1
|
Liu J, Wu Y, Cui X, Zhang X, Xie M, Liu L, Liu Y, Huang J, Cheng X, Liu S. Genome-wide characterization of ovate family protein gene family associated with number of seeds per silique in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:962592. [PMID: 36186010 PMCID: PMC9515500 DOI: 10.3389/fpls.2022.962592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Ovate family proteins (OFPs) were firstly identified in tomato as proteins controlling the pear shape of the fruit. Subsequent studies have successively proved that OFPs are a class of negative regulators of plant development, and are involved in the regulation of complex traits in different plants. However, there has been no report about the functions of OFPs in rapeseed growth to date. Here, we identified the OFPs in rapeseed at the genomic level. As a result, a total of 67 members were obtained. We then analyzed the evolution from Arabidopsis thaliana to Brassica napus, illustrated their phylogenetic and syntenic relationships, and compared the gene structure and conserved domains between different copies. We also analyzed their expression patterns in rapeseed, and found significant differences in the expression of different members and in different tissues. Additionally, we performed a GWAS for the number of seeds per silique (NSPS) in a rapeseed population consisting of 204 natural accessions, and identified a new gene BnOFP13_2 significantly associated with NSPS, which was identified as a novel function of OFPs. Haplotype analysis revealed that the accessions with haplotype 3 had a higher NSPS than other accessions, suggesting that BnOFP13_2 is associated with NSPS. Transcript profiling during the five stages of silique development demonstrated that BnOFP13_2 negatively regulates NSPS. These findings provide evidence for functional diversity of OFP gene family and important implications for oilseed rape breeding.
Collapse
|
2
|
Vanburen R, Ming R. Dynamic transposable element accumulation in the nascent sex chromosomes of papaya. Mob Genet Elements 2014; 3:e23462. [PMID: 23734293 PMCID: PMC3661139 DOI: 10.4161/mge.23462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/02/2013] [Indexed: 02/03/2023] Open
Abstract
From their inception, Y chromosomes in plants and animals are subjected to the powerful effects of Müller's ratchet, a process spurred by suppression of recombination that results in a rapid accumulation of mutations and repetitive elements. These mutations eventually lead to gene loss and degeneration of the Y chromosome. Y chromosomes in mammals are ancient, whereas most sex chromosomes in plants and many in insects and fish evolved recently. Sex type in papaya is controlled by a pair of nascent sex chromosomes that evolved around 7 million years ago. The papaya X and Yh were recently sequenced, providing valuable insight into the early stages of sex chromosome evolution. Here we discuss the fruits of this work with a focus on the repeat accumulation, gene trafficking and promiscuous DNA sequences found in the slowly degenerating Yh chromosome of papaya.
Collapse
Affiliation(s)
- Robert Vanburen
- Department of Plant Biology; University of Illinois at Urbana-Champaign; Urbana, IL USA
| | | |
Collapse
|
3
|
Freeling M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:433-53. [PMID: 19575588 DOI: 10.1146/annurev.arplant.043008.092122] [Citation(s) in RCA: 634] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Each mode of gene duplication (tandem, tetraploid, segmental, transpositional) retains genes in a biased manner. A reciprocal relationship exists between plant genes retained postpaleotetraploidy versus genes retained after an ancient tandem duplication. Among the models (C, neofunctionalization, balanced gene drive) and ideas that might explain this relationship, only balanced gene drive predicts reciprocity. The gene balance hypothesis explains that more "connected" genes--by protein-protein interactions in a heteromer, for example--are less likely to be retained as a tandem or transposed duplicate and are more likely to be retained postpaleotetraploidy; otherwise, selectively negative dosage effects are created. Biased duplicate retention is an instant and neutral by-product, a spandrel, of purifying selection. Balanced gene drive expanded plant gene families, including those encoding proteasomal proteins, protein kinases, motors, and transcription factors, with each paleotetraploidy, which could explain trends involving complexity. Balanced gene drive is a saltation mechanism in the mutationist tradition.
