1
|
Apfeld J. Keeping in touch with the road not taken. Nat Struct Mol Biol 2024; 31:1816-1817. [PMID: 39609654 DOI: 10.1038/s41594-024-01443-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Affiliation(s)
- Javier Apfeld
- Biology Department and Bioengineering Department, Northeastern University, Boston, MA, USA.
| |
Collapse
|
2
|
Watanabe Y, Iwasaki Y, Sasaki K, Motono C, Imai K, Suzuki K. Atg15 is a vacuolar phospholipase that disintegrates organelle membranes. Cell Rep 2023; 42:113567. [PMID: 38118441 DOI: 10.1016/j.celrep.2023.113567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023] Open
Abstract
Atg15 (autophagy-related 15) is a vacuolar phospholipase essential for the degradation of cytoplasm-to-vacuole targeting (Cvt) bodies and autophagic bodies, hereinafter referred to as intravacuolar/intralysosomal autophagic compartments (IACs), but it remains unknown if Atg15 directly disrupts IAC membranes. Here, we show that the recombinant Chaetomium thermophilum Atg15 lipase domain (CtAtg15(73-475)) possesses phospholipase activity. The activity of CtAtg15(73-475) was markedly elevated by limited digestion. We inserted the human rhinovirus 3C protease recognition sequence and found that cleavage between S159 and V160 was important to activate CtAtg15(73-475). Our molecular dynamics simulation suggested that the cleavage facilitated conformational change around the active center of CtAtg15, resulting in an exposed state. We confirmed that CtAtg15 could disintegrate S. cerevisiae IAC in vivo. Further, both mitochondria and IAC of S. cerevisiae were disintegrated by CtAtg15. This study suggests Atg15 plays a role in disrupting any organelle membranes delivered to vacuoles by autophagy.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan.
| | - Yurina Iwasaki
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan
| | - Kyoka Sasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chie Motono
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan; Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan; Global Research and Development Center for Business by Quantum-AI Technology (G-QuAT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8560, Japan
| | - Kuninori Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan; Life Science Data Research Center, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
3
|
Sheng Y, Yang J, Wang C, Sun X, Yan L. Microbial nattokinase: from synthesis to potential application. Food Funct 2023; 14:2568-2585. [PMID: 36857725 DOI: 10.1039/d2fo03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nattokinase (NK) is an alkaline serine protease with strong thrombolytic activity produced by Bacillus spp. or Pseudomonas spp. It is a potential therapeutic agent for thrombotic diseases because of its safety, economy, and lack of side effects. Herein, a comprehensive summary and analysis of the reports surrounding NK were presented, and the physical-chemical properties and producers of NK were first described. The process and mechanism of NK synthesis were summarized, but these are vague and not specific enough. Further results may be achieved if detection techniques such as multi-omics are used to explore the process of NK synthesis. The purification of NK has problems such as a complicated operation and low recovery rate, which were found when summarizing the techniques to improve the quality of finished products. If multiple simple and efficient precipitation methods and purification materials are combined to purify NK, it may be possible to solve the current challenges. Additionally, the application potential of NK in biomedicine was reviewed, but functional foods with NK are challenging for acceptance in daily life due to their unpleasant odor. Accordingly, multi-strain combination fermentation or food flavoring agents can improve the odor of fermented foods and increase people's acceptance of them. Finally, the possible future directions focused on NK studies were proposed and provided suggestions for subsequent researchers.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Jiani Yang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Xindi Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
4
|
Bertelsen AB, Hackney CM, Bayer CN, Kjelgaard LD, Rennig M, Christensen B, Sørensen ES, Safavi‐Hemami H, Wulff T, Ellgaard L, Nørholm MHH. DisCoTune: versatile auxiliary plasmids for the production of disulphide-containing proteins and peptides in the E. coli T7 system. Microb Biotechnol 2021; 14:2566-2580. [PMID: 34405535 PMCID: PMC8601162 DOI: 10.1111/1751-7915.13895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/15/2021] [Accepted: 07/04/2021] [Indexed: 11/28/2022] Open
Abstract
Secreted proteins and peptides hold large potential both as therapeutics and as enzyme catalysts in biotechnology. The high stability of many secreted proteins helps maintain functional integrity in changing chemical environments and is a contributing factor to their commercial potential. Disulphide bonds constitute an important post-translational modification that stabilizes many of these proteins and thus preserves the active state under chemically stressful conditions. Despite their importance, the discovery and applications within this group of proteins and peptides are limited by the availability of synthetic biology tools and heterologous production systems that allow for efficient formation of disulphide bonds. Here, we refine the design of two DisCoTune (Disulphide bond formation in E. coli with tunable expression) plasmids that enable the formation of disulphides in the highly popular Escherichia coli T7 protein production system. We show that this new system promotes significantly higher yield and activity of an industrial protease and a conotoxin, which belongs to a group of disulphide-rich venom peptides from cone snails with strong potential as research tools and pharmacological agents.
Collapse
Affiliation(s)
- Andreas B. Bertelsen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Celeste Menuet Hackney
- Department of BiologyLinderstrøm‐Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagen N.2200Denmark
| | - Carolyn N. Bayer
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Lau D. Kjelgaard
- Department of BiologyLinderstrøm‐Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagen N.2200Denmark
| | - Maja Rennig
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Brian Christensen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus C8000Denmark
| | | | - Helena Safavi‐Hemami
- Department of BiologyLinderstrøm‐Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagen N.2200Denmark
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagen N2200Denmark
- Department of Biochemistry and School of Biological SciencesUniversity of UtahSalt Lake CityUT84112USA
| | - Tune Wulff
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Lars Ellgaard
- Department of BiologyLinderstrøm‐Lang Centre for Protein ScienceUniversity of CopenhagenCopenhagen N.2200Denmark
| | - Morten H. H. Nørholm
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens Lyngby2800Denmark
| |
Collapse
|
5
|
Yang M, Wu J, Huang Q, Jia Y. Probing the Role of Catalytic Triad on the Cleavage between Intramolecular Chaperone and NK Mature Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2348-2353. [PMID: 33569954 DOI: 10.1021/acs.jafc.0c07238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many proteases require the assistance of an intramolecular chaperone (IMC) that is essential for protein folding. Subtilisin is produced as a precursor that requires its N-terminal propeptide to act as an IMC to chaperone the folding of its subtilisin domain. During the precursor folding, the cleavage of the peptide bond between the IMC and the subtilisin domain is the most important and rate-limiting step, which leads to the structural reorganization of the subtilisin domain and IMC's degradation. It is speculated that the cleavage is fulfilled by the nucleophilic attack of Ser221, with the assistance of Asp32 positioning the correct tautomer of His64 and His64 accepting a proton from Ser221. In this study, our results suggested that there was a different mechanism of cleavage of the peptide bond between the IMC and the subtilisin domain in nattokinase (NK), and the role of the NK catalytic triad on the cleavage was not consistent with the classical theory. This finding suggested that members of the subtilisin family had evolved different mechanisms to acquire their own active subtilisin efficiently.
Collapse
Affiliation(s)
- Manli Yang
- Beijing Key Laboratory of Plants Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jingyu Wu
- Beijing Key Laboratory of Plants Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick NJ08901, United States
| | - Yan Jia
- Beijing Key Laboratory of Plants Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Kitagawa M, Ito N, Matsumoto Y, Saito M, Tamura T, Kusakabe H, Inagaki K, Imada K. Structural basis of enzyme activity regulation by the propeptide of l-lysine α-oxidase precursor from Trichoderma viride. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100044. [PMID: 33554108 PMCID: PMC7844570 DOI: 10.1016/j.yjsbx.2021.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 11/04/2022]
Abstract
The suppression mechanism of activity by propeptide remains unclear for most LAAOs. The crystal structures of the LysOX precursor (prLysOX) have been determined. The propeptide indirectly changes the active site structure to suppress the activity. prLysOX can adopt another conformation similar to mature LysOX. prLysOX is able to be activated without proteolytic processing.
