1
|
Takita S, Harikrishnan H, Miyagi M, Imanishi Y. Transcriptional downregulation of rhodopsin is associated with desensitization of rods to light-induced damage in a murine model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646684. [PMID: 40236225 PMCID: PMC11996569 DOI: 10.1101/2025.04.03.646684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Class I rhodopsin mutations are known for some of the most severe forms of vision impairments in dominantly inherited rhodopsin retinitis pigmentosa. They disrupt the VxPx transport signal, which is required for the proper localization of rhodopsin to the outer segments. While various studies have focused on the light-dependent toxicity of mutant rhodopsin, it remains unclear whether and how these mutations exert dominant-negative effects. Using the class I Rho Q344X rhodopsin knock-in mouse model, we characterized the expression of rhodopsin and other genes by RNA sequencing and qPCR. Those studies indicated that rhodopsin is the most prominently downregulated photoreceptor-specific gene in Rho Q344X/+ mice. Rhodopsin is downregulated significantly prior to the onset of rod degeneration, whereas downregulation of other phototransduction genes, transducin α , and Pde6α, occurs after the onset and correlate with the degree of rod cell loss. Those studies indicated that the mutant rhodopsin gene causes downregulation of wild-type rhodopsin, imposing an mRNA-level dominant negative effect. Moreover, it causes downregulation of the mutant mRNA itself, mitigating the toxicity. The observed dominant effect is likely common among rhodopsin retinitis pigmentosa as we found a similar rhodopsin downregulation in the major class II rhodopsin mutant model, Rho P23H/+ mice, in which mutant rhodopsin is prone to misfold. Potentially due to mitigated toxicity by reduced rhodopsin expression, Rho Q344X/+ mice did not exhibit light-dependent exacerbation of rod degeneration, even after continuous exposure of mice for 5 days at 3000 lux. Thus, this study describes a novel form of dominant negative effect in inherited neurodegenerative disorders.
Collapse
|
2
|
Sao Su S, Chan CM, Bylstra Y, Tan TE, Kam S, Tang RWC, Jain K, Mathur RS, Lott PPW, Farooqui SZ, Jamuar SS, Lim WK, Fenner BJ. Inherited retinal degeneration in Malay and Indian populations of Singapore and Malaysia: a prospective multicentre study. Ophthalmic Genet 2025:1-12. [PMID: 40101946 DOI: 10.1080/13816810.2025.2473961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE To analyze the phenotypic and genotypic characteristics of inherited retinal degeneration (IRD) patients of Malay and Indian ethnicity from Singapore and Malaysia. METHODS Ethnic Malay and Indian IRD patients were consecutively enrolled from retina clinics in Singapore and Malaysia. Phenotypic and genetic data were reviewed. RESULTS A total of 100 unrelated individuals (Malay: n = 46, Indian: n = 54) were enrolled. Sixteen distinct IRD phenotypes were identified, with nonsyndromic retinitis pigmentosa (RP) comprising 46% of all cases. Stargardt disease and cone-rod dystrophy accounted for 20% and 11% of cases, respectively. Exome sequencing yielded genotypes in 64.3% of Malay and 68.9% of Indian cases. Variants in ABCA4 were the most common cause of IRD overall. Recurrent variants were identified in ABCA4, GUCY2D, PRPH2, and TULP1 for Malays, and in ABCA4 and MFSD8 (CLN7) for Indians. Homozygosity was more frequent among Indians than Malays (58.1% vs. 19.2%; p = 0.003). CONCLUSIONS This study demonstrated diverse phenotypic and genotypic outcomes in Malay and Indian populations of Singapore and Malaysia, with distinct differences between them. Homozygosity was common among ethnic Indian IRD cases, explaining phenotypic diversity. These findings inform the identification of regionally relevant IRDs for developing targeted therapies in Malay and Indian patients from Southeast Asia.
Collapse
Affiliation(s)
- Sandy Sao Su
- Medical Retina, Singapore National Eye Centre, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Choi Mun Chan
- Medical Retina, Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| | - Yasmin Bylstra
- Medical Retina, Singapore National Eye Centre, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | - Tien-En Tan
- Medical Retina, Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| | - Sylvia Kam
- Medical Retina, Singapore National Eye Centre, Singapore
- KK Women's and Children's Hospital and Paediatric Academic Medical Programme, Duke-NUS Medical School, Singapore
| | | | - Kanika Jain
- Bioinformatics, Genome Institute of Singapore, Singapore
| | - Ranjana S Mathur
- Medical Retina, Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| | - Penny P W Lott
- Universiti Malaya Eye Research Centre, Department of Ophthalmology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saadia Z Farooqui
- Medical Retina, Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
- KK Women's and Children's Hospital and Paediatric Academic Medical Programme, Duke-NUS Medical School, Singapore
| | - Saumya S Jamuar
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
- KK Women's and Children's Hospital and Paediatric Academic Medical Programme, Duke-NUS Medical School, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Laboratory of Genome Variation Analytics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Beau J Fenner
- Medical Retina, Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
3
|
Manian KV, Ludwig CH, Zhao Y, Abell N, Yang X, Root DE, Albert ML, Comander J. A comprehensive map of missense trafficking variants in rhodopsin and their response to pharmacologic correction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640335. [PMID: 40093169 PMCID: PMC11908143 DOI: 10.1101/2025.02.27.640335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Rhodopsin (RHO) missense variants are a leading cause of autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration with no currently approved therapies. Interpreting the pathogenicity of the growing number of identified RHO variants is a major clinical challenge, and understanding their disease mechanisms is essential for developing effective therapies. Here, we present a high-resolution map of RHO missense variant trafficking using two complementary deep mutational scanning (DMS) approaches based on a surface abundance immunoassay and a membrane proximity assay. We generated a comprehensive dataset encompassing all 6,612 possible single-residue missense variants, revealing a strong correlation between the two methods. Over 700 variants were identified with pathogenic trafficking scores, significantly expanding the number of RHO variants with functional evidence supporting pathogenicity. We demonstrate a high concordance between the trafficking scores and ClinVar pathogenicity classifications, highlighting this approach's utility in resolving variants of uncertain significance (VUS). The data also identified structurally clustered trafficking-deficient variants, predominantly within the N-terminal region and second extracellular loop, in and above the extracellular/intradiscal beta-plug region. Furthermore, we evaluated the efficacy of the non-retinoid pharmacological chaperone YC-001, observing significant rescue of trafficking defects in a majority of mistrafficking variants. This comprehensive functional map of RHO missense variants provides a valuable resource for pathogenicity assessment, genotype-phenotype correlations, and the development of targeted therapeutic strategies for RHO-adRP, paving the way for improved diagnosis and treatment for patients.
Collapse
Affiliation(s)
- Kannan V. Manian
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Yan Zhao
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Xiaoping Yang
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David E. Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jason Comander
- Ocular Genomics Institute, Berman-Gund Laboratory for the Study of Retinal Degenerations, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Navinés-Ferrer A, Pomares E. Endoplasmic reticulum stress and rhodopsin accumulation in an organoid model of Retinitis Pigmentosa carrying a RHO pathogenic variant. Stem Cell Res Ther 2025; 16:71. [PMID: 39948682 PMCID: PMC11827366 DOI: 10.1186/s13287-025-04199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Retinitis Pigmentosa (RP) is the most prevalent inherited retinal dystrophy, with more than 120 causative genes. Among them, RHO was the first photoreceptor gene described to harbor mutations responsible for RP. RHO pathogenic variants usually induce a dominant negative effect in which the accumulation of misfolded rhodopsin protein leads to ER stress, autophagy and lastly rod photoreceptor death. METHODS We differentiated photoreceptor precursors and retinal organoids from an iPSC line of a patient carrying the Pro215Leu mutation in RHO gene. Both cell models were analyzed to determine their maturation, the expression and localization of RHO mRNA and the rhodopsin protein and the activation of autophagy or ER pathways. RESULTS The Pro215Leu mutation causes rhodopsin accumulation in the soma of rod photoreceptor precursors along with a faster recycling by the proteasome. In both precursors and retinal organoids, we observed autophagy defects and late endoplasmic reticulum stress through CHOP increase. CONCLUSIONS Unraveling the molecular pathophysiology of these mutations is key for understanding the basis of the disease and design proper gene and cell therapies for its treatment.
Collapse
Affiliation(s)
| | - Esther Pomares
- Departament de Genètica, IMO Grupo Miranza, Barcelona, Spain.
| |
Collapse
|
5
|
Vasudevan S, Park PSH. A Y178C rhodopsin mutation causes aggregation and comparatively severe retinal degeneration. Cell Death Discov 2025; 11:32. [PMID: 39875362 PMCID: PMC11775123 DOI: 10.1038/s41420-025-02311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/02/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Rhodopsin is the light-activated G protein-coupled receptor that initiates vision in photoreceptor cells of the retina. Numerous mutations in rhodopsin promote receptor misfolding and aggregation, causing autosomal dominant retinitis pigmentosa, a progressive retinal degenerative disease. The mechanism by which these mutations cause photoreceptor cell death, and the role aggregation plays in this process is still unclear. We recently demonstrated with the P23H and G188R rhodopsin mutants that the severity of aggregation observed in vitro is also reflected in vivo and impacts the rate of retinal degeneration. A Y178C rhodopsin mutant was investigated here to determine if this relationship applies broadly among mutations that cause misfolding and aggregation of the receptor. In vitro characterization indicated the Y178C rhodopsin mutant exhibits similar properties to the more severely aggregating G188R rhodopsin mutant, where the mutant is mislocalized to the endoplasmic reticulum in HEK293 cells and form aggregates that cannot be rescued by treatment with the retinoid 9-cis retinal. Despite these similarities in vitro, the Y178C rhodopsin mutant promoted a more severe retinal degeneration compared to the G188R mutant in vivo in mice. Aggregates of the Y178C rhodopsin mutant labeled by the dye PROTEOSTAT were morphologically similar to those formed by both the P23H and G188R rhodopsin mutants. There was, however, significantly greater photoreceptor cell death occurring independently of PROTEOSTAT-labeled aggregates in mice expressing the Y178C rhodopsin mutant compared to those expressing either the P23H or G188R rhodopsin mutants. Here, we demonstrate that PROTEOSTAT-labeled aggregates are not the sole cause of photoreceptor cell death promoted by the Y178C rhodopsin mutation in vivo, and there may be alternate aggregate forms contributing to cell death in these mice.
