1
|
Grome MW, Nguyen MTA, Moonan DW, Mohler K, Gurara K, Wang S, Hemez C, Stenton BJ, Cao Y, Radford F, Kornaj M, Patel J, Prome M, Rogulina S, Sozanski D, Tordoff J, Rinehart J, Isaacs FJ. Engineering a genomically recoded organism with one stop codon. Nature 2025; 639:512-521. [PMID: 39910296 PMCID: PMC11903333 DOI: 10.1038/s41586-024-08501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/05/2024] [Indexed: 02/07/2025]
Abstract
The genetic code is conserved across all domains of life, yet exceptions have revealed variations in codon assignments and associated translation factors1-3. Inspired by this natural malleability, synthetic approaches have demonstrated whole-genome replacement of synonymous codons to construct genomically recoded organisms (GROs)4,5 with alternative genetic codes. However, no efforts have fully leveraged translation factor plasticity and codon degeneracy to compress translation function to a single codon and assess the possibility of a non-degenerate code. Here we describe construction and characterization of Ochre, a GRO that fully compresses a translational function into a single codon. We replaced 1,195 TGA stop codons with the synonymous TAA in ∆TAG Escherichia coli C321.∆A4. We then engineered release factor 2 (RF2) and tRNATrp to mitigate native UGA recognition, translationally isolating four codons for non-degenerate functions. Ochre thus utilizes UAA as the sole stop codon, with UGG encoding tryptophan and UAG and UGA reassigned for multi-site incorporation of two distinct non-standard amino acids into single proteins with more than 99% accuracy. Ochre fully compresses degenerate stop codons into a single codon and represents an important step toward a 64-codon non-degenerate code that will enable precise production of multi-functional synthetic proteins with unnatural encoded chemistries and broad utility in biotechnology and biotherapeutics.
Collapse
Affiliation(s)
- Michael W Grome
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Michael T A Nguyen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Daniel W Moonan
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kyle Mohler
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Kebron Gurara
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Shenqi Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Colin Hemez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Benjamin J Stenton
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Yunteng Cao
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Felix Radford
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Maya Kornaj
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Jaymin Patel
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Maisha Prome
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Svetlana Rogulina
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - David Sozanski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Jesse Tordoff
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
| | - Farren J Isaacs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Morgan CE, Kang YS, Green AB, Smith KP, Dowgiallo MG, Miller BC, Chiaraviglio L, Truelson KA, Zulauf KE, Rodriguez S, Kang AD, Manetsch R, Yu EW, Kirby JE. Streptothricin F is a bactericidal antibiotic effective against highly drug-resistant gram-negative bacteria that interacts with the 30S subunit of the 70S ribosome. PLoS Biol 2023; 21:e3002091. [PMID: 37192172 DOI: 10.1371/journal.pbio.3002091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/22/2023] [Indexed: 05/18/2023] Open
Abstract
The streptothricin natural product mixture (also known as nourseothricin) was discovered in the early 1940s, generating intense initial interest because of excellent gram-negative activity. Here, we establish the activity spectrum of nourseothricin and its main components, streptothricin F (S-F, 1 lysine) and streptothricin D (S-D, 3 lysines), purified to homogeneity, against highly drug-resistant, carbapenem-resistant Enterobacterales (CRE) and Acinetobacter baumannii. For CRE, the MIC50 and MIC90 for S-F and S-D were 2 and 4 μM, and 0.25 and 0.5 μM, respectively. S-F and nourseothricin showed rapid, bactericidal activity. S-F and S-D both showed approximately 40-fold greater selectivity for prokaryotic than eukaryotic ribosomes in in vitro translation assays. In vivo, delayed renal toxicity occurred at >10-fold higher doses of S-F compared with S-D. Substantial treatment effect of S-F in the murine thigh model was observed against the otherwise pandrug-resistant, NDM-1-expressing Klebsiella pneumoniae Nevada strain with minimal or no toxicity. Cryo-EM characterization of S-F bound to the A. baumannii 70S ribosome defines extensive hydrogen bonding of the S-F steptolidine moiety, as a guanine mimetic, to the 16S rRNA C1054 nucleobase (Escherichia coli numbering) in helix 34, and the carbamoylated gulosamine moiety of S-F with A1196, explaining the high-level resistance conferred by corresponding mutations at the residues identified in single rrn operon E. coli. Structural analysis suggests that S-F probes the A-decoding site, which potentially may account for its miscoding activity. Based on unique and promising activity, we suggest that the streptothricin scaffold deserves further preclinical exploration as a potential therapeutic for drug-resistant, gram-negative pathogens.