Harmuful proteins are usually synthesized as inactive precursors and are activated by proteolytic processing. l-Amino acid oxidase (LAAO) is a flavoenzyme that catalyzes the oxidative deamination of l-amino acid to produce a 2-oxo acid with ammonia and highly toxic hydrogen peroxide and, therefore, is expressed as a precursor. The LAAO precursor shows significant variation in size and the cleavage pattern for activation. However, the molecular mechanism of how the propeptide suppresses the enzyme activity remains unclear except for deaminating/decarboxylating Pseudomonasl-phenylalanine oxidase (PAO), which has a short N-terminal propeptide composed of 14 residues. Here we show the inactivation mechanism of the l-lysine oxidase (LysOX) precursor (prLysOX), which has a long N-terminal propeptide composed of 77 residues, based on the crystal structure at 1.97 Å resolution. The propeptide of prLysOX indirectly changes the active site structure to inhibit the enzyme activity. prLysOX retains weak enzymatic activity with strict specificity for l-lysine and shows raised activity in acidic conditions. The structures of prLysOX crystals that soaked in a solution with various concentrations of l-lysine have revealed that prLysOX can adopt two conformations; one is the inhibitory form, and the other is very similar to mature LysOX. The propeptide region of the latter form is disordered, and l-lysine is bound to the latter form. These results indicate that prLysOX uses a different strategy from PAO to suppress the enzyme activity and suggest that prLysOX can be activated quickly in response to the environmental change without proteolytic processing.
Collapse
Affiliation(s)
- Masaki Kitagawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Nanako Ito
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Matsumoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Masaya Saito
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | | | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system. Nat Commun 2020; 11:1865. [PMID: 32313027 PMCID: PMC7170923 DOI: 10.1038/s41467-020-15774-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
Bacterial Rhs proteins containing toxic domains are often secreted by type VI secretion systems (T6SSs) through unclear mechanisms. Here, we show that the T6SS Rhs-family effector TseI of Aeromonas dhakensis is subject to self-cleavage at both the N- and the C-terminus, releasing the middle Rhs core and two VgrG-interacting domains (which we name VIRN and VIRC). VIRC is an endonuclease, and the immunity protein TsiI protects against VIRC toxicity through direct interaction. Proteolytic release of VIRC and VIRN is mediated, respectively, by an internal aspartic protease activity and by two conserved glutamic residues in the Rhs core. Mutations abolishing self-cleavage do not block secretion, but reduce TseI toxicity. Deletion of VIRN or the Rhs core abolishes secretion. TseI homologs from Pseudomonas syringae, P. aeruginosa, and Vibrio parahaemolyticus are also self-cleaved. VIRN and VIRC interact with protein VgrG1, while the Rhs core interacts with protein TecI. We propose that VIRN and the Rhs core act as T6SS intramolecular chaperones to facilitate toxin secretion and function.
Collapse
Affiliation(s)
- Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.,Department of Ecosystem and Public Health, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N4Z6, Canada
| | - Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
| | - Li-Li Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Haeun Kim
- Department of Ecosystem and Public Health, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N4Z6, Canada
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ming Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Tao G Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China. .,Department of Ecosystem and Public Health, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N4Z6, Canada.
| |
Collapse
|
8
|
Arolas JL, Goulas T, Cuppari A, Gomis-Rüth FX. Multiple Architectures and Mechanisms of Latency in Metallopeptidase Zymogens. Chem Rev 2018; 118:5581-5597. [PMID: 29775286 DOI: 10.1021/acs.chemrev.8b00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metallopeptidases cleave polypeptides bound in the active-site cleft of catalytic domains through a general base/acid mechanism. This involves a solvent molecule bound to a catalytic zinc and general regulation of the mechanism through zymogen-based latency. Sixty reported structures from 11 metallopeptidase families reveal that prosegments, mostly N-terminal of the catalytic domain, block the cleft regardless of their size. Prosegments may be peptides (5-14 residues), which are only structured within the zymogens, or large moieties (<227 residues) of one or two folded domains. While some prosegments globally shield the catalytic domain through a few contacts, others specifically run across the cleft in the same or opposite direction as a substrate, making numerous interactions. Some prosegments block the zinc by replacing the solvent with particular side chains, while others use terminal α-amino or carboxylate groups. Overall, metallopeptidase zymogens employ disparate mechanisms that diverge even within families, which supports that latency is less conserved than catalysis.
Collapse
Affiliation(s)
- Joan L Arolas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Theodoros Goulas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Anna Cuppari
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| |
Collapse
|
9
|
Htm1p-Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation. Proc Natl Acad Sci U S A 2016; 113:E4015-24. [PMID: 27357682 DOI: 10.1073/pnas.1608795113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our understanding of how the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery efficiently targets terminally misfolded proteins while avoiding the misidentification of nascent polypeptides and correctly folded proteins is limited. For luminal N-glycoproteins, demannosylation of their N-glycan to expose a terminal α1,6-linked mannose is necessary for their degradation via ERAD, but whether this modification is specific to misfolded proteins is unknown. Here we report that the complex of the mannosidase Htm1p and the protein disulfide isomerase Pdi1p (Htm1p-Pdi1p) acts as a folding-sensitive mannosidase for catalyzing this first committed step in Saccharomyces cerevisiae We reconstitute this step in vitro with Htm1p-Pdi1p and model glycoprotein substrates whose structural states we can manipulate. We find that Htm1p-Pdi1p is a glycoprotein-specific mannosidase that preferentially targets nonnative glycoproteins trapped in partially structured states. As such, Htm1p-Pdi1p is suited to act as a licensing factor that monitors folding in the ER lumen and preferentially commits glycoproteins trapped in partially structured states for degradation.
Collapse
|
10
|
Demidyuk IV, Shubin AV, Gasanov EV, Kostrov SV. Propeptides as modulators of functional activity of proteases. Biomol Concepts 2015; 1:305-22. [PMID: 25962005 DOI: 10.1515/bmc.2010.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.
Collapse
|
11
|
Yan Q, Li XP, Tumer NE. Wild type RTA and less toxic variants have distinct requirements for Png1 for their depurination activity and toxicity in Saccharomyces cerevisiae. PLoS One 2014; 9:e113719. [PMID: 25436896 PMCID: PMC4250064 DOI: 10.1371/journal.pone.0113719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/30/2014] [Indexed: 01/29/2023] Open
Abstract
Ricin A chain (RTA) undergoes retrograde trafficking and is postulated to use components of the endoplasmic reticulum (ER) associated degradation (ERAD) pathway to enter the cytosol to depurinate ribosomes. However, it is not known how RTA evades degradation by the proteasome after entry into the cytosol. We observed two distinct trafficking patterns among the precursor forms of wild type RTA and nontoxic variants tagged with enhanced green fluorescent protein (EGFP) at their C-termini in yeast. One group, which included wild type RTA, underwent ER-to-vacuole transport, while another group, which included the G83D variant, formed aggregates in the ER and was not transported to the vacuole. Peptide: N-glycanase (Png1), which catalyzes degradation of unfolded glycoproteins in the ERAD pathway affected depurination activity and toxicity of wild type RTA and G83D variant differently. PreG83D variant was deglycosylated by Png1 on the ER membrane, which reduced its depurination activity and toxicity by promoting its degradation. In contrast, wild type preRTA was deglycosylated by the free pool of Png1 in the cytosol, which increased its depurination activity, possibly by preventing its degradation. These results indicate that wild type RTA has a distinct requirement for Png1 compared to the G83D variant and is deglycosylated by Png1 in the cytosol as a possible strategy to avoid degradation by the ERAD pathway to reach the ribosome.
Collapse
Affiliation(s)
- Qing Yan
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Xiao-Ping Li
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Nilgun E. Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
12
|
Jia Y, Cao X, Deng Y, Bao W, Tang C, Ding H, Zheng Z, Zou G. Four residues of propeptide are essential for precursor folding of nattokinase. Acta Biochim Biophys Sin (Shanghai) 2014; 46:957-64. [PMID: 25267722 DOI: 10.1093/abbs/gmu093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Subtilisin propeptide functions as an intramolecular chaperone that guides precursor folding. Nattokinase, a member of subtilisin family, is synthesized as a precursor consisting of a signal peptide, a propeptide, and a subtilisin domain, and the mechanism of its folding remains to be understood. In this study, the essential residues of nattokinase propeptide which contribute to precursor folding were determined. Deletion analysis showed that the conserved regions in propeptide were important for precursor folding. Single-site and multi-site mutagenesis studies confirmed the role of Tyr10, Gly13, Gly34, and Gly35. During stage (i) and (ii) of precursor folding, Tyr10 and Gly13 would form the part of interface with subtilisin domain. While Gly34 and Gly35 connected with an α-helix that would stabilize the structure of propeptide. The quadruple Ala mutation, Y10A/G13A/G34A/G35A, resulted in a loss of the chaperone function for the propeptide. This work showed the essential residues of propeptide for precursor folding via secondary structure and kinetic parameter analyses.