Collapse
Affiliation(s)
- Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
4
|
Freeling M, Lyons E, Pedersen B, Alam M, Ming R, Lisch D. Many or most genes in Arabidopsis transposed after the origin of the order Brassicales. Genome Res 2008; 18:1924-37. [PMID: 18836034 DOI: 10.1101/gr.081026.108] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous to this work, typical genes were thought to move from one position to another infrequently. On the contrary, we now estimate that between one-fourth and three-fourths of the genes in Arabidopsis transposed in the Brassicales. We used the CoGe comparative genomics system to perform and visualize multiple orthologous chromosomal alignments. Using this tool, we found large differences between different categories of genes. Ten of the gene families examined, including genes in most transcription factor families, exhibited a median frequency of 5% transposed genes. In contrast, other gene families were composed largely of transposed genes: NB-LRR disease-resistance genes, genes encoding MADS-box and B3 transcription factors, and genes encoding F-box proteins. A unique method involving transposition-rich regions of genome allowed us to obtain an indirect estimate of the positional stability of the average gene. The observed differences between gene families raise important questions concerning the causes and consequences of gene transposition.
Collapse
Affiliation(s)
- Michael Freeling
- Department of Plant and Microbial Biology, University of California at Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Samson ML. Rapid functional diversification in the structurally conserved ELAV family of neuronal RNA binding proteins. BMC Genomics 2008; 9:392. [PMID: 18715504 PMCID: PMC2529313 DOI: 10.1186/1471-2164-9-392] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 08/20/2008] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The Drosophila gene embryonic lethal abnormal visual system (elav) is the prototype of a gene family present in all metazoans. Its members encode structurally conserved neuronal proteins with three RNA Recognition Motifs (RRM) but they paradoxically act at diverse levels of post-transcriptional regulation. In an attempt to understand the history of this family, we searched for orthologs in eleven completely sequenced genomes, including those of humans, D. melanogaster and C. elegans, for which cDNAs are available. RESULTS We analyzed 23 orthologs/paralogs of elav, and found evidence of gain/loss of gene copy number. For one set of genes, including elav itself, the coding sequences are free of introns and their products most resemble ELAV. The remaining genes show remarkable conservation of their exon organization, and their products most resemble FNE and RBP9, proteins encoded by the two elav paralogs of Drosophila. Remarkably, three of the conserved exon junctions are both close to structural elements, involved respectively in protein-RNA interactions and in the regulation of sub-cellular localization, and in the vicinity of diverse sequence variations. CONCLUSION The data indicate that the essential elav gene of Drosophila is newly emerged, restricted to dipterans and of retrotransposed origin. We propose that the conserved exon junctions constitute potential sites for sequence/function modifications, and that RRM binding proteins, whose function relies upon plastic RNA-protein interactions, may have played an important role in brain evolution.
Collapse
Affiliation(s)
- Marie-Laure Samson
- Laboratoire Signalisation, Développement et Cancer, UMR8080 Développement et Evolution, CNRS and Université Paris Sud, Bâtiment 442 bis, 91405, Orsay Cedex, France.
| |
Collapse
|
6
|
Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM, O'Grady PM, Rohde C, Valente VLS, Aguadé M, Anderson WW, Edwards K, Garcia ACL, Goodman J, Hartigan J, Kataoka E, Lapoint RT, Lozovsky ER, Machado CA, Noor MAF, Papaceit M, Reed LK, Richards S, Rieger TT, Russo SM, Sato H, Segarra C, Smith DR, Smith TF, Strelets V, Tobari YN, Tomimura Y, Wasserman M, Watts T, Wilson R, Yoshida K, Markow TA, Gelbart WM, Kaufman TC. Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 2008; 179:1601-55. [PMID: 18622037 PMCID: PMC2475758 DOI: 10.1534/genetics.107.086074] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 03/13/2008] [Indexed: 11/18/2022] Open
Abstract
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.
