the core-E1 junction is required. Taking advantage of the sole system that has allowed visualization of HCV budding events in the ER lumen of mammalian cells, we showed that, unexpectedly, mutations abolishing this cleavage did not prevent but instead tended to promote the initiation of viral budding. Moreover, even though no viral particles were released from Huh-7 cells transfected with a full-length HCV genome bearing these mutations, intracellular viral particles containing core protein protected by a membrane envelope were formed. These were visualized by electron microscopy as capsid-containing particles with a diameter of about 70 nm and 40 nm before and after delipidation, respectively, comparable to intracellular wild-type particle precursors except that they were non-infectious. Thus, our results show that SP-catalyzed cleavage is dispensable for HCV budding per se, but is required for the viral particles to acquire their infectivity and secretion. These data support the idea that HCV assembly occurs in concert with budding at the ER membrane. Furthermore, capsid-containing particles did not accumulate in the absence of SP-catalyzed cleavage, suggesting the quality of newly formed viral particles is controlled before secretion.
Collapse
Affiliation(s)
- Véronique Pène
- Université Paris Descartes, EA 4474 “Virologie de l’Hépatite C”, Paris, France
| | - Matthieu Lemasson
- Université Paris Descartes, EA 4474 “Virologie de l’Hépatite C”, Paris, France
| | - Francis Harper
- CNRS UMR 9196, Institut Gustave Roussy, Villejuif, France
| | - Gérard Pierron
- CNRS UMR 9196, Institut Gustave Roussy, Villejuif, France
| | - Arielle R. Rosenberg
- Université Paris Descartes, EA 4474 “Virologie de l’Hépatite C”, Paris, France
- AP-HP, Hôpital Cochin, Service de Virologie, Paris, France
| |
Collapse
|
22
|
|
23
|
Romero-López C, Barroso-delJesus A, Berzal-Herranz A. The chaperone-like activity of the hepatitis C virus IRES and CRE elements regulates genome dimerization. Sci Rep 2017; 7:43415. [PMID: 28233845 PMCID: PMC5324077 DOI: 10.1038/srep43415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/24/2017] [Indexed: 02/08/2023] Open
Abstract
The RNA genome of the hepatitis C virus (HCV) establishes a network of long-distance RNA-RNA interactions that direct the progression of the infective cycle. This work shows that the dimerization of the viral genome, which is initiated at the dimer linkage sequence (DLS) within the 3'UTR, is promoted by the CRE region, while the IRES is a negative regulatory partner. Using differential 2'-acylation probing (SHAPE-dif) and molecular interference (HMX) technologies, the CRE activity was found to mainly lie in the critical 5BSL3.2 domain, while the IRES-mediated effect is dependent upon conserved residues within the essential structural elements JIIIabc, JIIIef and PK2. These findings support the idea that, along with the DLS motif, the IRES and CRE are needed to control HCV genome dimerization. They also provide evidences of a novel function for these elements as chaperone-like partners that fine-tune the architecture of distant RNA domains within the HCV genome.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alicia Barroso-delJesus
- Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| |
Collapse
|
24
|
Preclinical Characterization and Human Microdose Pharmacokinetics of ITMN-8187, a Nonmacrocyclic Inhibitor of the Hepatitis C Virus NS3 Protease. Antimicrob Agents Chemother 2016; 61:AAC.01569-16. [PMID: 27795376 DOI: 10.1128/aac.01569-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/09/2016] [Indexed: 12/11/2022] Open
Abstract
The current paradigm for the treatment of chronic hepatitis C virus (HCV) infection involves combinations of agents that act directly on steps of the HCV life cycle. Here we report the preclinical characteristics of ITMN-8187, a nonmacrocyclic inhibitor of the NS3/4A HCV protease. X-ray crystallographic studies of ITMN-8187 and simeprevir binding to NS3/4A protease demonstrated good agreement between structures. Low nanomolar biochemical potency was maintained against NS3/4A derived from HCV genotypes 1, 2b, 4, 5, and 6. In cell-based potency assays, half-maximal reduction of genotype 1a and 1b HCV replicon RNA was afforded by 11 and 4 nM doses of ITMN-8187, respectively. Combinations of ITMN-8187 with other directly acting antiviral agents in vitro displayed additive antiviral efficacy. A 30-mg/kg of body weight dose of ITMN-8187 administered for 4 days yielded significant viral load reductions through day 5 in a chimeric mouse model of HCV. A 3-mg/kg oral dose administered to rats, dogs, or monkeys yielded concentrations in plasma 16 h after dosing that exceeded the half-maximal effective concentration of ITMN-8187. Human microdose pharmacokinetics showed low intersubject variability and prolonged oral absorption with first-order elimination kinetics compatible with once-daily dosing. These preclinical characteristics compare favorably with those of other NS3/4A inhibitors approved for the treatment of chronic HCV infection.