Collapse
Affiliation(s)
- Yan Jia
- Beijing Key Laboratory of Plants Resource Research and Development, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Xinhua Cao
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Deng
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Bao
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Changyan Tang
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hanjing Ding
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongliang Zheng
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guolin Zou
- State Key Laboratory of Virology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Yu X, Zhai C, Zhong X, Tang W, Wang X, Yang H, Chen W, Ma L. High-level expression and characterization of carboxypeptidase Y from Saccharomyces cerevisiae in Pichia pastoris GS115. Biotechnol Lett 2014; 37:161-7. [DOI: 10.1007/s10529-014-1667-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022]
|
14
|
Identification of Interaction Site of Propeptide toward Mature Carboxypeptidase Y (mCPY) Based on the Similarity between Propeptide and CPY Inhibitor (IC). Biosci Biotechnol Biochem 2014; 76:153-6. [DOI: 10.1271/bbb.110668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Purification of Inactive Precursor of Carboxypeptidase Y Using Selective Cleavage Method Coupled with Molecular Display. Biosci Biotechnol Biochem 2014; 73:753-5. [DOI: 10.1271/bbb.80678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Pustelny K, Zdzalik M, Stach N, Stec-Niemczyk J, Cichon P, Czarna A, Popowicz G, Mak P, Drag M, Salvesen GS, Wladyka B, Potempa J, Dubin A, Dubin G. Staphylococcal SplB serine protease utilizes a novel molecular mechanism of activation. J Biol Chem 2014; 289:15544-53. [PMID: 24713703 DOI: 10.1074/jbc.m113.507616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcal SplB protease belongs to the chymotrypsin family. Chymotrypsin zymogen is activated by proteolytic processing at the N terminus, resulting in significant structural rearrangement at the active site. Here, we demonstrate that the molecular mechanism of SplB protease activation differs significantly and we characterize the novel mechanism in detail. Using peptide and protein substrates we show that the native signal peptide, or any N-terminal extension, has an inhibitory effect on SplB. Only precise N-terminal processing releases the full proteolytic activity of the wild type analogously to chymotrypsin. However, comparison of the crystal structures of mature SplB and a zymogen mimic show no rearrangement at the active site whatsoever. Instead, only the formation of a unique hydrogen bond network, distant form the active site, by the new N-terminal glutamic acid of mature SplB is observed. The importance of this network and influence of particular hydrogen bond interactions at the N terminus on the catalytic process is demonstrated by evaluating the kinetics of a series of mutants. The results allow us to propose a consistent model where changes in the overall protein dynamics rather than structural rearrangement of the active site are involved in the activation process.
Collapse
Affiliation(s)
- Katarzyna Pustelny
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Michal Zdzalik
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Natalia Stach
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Justyna Stec-Niemczyk
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Przemyslaw Cichon
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Anna Czarna
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the NMR Group, Max-Planck Institute for Biochemistry, 82 152 Martinsried, Germany
| | - Grzegorz Popowicz
- the NMR Group, Max-Planck Institute for Biochemistry, 82 152 Martinsried, Germany, the Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Pawel Mak
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the Malopolska Centre of Biotechnology, 30 387 Krakow, Poland
| | - Marcin Drag
- the Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, 50 370 Wroclaw, Poland, the Program in Cell Death Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Guy S Salvesen
- the Program in Cell Death Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Benedykt Wladyka
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the Malopolska Centre of Biotechnology, 30 387 Krakow, Poland
| | - Jan Potempa
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the Center of Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky 40202, and
| | - Adam Dubin
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Grzegorz Dubin
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the Malopolska Centre of Biotechnology, 30 387 Krakow, Poland
| |
Collapse
|
17
|
Waniek PJ, Araújo CAC, Momoli MM, Azambuja P, Jansen AM, Genta FA. Serine carboxypeptidases of Triatoma brasiliensis (Hemiptera, Reduviidae): Sequence characterization, expression pattern and activity localization. JOURNAL OF INSECT PHYSIOLOGY 2014; 63:9-20. [PMID: 24548612 DOI: 10.1016/j.jinsphys.2014.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
Using specific oligonucleotides, 5'- and 3'-RACE and sequencing, two cDNAs encoding serine carboxypeptidases (tbscp-1 and tbscp-2) from the midgut of the blood sucking heteropteran Triatoma brasiliensis were identified. Both cDNAs with an open reading frame of 1389bp, encode serine carboxypeptidase precursors of 463 amino acid residues, which possess a signal peptide cleavage site after Ala19. Analysis of tbscp-1 and tbscp-2 genomic DNA showed an absence of introns in both sequences and the presence of a further intron-free SCP encoding gene (tbscp-2b). By reverse transcription polymerase chain reaction (RT-PCR), tbscp-1 and tbscp-2 transcript abundance was found similarly in fifth instar nymphs at different days after feeding (daf), high in the posterior midgut (small intestine), lower in the anterior midgut (stomach) and fat body and almost undetectable in the salivary glands. In the anterior, middle and posterior regions of the small intestine at 5daf the transcript abundance of both genes was almost identical. Also in adult female and male insects at 5daf both genes showed the strongest signal in the posterior midgut. Molecular modeling suggested that TBSCP-1 has carboxypeptidase D activity; activities against Hippuryl-Phenylalanine and Hippuryl-Arginine were also located at the posterior midgut, both were induced after blood feeding. Treatment of the posterior midgut extracts with the serine protease inhibitor PMSF strongly reduced carboxypeptidase activity. These findings suggest that triatomines might use serine carboxypeptidases, which are usually found in lysosomes, as digestive enzymes in the posterior midgut lumen, from which TBSCP-1 and TBSCP-2 are possible candidates to fulfill this function.
Collapse
Affiliation(s)
- Peter J Waniek
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil; Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil.
| | - Catarina A C Araújo
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil
| | - Marisa M Momoli
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil
| | - Patricia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil
| | - Ana M Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil
| | - Fernando A Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, FIOCRUZ/RJ, Av Brasil 4365, CEP 21045-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
18
|
Hecht KA, O'Donnell AF, Brodsky JL. The proteolytic landscape of the yeast vacuole. CELLULAR LOGISTICS 2014; 4:e28023. [PMID: 24843828 PMCID: PMC4022603 DOI: 10.4161/cl.28023] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 01/07/2023]
Abstract
The vacuole in the yeast Saccharomyces cerevisiae plays a number of essential roles, and to provide some of these required functions the vacuole harbors at least seven distinct proteases. These proteases exhibit a range of activities and different classifications, and they follow unique paths to arrive at their ultimate, common destination in the cell. This review will first summarize the major functions of the yeast vacuole and delineate how proteins are targeted to this organelle. We will then describe the specific trafficking itineraries and activities of the characterized vacuolar proteases, and outline select features of a new member of this protease ensemble. Finally, we will entertain the question of why so many proteases evolved and reside in the vacuole, and what future research challenges exist in the field.
Collapse
Affiliation(s)
- Karen A Hecht
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| | - Allyson F O'Donnell
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| |
Collapse
|
19
|
Enhanced activity of Rhizomucor miehei lipase by deglycosylation of its propeptide in Pichia pastoris. Curr Microbiol 2013; 68:186-91. [PMID: 24068111 DOI: 10.1007/s00284-013-0460-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
Abstract
Many studies have demonstrated that the properties of enzymes expressed in eukaryotes can be affected by the position and extent of glycosylation on enzyme. In this study, two potential glycosylation sites (the 8th and the 58th asparagine) were identified and the effect of propeptide glycosylation on Rhizomucor miehei lipase (RML) expressed in Pichia pastoris was investigated. To better understand the effect of glycosylation on the activity of RML, three mutants (M1, generated by N8A; M2, generated by N58A; and M3, generated by N8A and N58A) were designed to generate deglycosylated enzymes. The results showed that deglycosylated RML exhibited a twofold higher activity compared to the wild type. However, it was also found that glycosylation on the propeptide was important for the removal of the propeptide by Kex2 protease and secretion of the enzyme. Thus, our study provided a further understanding into the role of glycosylation on enzyme function.