Collapse
Affiliation(s)
- Christopher E Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Yoon-Suk Kang
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alex B Green
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kenneth P Smith
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew G Dowgiallo
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Brandon C Miller
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Lucius Chiaraviglio
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Katherine A Truelson
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Katelyn E Zulauf
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shade Rodriguez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Anthony D Kang
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States of America
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - James E Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Mallik S, Kundu S. Modular Organization of Residue-Level Contacts Shapes the Selection Pressure on Individual Amino Acid Sites of Ribosomal Proteins. Genome Biol Evol 2017; 9:916-931. [PMID: 28338825 PMCID: PMC5388290 DOI: 10.1093/gbe/evx036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
Understanding the molecular evolution of macromolecular complexes in the light of their structure, assembly, and stability is of central importance. Here, we address how the modular organization of native molecular contacts shapes the selection pressure on individual residue sites of ribosomal complexes. The bacterial ribosomal complex is represented as a residue contact network where nodes represent amino acid/nucleotide residues and edges represent their van der Waals interactions. We find statistically overrepresented native amino acid-nucleotide contacts (OaantC, one amino acid contacts one or multiple nucleotides, internucleotide contacts are disregarded). Contact number is defined as the number of nucleotides contacted. Involvement of individual amino acids in OaantCs with smaller contact numbers is more random, whereas only a few amino acids significantly contribute to OaantCs with higher contact numbers. An investigation of structure, stability, and assembly of bacterial ribosome depicts the involvement of these OaantCs in diverse biophysical interactions stabilizing the complex, including high-affinity protein-RNA contacts, interprotein cooperativity, intersubunit bridge, packing of multiple ribosomal RNA domains, etc. Amino acid-nucleotide constituents of OaantCs with higher contact numbers are generally associated with significantly slower substitution rates compared with that of OaantCs with smaller contact numbers. This evolutionary rate heterogeneity emerges from the strong purifying selection pressure that conserves the respective amino acid physicochemical properties relevant to the stabilizing interaction with OaantC nucleotides. An analysis of relative molecular orientations of OaantC residues and their interaction energetics provides the biophysical ground of purifying selection conserving OaantC amino acid physicochemical properties.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
- Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
- Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta, Kolkata, India
| |
Collapse
|
4
|
Dawy Z, Morcos F, Weindl J, Mueller JC. Translation initiation modeling and mutational analysis based on the -end of the Escherichia coli 16S rRNA sequence. Biosystems 2009; 96:58-64. [DOI: 10.1016/j.biosystems.2008.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 11/10/2008] [Accepted: 11/14/2008] [Indexed: 01/11/2023]
|
5
|
Tsunewaki K, Matsuoka Y, Yamazaki Y, Ogihara Y. Evolutionary dynamics of wheat mitochondrial gene structure with special remarks on the origin and effects of RNA editing in cereals. Genes Genet Syst 2008; 83:301-20. [PMID: 18931456 DOI: 10.1266/ggs.83.301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We investigated the evolutionary dynamics of wheat mitochondrial genes with respect to their structural differentiation during organellar evolution, and to mutations that occurred during cereal evolution. First, we compared the nucleotide sequences of three wheat mitochondrial genes to those of wheat chloroplast, alpha-proteobacterium and cyanobacterium orthologs. As a result, we were able to (1) differentiate the conserved and variable segments of the orthologs, (2) reveal the functional importance of the conserved segments, and (3) provide a corroborative support for the alpha-proteobacterial and cyanobacterial origins of those mitochondrial and chloroplast genes, respectively. Second, we compared the nucleotide sequences of wheat mitochondrial genes to those of rice and maize to determine the types and frequencies of base changes and indels occurred in cereal evolution. Our analyses showed that both the evolutionary speed, in terms of number of base substitutions per site, and the transition/transversion ratio of the cereal mitochondrial genes were less than two-fifths of those of the chloroplast genes. Eight mitochondrial gene groups differed in their evolutionary variability, RNA and Complex I (nad) genes being most stable whereas Complex V (atp) and ribosomal protein genes most variable. C-to-T transition was the most frequent type of base change; C-to-G and G-to-C transversions occurred at lower rates than all other changes. The excess of C-to-T transitions was attributed to C-to-U RNA editing that developed in early stage of vascular plant evolution. On the contrary, the editing of C residues at cereal T-to-C transition sites developed mostly during cereal divergence. Most indels were associated with short direct repeats, suggesting intra- and intermolecular recombination as an important mechanism for their origin. Most of the repeats associated with indels were di- or trinucleotides, although no preference was noticed for their sequences. The maize mt genome was characterized by a high incidence of indels, comparing to the wheat and rice mt genomes.