Collapse
Affiliation(s)
- Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Thompson SL, Crowder SM, Hekmatara M, Sechrest ER, Deng WT, Robichaux MA. P23H rhodopsin aggregation in the ER causes synaptic protein imbalance in rod photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619115. [PMID: 39484588 PMCID: PMC11526887 DOI: 10.1101/2024.10.18.619115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Rod photoreceptor neurons in the retina detect scotopic light through the visual pigment rhodopsin (Rho) in their outer segments (OS). Efficient Rho trafficking to the OS through the inner rod compartments is critical for long-term rod health. Given the importance of protein trafficking to the OS, less is known about the trafficking of rod synaptic proteins. Furthermore, the subcellular impact of Rho mislocalization on rod synapses (i.e., "spherules") has not been investigated. In this study we used super-resolution and electron microscopies, along with proteomics, to perform a subcellular analysis of Rho synaptic mislocalization in P23H-Rho-RFP mutant mice. We discovered that mutant P23H-Rho-RFP protein mislocalized in distinct ER aggregations within the spherule cytoplasm, which we confirmed with AAV overexpression. Additionally, we found synaptic protein abundance differences in P23H-Rho-RFP mice. By comparison, Rho mislocalized along the spherule plasma membrane in WT and rd10 mutant rods, in which there was no synaptic protein disruption. Throughout the study, we also identified a network of ER membranes within WT rod presynaptic spherules. Together, our findings indicate that photoreceptor synaptic proteins are sensitive to ER dysregulation.
Collapse
Affiliation(s)
- Samantha L Thompson
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV 26506, United States
| | - Sophie M Crowder
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV 26506, United States
| | - Maryam Hekmatara
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV 26506, United States
| | - Emily R Sechrest
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV 26506, United States
| | - Wen-Tao Deng
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV 26506, United States
| | - Michael A Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV 26506, United States
| |
Collapse
|
7
|
Brooks C, Kolson D, Sechrest E, Chuah J, Schupp J, Billington N, Deng WT, Smith D, Sokolov M. Therapeutic potential of archaeal unfoldase PANet and the gateless T20S proteasome in P23H rhodopsin retinitis pigmentosa mice. PLoS One 2024; 19:e0308058. [PMID: 39361629 PMCID: PMC11449290 DOI: 10.1371/journal.pone.0308058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Neurodegenerative diseases are characterized by the presence of misfolded and aggregated proteins which are thought to contribute to the development of the disease. In one form of inherited blinding disease, retinitis pigmentosa, a P23H mutation in the light-sensing receptor, rhodopsin causes rhodopsin misfolding resulting in complete vision loss. We investigated whether a xenogeneic protein-unfolding ATPase (unfoldase) from thermophilic Archaea, termed PANet, could counteract the proteotoxicity of P23H rhodopsin. We found that PANet increased the number of surviving photoreceptors in P23H rhodopsin mice and recognized rhodopsin as a substate in vitro. This data supports the feasibility and efficacy of using a xenogeneic unfoldase as a therapeutic approach in mouse models of human neurodegenerative diseases. We also showed that an archaeal proteasome, called the T20S can degrade rhodopsin in vitro and demonstrated that it is feasible and safe to express gateless T20S proteasomes in vivo in mouse rod photoreceptors. Expression of archaeal proteasomes may be an effective therapeutic approach to stimulate protein degradation in retinopathies and neurodegenerative diseases with protein-misfolding etiology.
Collapse
Affiliation(s)
- Celine Brooks
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Douglas Kolson
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emily Sechrest
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
| | - Janelle Chuah
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Jane Schupp
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Neil Billington
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Wen-Tao Deng
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - David Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia, United States of America
| | - Maxim Sokolov
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
8
|
Guo X, Mutch M, Torres AY, Nano M, Rauth N, Harwood J, McDonald D, Chen Z, Montell C, Dai W, Montell DJ. The Zn 2+ transporter ZIP7 enhances endoplasmic-reticulum-associated protein degradation and prevents neurodegeneration in Drosophila. Dev Cell 2024; 59:1655-1667.e6. [PMID: 38670102 PMCID: PMC11233247 DOI: 10.1016/j.devcel.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/15/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Proteotoxic stress drives numerous degenerative diseases. Cells initially adapt to misfolded proteins by activating the unfolded protein response (UPR), including endoplasmic-reticulum-associated protein degradation (ERAD). However, persistent stress triggers apoptosis. Enhancing ERAD is a promising therapeutic approach for protein misfolding diseases. The ER-localized Zn2+ transporter ZIP7 is conserved from plants to humans and required for intestinal self-renewal, Notch signaling, cell motility, and survival. However, a unifying mechanism underlying these diverse phenotypes was unknown. In studying Drosophila border cell migration, we discovered that ZIP7-mediated Zn2+ transport enhances the obligatory deubiquitination of proteins by the Rpn11 Zn2+ metalloproteinase in the proteasome lid. In human cells, ZIP7 and Zn2+ are limiting for deubiquitination. In a Drosophila model of neurodegeneration caused by misfolded rhodopsin (Rh1), ZIP7 overexpression degrades misfolded Rh1 and rescues photoreceptor viability and fly vision. Thus, ZIP7-mediated Zn2+ transport is a previously unknown, rate-limiting step for ERAD in vivo with therapeutic potential in protein misfolding diseases.
Collapse
Affiliation(s)
- Xiaoran Guo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Morgan Mutch
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Alba Yurani Torres
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Nishi Rauth
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Jacob Harwood
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Drew McDonald
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Zijing Chen
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Craig Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Wei Dai
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA.
| |
Collapse
|
9
|
Wang B, Arbuckle RK, Davoli KA, Clinger OD, Brown R, Sahel JA, Chen Y, Pi S. Compensation of inner retina to early-stage photoreceptor degeneration in a Rho P23H/+ mouse model of retinitis pigmentosa. Exp Eye Res 2024; 240:109826. [PMID: 38340947 PMCID: PMC10940204 DOI: 10.1016/j.exer.2024.109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Retinitis pigmentosa (RP) is an inherited retinal disorder characterized by the degeneration of photoreceptors. RhoP23H/+ mice, which carry a Pro23His mutation in the RHODOPSIN (Rho) gene, are one of the most studied animal models for RP. However, except for the photoreceptors, other retinal neural cells have not been fully investigated in this model. Here, we record the temporal changes of the retina by optical coherence tomography (OCT) imaging of the RhoP23H/+ mice, from early to mid-phase of retinal degeneration. Based on thickness analysis, we identified a natural retinal thickness adaption in wild-type mice during early adulthood and observed morphological compensation of the inner retina layer to photoreceptor degeneration in the RhoP23H/+ mice, primarily on the inner nuclear layer (INL). RhoP23H/+ mice findings were further validated via: histology showing the negative correlation of INL and ONL thicknesses; as well as electroretinogram (ERG) showing an increased b-wave to a-wave ratio. These results unravel the sequential morphologic events in this model and suggest a better understanding of retinal degeneration of RP for future studies.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Riley K Arbuckle
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15213, USA
| | - Katherine A Davoli
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Owen D Clinger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Richard Brown
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; UPMC Vision Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
10
|
Vasudevan S, Senapati S, Pendergast M, Park PSH. Aggregation of rhodopsin mutants in mouse models of autosomal dominant retinitis pigmentosa. Nat Commun 2024; 15:1451. [PMID: 38365903 PMCID: PMC10873427 DOI: 10.1038/s41467-024-45748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
Mutations in rhodopsin can cause it to misfold and lead to retinal degeneration. A distinguishing feature of these mutants in vitro is that they mislocalize and aggregate. It is unclear whether or not these features contribute to retinal degeneration observed in vivo. The effect of P23H and G188R misfolding mutations were examined in a heterologous expression system and knockin mouse models, including a mouse model generated here expressing the G188R rhodopsin mutant. In vitro characterizations demonstrate that both mutants aggregate, with the G188R mutant exhibiting a more severe aggregation profile compared to the P23H mutant. The potential for rhodopsin mutants to aggregate in vivo was assessed by PROTEOSTAT, a dye that labels aggregated proteins. Both mutants mislocalize in photoreceptor cells and PROTEOSTAT staining was detected surrounding the nuclei of photoreceptor cells. The G188R mutant promotes a more severe retinal degeneration phenotype and greater PROTEOSTAT staining compared to that promoted by the P23H mutant. Here, we show that the level of PROTEOSTAT positive cells mirrors the progression and level of photoreceptor cell death, which suggests a potential role for rhodopsin aggregation in retinal degeneration.
Collapse
Affiliation(s)
- Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
- Prayoga Institute of Education Research, Bengaluru, KA, 560116, India
| | - Maryanne Pendergast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Verma DK, Malhotra H, Woellert T, Calvert PD. Hydrophobic interaction between the TM1 and H8 is essential for rhodopsin trafficking to vertebrate photoreceptor outer segments. J Biol Chem 2023; 299:105412. [PMID: 37918805 PMCID: PMC10687059 DOI: 10.1016/j.jbc.2023.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
A major unsolved question in vertebrate photoreceptor biology is the mechanism of rhodopsin transport to the outer segment. In rhodopsin-like class A G protein-coupled receptors, hydrophobic interactions between C-terminal α-helix 8 (H8), and transmembrane α-helix-1 (TM1) have been shown to be important for transport to the plasma membrane, however whether this interaction is important for rhodopsin transport to ciliary rod outer segments is not known. We examined the crystal structures of vertebrate rhodopsins and class A G protein-coupled receptors and found a conserved network of predicted hydrophobic interactions. In Xenopus rhodopsin (xRho), this interaction corresponds to F313, L317, and L321 in H8 and M57, V61, and L68 in TM1. To evaluate the role of H8-TM1 hydrophobic interactions in rhodopsin transport, we expressed xRho-EGFP where hydrophobic residues were mutated in Xenopus rods and evaluated the efficiency of outer segment enrichment. We found that substituting L317 and M57 with hydrophilic residues had the strongest impact on xRho mislocalization. Substituting hydrophilic amino acids at positions L68, F313, and L321 also had a significant impact. Replacing L317 with M resulted in significant mislocalization, indicating that the hydrophobic interaction between residues 317 and 57 is exquisitely sensitive. The corresponding experiment in bovine rhodopsin expressed in HEK293 cells had a similar effect, showing that the H8-TM1 hydrophobic network is essential for rhodopsin transport in mammalian species. Thus, for the first time, we show that a hydrophobic interaction between H8 and TM1 is critical for efficient rhodopsin transport to the vertebrate photoreceptor ciliary outer segment.