Collapse
|
25
|
Chen Q, Denard B, Lee CE, Han S, Ye JS, Ye J. Inverting the Topology of a Transmembrane Protein by Regulating the Translocation of the First Transmembrane Helix. Mol Cell 2016; 63:567-578. [PMID: 27499293 DOI: 10.1016/j.molcel.2016.06.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/13/2016] [Accepted: 06/21/2016] [Indexed: 01/07/2023]
Abstract
TM4SF20 (transmembrane 4 L6 family 20) is a polytopic membrane protein that inhibits proteolytic processing of CREB3L1 (cAMP response element-binding protein 3-like 1), a membrane-bound transcription factor that blocks cell division and activates collagen synthesis. Here we report that ceramide stimulates CREB3L1 cleavage by inverting the orientation of TM4SF20 in membranes. In the absence of ceramide, the N terminus of the first transmembrane helix of TM4SF20 is inserted into the endoplasmic reticulum (ER) lumen. This translocation requires TRAM2 (translocating chain-associated membrane protein 2), a membrane protein containing a putative ceramide-interacting domain. In the presence of ceramide, the N terminus of the first transmembrane domain of TM4SF20 is exposed to cytosol. Consequently, the membrane topology of TM4SF20 is inverted, and this form of TM4SF20 stimulates CREB3L1 cleavage. In the presence of ceramide, translocation of TM4SF20 is TRAM2-independent. We designate this mechanism-causing regulated inversion of the membrane topology as "regulated alternative translocation."
Collapse
Affiliation(s)
- Qiuyue Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Bray Denard
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Ching-En Lee
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Sungwon Han
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - James S Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
26
|
Abstract
Hepatitis C virus (HCV) is the major cause of transfusion-associated hepatitis and accounts for a significant proportion of hepatitis cases worldwide. Most, if not all, infections become persistent and about 60% of cases develop chronic liver disease with various outcomes ranging from an asymptomatic carrier state to chronic active hepatitis and liver cirrhosis, which is strongly associated with the development of hepatocellular carcinoma. Since the initial cloning of the viral genome in 1989, our knowledge of the molecular biology of HCV has increased rapidly and led to the identification of several potential targets for antiviral intervention. In contrast, the low replication of the virus in cell culture, the lack of convenient animal models and the high genome variability present major challenges for drug development. This review will describe candidate drug targets and summarize ‘classical’ and ‘novel’ approaches currently being pursued to develop efficient HCV-specific therapies.
Collapse
Affiliation(s)
- R Bartenschlager
- Institute for Virology, Johannes-Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| |
Collapse
|
27
|
Honda T. Links between Human LINE-1 Retrotransposons and Hepatitis Virus-Related Hepatocellular Carcinoma. Front Chem 2016; 4:21. [PMID: 27242996 PMCID: PMC4863659 DOI: 10.3389/fchem.2016.00021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/22/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 80% of liver cancers, the third most frequent cause of cancer mortality. The most prevalent risk factors for HCC are infections by hepatitis B or hepatitis C virus. Findings suggest that hepatitis virus-related HCC might be a cancer in which LINE-1 retrotransposon, often termed L1, activity plays a potential role. Firstly, hepatitis viruses can suppress host defense factors that also control L1 mobilization. Secondly, many recent studies also have indicated that hypomethylation of L1 affects the prognosis of HCC patients. Thirdly, endogenous L1 retrotransposition was demonstrated to activate oncogenic pathways in HCC. Fourthly, several L1 chimeric transcripts with host or viral genes are found in hepatitis virus-related HCC. Such lines of evidence suggest a linkage between L1 retrotransposons and hepatitis virus-related HCC. Here, I briefly summarize current understandings of the association between hepatitis virus-related HCC and L1. Then, I discuss potential mechanisms of how hepatitis viruses drive the development of HCC via L1 retrotransposons. An increased understanding of the contribution of L1 to hepatitis virus-related HCC may provide unique insights related to the development of novel therapeutics for this disease.
Collapse
Affiliation(s)
- Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto UniversityKyoto, Japan; Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of MedicineSuita, Japan
| |
Collapse
|
28
|
Rafiei H, Khanzadeh M, Mozaffari S, Bostanifar MH, Avval ZM, Aalizadeh R, Pourbasheer E. QSAR study of HCV NS5B polymerase inhibitors using the genetic algorithm-multiple linear regression (GA-MLR). EXCLI JOURNAL 2016; 15:38-53. [PMID: 27065774 PMCID: PMC4822051 DOI: 10.17179/excli2015-731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/05/2016] [Indexed: 11/10/2022]
Abstract
Quantitative structure-activity relationship (QSAR) study has been employed for predicting the inhibitory activities of the Hepatitis C virus (HCV) NS5B polymerase inhibitors . A data set consisted of 72 compounds was selected, and then different types of molecular descriptors were calculated. The whole data set was split into a training set (80 % of the dataset) and a test set (20 % of the dataset) using principle component analysis. The stepwise (SW) and the genetic algorithm (GA) techniques were used as variable selection tools. Multiple linear regression method was then used to linearly correlate the selected descriptors with inhibitory activities. Several validation technique including leave-one-out and leave-group-out cross-validation, Y-randomization method were used to evaluate the internal capability of the derived models. The external prediction ability of the derived models was further analyzed using modified r(2), concordance correlation coefficient values and Golbraikh and Tropsha acceptable model criteria's. Based on the derived results (GA-MLR), some new insights toward molecular structural requirements for obtaining better inhibitory activity were obtained.