Collapse
|
20
|
Biver S, Portetelle D, Vandenbol M. Characterization of a new oxidant-stable serine protease isolated by functional metagenomics. SPRINGERPLUS 2013; 2:410. [PMID: 24024096 PMCID: PMC3765597 DOI: 10.1186/2193-1801-2-410] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/26/2013] [Indexed: 11/10/2022]
Abstract
A novel serine protease gene, SBcas3.3, was identified by functional screening of a forest-soil metagenomic library on agar plates supplemented with AZCL-casein. Overproduction in Escherichia coli revealed that the enzyme is produced as a 770-amino-acid precursor which is processed to a mature protease of ~55 kDa. The latter was purified by affinity chromatography for characterization with the azocasein substrate. The enzyme proved to be an alkaline protease showing maximal activity between pH 9 and 10 and at 50°C. Treatment with the chelating agent ethylenediaminetetraacetic acid irreversibly denatured the protease, whose stability was found to depend strictly on calcium ions. The enzyme appeared relatively resistant to denaturing and reducing agents, and its activity was enhanced in the presence of 10 ml/l nonionic detergent (Tween 20, Tween 80, or Triton X-100). Moreover, SBcas3.3 displayed oxidant stability, a feature particularly sought in the detergent and bleaching industries. SBcas3.3 was activated by hydrogen peroxide at concentrations up to 10 g/l and it still retained 30% of activity in 50 g/l H2O2.
Collapse
Affiliation(s)
- Sophie Biver
- Unité de Microbiologie et Génomique, Gembloux Agro-Bio Tech, Université de Liège, Avenue Maréchal Juin 6, B-5030 Gembloux, Belgium
| | | | | |
Collapse
|
21
|
Wang J, Wang D, Wang B, Mei ZH, Liu J, Yu HW. Enhanced activity of Rhizomucor miehei lipase by directed evolution with simultaneous evolution of the propeptide. Appl Microbiol Biotechnol 2012; 96:443-50. [PMID: 22584429 DOI: 10.1007/s00253-012-4049-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/29/2012] [Accepted: 03/21/2012] [Indexed: 12/18/2022]
Abstract
Propeptides are short sequences that facilitate the folding of their associated proteins. The present study found that the propeptide of Rhizomucor miehei lipase (RML) was not proteolytically removed in Escherichia coli. Moreover, RML was not expressed if the propeptide was removed artificially during the cloning process in E. coli. This behavior in E. coli permitted the application of directed evolution to full-length RML, which included both propeptide and catalytic domain, to explore the role played by the propeptide in governing enzyme activity. The catalytic rate constant, k (cat), of the most active mutant RML protein (Q5) was increased from 10.63 ± 0.80 to 71.44 ± 3.20 min(-1) after four rounds of screening. Sequence analysis of the mutant displayed three mutations in the propeptide (L57V, S65A, and V67A) and two mutations in the functional region (I111T and S168P). This result showed that improved activity was obtained with essential involvement by mutations in the propeptide, meaning that the majority of mutants with enhanced activity had simultaneous mutations in propeptide and catalytic domains. This observation leads to the hypothesis that directed evolution has simultaneous and synergistic effects on both functional and propeptide domains that arise from the role played by the propeptide in the folding and maturation of the enzyme. We suggest that directed evolution of full-length proteins including their propeptides is a strategy with general validity for extending the range of conformations available to proteins, leading to the enhancement of the catalytic rates of the enzymes.
Collapse
Affiliation(s)
- Jue Wang
- Institute of Bioengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Heterologous expression, refolding and characterization of a salt activated subtilase from Pleurotus ostreatus. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Roy S, Choudhury D, Chakrabarti C, Biswas S, Dattagupta JK. Crystallization and preliminary X-ray diffraction studies of the precursor protein of a thermostable variant of papain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:634-6. [PMID: 21543879 PMCID: PMC3087658 DOI: 10.1107/s1744309111010888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/23/2011] [Indexed: 11/10/2022]
Abstract
The crystallization of a recombinant thermostable variant of pro-papain has been carried out. The mutant pro-enzyme was expressed in Escherichia coli as inclusion bodies, refolded, purified and crystallized. The crystals belonged to space group P2(1), with unit-cell parameters a = 42.9, b = 74.8, c = 116.5 Å, β = 93.0°, and diffracted to 2.6 Å resolution using synchrotron radiation. Assuming the presence of two molecules in the asymmetric unit, the calculated Matthews coefficient is 2.28 Å(3) Da(-1), corresponding to a solvent content of 46%. Initial attempts to solve the structure using molecular-replacement techniques were successful.
Collapse
Affiliation(s)
- Sumana Roy
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India
| | - Debi Choudhury
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India
| | - Chandana Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India
| | - Sampa Biswas
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India
| | - J. K. Dattagupta
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India
| |
Collapse
|
24
|
Shinde U, Thomas G. Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin. Methods Mol Biol 2011; 768:59-106. [PMID: 21805238 DOI: 10.1007/978-1-61779-204-5_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prokaryotic subtilisins and eukaryotic proprotein convertases (PCs) are two homologous protease subfamilies that belong to the larger ubiquitous super-family called subtilases. Members of the subtilase super-family are produced as zymogens wherein their propeptide domains function as dedicated intramolecular chaperones (IMCs) that facilitate correct folding and regulate precise activation of their cognate catalytic domains. The molecular and cellular determinants that modulate IMC-dependent folding and activation of PCs are poorly understood. In this chapter we review what we have learned from the folding and activation of prokaryotic subtilisin, discuss how this has molded our understanding of furin maturation, and foray into the concept of pH sensors, which may represent a paradigm that PCs (and possibly other IMC-dependent eukaryotic proteins) follow for regulating their biological functions using the pH gradient in the secretory pathway.
Collapse
Affiliation(s)
- Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97229, USA.
| | | |
Collapse
|
25
|
Jia Y, Liu H, Bao W, Weng M, Chen W, Cai Y, Zheng Z, Zou G. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase. FEBS Lett 2010; 584:4789-96. [DOI: 10.1016/j.febslet.2010.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
26
|
Takeuchi Y, Tanaka SI, Matsumura H, Koga Y, Takano K, Kanaya S. Requirement of a unique Ca(2+)-binding loop for folding of Tk-subtilisin from a hyperthermophilic archaeon. Biochemistry 2009; 48:10637-43. [PMID: 19813760 DOI: 10.1021/bi901334b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tk-subtilisin from the hyperthermophiolic archaeon Thermococcus kodakaraensis matures from Pro-Tk-subtilisin upon autoprocessing and degradation of Tk-propeptide [Tanaka, S., Saito, K., Chon, H., Matsumura, H., Koga, Y., Takano, K., and Kanaya, S. (2007) J. Biol. Chem. 282, 8246-8255]. It requires Ca(2+) for folding and assumes a molten globule-like structure in the absence of Ca(2+) even in the presence of Tk-propeptide. Tk-subtilisin contains seven Ca(2+)-binding sites. Four of them (Ca2-Ca5) are located within a long loop, which mostly consists of a unique insertion sequence of this protein. To analyze the role of this Ca(2+)-binding loop, three mutant proteins, Deltaloop-Tk-subtilisin, DeltaCa2-Pro-S324A, and DeltaCa3-Pro-S324A, were constructed. These proteins were designed to remove the Ca(2+)-binding loop, Ca2 site, or Ca3 site of Pro-Tk-subtilisin or its active site mutant Pro-S324A. Far-UV CD spectra of these proteins refolded in the absence and presence of Ca(2+) indicated that Deltaloop-Tk-subtilisin completely lost the ability to fold into a native structure. In contrast, two other proteins retained this ability, although their refolding rates were greatly decreased compared to that of Pro-S324A. Determination of the crystal structures of these proteins purified in a Ca(2+)-bound form indicates that the structures of DeltaCa2-Pro-S324A and DeltaCa3-Pro-S324A are virtually identical to that of Pro-S324A, except that they lack the Ca2 and Ca3 sites, respectively, and the structure of the Ca(2+)-binding loop is destabilized. Nevertheless, these proteins were slightly more stable than Pro-S324A. These results suggest that the Ca(2+)-binding loop is required for folding of Tk-subtilisin but does not seriously contribute to the stabilization of Tk-subtilisin in a native structure.