Collapse
Affiliation(s)
- Dipesh Kumar Verma
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Himanshu Malhotra
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Torsten Woellert
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Peter D Calvert
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
12
|
Geddes JW, Bondada V, Croall DE, Rodgers DW, Gal J. Impaired activity and membrane association of most calpain-5 mutants causal for neovascular inflammatory vitreoretinopathy. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166747. [PMID: 37207905 PMCID: PMC10332796 DOI: 10.1016/j.bbadis.2023.166747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Neovascular inflammatory vitreoretinopathy (NIV) is a rare eye disease that ultimately leads to complete blindness and is caused by mutations in the gene encoding calpain-5 (CAPN5), with six pathogenic mutations identified. In transfected SH-SY5Y cells, five of the mutations resulted in decreased membrane association, diminished S-acylation, and reduced calcium-induced autoproteolysis of CAPN5. CAPN5 proteolysis of the autoimmune regulator AIRE was impacted by several NIV mutations. R243, L244, K250 and the adjacent V249 are on β-strands in the protease core 2 domain. Conformational changes induced by Ca2+binding result in these β-strands forming a β-sheet and a hydrophobic pocket which docks W286 side chain away from the catalytic cleft, enabling calpain activation based on comparison with the Ca2+-bound CAPN1 protease core. The pathologic variants R243L, L244P, K250N, and R289W are predicted to disrupt the β-strands, β-sheet, and hydrophobic pocket, impairing calpain activation. The mechanism by which these variants impair membrane association is unclear. G376S impacts a conserved residue in the CBSW domain and is predicted to disrupt a loop containing acidic residues which may contribute to membrane binding. G267S did not impair membrane association and resulted in a slight but significant increase in autoproteolytic and proteolytic activity. However, G267S is also identified in individuals without NIV. Combined with the autosomal dominant pattern of NIV inheritance and evidence that CAPN5 may dimerize, the results are consistent with a dominant negative mechanism for the five pathogenic variants which resulted in impaired CAPN5 activity and membrane association and a gain-of-function for the G267S variant.
Collapse
Affiliation(s)
- James W Geddes
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA
| | - Dorothy E Croall
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
13
|
Sp S, Mitra RN, Zheng M, Chrispell JD, Wang K, Kwon YS, Weiss ER, Han Z. Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H +/- knock-in murine model. Gene Ther 2023; 30:628-640. [PMID: 36935427 DOI: 10.1038/s41434-023-00394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023]
Abstract
Gene therapy for autosomal dominant retinitis pigmentosa (adRP) is challenged by the dominant inheritance of the mutant genes, which would seemingly require a combination of mutant suppression and wild-type replacement of the appropriate gene. We explore the possibility that delivery of a nanoparticle (NP)-mediated full-length mouse genomic rhodopsin (gRho) or human genomic rhodopsin (gRHO) locus can overcome the dominant negative effects of the mutant rhodopsin in the clinically relevant P23H+/--knock-in heterozygous mouse model. Our results demonstrate that mice in both gRho and gRHO NP-treated groups exhibit significant structural and functional recovery of the rod photoreceptors, which lasted for 3 months post-injection, indicating a promising reduction in photoreceptor degeneration. We performed miRNA transcriptome analysis using next generation sequencing and detected differentially expressed miRNAs as a first step towards identifying miRNAs that could potentially be used as rhodopsin gene expression enhancers or suppressors for sustained photoreceptor rescue. Our results indicate that delivering an intact genomic locus as a transgene has a greater chance of success compared to the use of the cDNA for treatment of this model of adRP, emphasizing the importance of gene augmentation using a gDNA that includes regulatory elements.
Collapse
Affiliation(s)
- Simna Sp
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rajendra N Mitra
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Min Zheng
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jared D Chrispell
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kai Wang
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yong-Su Kwon
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for NanoMedicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
Park JE, Lee J, Ok S, Byun S, Chang EJ, Yoon SE, Kim YJ, Kang MJ. Wg/Wnt1 and Erasp link ER stress to proapoptotic signaling in an autosomal dominant retinitis pigmentosa model. Exp Mol Med 2023; 55:1544-1555. [PMID: 37464094 PMCID: PMC10394004 DOI: 10.1038/s12276-023-01044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 07/20/2023] Open
Abstract
The endoplasmic reticulum (ER) is a subcellular organelle essential for cellular homeostasis. Perturbation of ER functions due to various conditions can induce apoptosis. Chronic ER stress has been implicated in a wide range of diseases, including autosomal dominant retinitis pigmentosa (ADRP), which is characterized by age-dependent retinal degeneration caused by mutant rhodopsin alleles. However, the signaling pathways that mediate apoptosis in response to ER stress remain poorly understood. In this study, we performed an unbiased in vivo RNAi screen with a Drosophila ADRP model and found that Wg/Wnt1 mediated apoptosis. Subsequent transcriptome analysis revealed that ER stress-associated serine protease (Erasp), which has been predicted to show serine-type endopeptidase activity, was a downstream target of Wg/Wnt1 during ER stress. Furthermore, knocking down Erasp via RNAi suppressed apoptosis induced by mutant rhodopsin-1 (Rh-1P37H) toxicity, alleviating retinal degeneration in the Drosophila ADRP model. In contrast, overexpression of Erasp resulted in enhanced caspase activity in Drosophila S2 cells treated with apoptotic inducers and the stabilization of the initiator caspase Dronc (Death regulator Nedd2-like caspase) by stimulating DIAP1 (Drosophila inhibitor of apoptosis protein 1) degradation. These findings helped identify a novel cell death signaling pathway involved in retinal degeneration in an autosomal dominant retinitis pigmentosa model.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jiyoun Lee
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul, 01133, Republic of Korea
| | - Soonhyuck Ok
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seunghee Byun
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Min-Ji Kang
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
15
|
Guo X, Mutch M, Torres AY, Nano M, McDonald D, Chen Z, Montell C, Dai W, Montell DJ. Rescue of proteotoxic stress and neurodegeneration by the Zn 2+ transporter ZIP7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541645. [PMID: 37292980 PMCID: PMC10245811 DOI: 10.1101/2023.05.22.541645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteotoxic stress drives numerous degenerative diseases. In response to misfolded proteins, cells adapt by activating the unfolded protein response (UPR), including endoplasmic reticulum-associated protein degradation (ERAD). However persistent stress triggers apoptosis. Enhancing ERAD is a promising therapeutic approach for protein misfolding diseases. From plants to humans, loss of the Zn2+ transporter ZIP7 causes ER stress, however the mechanism is unknown. Here we show that ZIP7 enhances ERAD and that cytosolic Zn2+ is limiting for deubiquitination of client proteins by the Rpn11 Zn2+ metalloproteinase as they enter the proteasome in Drosophila and human cells. ZIP7 overexpression rescues defective vision caused by misfolded rhodopsin in Drosophila. Thus ZIP7 overexpression may prevent diseases caused by proteotoxic stress, and existing ZIP inhibitors may be effective against proteasome-dependent cancers.
Collapse
Affiliation(s)
- Xiaoran Guo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
- present address: Biochemistry Department, Stanford University, Stanford, CA 94305
| | - Morgan Mutch
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Alba Yurani Torres
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Drew McDonald
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Zijing Chen
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Craig Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Wei Dai
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| |
Collapse
|
16
|
Spencer WJ. Extracellular vesicles highlight many cases of photoreceptor degeneration. Front Mol Neurosci 2023; 16:1182573. [PMID: 37273908 PMCID: PMC10233141 DOI: 10.3389/fnmol.2023.1182573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
The release of extracellular vesicles is observed across numerous cell types and serves a range of biological functions including intercellular communication and waste disposal. One cell type which stands out for its robust capacity to release extracellular vesicles is the vertebrate photoreceptor cell. For decades, the release of extracellular vesicles by photoreceptors has been documented in many different animal models of photoreceptor degeneration and, more recently, in wild type photoreceptors. Here, I review all studies describing extracellular vesicle release by photoreceptors and discuss the most unifying theme among them-a photoreceptor cell fully, or partially, diverts its light sensitive membrane material to extracellular vesicles when it has defects in the delivery or morphing of this material into the photoreceptor's highly organized light sensing organelle. Because photoreceptors generate an enormous amount of light sensitive membrane every day, the diversion of this material to extracellular vesicles can cause a massive accumulation of these membranes within the retina. Little is known about the uptake of photoreceptor derived extracellular vesicles, although in some cases the retinal pigment epithelial cells, microglia, Müller glia, and/or photoreceptor cells themselves have been shown to phagocytize them.
Collapse
|
17
|
Poria D, Kolesnikov AV, Lee TJ, Salom D, Palczewski K, Kefalov VJ. Investigating the Role of Rhodopsin F45L Mutation in Mouse Rod Photoreceptor Signaling and Survival. eNeuro 2023; 10:ENEURO.0330-22.2023. [PMID: 36823167 PMCID: PMC9997694 DOI: 10.1523/eneuro.0330-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Rhodopsin is the critical receptor molecule which enables vertebrate rod photoreceptor cells to detect a single photon of light and initiate a cascade of molecular events leading to visual perception. Recently, it has been suggested that the F45L mutation in the transmembrane helix of rhodopsin disrupts its dimerization in vitro To determine whether this mutation of rhodopsin affects its signaling properties in vivo, we generated knock-in mice expressing the rhodopsin F45L mutant. We then examined the function of rods in the mutant mice versus wild-type controls, using in vivo electroretinography and transretinal and single cell suction recordings, combined with morphologic analysis and spectrophotometry. Although we did not evaluate the effect of the F45L mutation on the state of dimerization of the rhodopsin in vivo, our results revealed that F45L-mutant mice exhibit normal retinal morphology, normal rod responses as measured both in vivo and ex vivo, and normal rod dark adaptation. We conclude that the F45L mutation does not affect the signaling properties of rhodopsin in its natural setting.