Collapse
Affiliation(s)
- Hamid Rafiei
- Department of Chemistry, Dashtestan Branch, Islamic Azad University, Dashtestan, Iran
| | - Marziyeh Khanzadeh
- Department of Chemistry, Payame Noor University (PNU), P. O. Box 19395-3697, Tehran, Iran
| | - Shahla Mozaffari
- Department of Chemistry, Payame Noor University (PNU), P. O. Box 19395-3697, Tehran, Iran
| | | | - Zhila Mohajeri Avval
- Department of Chemistry, Payame Noor University (PNU), P. O. Box 19395-3697, Tehran, Iran
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Eslam Pourbasheer
- Department of Chemistry, Payame Noor University (PNU), P. O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
29
|
Martinez-Gil L, Mingarro I. Viroporins, Examples of the Two-Stage Membrane Protein Folding Model. Viruses 2015; 7:3462-82. [PMID: 26131957 PMCID: PMC4517110 DOI: 10.3390/v7072781] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
Viroporins are small, α-helical, hydrophobic virus encoded proteins, engineered to form homo-oligomeric hydrophilic pores in the host membrane. Viroporins participate in multiple steps of the viral life cycle, from entry to budding. As any other membrane protein, viroporins have to find the way to bury their hydrophobic regions into the lipid bilayer. Once within the membrane, the hydrophobic helices of viroporins interact with each other to form higher ordered structures required to correctly perform their porating activities. This two-step process resembles the two-stage model proposed for membrane protein folding by Engelman and Poppot. In this review we use the membrane protein folding model as a leading thread to analyze the mechanism and forces behind the membrane insertion and folding of viroporins. We start by describing the transmembrane segment architecture of viroporins, including the number and sequence characteristics of their membrane-spanning domains. Next, we connect the differences found among viroporin families to their viral genome organization, and finalize focusing on the pathways used by viroporins in their way to the membrane and on the transmembrane helix-helix interactions required to achieve proper folding and assembly.
Collapse
Affiliation(s)
- Luis Martinez-Gil
- Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain.
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, ERI BioTecMed, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
30
|
Shehat MG, Bahey-El-Din M, Kassem MA, Farghaly FA, Abdul-Rahman MH, Fanaki NH. Recombinant expression of the alternate reading frame protein (ARFP) of hepatitis C virus genotype 4a (HCV-4a) and detection of ARFP and anti-ARFP antibodies in HCV-infected patients. Arch Virol 2015; 160:1939-52. [PMID: 26036563 DOI: 10.1007/s00705-015-2465-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 05/23/2015] [Indexed: 01/27/2023]
Abstract
HCV is a single-stranded RNA virus with a single open reading frame (ORF) that is translated into a polyprotein that is then processed to form 10 viral proteins. An additional eleventh viral protein, the alternative reading frame protein (ARFP), was discovered relatively recently. This protein results from a translational frameshift in the core region during the expression of the viral proteins. Recombinant expression of different forms of ARFP was previously done for HCV genotypes 1 and 2, and more recently, genotype 3. However, none of the previous studies addressed the expression of ARFP of HCV genotype 4a, which is responsible for 80 % of HCV infections in the Middle East and Africa. Moreover, the direct detection of the ARFP antigen in HCV-infected patients was never studied before for any HCV genotype. In the present study, recombinant ARFP derived from HCV genotype 4a was successfully expressed in E. coli and purified using metal affinity chromatography. The recombinant ARFP protein and anti-ARFP antibodies were used for detection of ARFP antigen in patients' sera, employing competitive enzyme-linked immunosorbent assay (ELISA) procedures. Furthermore, the recombinant antigen was also used to detect and quantify anti-ARFP antibodies in HCV-infected Egyptian patients at different stages of pegylated interferon/ribavirin therapy, using an ELISA assay. The ARFP antigen was detectable in 69.4 % of RNA-positive sera, indicating that ARFP antigen is produced during the natural course of HCV infection. In addition, significant levels of anti-ARFP antibodies were present in 41 % of the serum samples tested. The important diagnostic value of the recombinant ARFP antigen was also demonstrated.
Collapse
Affiliation(s)
- Michael G Shehat
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | | | | | | | |
Collapse
|
31
|
Christdas J, Sivakumar J, David J, Daniel HDJ, Raghuraman S, Abraham P. Genotypes of hepatitis C virus in the Indian sub-continent: a decade-long experience from a tertiary care hospital in South India. Indian J Med Microbiol 2015; 31:349-53. [PMID: 24064640 DOI: 10.4103/0255-0857.118875] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is a leading cause of chronic liver disease (CLD) that can progress to cirrhosis and hepatocellular carcinoma. Genotypes of HCV can vary in pathogenicity and can impact on treatment outcome. OBJECTIVES To study the different genotypes among patients with HCV related CLD attending a tertiary care hospital in south India during 2002-2012. STUDY DESIGN Study subjects were those referred to clinical virology from the liver clinic. Genotyping was performed using the genotype specific core primers in nested polymerase chain reaction (PCR), 5' non-coding regions based PCR- restriction fragment length polymorphism and NS5B sequencing methods. With the latter method, obtained sequences were compared with published GenBank sequences to determine the genotype. RESULTS Of the 451 samples tested, HCV genotype 3 was found to be the most predominant (63.85%). Other genotypes detected were genotype 1 (25.72%), genotype 2 (0.002%), genotype 4 (7.5%) and genotype 6 (2.7%). Genotype 3 was the common genotype in patients from Eastern India while genotype 1 and 4 were mainly seen in South Indian patients. Genotype 6 was seen exclusively in patients from North-Eastern India. Two other patients were infected with recombinants of genotype 1 and 2. CONCLUSIONS In this study spanning a decade, HCV genotype 3 and genotype 1 were found to be the predominant genotypes in the Indian sub-continent. Genotype 4 and genotype 6 appeared to show some geographic restriction. A continued monitoring of HCV genotypes is essential for the optimum management of these chronically infected patients. In addition, knowledge of circulating genotypes could impact on future vaccine formulations.