Collapse
|
6
|
Demirci H, Gregory ST, Dahlberg AE, Jogl G. Crystal structure of the Thermus thermophilus 16 S rRNA methyltransferase RsmC in complex with cofactor and substrate guanosine. J Biol Chem 2008; 283:26548-56. [PMID: 18667428 PMCID: PMC2546533 DOI: 10.1074/jbc.m804005200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/22/2008] [Indexed: 01/16/2023] Open
Abstract
Post-transcriptional modification is a ubiquitous feature of ribosomal RNA in all kingdoms of life. Modified nucleotides are generally clustered in functionally important regions of the ribosome, but the functional contribution to protein synthesis is not well understood. Here we describe high resolution crystal structures for the N(2)-guanine methyltransferase RsmC that modifies residue G1207 in 16 S rRNA near the decoding site of the 30 S ribosomal subunit. RsmC is a class I S-adenosyl-L-methionine-dependent methyltransferase composed of two methyltransferase domains. However, only one S-adenosyl-L-methionine molecule and one substrate molecule, guanosine, bind in the ternary complex. The N-terminal domain does not bind any cofactor. Two structures with bound S-adenosyl-L-methionine and S-adenosyl-L-homocysteine confirm that the cofactor binding mode is highly similar to other class I methyltransferases. Secondary structure elements of the N-terminal domain contribute to cofactor-binding interactions and restrict access to the cofactor-binding site. The orientation of guanosine in the active site reveals that G1207 has to disengage from its Watson-Crick base pairing interaction with C1051 in the 16 S rRNA and flip out into the active site prior to its modification. Inspection of the 30 S crystal structure indicates that access to G1207 by RsmC is incompatible with the native subunit structure, consistent with previous suggestions that this enzyme recognizes a subunit assembly intermediate.
Collapse
Affiliation(s)
| | | | | | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown
University, Providence, Rhode Island 02912
| |
Collapse
|
7
|
Guarraia C, Norris L, Raman A, Farabaugh PJ. Saturation mutagenesis of a +1 programmed frameshift-inducing mRNA sequence derived from a yeast retrotransposon. RNA (NEW YORK, N.Y.) 2007; 13:1940-7. [PMID: 17881742 PMCID: PMC2040094 DOI: 10.1261/rna.735107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Errors during the process of translating mRNA information into protein products occur infrequently. Frameshift errors occur less frequently than other types of errors, suggesting that the translational machinery has more robust mechanisms for precluding that kind of error. Despite these mechanisms, mRNA sequences have evolved that increase the frequency up to 10,000-fold. These sequences, termed programmed frameshift sites, usually consist of a heptameric nucleotide sequence, at which the change in frames occurs along with additional sequences that stimulate the efficiency of frameshifting. One such stimulatory site derived from the Ty3 retrotransposon of the yeast Saccharomyces cerevisiae (the Ty3 stimulator) comprises a 14 nucleotide sequence with partial complementarity to a Helix 18 of the 18S rRNA, a component of the ribosome's accuracy center. A model for the function of the Ty3 stimulator predicts that it base pairs with Helix 18, reducing the efficiency with which the ribosome rejects erroneous out of frame decoding. We have tested this model by making a saturating set of single-base mutations of the Ty3 stimulator. The phenotypes of these mutations are inconsistent with the Helix 18 base-pairing model. We discuss the phenotypes of these mutations in light of structural data on the path of the mRNA on the ribosome, suggesting that the true target of the Ty3 stimulator may be rRNA and ribosomal protein elements of the ribosomal entry tunnel, as well as unknown constituents of the solvent face of the 40S subunit.