Collapse
Affiliation(s)
- Deepak Poria
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Tae Jun Lee
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|
18
|
Molecular Basis for Variations in the Sensitivity of Pathogenic Rhodopsin Variants to 9-cis-Retinal. J Biol Chem 2022; 298:102266. [PMID: 35850308 PMCID: PMC9399271 DOI: 10.1016/j.jbc.2022.102266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Over 100 mutations in the rhodopsin gene have been linked to a spectrum of retinopathies that include retinitis pigmentosa and congenital stationary night blindness. Though most of these variants exhibit a loss of function, the molecular defects caused by these underlying mutations vary considerably. In this work, we utilize deep mutational scanning to quantitatively compare the plasma membrane expression of 123 known pathogenic rhodopsin variants in the presence and absence of the stabilizing cofactor 9-cis-retinal. We identify 69 retinopathy variants, including 20 previously uncharacterized variants, that exhibit diminished plasma membrane expression in HEK293T cells. Of these apparent class II variants, 67 exhibit a measurable increase in expression in the presence of 9-cis-retinal. However, the magnitude of the response to this molecule varies considerably across this spectrum of mutations. Evaluation of the observed shifts relative to thermodynamic estimates for the coupling between binding and folding suggests underlying differences in stability constrains the magnitude of their response to retinal. Nevertheless, estimates from computational modeling suggest that many of the least sensitive variants also directly compromise binding. Finally, we evaluate the functional properties of three previous uncharacterized, retinal-sensitive variants (ΔN73, S131P, and R135G) and show that two of these retain residual function in vitro. Together, our results provide a comprehensive experimental characterization of the proteostatic properties of retinopathy variants and their response to retinal.
Collapse
|
19
|
Robichaux MA, Nguyen V, Chan F, Kailasam L, He F, Wilson JH, Wensel TG. Subcellular localization of mutant P23H rhodopsin in an RFP fusion knock-in mouse model of retinitis pigmentosa. Dis Model Mech 2022; 15:274688. [PMID: 35275162 PMCID: PMC9092655 DOI: 10.1242/dmm.049336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
The P23H mutation in rhodopsin (Rho), the rod visual pigment, is the most common allele associated with autosomal-dominant retinitis pigmentosa (adRP). The fate of misfolded mutant Rho in rod photoreceptors has yet to be elucidated. We generated a new mouse model, in which the P23H-Rho mutant allele is fused to the fluorescent protein Tag-RFP-T (P23HhRhoRFP). In heterozygotes, outer segments formed, and wild-type (WT) rhodopsin was properly localized, but mutant P23H-Rho protein was mislocalized in the inner segments. Heterozygotes exhibited slowly progressing retinal degeneration. Mislocalized P23HhRhoRFP was contained in greatly expanded endoplasmic reticulum (ER) membranes. Quantification of mRNA for markers of ER stress and the unfolded protein response revealed little or no increases. mRNA levels for both the mutant human rhodopsin allele and the WT mouse rhodopsin were reduced, but protein levels revealed selective degradation of the mutant protein. These results suggest that the mutant rods undergo an adaptative process that prolongs survival despite unfolded protein accumulation in the ER. The P23H-Rho-RFP mouse may represent a useful tool for the future study of the pathology and treatment of P23H-Rho and adRP. This article has an associated First Person interview with the first author of the paper. Summary: A mouse line with a knock-in of the human rhodopsin gene altered to contain the P23H mutation and a red fluorescent protein fusion provides a new model for autosomal-dominant retinitis pigmentosa.
Collapse
Affiliation(s)
- Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.,Departments of Ophthalmology and Biochemistry, West Virginia University, 108 Biomedical Road, Morgantown, WV 26506, USA
| | - Vy Nguyen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Fung Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Lavanya Kailasam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - John H Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
20
|
Vats A, Xi Y, Feng B, Clinger OD, St Leger AJ, Liu X, Ghosh A, Dermond CD, Lathrop KL, Tochtrop GP, Picaud S, Chen Y. Non-retinoid chaperones improve rhodopsin homeostasis in a mouse model of retinitis pigmentosa. JCI Insight 2022; 7:153717. [PMID: 35472194 PMCID: PMC9220944 DOI: 10.1172/jci.insight.153717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Rhodopsin-associated (RHO-associated) retinitis pigmentosa (RP) is a progressive retinal disease that currently has no cure. RHO protein misfolding leads to disturbed proteostasis and the death of rod photoreceptors, resulting in decreased vision. We previously identified nonretinoid chaperones of RHO, including YC-001 and F5257-0462, by small-molecule high-throughput screening. Here, we profile the chaperone activities of these molecules toward the cell-surface level of 27 RP-causing human RHO mutants in NIH3T3 cells. Furthermore, using retinal explant culture, we show that YC-001 improves retinal proteostasis by supporting RHO homeostasis in RhoP23H/+ mouse retinae, which results in thicker outer nuclear layers (ONL), indicating delayed photoreceptor degeneration. Interestingly, YC-001 ameliorated retinal immune responses and reduced the number of microglia/macrophages in the RhoP23H/+ retinal explants. Similarly, F5257-0462 also protects photoreceptors in RhoP23H/+ retinal explants. In vivo, intravitreal injection of YC-001 or F5257-0462 microparticles in PBS shows that F5257-0462 has a higher efficacy in preserving photoreceptor function and delaying photoreceptor death in RhoP23H/+ mice. Collectively, we provide proof of principle that nonretinoid chaperones are promising drug candidates in treating RHO-associated RP.
Collapse
Affiliation(s)
- Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Yibo Xi
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Bing Feng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Owen D Clinger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Archisha Ghosh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Chase D Dermond
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, United States of America
| | - Serge Picaud
- Institut de la Vision, Sorbonne Université, Paris, France
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
21
|
Jiang K, Fairless E, Kanda A, Gotoh N, Cogliati T, Li T, Swaroop A. Divergent Effects of HSP70 Overexpression in Photoreceptors During Inherited Retinal Degeneration. Invest Ophthalmol Vis Sci 2021; 61:25. [PMID: 33107904 PMCID: PMC7594617 DOI: 10.1167/iovs.61.12.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Disruption of proteostasis is a key event in many neurodegenerative diseases. Heat shock proteins (HSPs) participate in multiple functions associated with intracellular transport and proteostasis. We evaluated the effect of augmented HSP70 expression in mutant photoreceptors of mouse retinal degeneration models to test the hypothesis that failure to sustain HSP70 expression contributes to photoreceptor cell death. Methods We examined HSP70 expression in retinas of wild-type and mutant mice by RNA and protein analysis. A transgenic mouse line, TgCrx-Hspa1a-Flag, was generated to express FLAG-tagged full-length HSP70 protein under control of a 2.3 kb mouse Crx promoter. This line was crossed to three distinct retinal degeneration mouse models. Retinal structure and function were evaluated by histology, immunohistochemistry, and electroretinography. Results In seven different mouse models of retinal degeneration, we detected transient elevation of endogenous HSP70 expression at early stages, followed by a dramatic reduction as cell death ensues, suggesting an initial adaptive response to cellular stress. Augmented expression of HSP70 in RHOT17M mice, in which mutant rhodopsin is misfolded, marginally improved photoreceptor survival, whereas elevated HSP70 led to more severe retinal degeneration in rd10 mutants that produce a partially functional PDE6B. In Rpgrip1−/− mice that display a ciliary defect, higher HSP70 had no impact on photoreceptor survival or function. Conclusions HSP70 overexpression has divergent effects in photoreceptors determined, at least in part, by the nature of the mutant protein each model carries. Additional investigations on HSP pathways and associated chaperone networks in photoreceptors are needed before designing therapeutic strategies targeting proteostasis.
Collapse
Affiliation(s)
- Ke Jiang
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Elizabeth Fairless
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Atsuhiro Kanda
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Norimoto Gotoh
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiziana Cogliati
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiansen Li
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
22
|
Fanelli F, Felline A, Marigo V. Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Arch 2021; 473:1339-1359. [PMID: 33728518 DOI: 10.1007/s00424-021-02546-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Vision in dim-light conditions is triggered by photoactivation of rhodopsin, the visual pigment of rod photoreceptor cells. Rhodopsin is made of a protein, the G protein coupled receptor (GPCR) opsin, and the chromophore 11-cis-retinal. Vertebrate rod opsin is the GPCR best characterized at the atomic level of detail. Since the release of the first crystal structure 20 years ago, a huge number of structures have been released that, in combination with valuable spectroscopic determinations, unveiled most aspects of the photobleaching process. A number of spontaneous mutations of rod opsin have been found linked to vision-impairing diseases like autosomal dominant or autosomal recessive retinitis pigmentosa (adRP or arRP, respectively) and autosomal congenital stationary night blindness (adCSNB). While adCSNB is mainly caused by constitutive activation of rod opsin, RP shows more variegate determinants affecting different aspects of rod opsin function. The vast majority of missense rod opsin mutations affects folding and trafficking and is linked to adRP, an incurable disease that awaits light on its molecular structure determinants. This review article summarizes all major structural information available on vertebrate rod opsin conformational states and the insights gained so far into the structural determinants of adCSNB and adRP linked to rod opsin mutations. Strategies to design small chaperones with therapeutic potential for selected adRP rod opsin mutants will be discussed as well.
Collapse
Affiliation(s)
- Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy. .,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.
| | - Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Valeria Marigo
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via Campi 287, Modena, 41125, Italy.,Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125, Modena, Italy
| |
Collapse
|
23
|
Vasudevan S, Park PSH. Differential Aggregation Properties of Mutant Human and Bovine Rhodopsin. Biochemistry 2020; 60:6-18. [PMID: 33356167 DOI: 10.1021/acs.biochem.0c00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodopsin is the light receptor required for the function and health of photoreceptor cells. Mutations in rhodopsin can cause misfolding and aggregation of the receptor, which leads to retinal degeneration. Bovine rhodopsin is often used as a model to understand the effect of pathogenic mutations in rhodopsin due to the abundance of structural information on the bovine form of the receptor. It is unclear whether or not the bovine rhodopsin template is adequate in predicting the effect of these mutations occurring in human retinal disease or in predicting the efficacy of therapeutic strategies. To better understand the extent to which bovine rhodopsin can serve as a model, human and bovine P23H rhodopsin mutants expressed heterologously in cells were examined. The aggregation properties and cellular localization of the mutant receptors were determined by Förster resonance energy transfer and confocal microscopy. The potential therapeutic effects of the pharmacological compounds 9-cis retinal and metformin were also examined. Human and bovine P23H rhodopsin mutants exhibited different aggregation properties and responses to the pharmacological compounds tested. These observations would lead to different predictions on the severity of the phenotype and divergent predictions on the benefit of the therapeutic compounds tested. The bovine rhodopsin template does not appear to adequately model the effects of the P23H mutation in the human form of the receptor.