Collapse
Affiliation(s)
- J Christdas
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
32
|
Ashworth Briggs EL, Gomes RGB, Elhussein M, Collier W, Findlow IS, Khalid S, McCormick CJ, Williamson PTF. Interaction between the NS4B amphipathic helix, AH2, and charged lipid headgroups alters membrane morphology and AH2 oligomeric state--Implications for the Hepatitis C virus life cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1671-7. [PMID: 25944559 PMCID: PMC4768108 DOI: 10.1016/j.bbamem.2015.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/27/2015] [Accepted: 04/25/2015] [Indexed: 01/27/2023]
Abstract
The non-structural protein 4B (NS4B) from Hepatitis C virus (HCV) plays a pivotal role in the remodelling of the host cell's membranes, required for the formation of the viral replication complex where genome synthesis occurs. NS4B is an integral membrane protein that possesses a number of domains vital for viral replication. Structural and biophysical studies have revealed that one of these, the second amphipathic N-terminal helix (AH2), plays a key role in these remodelling events. However, there is still limited understanding of the mechanism through which AH2 promotes these changes. Here we report on solid-state NMR and molecular dynamics studies that demonstrate that AH2 promotes the clustering of negatively charged lipids within the bilayer, a process that reduces the strain within the bilayer facilitating the remodelling of the lipid bilayer. Furthermore, the presence of negatively charged lipids within the bilayer appears to promote the disassociation of AH2 oligomers, highlighting a potential role for lipid recruitment in regulating NS protein interactions. Changes in membrane morphology studied by 2H and 31P Solid-state NMR. Bilayer charge influences the oligomeric state of the amphipathic helix AH2 from NS4B. Interaction of AH2 with charged lipid membranes reduces strain within bilayer. AH2 from NS4B is involved in membrane remodelling and membranous web formation. Lipid bilayer/NS4B interactions may regulate Hepatitis C virus lifecycle.
Collapse
Affiliation(s)
- Esther L Ashworth Briggs
- Centre for Biological Sciences/Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Rafael G B Gomes
- Centre for Biological Sciences/Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; School of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Malaz Elhussein
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - William Collier
- Centre for Biological Sciences/Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - I Stuart Findlow
- Centre for Biological Sciences/Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Chris J McCormick
- School of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Philip T F Williamson
- Centre for Biological Sciences/Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
33
|
Isken O, Langerwisch U, Jirasko V, Rehders D, Redecke L, Ramanathan H, Lindenbach BD, Bartenschlager R, Tautz N. A conserved NS3 surface patch orchestrates NS2 protease stimulation, NS5A hyperphosphorylation and HCV genome replication. PLoS Pathog 2015; 11:e1004736. [PMID: 25774920 PMCID: PMC4361677 DOI: 10.1371/journal.ppat.1004736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-structural (NS) polyprotein region are processed by the NS3/NS4A serine protease. The vital NS2-NS3 cleavage is catalyzed by the NS2 autoprotease. For efficient processing at the NS2/NS3 site, the NS2 cysteine protease depends on the NS3 serine protease domain. Despite its importance for the viral life cycle, the molecular details of the NS2 autoprotease activation by NS3 are poorly understood. Here, we report the identification of a conserved hydrophobic NS3 surface patch that is essential for NS2 protease activation. One residue within this surface region is also critical for RNA replication and NS5A hyperphosphorylation, two processes known to depend on functional replicase assembly. This dual function of the NS3 surface patch prompted us to reinvestigate the impact of the NS2-NS3 cleavage on NS5A hyperphosphorylation. Interestingly, NS2-NS3 cleavage turned out to be a prerequisite for NS5A hyperphosphorylation, indicating that this cleavage has to occur prior to replicase assembly. Based on our data, we propose a sequential cascade of molecular events: in uncleaved NS2-NS3, the hydrophobic NS3 surface patch promotes NS2 protease stimulation; upon NS2-NS3 cleavage, this surface region becomes available for functional replicase assembly. This model explains why efficient NS2-3 cleavage is pivotal for HCV RNA replication. According to our model, the hydrophobic surface patch on NS3 represents a module critically involved in the temporal coordination of HCV replicase assembly.
Collapse
Affiliation(s)
- Olaf Isken
- Institute of Virology and Cell Biology, University of Lübeck, Germany
| | | | - Vlastimil Jirasko
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Dirk Rehders
- Joint Laboratory for Structural Biology of Infection and Inflammation of the University of Hamburg and the University of Lübeck, DESY, Hamburg, Germany
| | - Lars Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation of the University of Hamburg and the University of Lübeck, DESY, Hamburg, Germany
| | - Harish Ramanathan
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
| | - Brett D. Lindenbach
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, United States of America
| | - Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Norbert Tautz
- Institute of Virology and Cell Biology, University of Lübeck, Germany
- * E-mail:
| |
Collapse
|
34
|
Ariumi Y. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front Genet 2014; 5:423. [PMID: 25538732 PMCID: PMC4257086 DOI: 10.3389/fgene.2014.00423] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 12/11/2022] Open
Abstract
The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation, RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle regulation, apoptosis, Wnt-β-catenin signaling, tumorigenesis, and viral infection. Notably, recent studies suggest that DDX3 is a component of anti-viral innate immune signaling pathways. Indeed, DDX3 contributes to enhance the induction of anti-viral mediators, interferon (IFN) regulatory factor 3 and type I IFN. However, DDX3 seems to be an important target for several viruses, such as human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV), hepatitis B virus (HBV), and poxvirus. DDX3 interacts with HIV-1 Rev or HCV Core protein and modulates its function. At least, DDX3 is required for both HIV-1 and HCV replication. Therefore, DDX3 could be a novel therapeutic target for the development of drug against HIV-1 and HCV.