Collapse
Affiliation(s)
- Stephen W Schaeffer
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bhutkar A, Russo SM, Smith TF, Gelbart WM. Genome-scale analysis of positionally relocated genes. Genome Res 2007; 17:1880-7. [PMID: 17989252 DOI: 10.1101/gr.7062307] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During evolution, genome reorganization includes large-scale events such as inversions, translocations, and segmental or even whole-genome duplications, as well as fine-scale events such as the relocation of individual genes. This latter category, which we will refer to as positionally relocated genes (PRGs), is the subject of this report. Assessment of the magnitude of such PRGs and of possible contributing mechanisms is aided by a comparative analysis of related genomes, where conserved chromosomal organization can aid in identifying genes that have acquired a new location in a lineage of these genomes. Here we utilize two methods to comprehensively identify relocated protein-coding genes in the recently sequenced genomes of 12 species of genus Drosophila. We use exceptions to the general rule of maintenance of chromosome arm (Muller element) association for most Drosophila genes to identify one major class of PRGs. We also identify a partially overlapping set of PRGs among "embedded genes," located within the extents of other surrounding genes. We provide evidence that PRG movements have at least two different origins: Some events occur via retrotransposition of processed RNAs and others via a DNA-based transposition mechanism. Overall, we identify several hundred PRGs that arose within a lineage of the genus Drosophila phylogeny and provide suggestive evidence that a few thousand such events have occurred within the radiation of the insect order Diptera, thereby illustrating the magnitude of the contribution of PRG movement to chromosomal reorganization during evolution.
Collapse
Affiliation(s)
- Arjun Bhutkar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | |
Collapse
|
8
|
Hudson SG, Garrett MJ, Carlson JW, Micklem G, Celniker SE, Goldstein ES, Newfeld SJ. Phylogenetic and genomewide analyses suggest a functional relationship between kayak, the Drosophila fos homolog, and fig, a predicted protein phosphatase 2c nested within a kayak intron. Genetics 2007; 177:1349-61. [PMID: 18039871 PMCID: PMC2147949 DOI: 10.1534/genetics.107.071670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A gene located within the intron of a larger gene is an uncommon arrangement in any species. Few of these nested gene arrangements have been explored from an evolutionary perspective. Here we report a phylogenetic analysis of kayak (kay) and fos intron gene (fig), a divergently transcribed gene located in a kay intron, utilizing 12 Drosophila species. The evolutionary relationship between these genes is of interest because kay is the homolog of the proto-oncogene c-fos whose function is modulated by serine/threonine phosphorylation and fig is a predicted PP2C phosphatase specific for serine/threonine residues. We found that, despite an extraordinary level of diversification in the intron-exon structure of kay (11 inversions and six independent exon losses), the nested arrangement of kay and fig is conserved in all species. A genomewide analysis of protein-coding nested gene pairs revealed that approximately 20% of nested pairs in D. melanogaster are also nested in D. pseudoobscura and D. virilis. A phylogenetic examination of fig revealed that there are three subfamilies of PP2C phosphatases in all 12 species of Drosophila. Overall, our phylogenetic and genomewide analyses suggest that the nested arrangement of kay and fig may be due to a functional relationship between them.
Collapse
Affiliation(s)
- Stephanie G Hudson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
González J, Casals F, Ruiz A. Duplicative and conservative transpositions of larval serum protein 1 genes in the genus Drosophila. Genetics 2005; 168:253-64. [PMID: 15454541 PMCID: PMC1448094 DOI: 10.1534/genetics.103.025916] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interspecific comparative molecular analyses of transposed genes and their flanking regions can help to elucidate the time, direction, and mechanism of gene transposition. In the Drosophila melanogaster genome, three Larval serum protein 1 (Lsp1) genes (alpha, beta and gamma) are present and each of them is located on a different chromosome, suggesting multiple transposition events. We have characterized the molecular organization of Lsp1 genes in D. buzzatii, a species of the Drosophila subgenus and in D. pseudoobscura, a species of the Sophophora subgenus. Our results show that only two Lsp1 genes (beta and gamma) exist in these two species. The same chromosomal localization and genomic organization, different from that of D. melanogaster, is found in both species for the Lsp1beta and Lsp1gamma genes. Overall, at least two duplicative and two conservative transpositions are necessary to explain the present chromosomal distribution of Lsp1 genes in the three Drosophila species. Clear evidence for implication of snRNA genes in the transposition of Lsp1beta in Drosophila has been found. We suggest that an ectopic exchange between highly similar snRNA sequences was responsible for the transposition of this gene. We have also identified the putative cis-acting regulatory regions of these genes, which seemingly transposed along with the coding sequences.