Collapse
Affiliation(s)
- Yuki Takeuchi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University,2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Recombinant prosegment peptide acts as a folding catalyst and inhibitor of native pepsin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1795-801. [PMID: 19715777 DOI: 10.1016/j.bbapap.2009.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 08/16/2009] [Accepted: 08/18/2009] [Indexed: 11/23/2022]
Abstract
Porcine pepsin A, a gastric aspartic peptidase, is initially produced as the zymogen pepsinogen that contains an N-terminal, 44 residue prosegment (PS) domain. In the absence of the PS, native pepsin (Np) is irreversibly denatured and when placed under refolding conditions, folds to a thermodynamically stable denatured state. This denatured, refolded pepsin (Rp) state can be converted to Np by the exogenous addition of the PS, which catalyzes the folding of Rp to Np. In order to thoroughly study the mechanism by which the PS catalyzes pepsin folding, a soluble protein expression system was developed to produce recombinant PS peptide in a highly pure form. Using this system, the wild-type and three-mutant PS forms, in which single residue substitutions were made (V4A, R8A and K36A), were expressed and purified. These PS peptides were characterized for their ability to inhibit Np enzymatic activity and to catalyze the folding of Rp to Np. The V4A, R8A and K36A mutant PS peptides were found to have nanomolar inhibition constants, Ki, of 82.4, 58.3 and 95.6 nM, respectively, approximately a two-fold increase from that of the wild-type PS (36.2 nM). All three-mutant PS peptides were found to catalyze Np folding with a rate constant of 0.06 min(-1), five-fold lower than that of the wild-type. The observation that the mutant PS peptides retained their inhibition and folding-catalyst functionality suggests a high level of resilience to mutations of the pepsin PS.
Collapse
|
28
|
Abstract
The structure-function relationships of aspartic peptidases (APs) (EC 3.4.23.X) have been extensively investigated, yet much remains to be elucidated regarding the various molecular mechanisms of these enzymes. Over the past years, APs have received considerable interest for food applications (e.g. cheese, fermented foods) and as potential targets for pharmaceutical intervention in human diseases including hypertension, cancer, Alzheimer's disease, AIDS (acquired immune deficiency syndrome), and malaria. A deeper understanding of the structure and function of APs, therefore, will have a direct impact on the design of peptidase inhibitors developed to treat such diseases. Most APs are synthesized as zymogens which contain an N-terminal prosegment (PS) domain that is removed at acidic pH by proteolytic cleavage resulting in the active enzyme. While the nature of the AP PS function is not entirely understood, the PS can be important in processes such as the initiation of correct folding, protein stability, blockage of the active site, pH-dependence of activation, and intracellular sorting of the zymogen. This review summarizes the current knowledge of AP PS function (especially within the A1 family), with particular emphasis on protein folding, cellular sorting, and inhibition.
Collapse
|
29
|
Chen YJ, Inouye M. The intramolecular chaperone-mediated protein folding. Curr Opin Struct Biol 2008; 18:765-70. [PMID: 18973809 DOI: 10.1016/j.sbi.2008.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/30/2008] [Accepted: 10/10/2008] [Indexed: 12/31/2022]
Abstract
Some proteins have evolved to contain a specific sequence as an intramolecular chaperone, which is essential for protein folding but not required for protein function, as it is removed after the protein is folded by autoprocessing or by an exogenous protease. To date, a large number of sequences encoded as N-terminal or C-terminal extensions have been identified to function as intramolecular chaperones. An increasing amount of evidence has revealed that these intramolecular chaperones play an important role in protein folding both in vivo and in vitro. Here, we summarize recent studies on intramolecular chaperone-assisted protein folding and discuss the mechanisms as to how intramolecular chaperones play roles in protein folding.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Robert Wood Johnson Medical School, Department of Biochemistry, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | |
Collapse
|
30
|
Paul S, Kundu M, Das KP, Mishra S, Chaudhuri TK. Unfolding studies of Escherichia coli maltodextrin glucosidase monitored by fluorescence spectroscopy. J Biol Phys 2008; 34:539-50. [PMID: 19669512 DOI: 10.1007/s10867-008-9117-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 09/11/2008] [Indexed: 11/24/2022] Open
Abstract
Equilibrium unfolding of a 69-kDa monomeric Escherichia coli maltodextrin glucosidase (MalZ) was studied using intrinsic and extrinsic fluorescence spectroscopy. The unfolding transition of MalZ followed a three-state process, involving the formation of a stable intermediate state having more exposed hydrophobic surface. It was found that the protein structure can be easily perturbed by low concentration of guanidium hydrochloride (GdnHCl) and, at a GdnHCl concentration of 2 M, MalZ was denatured completely. The active site of the protein also has been proved to be sensitive to a low concentration of GdnHCl since MalZ deactivated at 0.5 M GdnHCl completely. The surface hydrophobicity and ANS-binding site of the protein have been determined to be 150.7 and 0.24, respectively. Perhaps the formation of the stable unfolding intermediate, having higher surface hydrophobicity, may be one of the reasons for aggregation of MalZ and its recognition by chaperonin GroEL during the assisted folding pathway.
Collapse
Affiliation(s)
- Subhankar Paul
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | | | | | | |
Collapse
|
31
|
Nemoto TK, Ohara-Nemoto Y, Ono T, Kobayakawa T, Shimoyama Y, Kimura S, Takagi T. Characterization of the glutamyl endopeptidase from Staphylococcus aureus expressed in Escherichia coli. FEBS J 2008; 275:573-87. [PMID: 18199287 DOI: 10.1111/j.1742-4658.2007.06224.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
V8 protease, a member of the glutamyl endopeptidase I family, of Staphylococcus aureus V8 strain (GluV8) is widely used for proteome analysis because of its unique substrate specificity and resistance to detergents. In this study, an Escherichia coli expression system for GluV8, as well as its homologue from Staphylococcus epidermidis (GluSE), was developed, and the roles of the prosegments and two specific amino acid residues, Val69 and Ser237, were investigated. C-terminal His(6)-tagged proGluSE was successfully expressed from the full-length sequence as a soluble form. By contrast, GluV8 was poorly expressed by the system as a result of autodegradation; however, it was efficiently obtained by swapping its preprosegment with that of GluSE, or by the substitution of four residues in the GluV8 prosequence with those of GluSE. The purified proGluV8 was converted to the mature form in vitro by thermolysin treatment. The prosegment was essential for the suppression of proteolytic activity, as well as for the correct folding of GluV8, indicating its role as an intramolecular chaperone. Furthermore, the four amino acid residues at the C-terminus of the prosegment were sufficient for both of these roles. In vitro mutagenesis revealed that Ser237 was essential for proteolytic activity, and that Val69 was indispensable for the precise cleavage by thermolysin and was involved in the proteolytic reaction itself. This is the first study to express quantitatively GluV8 in E. coli, and to demonstrate explicitly the intramolecular chaperone activity of the prosegment of glutamyl endopeptidase I.