Collapse
Affiliation(s)
- Yasuo Ariumi
- Ariumi Project Laboratory, Center for AIDS Research - International Research Center for Medical Sciences, Kumamoto University Kumamoto, Japan
| |
Collapse
|
35
|
Kalinina OV. GENOME ORGANIZATION AND GEOGRAPHICAL DISTRIBUTION OF THE NATURAL INTERGENOTYPIC RECOMBINANT OF HEPATITIS C VIRUS RF1_2k/1b. ACTA ACUST UNITED AC 2014. [DOI: 10.15789/2220-7619-2012-4-677-686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Chan SW. Unfolded protein response in hepatitis C virus infection. Front Microbiol 2014; 5:233. [PMID: 24904547 PMCID: PMC4033015 DOI: 10.3389/fmicb.2014.00233] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus of clinical importance. The virus establishes a chronic infection and can progress from chronic hepatitis, steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The mechanisms of viral persistence and pathogenesis are poorly understood. Recently the unfolded protein response (UPR), a cellular homeostatic response to endoplasmic reticulum (ER) stress, has emerged to be a major contributing factor in many human diseases. It is also evident that viruses interact with the host UPR in many different ways and the outcome could be pro-viral, anti-viral or pathogenic, depending on the particular type of infection. Here we present evidence for the elicitation of chronic ER stress in HCV infection. We analyze the UPR signaling pathways involved in HCV infection, the various levels of UPR regulation by different viral proteins and finally, we propose several mechanisms by which the virus provokes the UPR.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Life Sciences, The University of Manchester Manchester, UK
| |
Collapse
|
37
|
Involvement of DNA damage response pathways in hepatocellular carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:153867. [PMID: 24877058 PMCID: PMC4022277 DOI: 10.1155/2014/153867] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/23/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) has been known as one of the most lethal human malignancies, due to the difficulty of early detection, chemoresistance, and radioresistance, and is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. Its development has been closely associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Genetic alterations and genomic instability, probably resulted from unrepaired DNA lesions, are increasingly recognized as a common feature of human HCC. Dysregulation of DNA damage repair and signaling to cell cycle checkpoints, known as the DNA damage response (DDR), is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. It has been demonstrated that various HCC-associated risk factors are able to promote DNA damages, formation of DNA adducts, and chromosomal aberrations. Hence, alterations in the DDR pathways may accumulate these lesions to trigger hepatocarcinogenesis and also to facilitate advanced HCC progression. This review collects some of the most known information about the link between HCC-associated risk factors and DDR pathways in HCC. Hopefully, the review will remind the researchers and clinicians of further characterizing and validating the roles of these DDR pathways in HCC.
Collapse
|
38
|
Sugiyama K, Ebinuma H, Nakamoto N, Sakasegawa N, Murakami Y, Chu PS, Usui S, Ishibashi Y, Wakayama Y, Taniki N, Murata H, Saito Y, Fukasawa M, Saito K, Yamagishi Y, Wakita T, Takaku H, Hibi T, Saito H, Kanai T. Prominent steatosis with hypermetabolism of the cell line permissive for years of infection with hepatitis C virus. PLoS One 2014; 9:e94460. [PMID: 24718268 PMCID: PMC3981821 DOI: 10.1371/journal.pone.0094460] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 03/16/2014] [Indexed: 12/11/2022] Open
Abstract
Most of experiments for HCV infection have been done using lytic infection systems, in which HCV-infected cells inevitably die. Here, to elucidate metabolic alteration in HCV-infected cells in a more stable condition, we established an HCV-persistently-infected cell line, designated as HPI cells. This cell line has displayed prominent steatosis and supported HCV infection for more than 2 years, which is the longest ever reported. It enabled us to analyze metabolism in the HCV-infected cells integrally combining metabolomics and expression arrays. It revealed that rate-limiting enzymes for biosynthesis of cholesterol and fatty acids were up-regulated with actual increase in cholesterol, desmosterol (cholesterol precursor) and pool of fatty acids. Notably, the pentose phosphate pathway was facilitated with marked up-regulation of glucose-6-phosphate dehydrogenase, a rete-limiting enzyme, with actual increase in NADPH. In its downstream, enzymes for purine synthesis were also up-regulated resulting in increase of purine. Contrary to common cancers, the TCA cycle was preferentially facilitated comparing to glycolysis pathway with a marked increase of most of amino acids. Interestingly, some genes controlled by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master regulator of antioxidation and metabolism, were constitutively up-regulated in HPI cells. Knockdown of Nrf2 markedly reduced steatosis and HCV infection, indicating that Nrf2 and its target genes play important roles in metabolic alteration and HCV infection. In conclusion, HPI cell is a bona fide HCV-persistently-infected cell line supporting HCV infection for years. This cell line sustained prominent steatosis in a hypermetabolic status producing various metabolites. Therefore, HPI cell is a potent research tool not only for persistent HCV infection but also for liver metabolism, overcoming drawbacks of the lytic infection systems.