Collapse
Affiliation(s)
- Josefa González
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | | | |
Collapse
|
10
|
Taylor SD, de la Cruz KD, Porter ML, Whiting MF. Characterization of the Long-Wavelength Opsin from Mecoptera and Siphonaptera: Does a Flea See? Mol Biol Evol 2005; 22:1165-74. [PMID: 15703237 DOI: 10.1093/molbev/msi110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mecoptera and Siphonaptera represent two insect orders that have largely been overlooked in the study of insect vision. Recent phylogenetic evidence demonstrates that Mecoptera (scorpionflies) is paraphyletic, with the order Siphonaptera (fleas) nesting as sister to the family Boreidae (snow fleas), showing an evolutionary trend towards reduction in gross eye morphology within fleas. We provide the first molecular characterization of long-wavelength opsins from these three lineages (opsin gene from fleas [FL-Opsin], the Boreidae [B-Opsin], and a mecopteran family [M-Opsin]) and assess the effects of loss of visual acuity on the structure and function of the opsin gene. Phylogenetic analysis implies a physiological sensitivity in the red-green spectrum for these opsins. Analysis of intron splice sites reveals a high degree of similarity between FL-Opsin and B-Opsin as well as conserved splice sites across insect blue-green and long-wavelength opsins. Calculated rates of evolution and tests for destabilizing selection indicate that FL-Opsin, B-Opsin, and M-Opsin are evolving at similar rates with no radical selective pressures, implying conservative evolution and functional constraint across all three lineages.
Collapse
Affiliation(s)
- Sean D Taylor
- Brigham Young University, Department of Integrative Biology, USA
| | | | | | | |
Collapse
|
11
|
Abstract
The apparati behind the replication, transcription, and translation of prokaryotic and eukaryotic genes are quite different. Yet in both classes of organisms, genes may be organized in their respective chromosomes in similar ways by virtue of similarly acting selective forces. In addition, some gene organizations reflect biology unique to each class of organisms. Levels of organization are more complex than those of the simple operon. Multiple transcription units may be organized into larger units, local control regions may act over large chromosomal regions in eukaryotic chromosomes, and cis-acting genes may control the expression of downstream genes in all classes of organisms. All these mechanisms lead to genomes being far more organized, in both prokaryotes and eukaryotes, than hitherto imagined.
Collapse
Affiliation(s)
- Jeffrey G Lawrence
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
12
|
Ranz JM, González J, Casals F, Ruiz A. Low occurrence of gene transposition events during the evolution of the genus Drosophila. Evolution 2003; 57:1325-35. [PMID: 12894940 DOI: 10.1111/j.0014-3820.2003.tb00340.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role played by gene transpositions during the evolution of eukaryotic genomes is still poorly understood and indeed has been analyzed in detail only in nematodes. In Drosophila, a limited number of transpositions have been detected by comparing the chromosomal location of genes between different species. The relative importance of gene transposition versus other types of chromosomal rearrangements, for example, inversions, has not yet been evaluated. Here, we use physical mapping to perform an extensive search for long-distance gene transpositions and assess their impact during the evolution of the Drosophila genome. We compare the relative order of 297 molecular markers that cover 60% of the euchromatic fraction of the genome between two related Drosophila species and conclude that the frequency of gene transpositions is very low, namely one order of magnitude lower than that of nematodes. In addition, gene transpositions seem to be events almost exclusively associated with genes of repetitive nature such as the Histone gene complex (HIS-C).