Collapse
Affiliation(s)
- Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
24
|
Liu X, Feng B, Vats A, Tang H, Seibel W, Swaroop M, Tawa G, Zheng W, Byrne L, Schurdak M, Chen Y. Pharmacological clearance of misfolded rhodopsin for the treatment of RHO-associated retinitis pigmentosa. FASEB J 2020; 34:10146-10167. [PMID: 32536017 DOI: 10.1096/fj.202000282r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Abstract
Rhodopsin mutation and misfolding is a common cause of autosomal dominant retinitis pigmentosa (RP). Using a luciferase reporter assay, we undertook a small-molecule high-throughput screening (HTS) of 68, 979 compounds and identified nine compounds that selectively reduced the misfolded P23H rhodopsin without an effect on the wild type (WT) rhodopsin protein. Further, we found five of these compounds, including methotrexate (MTX), promoted P23H rhodopsin degradation that also cleared out other misfolded rhodopsin mutant proteins. We showed MTX increased P23H rhodopsin degradation via the lysosomal but not the proteasomal pathway. Importantly, one intravitreal injection (IVI) of 25 pmol MTX increased electroretinogram (ERG) response and rhodopsin level in the retinae of RhoP23H/+ knock-in mice at 1 month of age. Additionally, four weekly IVIs increased the photoreceptor cell number in the retinae of RhoP23H/+ mice compared to vehicle control. Our study indicates a therapeutic potential of repurposing MTX for the treatment of rhodopsin-associated RP.
Collapse
Affiliation(s)
- Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bing Feng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA
| | - William Seibel
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA.,Oncology Department, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Gregory Tawa
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Leah Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Piano I, D'Antongiovanni V, Novelli E, Biagioni M, Dei Cas M, Paroni RC, Ghidoni R, Strettoi E, Gargini C. Myriocin Effect on Tvrm4 Retina, an Autosomal Dominant Pattern of Retinitis Pigmentosa. Front Neurosci 2020; 14:372. [PMID: 32435178 PMCID: PMC7218082 DOI: 10.3389/fnins.2020.00372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/26/2020] [Indexed: 02/01/2023] Open
Abstract
Tvrm4 mice, a model of autosomal dominant retinitis pigmentosa (RP), carry a mutation of Rhodopsin gene that can be activated by brief exposure to very intense light. Here, we test the possibility of an anatomical, metabolic, and functional recovery by delivering to degenerating Tvrm4 animals, Myriocin, an inhibitor of ceramide de novo synthesis previously shown to effectively slow down retinal degeneration in rd10 mutants (Strettoi et al., 2010; Piano et al., 2013). Different routes and durations of Myriocin administration were attempted by using either single intravitreal (i.v.) or long-term, repeated intraperitoneal (i.p.) injections. The retinal function of treated and control animals was tested by ERG recordings. Retinas from ERG-recorded animals were studied histologically to reveal the extent of photoreceptor death. A correlation was observed between Myriocin administration, lowering of retinal ceramides, and preservation of ERG responses in i.v. injected cases. Noticeably, the i.p. treatment with Myriocin decreased the extension of the retinal-degenerating area, preserved the ERG response, and correlated with decreased levels of biochemical indicators of retinal oxidative damage. The results obtained in this study confirm the efficacy of Myriocin in slowing down retinal degeneration in genetic models of RP independently of the underlying mutation responsible for the disease, likely targeting ceramide-dependent, downstream pathways. Alleviation of retinal oxidative stress upon Myriocin treatment suggests that this molecule, or yet unidentified metabolites, act on cellular detoxification systems supporting cell survival. Altogether, the pharmacological approach chosen here meets the necessary pre-requisites for translation into human therapy to slow down RP.
Collapse
Affiliation(s)
- Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | - Michele Dei Cas
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, Milan, Italy.,Aldo Ravelli Center, University of Milan, Milan, Italy
| | | | | |
Collapse
|
26
|
Coussa RG, Basali D, Maeda A, DeBenedictis M, Traboulsi EI. Sector retinitis pigmentosa: Report of ten cases and a review of the literature. Mol Vis 2019; 25:869-889. [PMID: 31908405 PMCID: PMC6937219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/28/2019] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To describe the genotypes and phenotypes of ten patients with sector retinitis pigmentosa (RP). We also review previously reported mutations associated with sector RP and provide a discussion of possible underlying pathophysiological mechanisms. METHODS Patients underwent detailed ophthalmologic examinations, fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography (SD-OCT), as well as visual field and electroretinographic testing. All patients underwent genetic testing to identify the molecular etiology of their disease. RESULTS A total of ten patients were studied. Among these patients, nine had mutations in RHO (c.677T>C; p.Leu226Pro (novel), c.68C>A; p.Pro23His, c.808A>C; p.Ser270Arg, c.44A>G; p.Asn15Ser, and c.325G>A; p.Gly109Arg), and one patient had a mutation in RPGR (c.3092_3093delAG; p.Glu1031Glyfs*47). All patients with missense mutations in RHO had visual acuities (VAs) better than 20/30 and showed a retained foveal ellipsoid zone and overlying retinal structures. The patient with the c.3092_3093delAG deletion in RPGR had VA of 20/60 oculus dexter (OD) and 20/400 oculus sinister (OS), as well as significant foveal thinning and contour atrophy. All patients showed pigmentary changes, or marked atrophy along the inferior arcades, or both. This pattern of degeneration corresponded to hypo- and hyperFAF and superior visual defects. CONCLUSIONS Sector RP is an uncommon form of RP in which only one or two retinal quadrants display clinical pathological signs. The great majority of cases result from mutations in RHO. The present data confirmed previously reported phenotypic manifestations of sector RP. Inferior retinal quadrants are possibly more severely affected due to greater light exposure.
Collapse
Affiliation(s)
- Razek Georges Coussa
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Diana Basali
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Akiko Maeda
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Meghan DeBenedictis
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| | - Elias I. Traboulsi
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
27
|
Harlen KM, Roush EC, Clayton JE, Martinka S, Hughes TE. Live-Cell Assays for Cell Stress Responses Reveal New Patterns of Cell Signaling Caused by Mutations in Rhodopsin, α-Synuclein and TDP-43. Front Cell Neurosci 2019; 13:535. [PMID: 31920544 PMCID: PMC6930162 DOI: 10.3389/fncel.2019.00535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Many neurodegenerative diseases induce high levels of sustained cellular stress and alter a number of cellular processes. To examine how different mutations associated with neurodegenerative disease affect cell stress and signaling, we created live-cell assays for endoplasmic reticulum (ER)-mediated cell stress and second messenger signaling. We first examined neurodegenerative mutations associated with direct ER stress by exploring the effect of rhodopsin mutations on ER stress and Ca2+ signaling. The rhodopsin P23H mutation, the most common mutation in autosomal dominant Retinitis Pigmentosa (RP), produced increased ER stress levels compared to wild type (WT) rhodopsin. Moreover, this increase in cell stress correlated with blunted Ca2+ signaling in a stress-dependent manner. Analysis of single-cell Ca2+ signaling profiles revealed unique Ca2+ signaling responses exist in cells expressing WT or P23H rhodopsin, consistent with the idea that second messenger signaling is affected by cell stress. To explore the use of the ER-stress biosensor in neurodegenerative diseases that may not have a direct effect on ER-mediated cell stress, we examined how various mutants of α-synuclein and TDP-43 affected ER stress. Mutants of both α-synuclein and TDP-43 associated with Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS) demonstrated increased ER stress compared to WT proteins. To examine the effect of α-synuclein and TDP-43 mutants on cellular signaling, we created a second live-cell assay to monitor changes in cAMP signaling during expression of various forms of α-synuclein and TDP-43. The increased cell stress caused by expression of the mutant proteins was accompanied by changes in phosphodiesterase activity. Both HEK293T and SH-SY5Y cells expressing these proteins displayed a shift towards increased cAMP degradation rates, likely due to increased phosphodiesterase activity. Together these data illustrate how biosensors for cellular stress and signaling can provide nuanced, new views of neurodegenerative disease processes.
Collapse
|
28
|
Scott BM, Wybenga-Groot LE, McGlade CJ, Heon E, Peisajovich SG, Chang BSW. Screening of Chemical Libraries Using a Yeast Model of Retinal Disease. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:969-977. [PMID: 31556794 PMCID: PMC11670874 DOI: 10.1177/2472555219875934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retinitis pigmentosa (RP) is a degenerative retinal disease, often caused by mutations in the G-protein-coupled receptor rhodopsin. The majority of pathogenic rhodopsin mutations cause rhodopsin to misfold, including P23H, disrupting its crucial ability to respond to light. Previous screens to discover pharmacological chaperones of rhodopsin have primarily been based on rescuing rhodopsin trafficking and localization to the plasma membrane. Here, we present methods utilizing a yeast-based assay to screen for compounds that rescue the ability of rhodopsin to activate an associated downstream G-protein signaling cascade. We engineered a yeast strain in which human rhodopsin variants were genomically integrated, and were able to demonstrate functional coupling to the yeast mating pathway, leading to fluorescent protein expression. We confirmed that a known pharmacological chaperone, 9-cis retinal, could partially rescue light-dependent activation of a disease-associated rhodopsin mutation (P23H) expressed in yeast. These novel yeast strains were used to perform a phenotypic screen of 4280 compounds from the LOPAC1280 library and a peptidomimetic library, to discover novel pharmacological chaperones of rhodopsin. The fluorescence-based assay was robust in a 96-well format, with a Z' factor of 0.65 and a signal-to-background ratio of above 14. One compound was selected for additional analysis, but it did not appear to rescue rhodopsin function in yeast. The methods presented here are amenable to future screens of small-molecule libraries, as they are robust and cost-effective. We also discuss how these methods could be further modified or adapted to perform screens of more compounds in the future.