Collapse
Affiliation(s)
- Carla Guarraia
- Department of Biological Sciences and Chemistry/Biology Interface Program, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
8
|
The ybiN gene of Escherichia coli encodes adenine-N6 methyltransferase specific for modification of A1618 of 23 S ribosomal RNA, a methylated residue located close to the ribosomal exit tunnel. J Mol Biol 2007; 375:291-300. [PMID: 18021804 DOI: 10.1016/j.jmb.2007.10.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/07/2007] [Accepted: 10/17/2007] [Indexed: 11/24/2022]
Abstract
N(6)-Methyladenosine 1618 of Escherichia coli 23 S rRNA is located in a cluster of modified nucleotides 12 A away from the nascent peptide tunnel of the ribosome. Here, we describe the identification of gene ybiN encoding an enzyme responsible for methylation of A1618. Knockout of the ybiN gene leads to loss of modification at A1618. The modification is restored if ybiN knock-out strain has been co-transformed with a plasmid expressing the ybiN gene. On the basis of these results we suggest that ybiN gene should be renamed to rlmF in accordance with the accepted nomenclature for rRNA methyltransferases. Recombinant YbiN protein is able to methylate partially deproteinized 50 S ribosomal subunit, so-called 3.5 M LiCl core particle in vitro, but neither the completely assembled 50 S subunits nor completely deproteinized 23 S rRNA. Both lack of the ybiN gene and it's over-expression leads to growth retardation and loss of cell fitness comparative to the parental strain. It might be suggested that A1618 modification could be necessary for the exit tunnel interaction with some unknown regulatory peptides.
Collapse
|
9
|
Sato H, Ito K, Nakamura Y. Ribosomal protein L11 mutations in two functional domains equally affect release factors 1 and 2 activity. Mol Microbiol 2006; 60:108-20. [PMID: 16556224 DOI: 10.1111/j.1365-2958.2006.05094.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacterial release factors (RFs) 1 and 2 catalyse translation termination at UAG/UAA and UGA/UAA stop codons respectively. It has been shown that limiting the amount of ribosomal protein L11 affects translation termination at UAG and UGA differently. To understand the functional interplay between L11 and RF1/RF2, we isolated 21 distinct mutations in L11 as suppressors of either temperature-sensitive (ts) RF1/RF2 strains or read-through mutants of lacZ nonsense (UAG or UGA) strains. 10 of 21 mutants restored ts lethal growth of RF1 and/or RF2 strains. All the selected L11 mutants, including the RF1ts- and RF2ts-specific suppressors, had the same effect, either enhancing or reducing, on UAG and UGA termination efficiency in vivo. The specific properties of the selected L11 mutations remained unchanged in an RF3 deletion strain. Moreover, ribosomes absent of L11 had equally reduced activity for both RF1- and RF2-mediated peptide release in vitro. These results suggest that, unlike the previous notion, L11 has a common, cooperative role with RF1 and RF2. These L11 mutations were located on the surface of two domains of L11, and interpreted to affect the interaction between L11 and rRNA or the RFs thereby leading to the altered translation termination.
Collapse
Affiliation(s)
- Hanae Sato
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
10
|
Lang-Unnasch N, Aiello DP. Sequence evidence for an altered genetic code in the Neospora caninum plastid. Int J Parasitol 1999; 29:1557-62. [PMID: 10608442 DOI: 10.1016/s0020-7519(99)00119-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The plastid DNA of Neospora caninum encodes a homologue of the rpoB gene, which is believed to encode a subunit of a bacterial or chloroplast-like RNA polymerase. The predicted protein product of the N. caninum rpoB gene has three in-frame UGA codons which appear to encode tryptophan residues rather than act as stop codons. Based on the nucleotide sequence of a portion of the ssrRNA gene of the N. caninum plastid, a model for suppression of UGA termination in this plastid is presented.
Collapse
Affiliation(s)
- N Lang-Unnasch
- Department of Medicine, University of Alabama at Birmingham, 35294-2170, USA.
| | | |
Collapse
|
11
|
Yoshimura K, Ito K, Nakamura Y. Amber (UAG) suppressors affected in UGA/UAA-specific polypeptide release factor 2 of bacteria: genetic prediction of initial binding to ribosome preceding stop codon recognition. Genes Cells 1999; 4:253-66. [PMID: 10421836 DOI: 10.1046/j.1365-2443.1999.00260.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prokaryotic translational release factors, RF1 and RF2, catalyse protein release at UAG/UAA and UGA/UAA stop codons, respectively. Mutations in RF1 and RF2 are known to cause non-sense suppression for UAG (amber) and UGA (opal) codons, respectively, and they do not exert a reciprocal ('cross') suppression phenotype. We aimed to isolate RF mutants of such cross-suppression activity, which we designated 'Csu' phenotype in this paper. RESULTS Using a lacZ (UAG) reporter, we selected amber suppressor alleles occurring in the plasmid-bearing RF2 gene of Salmonella typhimurium. Of nine such RF2 csu alleles, five were mis-sense mutations and four were non-sense mutations. The former mis-sense mutants retained the RF2 activity and catalysed UGA termination both in vivo and in vitro. RF2 C-terminal deletions equivalent to the non-sense alleles exerted amber suppression as well as opal suppression activity. Moreover, the equivalent RF1 segments also showed both the suppression phenotypes. CONCLUSIONS All the csu mutations were mapped at the C-terminal half of RF2 and are strikingly coincident with the highly conservative amino acids, suggesting that they affect the conserved function of bacterial RFs. We propose here that there should be an 'initial binding' step of RFs to the ribosome, preceding stop codon recognition ('initial binding' hypothesis) and that the N-terminal RF domain(s), that are truncated or affected by the csu mutations, are responsible for this step and interfere with the proper functioning of cognate release factors on the ribosome.