Collapse
Affiliation(s)
- José María Ranz
- Department de Genètica i de Microbiologia, Facultat de Ciències, Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
13
|
Ranz JM, González J, Casals F, Ruiz A. LOW OCCURRENCE OF GENE TRANSPOSITION EVENTS DURING THE EVOLUTION OF THE GENUS DROSOPHILA. Evolution 2003. [DOI: 10.1554/02-468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Abstract
Although genes in prokaryotes and eukaryotes are transcribed and translated by very different mechanisms, they may be organized in their respective chromosomes in surprisingly similar ways. Here, I examine common modes of maintaining nonrandom gene organization in both prokaryotes and eukaryotes, the different ways these organizations have likely arisen, and classes of organization that may be unique to one group or the other.
Collapse
Affiliation(s)
- Jeffrey G Lawrence
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
15
|
González J, Ranz JM, Ruiz A. Chromosomal elements evolve at different rates in the Drosophila genome. Genetics 2002; 161:1137-54. [PMID: 12136017 PMCID: PMC1462194 DOI: 10.1093/genetics/161.3.1137] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent results indicate that the rate of chromosomal rearrangement in the genus Drosophila is the highest found so far in any eukaryote. This conclusion is based chiefly on the comparative mapping analysis of a single chromosomal element (Muller's element E) in two species, D. melanogaster and D. repleta, representing the two farthest lineages within the genus (the Sophophora and Drosophila subgenera, respectively). We have extended the analysis to two other chromosomal elements (Muller's elements A and D) and tested for differences in rate of evolution among chromosomes. With this purpose, detailed physical maps of chromosomes X and 4 of D. repleta were constructed by in situ hybridization of 145 DNA probes (gene clones, cosmids, and P1 phages) and their gene arrangements compared with those of the homologous chromosomes X and 3L of D. melanogaster. Both chromosomal elements have been extensively reshuffled over their entire length. The number of paracentric inversions fixed has been estimated as 118 +/- 17 for element A and 56 +/- 8 for element D. Comparison with previous data for elements E and B shows that there are fourfold differences in evolution rate among chromosomal elements, with chromosome X exhibiting the highest rate of rearrangement. Combining all results, we estimated that 393 paracentric inversions have been fixed in the whole genome since the divergence between D. repleta and D. melanogaster. This amounts to an average rate of 0.053 disruptions/Mb/myr, corroborating the high rate of rearrangement in the genus Drosophila.
Collapse
Affiliation(s)
- Josefa González
- Departament de Genètica i de Microbiologia, Facultat de Ciències-Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | | | |
Collapse
|
16
|
Bergman CM, Pfeiffer BD, Rincón-Limas DE, Hoskins RA, Gnirke A, Mungall CJ, Wang AM, Kronmiller B, Pacleb J, Park S, Stapleton M, Wan K, George RA, de Jong PJ, Botas J, Rubin GM, Celniker SE. Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biol 2002; 3:RESEARCH0086. [PMID: 12537575 PMCID: PMC151188 DOI: 10.1186/gb-2002-3-12-research0086] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Revised: 11/25/2002] [Accepted: 12/05/2002] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND It is widely accepted that comparative sequence data can aid the functional annotation of genome sequences; however, the most informative species and features of genome evolution for comparison remain to be determined. RESULTS We analyzed conservation in eight genomic regions (apterous, even-skipped, fushi tarazu, twist, and Rhodopsins 1, 2, 3 and 4) from four Drosophila species (D. erecta, D. pseudoobscura, D. willistoni, and D. littoralis) covering more than 500 kb of the D. melanogaster genome. All D. melanogaster genes (and 78-82% of coding exons) identified in divergent species such as D. pseudoobscura show evidence of functional constraint. Addition of a third species can reveal functional constraint in otherwise non-significant pairwise exon comparisons. Microsynteny is largely conserved, with rearrangement breakpoints, novel transposable element insertions, and gene transpositions occurring in similar numbers. Rates of amino-acid substitution are higher in uncharacterized genes relative to genes that have previously been studied. Conserved non-coding sequences (CNCSs) tend to be spatially clustered with conserved spacing between CNCSs, and clusters of CNCSs can be used to predict enhancer sequences. CONCLUSIONS Our results provide the basis for choosing species whose genome sequences would be most useful in aiding the functional annotation of coding and cis-regulatory sequences in Drosophila. Furthermore, this work shows how decoding the spatial organization of conserved sequences, such as the clustering of CNCSs, can complement efforts to annotate eukaryotic genomes on the basis of sequence conservation alone.