Collapse
Affiliation(s)
- Benjamin M Scott
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Heon
- Department of Ophthalmology and Vision Science, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio G Peisajovich
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, ON, Canada
| |
Collapse
|
29
|
Lowe RJ, Daniello KM, Duncan JL, Yang H, Yasumura D, Matthes MT, LaVail MM. Influence of eye pigmentation on retinal degeneration in P23H and S334ter mutant rhodopsin transgenic rats. Exp Eye Res 2019; 187:107755. [PMID: 31408630 DOI: 10.1016/j.exer.2019.107755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/14/2019] [Accepted: 08/09/2019] [Indexed: 11/26/2022]
Abstract
Dark-rearing has been found to slow the rate of retinal degeneration in albino P23H but not S334ter mutant rhodopsin transgenic (Tg) rats. Since eye pigmentation has the same protective slowing effect as dark-rearing in RCS rats, we examined whether eye pigmentation has a comparable slowing effect in the different mutant rhodopsin Tg rats. Different lines of albino P23H and S334ter Tg rats on the Sprague-Dawley (SD) background were bred to Long-Evans (LE) rats to produce pigmented Tg rats. These were compared to albino Tg rats at postnatal days of different ages using the outer nuclear layer (ONL) as a morphological measure of photoreceptor number and electroretinogram (ERG) a- and b-wave amplitudes as a measure of retinal function. When compared to albino P23H rats, pigmented P23H rats had a slower rate of degeneration as measured by greater ONL thicknesses and greater ERG a- and b-wave amplitudes. By contrast, pigmented S334ter rats showed no difference in ONL thicknesses or ERG a- and b-wave amplitudes when compared to their albino equivalents. Thus, degeneration of photoreceptors in P23H Tg rats is slowed by eye pigmentation as measured by ONL thickness, while it is not in the S334ter Tg rats. Eye pigmentation also protects functional changes in ERG a- and b-waves for the P23H lines, but not for the S334ter lines.
Collapse
Affiliation(s)
- Robert J Lowe
- Department of Ophthalmology, University of California, San Francisco, CA, 94143-0730, USA.
| | - Kate M Daniello
- Department of Ophthalmology, University of California, San Francisco, CA, 94143-0730, USA.
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, 94143-0730, USA.
| | - Haidong Yang
- Department of Ophthalmology, University of California, San Francisco, CA, 94143-0730, USA.
| | - Douglas Yasumura
- Department of Ophthalmology, University of California, San Francisco, CA, 94143-0730, USA
| | - Michael T Matthes
- Department of Ophthalmology, University of California, San Francisco, CA, 94143-0730, USA.
| | - Matthew M LaVail
- Department of Ophthalmology, University of California, San Francisco, CA, 94143-0730, USA.
| |
Collapse
|
30
|
Park PSH. Rhodopsin Oligomerization and Aggregation. J Membr Biol 2019; 252:413-423. [PMID: 31286171 DOI: 10.1007/s00232-019-00078-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022]
Abstract
Rhodopsin is the light receptor in photoreceptor cells of the retina and a prototypical G protein-coupled receptor. Two types of quaternary structures can be adopted by rhodopsin. If rhodopsin folds and attains a proper tertiary structure, it can then form oligomers and nanodomains within the photoreceptor cell membrane. In contrast, if rhodopsin misfolds, it cannot progress through the biosynthetic pathway and instead will form aggregates that can cause retinal degenerative disease. In this review, emerging views are highlighted on the supramolecular organization of rhodopsin within the membrane of photoreceptor cells and the aggregation of rhodopsin that can lead to retinal degeneration.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
31
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
32
|
Feng B, Liu X, Chen Y. A Rhodopsin Transport Assay by High-Content Imaging Analysis. J Vis Exp 2019. [PMID: 30735172 DOI: 10.3791/58703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Rhodopsin misfolding mutations lead to rod photoreceptor death that is manifested as autosomal dominant retinitis pigmentosa (RP), a progressive blinding disease that lacks effective treatment. We hypothesize that the cytotoxicity of the misfolded rhodopsin mutant can be alleviated by pharmacologically stabilizing the mutant rhodopsin protein. The P23H mutation, among the other Class II rhodopsin mutations, encodes a structurally unstable rhodopsin mutant protein that is accumulated in the endoplasmic reticulum (ER), whereas the wild type rhodopsin is transported to the plasma membrane in mammalian cells. We previously performed a luminescence-based high-throughput screen (HTS) and identified a group of pharmacological chaperones that rescued the transport of the P23H rhodopsin from ER to the plasma membrane. Here, using an immunostaining method followed by a high-content imaging analysis, we quantified the mutant rhodopsin protein amount in the whole cell and on the plasma membrane. This method is informative and effective to identify true hits from false positives following HTS. Additionally, the high-content image analysis enabled us to quantify multiple parameters from a single experiment to evaluate the pharmacological properties of each compound. Using this assay, we analyzed the effect of 11 different compounds towards six RP associated rhodopsin mutants, obtaining a 2-D pharmacological profile for a quantitative and qualitative understanding about the structural stability of these rhodopsin mutants and efficacy of different compounds towards these mutants.
Collapse
Affiliation(s)
- Bing Feng
- Department of Ophthalmology, University of Pittsburgh
| | - Xujie Liu
- Department of Ophthalmology, University of Pittsburgh
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh; McGowan Institute for Regenerative Medicine, University of Pittsburgh;
| |
Collapse
|
33
|
Wang W, Guo DY, Tao YX. Therapeutic strategies for diseases caused by loss-of-function mutations in G protein-coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 161:181-210. [DOI: 10.1016/bs.pmbts.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Coupling of Human Rhodopsin to a Yeast Signaling Pathway Enables Characterization of Mutations Associated with Retinal Disease. Genetics 2018; 211:597-615. [PMID: 30514708 DOI: 10.1534/genetics.118.301733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are crucial sensors of extracellular signals in eukaryotes, with multiple GPCR mutations linked to human diseases. With the growing number of sequenced human genomes, determining the pathogenicity of a mutation is challenging, but can be aided by a direct measurement of GPCR-mediated signaling. This is particularly difficult for the visual pigment rhodopsin-a GPCR activated by light-for which hundreds of mutations have been linked to inherited degenerative retinal diseases such as retinitis pigmentosa. In this study, we successfully engineered, for the first time, activation by human rhodopsin of the yeast mating pathway, resulting in signaling via a fluorescent reporter. We combine this novel assay for rhodopsin light-dependent activation with studies of subcellular localization, and the upregulation of the unfolded protein response in response to misfolded rhodopsin protein. We use these assays to characterize a panel of rhodopsin mutations with known molecular phenotypes, finding that rhodopsin maintains a similar molecular phenotype in yeast, with some interesting differences. Furthermore, we compare our assays in yeast with clinical phenotypes from patients with novel disease-linked mutations. We demonstrate that our engineered yeast strain can be useful in rhodopsin mutant classification, and in helping to determine the molecular mechanisms underlying their pathogenicity. This approach may also be applied to better understand the clinical relevance of other human GPCR mutations, furthering the use of yeast as a tool for investigating molecular mechanisms relevant to human disease.
Collapse
|
35
|
Kwon OS, Song HS, Park TH, Jang J. Conducting Nanomaterial Sensor Using Natural Receptors. Chem Rev 2018; 119:36-93. [DOI: 10.1021/acs.chemrev.8b00159] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oh Seok Kwon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), Daejon 34141, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
36
|
da Fonseca NJ, Afonso MQL, de Oliveira LC, Bleicher L. A new method bridging graph theory and residue co-evolutionary networks for specificity determinant positions detection. Bioinformatics 2018; 35:1478-1485. [DOI: 10.1093/bioinformatics/bty846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/11/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Néli José da Fonseca
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte – MG, Brazil
| | - Marcelo Querino Lima Afonso
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte – MG, Brazil
| | - Lucas Carrijo de Oliveira
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte – MG, Brazil
| | - Lucas Bleicher
- Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte – MG, Brazil
| |
Collapse
|
37
|
Detection of misfolded rhodopsin aggregates in cells by Förster resonance energy transfer. Methods Cell Biol 2018; 149:87-105. [PMID: 30616829 DOI: 10.1016/bs.mcb.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rhodopsin is the light receptor in rod photoreceptor cells of the retina that plays a central role in phototransduction and rod photoreceptor cell health. Rhodopsin mutations are the leading known cause of autosomal dominant retinitis pigmentosa, a retinal degenerative disease. A majority of rhodopsin mutations cause misfolding and aggregation of the apoprotein opsin. The nature of aggregates formed by misfolded rhodopsin mutants and the associated cell toxicity is poorly understood. Misfolding rhodopsin mutants have been characterized biochemically, and categorized as either partial or complete misfolding mutants. This classification is incomplete and does not provide sufficient information to fully understand rhodopsin aggregation, disease pathogenesis, and evaluate therapeutic strategies. To better understand the aggregation of misfolded rhodopsin mutants, a Förster resonance energy transfer assay has been developed to monitor the aggregation of fluorescently tagged mutant rhodopsins expressed in live cells.
Collapse
|
38
|
Gragg M, Park PSH. Misfolded rhodopsin mutants display variable aggregation properties. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2938-2948. [PMID: 29890221 PMCID: PMC6066411 DOI: 10.1016/j.bbadis.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 11/20/2022]
Abstract
The largest class of rhodopsin mutations causing autosomal dominant retinitis pigmentosa (adRP) is mutations that lead to misfolding and aggregation of the receptor. The misfolding mutants have been characterized biochemically, and categorized as either partial or complete misfolding mutants. This classification is incomplete and does not provide sufficient information to fully understand the disease pathogenesis and evaluate therapeutic strategies. A Förster resonance energy transfer (FRET) method was utilized to directly assess the aggregation properties of misfolding rhodopsin mutants within the cell. Partial (P23H and P267L) and complete (G188R, H211P, and P267R) misfolding mutants were characterized to reveal variability in aggregation properties. The complete misfolding mutants all behaved similarly, forming aggregates when expressed alone, minimally interacting with the wild-type receptor when coexpressed, and were unresponsive to treatment with the pharmacological chaperone 9-cis retinal. In contrast, variability was observed between the partial misfolding mutants. In the opsin form, the P23H mutant behaved similarly as the complete misfolding mutants. In contrast, the opsin form of the P267L mutant existed as both aggregates and oligomers when expressed alone and formed mostly oligomers with the wild-type receptor when coexpressed. The partial misfolding mutants both reacted similarly to the pharmacological chaperone 9-cis retinal, displaying improved folding and oligomerization when expressed alone but aggregating with wild-type receptor when coexpressed. The observed differences in aggregation properties and effect of 9-cis retinal predict different outcomes in disease pathophysiology and suggest that retinoid-based chaperones will be ineffective or even detrimental.