Collapse
Affiliation(s)
- K Yoshimura
- Department of Tumor Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
12
|
Bucklin DJ, van Waes MA, Bullard JM, Hill WE. Cleavage of 16S rRNA within the ribosome by mRNA modified in the A-site codon with phenanthroline-Cu(II). Biochemistry 1997; 36:7951-7. [PMID: 9201941 DOI: 10.1021/bi9624954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cleavage of 16S rRNA was obtained through mRNA modified at position +5 with the chemical cleavage agent 1,10-o-phenanthroline. In the presence of Cu2+, and after addition of reducing agent to the modified mRNA-70S complex, cleavage of proximal nucleotides within the 16S rRNA occurred. Primer extension analysis of 16S rRNA fragments revealed that nucleotides 528-532, 1196, and 1396-1397 were cleaved. Nucleotides 1053-1055 were also cleaved but did not show the same level of specificity as the former. These results provide evidence that at some point in the translation process these regions are all within 15 A of position +5, the A-site codon, on the mRNA.
Collapse
Affiliation(s)
- D J Bucklin
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | | | | | | |
Collapse
|
13
|
Li J, Gutell RR, Damberger SH, Wirtz RA, Kissinger JC, Rogers MJ, Sattabongkot J, McCutchan TF. Regulation and trafficking of three distinct 18 S ribosomal RNAs during development of the malaria parasite. J Mol Biol 1997; 269:203-13. [PMID: 9191065 DOI: 10.1006/jmbi.1997.1038] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The human malaria parasite Plasmodium vivax has been shown to regulate the transcription of two distinct 18 RNAs during development. Here we show a third and distinctive type of ribosome that is present shortly after zygote formation, a transcriptional pattern of ribosome types that relates closely to the developmental state of the parasite and a phenomenon that separates ribosomal types at a critical phase of maturation. The A-type ribosome is predominantly found in infected erythrocytes of the vertebrate and the mosquito blood meal. Transcripts from the A gene are replaced by transcripts from another locus, the O gene, shortly after fertilization and increase in number as the parasite develops on the mosquito midgut. Transcripts from another locus, the S gene, begins as the oocyst form of the parasite matures. RNA transcripts from the S gene are preferentially included in sporozoites that bud off from the oocyst and migrate to the salivary gland while the O gene transcripts are left within the oocyst. Although all three genes are typically eukaryotic in structure, the O gene transcript, described here, varies from the other two in core regions of the rRNA that are involved in mRNA decoding and translational termination. We now can correlate developmental progression of the parasite with changes in regions of rRNA sequence that are broadly conserved, where sequence alterations have been related to function in other systems and whose effects can be studied outside of Plasmodium. This should allow assessment of the role of translational control in parasite development.
Collapse
MESH Headings
- Animals
- Anopheles/parasitology
- Base Sequence
- Erythrocytes/parasitology
- Gene Expression Regulation, Developmental
- Genes, Protozoan
- Humans
- Malaria, Vivax/parasitology
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Plasmodium vivax/classification
- Plasmodium vivax/genetics
- Plasmodium vivax/growth & development
- Protein Biosynthesis
- RNA, Protozoan/biosynthesis
- RNA, Ribosomal, 18S/biosynthesis
- RNA, Ribosomal, 18S/classification
- RNA, Ribosomal, 18S/genetics
- Ribosomes/classification
- Ribosomes/genetics
- Sequence Homology, Nucleic Acid
- Zygote
Collapse
Affiliation(s)
- J Li
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tate WP, Poole ES, Mannering SA. Hidden infidelities of the translational stop signal. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:293-335. [PMID: 8821264 DOI: 10.1016/s0079-6603(08)60970-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- W P Tate
- Department of Biochemistry and Center for Gene Research, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
15
|
O'Connor M, Brunelli CA, Firpo MA, Gregory ST, Lieberman KR, Lodmell JS, Moine H, Van Ryk DI, Dahlberg AE. Genetic probes of ribosomal RNA function. Biochem Cell Biol 1995; 73:859-68. [PMID: 8722001 DOI: 10.1139/o95-093] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have used a genetic approach to uncover the functional roles of rRNA in protein synthesis. Mutations were constructed in a cloned rrn operon by site-directed mutagenesis or isolated by genetic selections following random mutagenesis. We have identified mutations that affect each step in the process of translation. The data are consistent with the results of biochemical and phylogenetic analyses but, in addition, have provided novel information on regions of rRNA not previously investigated.