Collapse
Affiliation(s)
- Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Paul S, Punam S, Chaudhuri TK. Chaperone-assisted refolding of Escherichia coli maltodextrin glucosidase. FEBS J 2007; 274:6000-10. [DOI: 10.1111/j.1742-4658.2007.06122.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Abstract
We undertook an unfolding and refolding study of alpha(L)-crystallin in presence of urea to explore the breakdown and formation of various levels of structure and to find out whether the breakdown of various levels of structure occurs simultaneously or in a hierarchal manner. We used various techniques such as circular dichroism, fluorescence spectroscopy, light scattering, polarization to determine the changes in secondary, tertiary, and quaternary structure. Unfolding and refolding occurred through a number of intermediates. The results showed that all levels of structure in alpha(L)-crystallin collapsed or reformed simultaneously. The intermediates that occurred in the 2-4 M urea concentration range during unfolding and refolding differed from each other in terms of the polarity of the tryptophan environment. The ANS binding experiments revealed that refolded alpha(L)-crystallin had higher number of hydrophobic pockets compared to native one. On the other hand, polarity of these pockets remained same as that of the native protein. Both light scattering and polarization measurements showed smaller oligomeric size of refolded alpha(L)-crystallin. Thus, although the secondary structural changes were almost reversible, the tertiary and quaternary structural changes were not. The refolded alpha(L)-crystallin had more exposed hydrophobic sites with increased binding affinity. The refolded form also showed higher chaperone activity than native one. Since the refolded form was smaller in oligomeric size, some buried hydrophobic sites were available. The higher chaperone activity of lower sized oligomer of alpha(L)-crystallin again revealed that chaperone activity was dependent on hydrophobicity and not on oligomeric size.
Collapse
Affiliation(s)
- S Saha
- Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata, 700 009, India
| | | |
Collapse
|
34
|
Kliemannel M, Golbik R, Rudolph R, Schwarz E, Lilie H. The pro-peptide of proNGF: structure formation and intramolecular association with NGF. Protein Sci 2007; 16:411-9. [PMID: 17242381 PMCID: PMC2203323 DOI: 10.1110/ps.062376207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The pro-peptide of human nerve growth factor (NGF) functions as an intramolecular chaperone during oxidative renaturation of proNGF in vitro and interacts intramolecularly with the mature part of native proNGF. Here, we analyzed the structure formation and stability of the pro-peptide in the context of proNGF and its intramolecular interaction with the native mature part. Folding and unfolding of the NGF-coupled pro-peptide, as analyzed by fluorescence, were biphasic reactions with both phases depending on the interaction with the mature part. This interaction was characterized by an overall stability of DeltaG = 20.9 kJ/mol that was subdivided into two reactions, native <--> intermediate state (14.8 kJ/mol) and intermediate <--> unfolded state (6.1 kJ/mol). An additional very fast unfolding reaction was observed using circular dichroism (CD), indicating the presence of at least two kinetically populated intermediates in the unfolding of proNGF. The part of the pro-peptide involved in the intramolecular association with mature NGF comprised the peptide Trp(-83)-Ala(-63) as determined by H/D exchange experiments. Spectroscopic analyses revealed that on the NGF side, a surface area around Trp(21) interacted with the pro-peptide. Trp(21) also participates in binding to TrkA and p75 receptors. These overlapping binding sites of the pro-peptide and the NGF receptors might explain the previously observed lower affinity of proNGF to its receptors as compared to NGF.
Collapse
Affiliation(s)
- Marco Kliemannel
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biotechnologie, 06120 Halle, Germany
| | | | | | | | | |
Collapse
|
35
|
Pulido M, Saito K, Tanaka SI, Koga Y, Morikawa M, Takano K, Kanaya S. Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: the propeptide is a potent inhibitor of the mature domain but is not required for its folding. Appl Environ Microbiol 2006; 72:4154-62. [PMID: 16751527 PMCID: PMC1489632 DOI: 10.1128/aem.02696-05] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subtilisin from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 is a member of the subtilisin family. T. kodakaraensis subtilisin in a proform (T. kodakaraensis pro-subtilisin), as well as its propeptide (T. kodakaraensis propeptide) and mature domain (T. kodakaraensis mat-subtilisin), were independently overproduced in E. coli, purified, and biochemically characterized. T. kodakaraensis pro-subtilisin was inactive in the absence of Ca2+ but was activated upon autoprocessing and degradation of propeptide in the presence of Ca2+ at 80 degrees C. This maturation process was completed within 30 min at 80 degrees C but was bound at an intermediate stage, in which the propeptide is autoprocessed from the mature domain (T. kodakaraensis mat-subtilisin*) but forms an inactive complex with T. kodakaraensis mat-subtilisin*, at lower temperatures. At 80 degrees C, approximately 30% of T. kodakaraensis pro-subtilisin was autoprocessed into T. kodakaraensis propeptide and T. kodakaraensis mat-subtilisin*, and the other 70% was completely degraded to small fragments. Likewise, T. kodakaraensis mat-subtilisin was inactive in the absence of Ca2+ but was activated upon incubation with Ca2+ at 80 degrees C. The kinetic parameters and stability of the resultant activated protein were nearly identical to those of T. kodakaraensis mat-subtilisin*, indicating that T. kodakaraensis mat-subtilisin does not require T. kodakaraensis propeptide for folding. However, only approximately 5% of T. kodakaraensis mat-subtilisin was converted to an active form, and the other part was completely degraded to small fragments. T. kodakaraensis propeptide was shown to be a potent inhibitor of T. kodakaraensis mat-subtilisin* and noncompetitively inhibited its activity with a Ki of 25 +/- 3.0 nM at 20 degrees C. T. kodakaraensis propeptide may be required to prevent the degradation of the T. kodakaraensis mat-subtilisin molecules that are activated later by those that are activated earlier.
Collapse
Affiliation(s)
- Marian Pulido
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Kato M, Kuzuhara Y, Maeda H, Shiraga S, Ueda M. Analysis of a processing system for proteases using yeast cell surface engineering: conversion of precursor of proteinase A to active proteinase A. Appl Microbiol Biotechnol 2006; 72:1229-37. [PMID: 16586102 DOI: 10.1007/s00253-006-0408-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/02/2006] [Accepted: 03/05/2006] [Indexed: 11/26/2022]
Abstract
The display of a protease, carboxypeptidase Y (CPY) or procarboxypeptidase Y (proCPY), which is the vacuolar protease, on the yeast-cell surface was successfully performed using yeast-cell-surface engineering for the first time. Through that we could confirm the processing of vacuolar proteases containing proteinase A (PrA) and proteinase B (PrB) which are related to the maturation of proCPY, using a novel cell-surface engineering technique. Various protease-knockout strains of Saccharomyces cerevisiae with the CPY-displaying system were constructed to evaluate the operation of the activation process of CPY. The display of CPY (CPY-agg, which is a fusion protein of CPY with C-terminal half of alpha-agglutinin) on the cell surface was confirmed by immunofluorescence staining. The activity of the CPY-agg was determined after the conversion of proCPY to active CPY by treatment of whole cells with proteinase K. In the proCPY-displaying CPY-knockout strain and PrB-knockout strain, CPY was displayed as an active (mature) form, but in the proCPY-displaying PrA-knockout strain, CPY was present as an inactive form (proCPY). These facts indicate that PrA had been already activated before its transport to the vacuole and that active mature PrA might convert proCPY to CPY before the transport of proCPY to the vacuole. From these results, it was suggested that by using the yeast-cell-surface engineering at the location of the initial step, the autocatalytic activation from proPrA to PrA might occur before the vacuolar branch separates from the main secretory pathway.
Collapse
Affiliation(s)
- Michiko Kato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
37
|
Sone M, Falzon L, Inouye M. The role of tryptophan residues in the autoprocessing of prosubtilisin E. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:15-22. [PMID: 15848132 DOI: 10.1016/j.bbapap.2005.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 01/19/2005] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
Subtilisin E, a serine protease from Bacillus subtilis, requires an N-terminal propeptide for its correct folding. The propeptide is autocleaved and digested by the subtilisin domain upon proper folding. Here we investigated the individual roles of the three Trp residues within the subtilisin domain (Trp106, Trp113 and Trp241) on propeptide processing, enzymatic activity and stability of subtilisin. When the propeptide processing was examined by SDS-PAGE after refolding by rapid dilution, the mutation at either position Trp106 or Trp113 was found to significantly delay the propeptide processing, while the mutation at Trp241 had no effect. Far-UV circular dichroism (CD) spectra of the mutants revealed that the mutations at the three positions did not affect appreciably the alpha-helix content of subtilisin. Secondary structure thermal unfolding monitored by CD spectroscopy revealed that none of the tryptophan residues had any significant effect on the stability of mature subtilisin. The enzymatic activity measurements showed that only Trp106 plays a major role in the enzymatic activity of subtilisin E. These results demonstrate that both Trp106 and Trp113 play a specific role in propeptide processing and enzymatic activity, while Trp241 plays no considerable role on any of these activities.