Collapse
Affiliation(s)
- Megan Gragg
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
39
|
Zelinka CP, Sotolongo-Lopez M, Fadool JM. Targeted disruption of the endogenous zebrafish rhodopsin locus as models of rapid rod photoreceptor degeneration. Mol Vis 2018; 24:587-602. [PMID: 30210230 PMCID: PMC6128699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/24/2018] [Indexed: 12/05/2022] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a collection of genetic disorders that results in the degeneration of light-sensitive photoreceptor cells, leading to blindness. RP is associated with more than 70 loci that may display dominant or recessive modes of inheritance, but mutations in the gene encoding the visual pigment rhodopsin (RHO) are the most frequent cause. In an effort to develop precise mutations in zebrafish as novel models of photoreceptor degeneration, we describe the generation and germline transmission of a series of novel clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-induced insertion and deletion (indel) mutations in the major zebrafish rho locus, rh1-1. Methods One- or two-cell staged zebrafish embryos were microinjected with in vitro transcribed mRNA encoding Cas9 and a single guide RNA (gRNA). Mutations were detected by restriction fragment length polymorphism (RFLP) and DNA sequence analyses in injected embryos and offspring. Immunolabeling with rod- and cone-specific antibodies was used to test for histological and cellular changes. Results Using gRNAs that targeted highly conserved regions of rh1-1, a series of dominant and recessive alleles were recovered that resulted in the rapid degeneration of rod photoreceptors. No effect on cones was observed. Targeting the 5'-coding sequence of rh1-1 led to the recovery of several indels similar to disease-associated alleles. A frame shift mutation leading to a premature stop codon (T17*) resulted in rod degeneration when brought to homozygosity. Immunoblot and fluorescence labeling with a Rho-specific antibody suggest that this is indeed a null allele, illustrating that the Rho expression is essential for rod survival. Two in-frame mutations were recovered that disrupted the highly conserved N-linked glycosylation consensus sequence at N15. Larvae heterozygous for either of the alleles demonstrated rapid rod degeneration. Targeting of the 3'-coding region of rh1-1 resulted in the recovery of an allele encoding a premature stop codon (S347*) upstream of the conserved VSPA sorting sequence and a second in-frame allele that disrupted the putative phosphorylation site at S339. Both alleles resulted in rod death in a dominant inheritance pattern. Following the loss of the targeting sequence, immunolabeling for Rho was no longer restricted to the rod outer segment, but it was also localized to the plasma membrane. Conclusions The efficiency of CRISPR/Cas9 for gene targeting, coupled with the large number of mutations associated with RP, provided a backdrop for the rapid isolation of novel alleles in zebrafish that phenocopy disease. These novel lines will provide much needed in-vivo models for high throughput screens of compounds or genes that protect from photoreceptor degeneration.
Collapse
Affiliation(s)
- Christopher P. Zelinka
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
| | | | - James M. Fadool
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
| |
Collapse
|
40
|
Rodgers J, Hughes S, Pothecary CA, Brown LA, Hickey DG, Peirson SN, Hankins MW. Defining the impact of melanopsin missense polymorphisms using in vivo functional rescue. Hum Mol Genet 2018; 27:2589-2603. [PMID: 29718372 PMCID: PMC6048994 DOI: 10.1093/hmg/ddy150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
Melanopsin (OPN4) is an opsin photopigment expressed within intrinsically photosensitive retinal ganglion cells (ipRGCs) that mediate non-image forming (NIF) responses to light. Two single-nucleotide polymorphisms (SNPs) in human melanopsin (hOPN4), Pro10Leu and Thr394Ile, have recently been associated with abnormal NIF responses to light, including seasonal affective disorder. It has been suggested these behavioural changes are due to altered melanopsin signalling. However, there is currently no direct evidence to support this. Here we have used ipRGC-specific delivery of hOPN4 wild-type (WT), Pro10Leu or Thr394Ile adeno-associated viruses (AAV) to determine the functional consequences of hOPN4 SNPs on melanopsin-driven light responses and associated behaviours. Immunohistochemistry confirmed hOPN4 AAVs exclusively transduced mouse ipRGCs. Behavioural phenotyping performed before and after AAV injection demonstrated that both hOPN4 Pro10Leu and Thr394Ile could functionally rescue pupillary light responses and circadian photoentrainment in Opn4-/- mice, with no differences in NIF behaviours detected for animals expressing either SNP compared to hOPN4 WT. Multi-electrode array recordings revealed that ipRGCs expressing hOPN4 Thr394Ile exhibit melanopsin-driven light responses with significantly attenuated response amplitude, decreased sensitivity and faster offset kinetics compared to hOPN4 WT. IpRGCs expressing hOpn4 Pro10Leu also showed reduced response amplitude. Collectively these data suggest Thr394Ile and Pro10Leu may be functionally significant SNPs, which result in altered melanopsin signalling. To our knowledge, this study provides the first direct evidence for the effects of hOPN4 polymorphisms on melanopsin-driven light responses and NIF behaviours in vivo, providing further insight into the role of these SNPs in melanopsin function and human physiology.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Steven Hughes
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carina A Pothecary
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Doron G Hickey
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mark W Hankins
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Chen Y, Chen Y, Jastrzebska B, Golczak M, Gulati S, Tang H, Seibel W, Li X, Jin H, Han Y, Gao S, Zhang J, Liu X, Heidari-Torkabadi H, Stewart PL, Harte WE, Tochtrop GP, Palczewski K. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration. Nat Commun 2018; 9:1976. [PMID: 29773803 PMCID: PMC5958115 DOI: 10.1038/s41467-018-04261-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Rhodopsin homeostasis is tightly coupled to rod photoreceptor cell survival and vision. Mutations resulting in the misfolding of rhodopsin can lead to autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration that currently is untreatable. Using a cell-based high-throughput screen (HTS) to identify small molecules that can stabilize the P23H-opsin mutant, which causes most cases of adRP, we identified a novel pharmacological chaperone of rod photoreceptor opsin, YC-001. As a non-retinoid molecule, YC-001 demonstrates micromolar potency and efficacy greater than 9-cis-retinal with lower cytotoxicity. YC-001 binds to bovine rod opsin with an EC50 similar to 9-cis-retinal. The chaperone activity of YC-001 is evidenced by its ability to rescue the transport of multiple rod opsin mutants in mammalian cells. YC-001 is also an inverse agonist that non-competitively antagonizes rod opsin signaling. Significantly, a single dose of YC-001 protects Abca4 -/- Rdh8 -/- mice from bright light-induced retinal degeneration, suggesting its broad therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Suite 300, Pittsburgh, PA, 15219, USA.
- Department of Ophthalmology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA.
| | - Yu Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Sahil Gulati
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH, 45237, USA
| | - William Seibel
- Drug Discovery Center, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH, 45237, USA
| | - Xiaoyu Li
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Hui Jin
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Yong Han
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Songqi Gao
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Hossein Heidari-Torkabadi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Phoebe L Stewart
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - William E Harte
- Office of Translation and Innovation, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA.
| |
Collapse
|
42
|
Mattle D, Kuhn B, Aebi J, Bedoucha M, Kekilli D, Grozinger N, Alker A, Rudolph MG, Schmid G, Schertler GFX, Hennig M, Standfuss J, Dawson RJP. Ligand channel in pharmacologically stabilized rhodopsin. Proc Natl Acad Sci U S A 2018; 115:3640-3645. [PMID: 29555765 PMCID: PMC5889642 DOI: 10.1073/pnas.1718084115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the degenerative eye disease retinitis pigmentosa (RP), protein misfolding leads to fatal consequences for cell metabolism and rod and cone cell survival. To stop disease progression, a therapeutic approach focuses on stabilizing inherited protein mutants of the G protein-coupled receptor (GPCR) rhodopsin using pharmacological chaperones (PC) that improve receptor folding and trafficking. In this study, we discovered stabilizing nonretinal small molecules by virtual and thermofluor screening and determined the crystal structure of pharmacologically stabilized opsin at 2.4 Å resolution using one of the stabilizing hits (S-RS1). Chemical modification of S-RS1 and further structural analysis revealed the core binding motif of this class of rhodopsin stabilizers bound at the orthosteric binding site. Furthermore, previously unobserved conformational changes are visible at the intradiscal side of the seven-transmembrane helix bundle. A hallmark of this conformation is an open channel connecting the ligand binding site with the membrane and the intradiscal lumen of rod outer segments. Sufficient in size, the passage permits the exchange of hydrophobic ligands such as retinal. The results broaden our understanding of rhodopsin's conformational flexibility and enable therapeutic drug intervention against rhodopsin-related retinitis pigmentosa.
Collapse
Affiliation(s)
- Daniel Mattle
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Johannes Aebi
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Marc Bedoucha
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Demet Kekilli
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Nathalie Grozinger
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Andre Alker
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Georg Schmid
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael Hennig
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland;
| | - Roger J P Dawson
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland;
| |
Collapse
|
43
|
Katayama K, Furutani Y, Iwaki M, Fukuda T, Imai H, Kandori H. “In situ” observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy. Phys Chem Chem Phys 2018; 20:3381-3387. [DOI: 10.1039/c7cp07277e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ATR-FTIR spectroscopic study elucidates the novel role of Cl−-binding in primate long-wavelength-sensitive (LWS) visual pigment.