Collapse
Affiliation(s)
- M O'Connor
- Department of Molecular and Cellular Biology and Biochemistry, J. Wilson Laboratory, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kawazu Y, Ito K, Matsumura K, Nakamura Y. Comparative characterization of release factor RF-3 genes of Escherichia coli, Salmonella typhimurium, and Dichelobacter nodosus. J Bacteriol 1995; 177:5547-53. [PMID: 7559341 PMCID: PMC177363 DOI: 10.1128/jb.177.19.5547-5553.1995] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The termination of protein synthesis in bacteria requires two codon-specific release factors, RF-1 and RF-2. A gene for a third factor, RF-3, that stimulates the RF-1 and RF-2 activities has been isolated from the gram-negative bacteria Escherichia coli and Dichelobacter nodosus. In this work, we isolated the RF-3 gene from Salmonella typhimurium and compared the three encoded RF-3 proteins by immunoblotting and intergeneric complementation and suppression. A murine polyclonal antibody against E. coli RF-3 reacted with both S. typhimurium and D. nodosus RF-3 proteins. The heterologous RF-3 genes complemented a null RF-3 mutation of E. coli regardless of having different sequence identities at the protein level. Additionally, multicopy expression of either of these RF-3 genes suppressed temperature-sensitive RF-2 mutations of E. coli and S. typhimurium by restoring adequate peptide chain release. These findings strongly suggest that the RF-3 proteins of these gram-negative bacteria share common structural and functional domains necessary for RF-3 activity and support the notion that RF-3 interacts functionally and/or physically with RF-2 during translation termination.
Collapse
Affiliation(s)
- Y Kawazu
- Department of Tumor Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
17
|
Moss T, Stefanovsky VY. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:25-66. [PMID: 7754036 DOI: 10.1016/s0079-6603(08)60810-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T Moss
- Cancer Research Centre, Laval University, Hôtel-Dieu de Québec, Canada
| | | |
Collapse
|
18
|
Triman KL. Mutational analysis of 16S ribosomal RNA structure and function in Escherichia coli. ADVANCES IN GENETICS 1995; 33:1-39. [PMID: 7484450 DOI: 10.1016/s0065-2660(08)60329-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K L Triman
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17604, USA
| |
Collapse
|
19
|
Brown CM, Tate WP. Direct recognition of mRNA stop signals by Escherichia coli polypeptide chain release factor two. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30112-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Mikuni O, Ito K, Moffat J, Matsumura K, McCaughan K, Nobukuni T, Tate W, Nakamura Y. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc Natl Acad Sci U S A 1994; 91:5798-802. [PMID: 8016068 PMCID: PMC44084 DOI: 10.1073/pnas.91.13.5798] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The termination of protein synthesis in bacteria requires two codon-specific polypeptide release factors, RF-1 and RF-2. A third factor, RF-3, which stimulates the RF-1 and RF-2 activities, was originally identified in Escherichia coli, but it has received little attention since the 1970s. To search for the gene encoding RF-3, we selected nonsense-suppressor mutations by random insertion mutagenesis on the assumption that a loss of function of RF-3 would lead to misreading of stop signals. One of these mutations, named tos-1 (for transposon-induced opal suppressor), mapped to the 99.2 min region on the E. coli chromosome and suppressed all three stop codons. Complementation studies and analyses of the DNA and protein sequences revealed that the tos gene encodes a 59,442-Da protein, with sequence homology to elongation factor EF-G, including G-domain motifs, and that the tos-1 insertion eliminated the C-terminal one-fifth of the protein. Extracts containing the overproduced Tos protein markedly increased the formation of ribosomal termination complexes and stimulated the RF-1 or RF-2 activity in the codon-dependent in vitro termination assay. The stimulation was significantly reduced by GTP, GDP, and the beta,gamma-methylene analog of GTP, but not by GMP. These results fit perfectly with those described in the original publications on RF-3, and the tos gene has therefore been designated prfC. A completely null prfC mutation made by reverse genetics affected the cell growth under the limited set of physiological and strain conditions.