Collapse
Affiliation(s)
- Kazuo Sugiyama
- Center for the Study of Chronic Liver Diseases, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Hirotoshi Ebinuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | - Yuko Murakami
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Po-sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shingo Usui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuka Ishibashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Wakayama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Murata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Disease, Tokyo, Japan
| | - Kyoko Saito
- Department of Biochemistry and Cell Biology, National Institute of Infectious Disease, Tokyo, Japan
| | - Yoshiyuki Yamagishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takaji Wakita
- Virology II, National Institute of Infectious Disease, Tokyo, Japan
| | - Hiroshi Takaku
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Chiba, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato Institute Hospital, Kitasato University, Tokyo, Japan
| | - Hidetsugu Saito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Taxonomy. VIRUSES AND THE LUNG 2014. [PMCID: PMC7123310 DOI: 10.1007/978-3-642-40605-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This chapter addresses the classification and taxonomy of viruses with special attention to viruses that show pneumotropic properties. Information provided in this chapter supplements that provided in other chapters in Parts II–V of this volume that discuss individual viral pathogens.
Collapse
|
40
|
Hepatitis C virus and vaccine development. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2014; 3:207-15. [PMID: 25635247 PMCID: PMC4293608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/02/2014] [Accepted: 09/10/2014] [Indexed: 12/05/2022]
Abstract
The prevalence of Hepatitis C virus (HCV) is approximately 3% around the world. This virus causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The effectiveness of interferon-α and ribavirin therapy is about 50% and is associated with significant toxicity and cost. Hence, generating new vaccines or drugs is an obligation. However, there is no vaccine available for clinical use. DNA vaccines have some advantages such as producing feasibility and generating intensive cellular and humoral immune responses. Activation and improvement of natural immune defense mechanisms is a necessity for the development of an effective HCV vaccine. This article discusses the current status of therapies for hepatitis C, the promising new therapies and the experimental strategies to develop an HCV vaccine.
Collapse
|
41
|
Genetic complementation of hepatitis C virus nonstructural protein functions associated with replication exhibits requirements that differ from those for virion assembly. J Virol 2013; 88:2748-62. [PMID: 24352463 DOI: 10.1128/jvi.03588-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Within the polyprotein encoded by hepatitis C virus (HCV), the minimum components required for viral RNA replication lie in the NS3-5B region, while virion assembly requires expression of all virus components. Here, we have employed complementation systems to examine the role that HCV polyprotein precursors play in RNA replication and virion assembly. In a trans-complementation assay, an HCV NS3-5A polyprotein precursor was required to facilitate efficient complementation of a replication-defective mutation in NS5A. However, this requirement for precursor expression was partially alleviated when a second functional copy of NS5A was expressed from an additional upstream cistron within the RNA to be rescued. In contrast, rescue of a virion assembly mutation in NS5A was more limited but exhibited little or no requirement for expression of functional NS5A as a precursor, even when produced in the context of a second replicating helper RNA. Furthermore, expression of NS5A alone from an additional cistron within a replicon construct gave greater rescue of virion assembly in cis than in trans. Combined with the findings of confocal microscope analysis examining the extent to which the two copies of NS5A from the various expression systems colocalize, the results point to NS3-5A playing a role in facilitating the integration of nonstructural (NS) proteins into viral membrane-associated foci, with this representing an early stage in the steps leading to replication complex formation. The data further imply that HCV employs a minor virion assembly pathway that is independent of replication. IMPORTANCE In hepatitis C virus-infected cells, replication is generally considered an absolute prerequisite for virus particle formation. Here we investigated the role that the viral protein NS5A has in both replication and particle assembly using complementation assays and microscopy. We found that efficient rescue of replication required NS5A to be expressed as part of a larger polyprotein, and this correlated with detection of NS5A at sites where replication occurred. In contrast, rescue of particle assembly did not require expression of NS5A within the context of a polyprotein. Interestingly, although only partial restoration of particle assembly was possible by complementation, that proportion that could be rescued benefitted from expressing NS5A from the same RNA being packaged. Collectively, these findings provide new insight into aspects of polyprotein function. They also support the existence of a minor virion assembly pathway that bypasses replication.
Collapse
|
42
|
Inhibitory effects of caffeic acid phenethyl ester derivatives on replication of hepatitis C virus. PLoS One 2013; 8:e82299. [PMID: 24358168 PMCID: PMC3866116 DOI: 10.1371/journal.pone.0082299] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/31/2013] [Indexed: 02/08/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE) has been reported as a multifunctional compound. In this report, we tested the effect of CAPE and its derivatives on hepatitis C virus (HCV) replication in order to develop an effective anti-HCV compound. CAPE and CAPE derivatives exhibited anti-HCV activity against an HCV replicon cell line of genotype 1b with EC50 values in a range from 1.0 to 109.6 µM. Analyses of chemical structure and antiviral activity suggested that the length of the n-alkyl side chain and catechol moiety are responsible for the anti-HCV activity of these compounds. Caffeic acid n-octyl ester exhibited the highest anti-HCV activity among the tested derivatives with an EC50 value of 1.0 µM and an SI value of 63.1 by using the replicon cell line derived from genotype 1b strain Con1. Treatment with caffeic acid n-octyl ester inhibited HCV replication of genotype 2a at a similar level to that of genotype 1b irrespectively of interferon signaling. Caffeic acid n-octyl ester could synergistically enhance the anti-HCV activities of interferon-alpha 2b, daclatasvir, and VX-222, but neither telaprevir nor danoprevir. These results suggest that caffeic acid n-octyl ester is a potential candidate for novel anti-HCV chemotherapy drugs.