Collapse
Affiliation(s)
- Michio Sone
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
38
|
Fraser CM, Rider LW, Chapple C. An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family. PLANT PHYSIOLOGY 2005; 138:1136-48. [PMID: 15908604 PMCID: PMC1150427 DOI: 10.1104/pp.104.057950] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/03/2005] [Accepted: 02/11/2005] [Indexed: 05/02/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) genome encodes a family of 51 proteins that are homologous to known serine carboxypeptidases. Based on their sequences, these serine carboxypeptidase-like (SCPL) proteins can be divided into several major clades. The first group consists of 21 proteins which, despite the function implied by their annotation, includes two that have been shown to function as acyltransferases in plant secondary metabolism: sinapoylglucose:malate sinapoyltransferase and sinapoylglucose:choline sinapoyltransferase. A second group comprises 25 SCPL proteins whose biochemical functions have not been clearly defined. Genes encoding representatives from both of these clades can be found in many plants, but have not yet been identified in other phyla. In contrast, the remaining SCPL proteins include five members that are similar to serine carboxypeptidases from a variety of organisms, including fungi and animals. Reverse transcription PCR results suggest that some SCPL genes are expressed in a highly tissue-specific fashion, whereas others are transcribed in a wide range of tissue types. Taken together, these data suggest that the Arabidopsis SCPL gene family encodes a diverse group of enzymes whose functions are likely to extend beyond protein degradation and processing to include activities such as the production of secondary metabolites.
Collapse
Affiliation(s)
- Christopher M Fraser
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
39
|
Kubota K, Nishii W, Kojima M, Takahashi K. Specific Inhibition and Stabilization of Aspergilloglutamic Peptidase by the Propeptide. J Biol Chem 2005; 280:999-1006. [PMID: 15516690 DOI: 10.1074/jbc.m410852200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aspergilloglutamic peptidase (formerly called aspergillopepsin II) is an acid endopeptidase produced by Aspergillus niger var. macrosporus, with a novel catalytic dyad of a glutamic acid and a glutamine residue, thus belonging to a novel peptidase family G1. The mature enzyme is generated from its precursor by removal of the putative 41-residue propeptide and an 11-residue intervening peptide through autocatalytic activation. In the present study, the propeptide (Ala1-Asn41) and a series of its truncated peptides were chemically synthesized, and their effects on the enzyme activity and thermal stability were examined to identify the sequences and residues in the propeptide most critical to the inhibition and thermal stabilization. The synthetic propeptide was shown to be a potent competitive inhibitor of the enzyme (Ki = 27 nM at pH 4.0). Various shorter propeptide fragments derived from the central region of the propeptide had significant inhibitory effect, whereas their Ala scan-substituted peptides, especially R19A and H20A, showed only weak inhibition. Substitution of the Pro23-Pro24 sequence near His20 with an Ala-Ala sequence changed the peptide Lys18-Tyr25 to a substrate with His20 as the P1 residue. Furthermore, the propeptide was shown to be able to significantly protect the enzyme from thermal denaturation (DeltaTm = approximately 19 degrees C at pH 5.6). The protective potencies of the propeptide as well as truncated propeptides and their Ala scan-substituted peptides are parallel with their inhibitory potencies. These results indicate that the central part, and especially Arg19 and His20 therein, of the propeptide is most critical to the inhibition and thermal stabilization and that His20 interacts with the enzyme at or near the S1 site in a nonproductive fashion.
Collapse
Affiliation(s)
- Keiko Kubota
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | |
Collapse
|
40
|
Maeda H, Chatani E, Koyama T, Sugiura M, Izumi H, Hayashi R. Indiscriminate glycosylation of procarboxypeptidase Y expressed in Pichia pastoris. Carbohydr Res 2004; 339:1041-5. [PMID: 15063190 DOI: 10.1016/j.carres.2004.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 01/08/2004] [Accepted: 02/14/2004] [Indexed: 11/21/2022]
Abstract
To obtain large amounts of deglycosylated procarboxypeptidase Y (proCPY), in which all of the N-glycosylation sites were replaced by alanine residue by the point mutation method, an expression system was constructed using Pichia pastoris. The secreted enzyme was characterized by SDS-PAGE, native PAGE, MALDI-TOF mass spectrometry, and dynamic light scattering, and the results indicated heterogeneity. The recombinant proCPY contained 29 mol of glucose per mole of protein in average, according to the carbohydrate analysis by the phenol-sulfuric acid method. A large part of the recombinant enzyme absorbed on a Con A column: even the break-through fraction of the column contained 3 mol of glucose per mole of protein. These carbohydrates were removed by the mild alkaline treatment. Since the entire N-glycosylation site had been destructed in the present expression system, the carbohydrates contained in the recombinant proCPY are concluded to be O-linked ones, which bound indiscriminately to serine and/or threonine residues.
Collapse
Affiliation(s)
- Haruko Maeda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Kato M, Sato Y, Shirai K, Hayashi R, Balny C, Lange R. The propeptide in the precursor form of carboxypeptidase Y ensures cooperative unfolding and the carbohydrate moiety exerts a protective effect against heat and pressure. ACTA ACUST UNITED AC 2003; 270:4587-93. [PMID: 14622287 DOI: 10.1046/j.1432-1033.2003.03860.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heat- and pressure-induced unfolding of the glycosylated and unglycosylated forms of mature carboxypeptidase Y and the precursor procarboxypeptidase Y were analysed by differential scanning calorimetry and/or by their intrinsic fluorescence in the temperature range of 20-75 degrees C or the pressure range of 0.1-700 MPa. Under all conditions, the precursor form showed a clear two-state transition from a folded to an unfolded state, regardless of the presence of the carbohydrate moiety. In contrast, the mature form, which lacks the propeptide composed of 91 amino acid residues, showed more complex behaviour: differential scanning calorimetry and pressure-induced changes in fluorescence were consistent with a three-step transition. These results show that carboxypeptidase Y is composed of two structural domains, which unfold independently but that procarboxypeptidase Y behaves as a single domain, thus ensuring cooperative unfolding. The carbohydrate moiety has a slightly protective role in heat-induced unfolding and a highly protective role in pressure-induced unfolding.
Collapse
Affiliation(s)
- Michiko Kato
- Laboratory of Biomacromolecular Chemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Rzychon M, Sabat A, Kosowska K, Potempa J, Dubin A. Staphostatins: an expanding new group of proteinase inhibitors with a unique specificity for the regulation of staphopains, Staphylococcus spp. cysteine proteinases. Mol Microbiol 2003; 49:1051-66. [PMID: 12890028 DOI: 10.1046/j.1365-2958.2003.03613.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel type of cysteine proteinase inhibitor (SspC) has been recently recognized in Staphylococcus aureus (Massimi, I., Park, E., Rice, K., Muller-Esterl, W., Sauder, D.N., and McGavin, M.J. (2002) J Biol Chem 277: 41770-41777). In this paper we have identified homologous proteins encoded in the genome of S. aureus and other coagulase-negative Staphylococci. Collectively we refer to these proteins as staphostatins as they specifically inhibit cysteine proteinases (staphopains) from Staphylococcus spp. The primary structure of staphostatins seems to be unique, although they resemble cystatins in size (105-108 residues). Recombinant staphostatin A, a product of the scpB gene and staphostatin B (SspC) from S. aureus have been characterized in details. Similar to the cystatins, the staphostatins interact specifically with their target proteinases forming tight and stable non-covalent complexes, staphostatin A with staphopain A and staphostatin B with staphopain B. However, in contrast to the cystatins, each of which inhibits broad range of cathepsins, complex formation between staphostatin and staphopain appears to be exclusive, with no cross interaction observed. In addition, the activities of several tested cysteine proteinases of prokaryotic- and eukaryotic-origin were not affected by staphostatins. Such narrow specificity limited to staphopains is presumed to be required to protect staphylococcal cytoplasmic proteins from being degraded by prematurely activated/folded prostaphopains. This function is guaranteed through the unique co-expression of the secreted proteinase and the intracellular inhibitor from the same operon, and represents a unique mechanism of regulation of proteolytic activity in Gram-positive bacteria.