Collapse
Affiliation(s)
- O Mikuni
- Department of Tumor Biology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
O'Connor M, Dahlberg AE. Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity. Proc Natl Acad Sci U S A 1993; 90:9214-8. [PMID: 8415679 PMCID: PMC47533 DOI: 10.1073/pnas.90.19.9214] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A plasmid carrying a mutation in the highly conserved base U2555 in Escherichia coli 23S rRNA was isolated by selecting for suppression of the -1 frameshift mutation trpE91. U2555 is normally protected in chemical footprinting experiments by the aminoacyl residue of A-site-bound tRNA. Substitution of U2555 by adenine or guanine (but not by cytosine) increased readthrough of all three stop codons and +1 and -1 frameshifting. These effects on translational fidelity demonstrate the importance of U2555 for selection of the correct tRNA at the ribosomal A site.
Collapse
Affiliation(s)
- M O'Connor
- Section of Biochemistry, Brown University, Providence, RI 02912
| | | |
Collapse
|
22
|
Brown CM, McCaughan KK, Tate WP. Two regions of the Escherichia coli 16S ribosomal RNA are important for decoding stop signals in polypeptide chain termination. Nucleic Acids Res 1993; 21:2109-15. [PMID: 8502551 PMCID: PMC309472 DOI: 10.1093/nar/21.9.2109] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two regions of the 16S rRNA, helix 34, and the aminoacyl site component of the decoding site at the base of helix 44, have been implicated in decoding of translational stop signals during the termination of protein synthesis. Antibiotics specific for these regions have been tested to see how they discriminate the decoding of UAA, UAG, and UGA by the two polypeptide chain release factors (RF-1 and RF-2). Spectinomycin, which interacts with helix 34, stimulated RF-1 dependent binding to the ribosome and termination. It also stimulated UGA dependent RF-2 termination at micromolar concentrations but inhibited UGA dependent RF-2 binding at higher concentrations. Alterations at position C1192 of helix 34, known to confer spectinomycin resistance, reduced the binding of f[3H]Met-tRNA to the peptidyl-tRNA site. They also impaired termination in vitro, with both factors and all three stop codons, although the effect was greater with RF-2 mediated reactions. These alterations had previously been shown to inhibit EF-G mediated translocation. As perturbations in helix 34 effect both termination and elongation reactions, these results indicate that helix 34 is close to the decoding site on the bacterial ribosome. Several antibiotics, hygromycin, neomycin and tetracycline, specific for the aminoacyl site, were shown to inhibit the binding and function of both RFs in termination with all three stop codons in vitro. These studies indicate that decoding of all stop signals is likely to occur at a similar site on the ribosome to the decoding of sense codons, the aminoacyl site, and are consistent with a location for helix 34 near this site.
Collapse
Affiliation(s)
- C M Brown
- Biochemistry Department, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
23
|
Moffat JG, Donly BC, McCaughan KK, Tate WP. Functional domains in the Escherichia coli release factors. Activities of hybrids between RF-1 and RF-2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:749-56. [PMID: 8477747 DOI: 10.1111/j.1432-1033.1993.tb17816.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chimeras between Escherichia coli release factors RF-1 and RF-2 have been constructed to study the role of the release factors in termination, in particular whether each possesses specific domains for recognition of the stop codon, and for facilitating peptidyl-tRNA hydrolysis. One hybrid factor showed normal codon-recognition activity but was defective in its ability to facilitate hydrolysis. Overexpression of this protein was toxic to the cell. Conversely, another hybrid factor showed complete loss of codon recognition but retained some hydrolysis activity. These two functional activities of the release factors were not localised in domains within either the amino-terminal or carboxy-terminal halves of the primary sequence as previously predicted. Evidence from the activities of the hybrid proteins and from earlier studies suggests that a combination of residues from the beginning and middle of the sequence, including a region of very high sequence conservation, contribute to the hydrolysis domain, whereas residues from both the amino-terminal and carboxy-terminal halves of the molecule are important for the codon recognition domain.