Collapse
Affiliation(s)
- Kota Katayama
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science
- Institute for Molecular Science
- Okazaki 444-8585
- Japan
| | - Masayo Iwaki
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Tetsuya Fukuda
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Hiroo Imai
- Primate Research Institute
- Kyoto University
- Inuyama 484-8506
- Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
- OptoBio Technology Research Center
| |
Collapse
|
44
|
Krebs MP, Collin GB, Hicks WL, Yu M, Charette JR, Shi LY, Wang J, Naggert JK, Peachey NS, Nishina PM. Mouse models of human ocular disease for translational research. PLoS One 2017; 12:e0183837. [PMID: 28859131 PMCID: PMC5578669 DOI: 10.1371/journal.pone.0183837] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/12/2017] [Indexed: 01/24/2023] Open
Abstract
Mouse models provide a valuable tool for exploring pathogenic mechanisms underlying inherited human disease. Here, we describe seven mouse models identified through the Translational Vision Research Models (TVRM) program, each carrying a new allele of a gene previously linked to retinal developmental and/or degenerative disease. The mutations include four alleles of three genes linked to human nonsyndromic ocular diseases (Aipl1tvrm119, Aipl1tvrm127, Rpgrip1tvrm111, RhoTvrm334) and three alleles of genes associated with human syndromic diseases that exhibit ocular phentoypes (Alms1tvrm102, Clcn2nmf289, Fkrptvrm53). Phenotypic characterization of each model is provided in the context of existing literature, in some cases refining our current understanding of specific disease attributes. These murine models, on fixed genetic backgrounds, are available for distribution upon request and may be useful for understanding the function of the gene in the retina, the pathological mechanisms induced by its disruption, and for testing experimental approaches to treat the corresponding human ocular diseases.
Collapse
Affiliation(s)
- Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wanda L. Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Lan Ying Shi
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jieping Wang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
45
|
Gargini C, Novelli E, Piano I, Biagioni M, Strettoi E. Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse. Sci Rep 2017; 7:5730. [PMID: 28720880 PMCID: PMC5516022 DOI: 10.1038/s41598-017-06045-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 02/02/2023] Open
Abstract
Hallmarks of Retinitis Pigmentosa (RP), a family of genetic diseases, are a typical rod-cone-degeneration with initial night blindness and loss of peripheral vision, followed by decreased daylight sight and progressive visual acuity loss up to legal blindness. Great heterogeneity in nature and function of mutated genes, variety of mutations for each of them, variability in phenotypic appearance and transmission modality contribute to make RP a still incurable disease. Translational research relies on appropriate animal models mimicking the genetic and phenotypic diversity of the human pathology. Here, we provide a systematic, morphological and functional analysis of RhoTvrm4/Rho+ rhodopsin mutant mice, originally described in 2010 and portraying several features of common forms of autosomal dominant RP caused by gain-of-function mutations. These mice undergo photoreceptor degeneration only when exposed briefly to strong, white light and allow controlled timing of induction of rod and cone death, which therefore can be elicited in adult animals, as observed in human RP. The option to control severity and retinal extent of the phenotype by regulating intensity and duration of the inducing light opens possibilities to exploit this model for multiple experimental purposes. Altogether, the unique features of this mutant make it an excellent resource for retinal degeneration research.
Collapse
Affiliation(s)
| | | | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
46
|
Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic X. laevis Models of Retinitis Pigmentosa. J Neurosci 2017; 37:1039-1054. [PMID: 28490005 DOI: 10.1523/jneurosci.1647-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/18/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal degeneration (RD) that leads to blindness for which no treatment is available. RP is frequently caused by mutations in Rhodopsin; in some animal models, RD is exacerbated by light. Valproic acid (VPA) is a proposed treatment for RP and other neurodegenerative disorders, with a phase II trial for RP under way. However, the therapeutic mechanism is unclear, with minimal research supporting its use in RP. We investigated the effects of VPA on Xenopus laevis models of RP expressing human P23H, T17M, T4K, and Q344ter rhodopsins, which are associated with RP in humans. VPA ameliorated RD associated with P23H rhodopsin and promoted clearing of mutant rhodopsin from photoreceptors. The effect was equal to that of dark rearing, with no additive effect observed. Rescue of visual function was confirmed by electroretinography. In contrast, VPA exacerbated RD caused by T17M rhodopsin in light, but had no effect in darkness. Effects in T4K and Q344ter rhodopsin models were also negative. These effects of VPA were paralleled by treatment with three additional histone deacetylase (HDAC) inhibitors, but not other antipsychotics, chemical chaperones, or VPA structural analogues. In WT retinas, VPA treatment increased histone H3 acetylation. In addition, electron microscopy showed increased autophagosomes in rod inner segments with HDAC inhibitor (HDACi) treatment, potentially linking the therapeutic effects in P23H rhodopsin animals and negative effects in other models with autophagy. Our results suggest that the success or failure of VPA treatment is dependent on genotype and that HDACi treatment is contraindicated for some RP cases.SIGNIFICANCE STATEMENT Retinitis pigmentosa (RP) is an inherited, degenerative retinal disease that leads to blindness for which no therapy is available. We determined that valproic acid (VPA), currently undergoing a phase II trial for RP, has both beneficial and detrimental effects in animal models of RP depending on the underlying disease mechanism and that both effects are due to histone deacetylase (HDAC) inhibition possibly linked to autophagy regulation. Off-label use of VPA and other HDAC inhibitors for the treatment of RP should be limited to the research setting until this effect is understood and can be predicted. Our study suggests that, unless genotype is accounted for, clinical trials for RP treatments may give negative results due to multiple disease mechanisms with differential responses to therapeutic interventions.
Collapse
|
47
|
Simple and complex retinal dystrophies are associated with profoundly different disease networks. Sci Rep 2017; 7:41835. [PMID: 28139756 PMCID: PMC5282568 DOI: 10.1038/srep41835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/28/2016] [Indexed: 12/20/2022] Open
Abstract
Retinopathies are a group of monogenetic or complex retinal diseases associated with high unmet medical need. Monogenic disorders are caused by rare genetic variation and usually arise early in life. Other diseases, such as age-related macular degeneration (AMD), develop late in life and are considered to be of complex origin as they develop from a combination of genetic, ageing, environmental and lifestyle risk factors. Here, we contrast the underlying disease networks and pathological mechanisms of monogenic as opposed to complex retinopathies, using AMD as an example of the latter. We show that, surprisingly, genes associated with the different forms of retinopathies in general do not overlap despite their overlapping retinal phenotypes. Further, AMD risk genes participate in multiple networks with interaction partners that link to different ubiquitous pathways affecting general tissue integrity and homeostasis. Thus AMD most likely represents an endophenotype with differing underlying pathogenesis in different subjects. Localising these pathomechanisms and processes within and across different retinal anatomical compartments provides a novel representation of AMD that may be extended to complex disease in general. This approach may generate improved treatment options that target multiple processes with the aim of restoring tissue homeostasis and maintaining vision.
Collapse
|
48
|
Athanasiou D, Aguila M, Opefi CA, South K, Bellingham J, Bevilacqua D, Munro PM, Kanuga N, Mackenzie FE, Dubis AM, Georgiadis A, Graca AB, Pearson RA, Ali RR, Sakami S, Palczewski K, Sherman MY, Reeves PJ, Cheetham ME. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Hum Mol Genet 2017; 26:305-319. [PMID: 28065882 PMCID: PMC5351934 DOI: 10.1093/hmg/ddw387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/29/2023] Open
Abstract
Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic 'gain of function', such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Chikwado A. Opefi
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | - Kieron South
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | | | | - Peter M. Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Naheed Kanuga
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Adam M. Dubis
- Moorfields Eye Hospital NHS Trust, 162 City Road, London, UK
| | | | - Anna B. Graca
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | | | - Robin R. Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Sanae Sakami
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, USA
| | - Michael Y. Sherman
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts, MA, USA
| | - Philip J. Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, UK
| | | |
Collapse
|
49
|
Dong Y, Cai X, Wu Y, Liu Y, Deng L, Chen H. Insights from Genetic Model Systems of Retinal Degeneration: Role of Epsins in Retinal Angiogenesis and VEGFR2 Signaling. JOURNAL OF NATURE AND SCIENCE 2017; 3:e281. [PMID: 28191500 PMCID: PMC5303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The retina is a light sensitive tissue that contains specialized photoreceptor cells called rods and cones which process visual signals. These signals are relayed to the brain through interneurons and the fibers of the optic nerve. The retina is susceptible to a variety of degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), retinitis pigmentosa (RP) and other inherited retinal degenerations. In order to reveal the mechanism underlying these diseases and to find methods for the prevention/treatment of retinal degeneration, animal models have been generated to mimic human eye diseases. In this paper, several well-characterized and commonly used animal models are reviewed. Of particular interest are the contributions of these models to our understanding of the mechanisms of retinal degeneration and thereby providing novel treatment options including gene therapy, stem cell therapy, nanomedicine, and CRISPR/Cas9 genome editing. Role of newly-identified adaptor protein epsins from our laboratory is discussed in retinal angiogenesis and VEGFR2 signaling.
Collapse
Affiliation(s)
- Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Cai
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Wu
- Department of Internal Medicine, Charles R. Drew University of Medicine & Sciences, University of California School of Medicine, Los Angeles, CA 90059, USA
| | - Yanjun Liu
- Department of Internal Medicine, Charles R. Drew University of Medicine & Sciences, University of California School of Medicine, Los Angeles, CA 90059, USA
| | - Lin Deng
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
50
|
Chen Y, Brooks MJ, Gieser L, Swaroop A, Palczewski K. Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa. Pharmacol Res 2016; 115:1-13. [PMID: 27838510 DOI: 10.1016/j.phrs.2016.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
Abstract
Mammalian cells are commonly employed in screening assays to identify active compounds that could potentially affect the progression of different human diseases including retinitis pigmentosa (RP), a class of inherited diseases causing retinal degeneration with compromised vision. Using transcriptome analysis, we compared NIH3T3 cells expressing wildtype (WT) rod opsin with a retinal disease-causing single P23H mutation. Surprisingly, heterologous expression of WT opsin in NIH3T3 cells caused more than a 2-fold change in 783 out of 16,888 protein coding transcripts. The perturbed genes encoded extracellular matrix proteins, growth factors, cytoskeleton proteins, glycoproteins and metalloproteases involved in cell adhesion, morphology and migration. A different set of 347 transcripts was either up- or down-regulated when the P23H mutant opsin was expressed suggesting an altered molecular perturbation compared to WT opsin. Transcriptome perturbations elicited by drug candidates aimed at mitigating the effects of the mutant protein revealed that different drugs targeted distinct molecular pathways that resulted in a similar phenotype selected by a cell-based high-throughput screen. Thus, transcriptome profiling can provide essential information about the therapeutic potential of a candidate drug to restore normal gene expression in pathological conditions.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|