Collapse
Affiliation(s)
- Malgorzata Rzychon
- Department of Analytical Biochemistry, Faculty of Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | | | | | | | | |
Collapse
|
43
|
Mikolajczyk J, Boatright KM, Stennicke HR, Nazif T, Potempa J, Bogyo M, Salvesen GS. Sequential autolytic processing activates the zymogen of Arg-gingipain. J Biol Chem 2003; 278:10458-64. [PMID: 12533545 DOI: 10.1074/jbc.m210564200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most proteases are synthesized as inactive precursors to protect the synthetic machinery of the cell and allow timing of activation. The mechanisms used to render latency are varied but tend to be conserved within protease families. Proteases belonging to the caspase family have a unique mechanism mediated by transitions of two surface loops, and on the basis of conservation of mechanism one would expect this to be preserved by caspase relatives. We have been able to express the full-length precursor of the Arg-specific caspase relative from the bacterium Porphyromonas gingivalis, Arg-gingipain-B, and we show that it contains N- and C-terminal extensions that render a low amount of latency, meaning that the zymogen is substantially active. Three sequential autolytic processing steps at the N and C terminus are required for full activity, and the N-propeptide may serve as an intramolecular chaperone rather than an inhibitory peptide. Each step in activation requires the previous step, and an affinity probe reveals that incremental activity enhancements are achieved in a stepwise manner.
Collapse
|
44
|
Affiliation(s)
- Philip N Bryan
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA.
| |
Collapse
|
45
|
Tanksale A, Ghatge M, Deshpande V. Alpha-crystallin binds to the aggregation-prone molten-globule state of alkaline protease: implications for preventing irreversible thermal denaturation. Protein Sci 2002; 11:1720-8. [PMID: 12070325 PMCID: PMC2384148 DOI: 10.1110/ps.0201802] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2002] [Revised: 04/03/2002] [Accepted: 04/16/2002] [Indexed: 10/14/2022]
Abstract
Alpha-crystallin, the major eye-lens protein with sequence homology with heat-shock proteins (HSPs), acts like a molecular chaperone by suppressing the aggregation of damaged crystallins and proteins. To gain more insight into its chaperoning ability, we used a protease as the model system that is known to require a propeptide (intramolecular chaperone) for its proper folding. The protease ("N" state) from Conidiobolus macrosporus (NCIM 1298) unfolds at pH 2.0 ("U" state) through a partially unfolded "I" state at pH 3.5 that undergoes transition to a molten globule-(MG) like "I(A)" state in the presence of 0.5 M sodium sulfate. The thermally-stressed I(A) state showed complete loss of structure and was prone to aggregation. Alpha-crystallin was able to bind to this state and suppress its aggregation, thereby preventing irreversible denaturation of the enzyme. The alpha-crystallin-bound I(A) state exhibited native-like secondary and tertiary structure showing the interaction of alpha-crystallin with the MG state of the protease. 8-Anilinonaphthalene sulphonate (ANS) binding studies revealed the involvement of hydrophobic interactions in the formation of the complex of alpha-crystallin and protease. Refolding of acid-denatured protease by dilution to pH 7.5 resulted in aggregation of the protein. Unfolding of the protease in the presence of alpha-crystallin and its subsequent refolding resulted in the generation of a near-native intermediate with partial secondary and tertiary structure. Our studies represent the first report of involvement of a molecular chaperone-like alpha-crystallin in the unfolding and refolding of a protease. Alpha-crystallin blocks the unfavorable pathways that lead to irreversible denaturation of the alkaline protease and keeps it in a near-native, folding-competent intermediate state.
Collapse
Affiliation(s)
- Aparna Tanksale
- Levine Science Research Center, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
46
|
|
47
|
Tang B, Nirasawa S, Kitaoka M, Hayashi K. In vitro stepwise autoprocessing of the proform of pro-aminopeptidase processing protease from Aeromonas caviae T-64. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1596:16-27. [PMID: 11983417 DOI: 10.1016/s0167-4838(01)00315-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PA protease (pro-aminopeptidase processing protease) is an extracellular zinc metalloprotease produced by the Gram-negative bacterium Aeromonas caviae T-64. The 590-amino-acid precursor of PA protease is composed of a putative 19-amino-acid signal sequence, a 165-amino-acid N-terminal propeptide, a 33 kDa mature protease domain and an 11 kDa C-terminal propeptide. The proform of PA protease, which was produced as inclusion bodies in Escherichia coli, was subjected to in vitro refolding. It was revealed that the processing of the proform involved a stepwise autoprocessing mechanism. Firstly, the N-terminal propeptide was autocatalytically removed on completion of refolding and secondly, the C-terminal propeptide was autoprocessed after the degradation of the N-terminal propeptide. Both the N- and C-terminal propeptides existed as intact peptides after their successive removal, and they were subsequently degraded gradually. The degradation of the N-terminal propeptide appears to be the rate-limiting step in the maturation of the proform of PA protease.
Collapse
Affiliation(s)
- Bing Tang
- Enzyme Laboratory, Biological Function Division, National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | |
Collapse
|
48
|
Self-Processing of Subunits of the Proteasome. CO- AND POSTTRANSLATIONAL PROTEOLYSIS OF PROTEINS 2002. [DOI: 10.1016/s1874-6047(02)80013-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
49
|
Yabuta Y, Takagi H, Inouye M, Shinde U. Folding pathway mediated by an intramolecular chaperone: propeptide release modulates activation precision of pro-subtilisin. J Biol Chem 2001; 276:44427-34. [PMID: 11577106 DOI: 10.1074/jbc.m107573200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Propeptides of several proteases directly catalyze the protein folding reaction. Uncatalyzed folding traps these proteases into inactive molten-globule-like conformers that switch into active enzymes only when their cognate propeptides are added in trans. Although tight binding and proteolytic susceptibility forces propeptides to function as single turnover catalysts, the significance of their inhibitory function and the mechanism of activation remain unclear. Using pro-subtilisin as a model, we establish that precursor activation is a highly coordinated process that involves synchronized folding, autoprocessing, propeptide release, and protease activation. Our results demonstrate that activation is controlled by release of the first free active protease molecule. This triggers an exponential cascade that selectively targets the inhibitory propeptide in the autoprocessed complex as its substrate. However, a mutant precursor that enhances propeptide release can drastically reduce the folding efficiency by altering the synergy between individual stages. Our results represent the first demonstration that propeptide release, not precursor folding, is the rate-determining step and provides the basis for the proposed model for precise spatial and temporal activation that allows proteases to function as regulators of biological function.
Collapse
Affiliation(s)
- Y Yabuta
- Department of Biochemistry and Molecular Biology, MRB631, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | |
Collapse
|
50
|
Takagi H, Koga M, Katsurada S, Yabuta Y, Shinde U, Inouye M, Nakamori S. Functional analysis of the propeptides of subtilisin E and aqualysin I as intramolecular chaperones. FEBS Lett 2001; 508:210-4. [PMID: 11718717 DOI: 10.1016/s0014-5793(01)03053-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several proteases require propeptides for the correct folding of their own protease domain. We have recently found that the propeptide from a thermostable subtilisin homolog aqualysin I can refold subtilisin BPN' when added in trans. Here, we constructed chimeric genes with subtilisin E and aqualysin I to attempt the in cis folding of subtilisin E by means of the propeptide of aqualysin I. Our results indicate that the propeptide of aqualysin I can to some extent chaperone the intramolecular folding of the denatured subtilisin E. These results suggest that propeptides in the subtilisin family, despite their sequence diversity, have similar functions. Further, some enzymatic properties of some chimeras in which the subtilisin mature domain is partly swapped with that of aqualysin I were shown to be more similar to those of aqualysin I.
Collapse
Affiliation(s)
- H Takagi
- Department of Bioscience, Fukui Prefectural University, Japan.
| | | | | | | | | | | | | |
Collapse
|