Collapse
|
43
|
Abe KI, Nozaki A, Tamura K, Ikeda M, Naka K, Dansako H, Hoshino HO, Tanaka K, Kato N. Tandem Repeats of Lactoferrin-Derived Anti-Hepatitis C Virus Peptide Enhance Antiviral Activity in Cultured Human Hepatocytes. Microbiol Immunol 2013; 51:117-25. [PMID: 17237607 DOI: 10.1111/j.1348-0421.2007.tb03882.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previously, we found that bovine and human lactoferrin (LF) specifically inhibited hepatitis C virus (HCV) infection in cultured non-neoplastic human hepatocyte-derived PH5CH8 cells, and we identified 33 amino acid residues (termed C-s3-33; amino acid 600-632) from human LF that were primarily responsible for the binding activity to the HCV E2 envelope protein and for the inhibiting activity against HCV infection. Since the anti-HCV activity of C-s3-33 was weaker than that of human LF, we speculated that an increase of E2 protein-binding activity might contribute to the enhancement of anti-HCV activity. To test this possibility, we made two repeats [(C-s3-33)(2)] and three repeats [(C-s3-33)(3)] of C-s3-33 and characterized them. Far-Western blot analysis revealed that the E2 protein-binding activities of (C-s3-33)(2) and (C-s3-33)(3) became stronger than that of the C-s3-33, and that the binding activity of (C-s3-33)(3) was stronger than that of (C-s3-33)(2). Using an HCV infection system in PH5CH8 cells, we demonstrated that the anti-HCV activities of (C-s3-33)(2) and (C-s3-33)(3) became stronger than that of the C-s3-33. Furthermore, using a recently developed infection system with a VSV pseudotype harboring the green fluorescent protein gene and the native E1 and E2 genes, we demonstrated that the antiviral activities of (C-s3-33)(2) and (C-s3-33)(3) were stronger than that of C-s3-33. These results suggest that tandem repeats of LF-derived anti-HCV peptide are useful as anti-HCV reagents.
Collapse
Affiliation(s)
- Ken-ichi Abe
- Department of Molecular Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Efficiency of E2-p7 processing modulates production of infectious hepatitis C virus. J Virol 2013; 87:11255-66. [PMID: 23946462 DOI: 10.1128/jvi.01807-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies indicate that the processing of hepatitis C virus (HCV) E2-p7-NS2 precursor mediated by host signal peptidase is relatively inefficient, resulting in the accumulation of E2-p7-NS2 and E2-p7 precursors in addition to E2 in mammalian cells. In this study, we discovered that a significant inhibition of the processing at an E2-p7 junction site is detrimental for HCV production, whether it was caused by the mutations in p7 or by the strategic introduction of a mutation at a terminal residue of E2 to block the signal peptidase-mediated cleavage of this junction site. However, complete separation of E2 and p7 by inserting an encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) between these two proteins also moderately inhibited virus production. These results indicate that optimal processing of the E2-p7 junction site is critical for efficient HCV production. We further demonstrated that disrupting E2-p7 processing inhibits both NS2 localization to the putative virus assembly sites near lipid droplets (LD) and NS2 interaction with NS3 and E2. However, the impact, if any, of the p7-NS2 processing efficiency on HCV production seems relatively minor. In conclusion, these results imply that effective release of E2 and p7 from the precursor E2-p7 promotes HCV production by enhancing NS2-associated virus assembly complex formation near LD.
Collapse
|
45
|
Akazawa D, Moriyama M, Yokokawa H, Omi N, Watanabe N, Date T, Morikawa K, Aizaki H, Ishii K, Kato T, Mochizuki H, Nakamura N, Wakita T. Neutralizing antibodies induced by cell culture-derived hepatitis C virus protect against infection in mice. Gastroenterology 2013; 145:447-55.e1-4. [PMID: 23673355 DOI: 10.1053/j.gastro.2013.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection is a major cause of liver cancer, so strategies to prevent infection are needed. A system for cell culture of infectious HCV particles (HCVcc) has recently been established; the inactivated HCVcc particles might be used as antigens in vaccine development. We aimed to confirm the potential of HCVcc as an HCV particle vaccine. METHODS HCVcc derived from the J6/JFH-1 chimeric genome was purified from cultured cells by ultrafiltration and ultracentrifugation purification steps. Purified HCV particles were inactivated and injected into female BALB/c mice with adjuvant. Sera from immunized mice were collected and their ability to neutralize HCV was examined in naive Huh7.5.1 cells and urokinase-type plasminogen activator-severe combined immunodeficiency mice (uPA(+/+)-SCID mice) given transplants of human hepatocytes (humanized livers). RESULTS Antibodies against HCV envelope proteins were detected in the sera of immunized mice; these sera inhibited infection of cultured cells with HCV genotypes 1a, 1b, and 2a. Immunoglobulin G purified from the sera of HCV-particle-immunized mice (iHCV-IgG) inhibited HCV infection of cultured cells. Injection of IgG from the immunized mice into uPA(+/+)-SCID mice with humanized livers prevented infection with the minimum infectious dose of HCV. CONCLUSIONS Inactivated HCV particles derived from cultured cells protect chimeric liver uPA(+/+)-SCID mice against HCV infection, and might be used in the development of a prophylactic vaccine.