Collapse
Affiliation(s)
- J G Moffat
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
24
|
Matveeva OV, Shabalina SA. Intermolecular mRNA-rRNA hybridization and the distribution of potential interaction regions in murine 18S rRNA. Nucleic Acids Res 1993; 21:1007-11. [PMID: 8451167 PMCID: PMC309236 DOI: 10.1093/nar/21.4.1007] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Intermolecular hybridization experiments show that murine 18S rRNA and 28S rRNA are capable of forming stable hybrid structures with mRNA from genes p53, c-myc and c-mos from the same species. Both 5'-uncoding and coding oncogene p53 mRNA regions contain fragments interacting with rRNA. Computer analysis revealed 18S rRNA fragments complementary to oligonucleotides frequently met in mRNA, which are potential hybridization regions (clinger-fragments). The distribution of clinger-fragments along 18S rRNA sequence is universal at least for one hundred murine mRNA sequences analyzed. Maximal frequencies of oligonucleotides complementary to 18S rRNA clinger-fragments are reliably (2-3 times) higher for mRNA than for intron sequences and randomly generated sequences. The results obtained suggest a possible role of clinger-fragments in translation processes as universal regions of mRNA binding.
Collapse
Affiliation(s)
- O V Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
25
|
Kurata H, Kamoshita K, Kawai E, Sukenaga Y, Mizutani T. The 5' untranslated region of the human cellular glutathione peroxidase gene is indispensable for its expression in COS-7 cells. FEBS Lett 1992; 312:10-4. [PMID: 1426231 DOI: 10.1016/0014-5793(92)81400-g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We studied the expression of the human cellular glutathione peroxidase (GPx) gene, from which a key enzyme containing selenocysteine (Scy) at the active site is produced. Expression of some human GPx gene mutants in COS-7 cells revealed that the 5' untranslated region (utr) was necessary for expression of the GPx gene, since mutant genes having 10 base pairs (bps) at the 5'utr (the complete had 311 bps) expressed GPx at very low levels. The genes with 311 or 408 bps at the 5'utr were better expressed than those having 257 bps. The GPx gene having 133 bps at the 3'utr (80 bps shorter than the entire length) was highly expressed. This deletion did not influence expression. We constructed some mutants in which 3 bases were altered at the upstream region of the Scy UGA codon in the frame of the GPx gene, by site-directed mutagenesis. GPx expression decreased but the expression was restored. Therefore, the upstream region of the in-frame Scy codon was not essential in the Scy decoding mechanisms. Finally, the 5'utr was essential for the expression of GPx gene. However, the deletion of a part of the 3'utr and the site-directed mutation upstream of the Scy codon did not show drastic effects on the expression.
Collapse
Affiliation(s)
- H Kurata
- Faculty of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | | | | | |
Collapse
|
26
|
O'Connor M, Göringer HU, Dahlberg AE. A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA. Nucleic Acids Res 1992; 20:4221-7. [PMID: 1380697 PMCID: PMC334129 DOI: 10.1093/nar/20.16.4221] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A series of base substitution and deletion mutations were constructed in the highly conserved 530 stem and loop region of E. coli 16S rRNA involved in binding of tRNA to the ribosomal A site. Base substitution and deletion of G517 produced significant effects on cell growth rate and translational fidelity, permitting readthrough of UGA, UAG and UAA stop codons as well as stimulating +1 and -1 frameshifting in vivo. By contrast, mutations at position 534 had little or no effect on growth rate or translational fidelity. The results demonstrate the importance of G517 in maintaining translational fidelity but do not support a base pairing interaction between G517 and U534.
Collapse
Affiliation(s)
- M O'Connor
- Section of Biochemistry, Brown University, Providence, RI 02912
| | | | | |
Collapse
|
27
|
Prescott CD, Kornau HC. Mutations in E.coli 16s rRNA that enhance and decrease the activity of a suppressor tRNA. Nucleic Acids Res 1992; 20:1567-71. [PMID: 1374555 PMCID: PMC312239 DOI: 10.1093/nar/20.7.1567] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The in vivo expression of mutations constructed within helix 34 of 16S rRNA has been examined together with a nonsense tRNA suppressor for their action at stop codons. The data revealed two novel results: in contrast to previous findings, some of the rRNA mutations affected suppression at UAA and UAG nonsense codons. Secondly, both an increase and a decrease in the efficiency of the suppressor tRNA were induced by the mutations. This is the first report that rRNA mutations decreased the efficiency of a suppressor tRNA. The data are interpreted as there being competition between the two release factors (RF-1 and RF-2) for an overlapping domain and that helix 34 influences this interaction.
Collapse
Affiliation(s)
- C D Prescott
- Max Planck Institut für Molekulare Genetik, Berlin, Germany
| | | |
Collapse
|