Collapse
Affiliation(s)
- Casey M Bergman
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- These authors contributed equally to this work
| | - Barret D Pfeiffer
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- These authors contributed equally to this work
| | - Diego E Rincón-Limas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Current address: Departamento de Biologia Molecular, Universidad Autonoma de Tamaulipas-UAMRA, Reynosa, CP 88740, Mexico
| | - Roger A Hoskins
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | | | - Chris J Mungall
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Adrienne M Wang
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Current address: Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Brent Kronmiller
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Current address: Department of Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Joanne Pacleb
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Soo Park
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Mark Stapleton
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Kenneth Wan
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Reed A George
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Pieter J de Jong
- Children's Hospital and Research Center at Oakland, Oakland, CA 94609, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerald M Rubin
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Susan E Celniker
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Wang W, Zhang J, Alvarez C, Llopart A, Long M. The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol Biol Evol 2000; 17:1294-301. [PMID: 10958846 DOI: 10.1093/oxfordjournals.molbev.a026413] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Jingwei (jgw) is the first gene found to be of sufficiently recent origin in Drosophila to offer insights into the origin of a gene. While its chimerical gene structure was partially resolved as including a retrosequence of alcohol dehydrogenase (ADH:), the structure of its non-ADH: parental gene, the donor of the N-terminal domain of jgw, is unclear. We characterized this non-ADH: parental locus, yellow emperor (ymp), by cloning it, mapping it onto the polytene chromosomes, sequencing the entire locus, and examining its expression patterns in Drosophila melanogaster. We show that ymp is located in the 96-E region; the N-terminal domain of ymp has donated the non-ADH: portion of jgw via a duplication. The similar 5' portions of the gene and its regulatory sequences give rise to similar testis-specific expression patterns in ymp and jgw in Drosophila teissieri. Furthermore, between-species comparison of ymp revealed purifying selection in the protein sequence, suggesting a functional constraint in ymp. While the structure of ymp provides clear information for the molecular origin of the new gene jgw, it unexpectedly casts a new light on the concept of genes. We found, for the first time, that the single locus of the ymp gene encompasses three major molecular mechanisms determining structure of eukaryotic genes: (1) the 5' exons of ymp are involved in an exon-shuffling event that has created the portion recruited by jgw; (2) using alternative cleavage sites and alternative splicing sites, the 3' exon groups of ymp produce two proteins with nonhomologous C-terminal domains, both exclusively in the testis; and (3) in the opposite strand of the third intron of ymp is an essential gene, musashi (msi), which encodes an RNA-binding protein. The composite gene structure of ymp manifests the complexity of the gene concept, which should be considered in genomic research, e.g., gene finding.