Collapse
Affiliation(s)
- Daisuke Akazawa
- Pharmaceutical Research Laboratories, Toray Industries, Inc, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tani J, Shimamoto S, Mori K, Kato N, Moriishi K, Matsuura Y, Tokumitsu H, Tsuchiya M, Fujimoto T, Kato K, Miyoshi H, Masaki T, Kobayashi R. Ca(2+) /S100 proteins regulate HCV virus NS5A-FKBP8/FKBP38 interaction and HCV virus RNA replication. Liver Int 2013; 33:1008-18. [PMID: 23522085 DOI: 10.1111/liv.12151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIM FKBP8/FKBP38 is a unique FK506-binding protein with a C-terminal membrane anchor and localizes at the outer membranes of mitochondria and the endoplasmic reticulum. Similar to some immunophilins, such as FKBP51, FKBP52 and Cyclophilin 40, FKBP8/FKBP38 contain a putative Calmodulin-binding domain and a tetratricopeptide-repeat (TPR) domain for the binding of Hsp90. Both Hsp90 and the non-structural protein 5A (NS5A) of the hepatitis C virus (HCV) interact specifically with FKBP8/FKBP38 through its TPR domain, and the ternary complex formation plays a critical role in HCV RNA replication. The goal of this study is to evaluate that the host factor inhibits the ternary complex formation and the replication of HCV in vitro and in vivo. METHODS S100 proteins, FKBP38, FKBP8, HCV NS5A, Hsp90, and calmodulin were expressed in E.coli and purified. In vitro binding studies were performed by GST pull-down, S-tag pull-down and surface plasmon resonance analyses. The effect of S100 proteins on HCV replication was analysed by Western blotting using an HCV NS3 antibody following transfection of S100 proteins into the HCV replicon harbouring cell line (sO cells). RESULTS In vitro binding studies showed that S100A1, S100A2, S100A6, S100B and S100P directly interacted with FKBP8/FKBP38 in a Ca(2+) -dependent manner and inhibited the FKBP8/FKBP38-Hsp90 and FKBP8/FKBP38-NS5A interactions. Furthermore, overexpression of S100A1, S100A2 and S100A6 in sO cells resulted in the efficient inhibition of HCV replication. CONCLUSION The association of the S100 proteins with FKBP8/FKBP38 provides a novel Ca(2+) -dependent regulatory role in HCV replication through the NS5A-host protein interaction.
Collapse
Affiliation(s)
- Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Systematic analysis of enhancer and critical cis-acting RNA elements in the protein-encoding region of the hepatitis C virus genome. J Virol 2013; 87:5678-96. [PMID: 23487449 DOI: 10.1128/jvi.00840-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes chronic hepatitis, cirrhosis, and liver cancer. cis-acting RNA elements of the HCV genome are critical for translation initiation and replication of the viral genome. We hypothesized that the coding regions of nonstructural proteins harbor enhancer and essential cis-acting replication elements (CRE). In order to experimentally identify new cis RNA elements, we utilized an unbiased approach to introduce synonymous substitutions. The HCV genome coding for nonstructural proteins (nucleotide positions 3872 to 9097) was divided into 17 contiguous segments. The wobble nucleotide positions of each codon were replaced, resulting in 33% to 41% nucleotide changes. The HCV genome containing one of each of 17 mutant segments (S1 to S17) was tested for genome replication and infectivity. We observed that silent mutations in segment 13 (S13) (nucleotides [nt] 7457 to 7786), S14 (nt 7787 to 8113), S15 (nt 8114 to 8440), S16 (nt 8441 to 8767), and S17 (nt 8768 to 9097) resulted in impaired genome replication, suggesting CRE structures are enriched in the NS5B region. Subsequent high-resolution mutational analysis of NS5B (nt 7787 to 9289) using approximately 51-nucleotide contiguous subsegment mutant viruses having synonymous mutations revealed that subsegments SS8195-8245, SS8654-8704, and SS9011-9061 were required for efficient viral growth, suggesting that these regions act as enhancer elements. Covariant nucleotide substitution analysis of a stem-loop, JFH-SL9098, revealed the formation of an extended stem structure, which we designated JFH-SL9074. We have identified new enhancer RNA elements and an extended stem-loop in the NS5B coding region. Genetic modification of enhancer RNA elements can be utilized for designing attenuated HCV vaccine candidates.
Collapse
|
48
|
Kanwal N, Zaidi NUSS, Gomez MK. Non-structural protein NS4B: HCV replication web inducer. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60111-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Sejima H, Mori K, Ariumi Y, Ikeda M, Kato N. Identification of host genes showing differential expression profiles with cell-based long-term replication of hepatitis C virus RNA. Virus Res 2012; 167:74-85. [DOI: 10.1016/j.virusres.2012.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 02/01/2023]
|
50
|
Preclinical characterization of JTK-853, a novel nonnucleoside inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother 2012; 56:4250-6. [PMID: 22615294 DOI: 10.1128/aac.00312-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JTK-853 is a novel piperazine derivative nonnucleoside inhibitor of hepatitis C virus (HCV) RNA-dependent RNA polymerase. JTK-853 showed potent inhibitory activity against genotype 1 HCV polymerase, with a 50% inhibitory concentration in the nanomolar range, and showed potent antiviral activity against the genotype 1b replicon, with a 50% effective concentration of 0.035 μM. The presence of human serum at up to 40% had little effect on the antiviral activity of JTK-853. Structure analysis of HCV polymerase with JTK-853 revealed that JTK-853 associates with the palm site and β-hairpin region of HCV polymerase, and JTK-853 showed decreased antiviral activity against HCV replicons bearing the resistance mutations C316Y, M414T, Y452H, and L466V in the palm site region of HCV polymerase. JTK-853 showed an additive combination effect with other DAAs (direct antiviral agents), such as nucleoside polymerase inhibitor, thumb pocket-binding nonnucleoside polymerase inhibitor, NS5A inhibitor, and protease inhibitor. Collectively, these data demonstrate that JTK-853 is a potent and novel nonnucleoside palm site-binding HCV polymerase inhibitor, suggesting JTK-853 as a potentially useful agent in combination with other DAAs for treatment of HCV infections.
Collapse
|