Collapse
Affiliation(s)
- W Wang
- Department of Ecology and Evolution, University of Chicago. Department of Molecular and Cellular Biology, Harvard University
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Kaymer M, Debes A, Kress H, Kurzik-Dumke U. Sequence, molecular organization and products of the Drosophila virilis homologs of the D. melanogaster nested genes lethal(2) tumorous imaginal discs [1(2)tid] and lethal(2) neighbour of tid [1(2)not]. Gene X 1997; 204:91-103. [PMID: 9434170 DOI: 10.1016/s0378-1119(97)00528-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study, we describe the isolation of the Drosophila virilis (Dvir) 6201-bp genomic fragment homologous to a 7047-bp genomic region of D. melanogaster (Dmel) that harbors the nested genes lethal(2) tumorous imaginal discs (l(2)tid), lethal(2) neighbour of tid (l(2)not) and lethal(2) relative of tid (l(2)rot). The isolated fragment, which maps at the cytogenetic position 50A5 on chromosome 5, carries the Dvir homologs of the Dmel genes l(2)tid and l(2)not. In both cases, the interspecific comparison of the determined sequences reveals a high homology regarding the protein coding regions and a high degree of evolutionary divergence concerning the intronic parts of the genes. In the two distantly related species, the particular gene within gene arrangement of the two genes is conserved, namely, Dvir tid is located in the intron of Dvir not, on the non-coding DNA strand. Interestingly, the Dvir homolog of the Dmel l(2)rot gene residing in the l(2)not intron on its coding strand, opposite l(2)tid, is not present in the 6201-bp genomic fragment. The protein predicted from the Dvir tid sequence, Dvir Tid58, exhibits 76.5% identity with the putative Tid56 protein of Dmel. The putative Dvir Not58 protein shows 71% identity with its Dmel homolog Not56. The developmental transcript and protein patterns, as well as the characteristics of the protein products encoded by the genes Dvir tid and Dvir not are similar to those identified for their Dmel homologs.
Collapse
Affiliation(s)
- M Kaymer
- Institut für Genetik, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | |
Collapse
|
20
|
Bellingham J, Wilkie SE, Morris AG, Bowmaker JK, Hunt DM. Characterisation of the ultraviolet-sensitive opsin gene in the honey bee, Apis mellifera. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:775-81. [PMID: 9057845 DOI: 10.1111/j.1432-1033.1997.00775.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cDNA sequence of the ultraviolet-sensitive opsin in the honey-bee, Apis mellifera, with associated 5' and 3' untranslated regions, is presented. The analysis of genomic structure reveals seven introns in the coding region of the gene, with six at novel positions for an insect opsin gene. The equivalent site to the counterion in vertebrate opsins is occupied by a Tyr residue. This contrasts with the presence of Phe at this site in the ultraviolet-sensitive opsins of Drosophila sps. A comparison of the amino acid sequence within the seven alpha-helical transmembrane regions of insect ultraviolet/blue-sensitive opsins identifies substitution at five sites that involve either replacement of a polar with a non-polar residue, or a change in charge. Such changes are known to result in spectral shifts in vertebrate pigments. Phylogenetic analysis indicates that the ultraviolet-sensitive pigments represent an ancient class of insect opsins.
Collapse
Affiliation(s)
- J Bellingham
- Department of Molecular Genetics, University College London, UK
| | | | | | | | | |
Collapse
|
21
|
Abstract
The fly visual system has served for decades as a model for receptor spectral multiplicity and vitamin A utilization. A diverse armamentarium of structural techniques has dovetailed with convenient electrophysiology, photochemistry, genetics, and molecular biology in Drosophila to facilitate recent progress, which is reviewed here. New data are also presented. Ultrastructure of retinula cells of carotenoid-deprived flies shows that organelles associated with protein biosynthesis, i.e., rough endoplasmic reticulum and Golgi apparatus, are present, while organelles associated with rhabdomere turnover, i.e., multivesicular bodies (MVBs), are rare. Ultrastructure and morphometry suggest that retinoic acid-rearing stimulates membrane export and rhabdomere buildup, even though functional rhodopsin is missing. Confocal microscopy suggests that RH4, one of the ultraviolet rhodopsins, may reside in the previously-described pale fluorescent R7 cells with RH3 in the yellow fluorescent R7 cells.
Collapse
Affiliation(s)
- R D Lee
- Department of Biology, Saint Louis University, Missouri 63103-2010, USA
| | | | | | | |
Collapse
|
22
|
Hilton H, Hey J. DNA sequence variation at the period locus reveals the history of species and speciation events in the Drosophila virilis group. Genetics 1996; 144:1015-25. [PMID: 8913746 PMCID: PMC1207598 DOI: 10.1093/genetics/144.3.1015] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The virilis phylad of the Drosophila virilis group consists of five closely related taxa: D. virilis, D. lummei, D. novamexicana, D. americana americana and D. americana texana. DNA sequences from a 2.1-kb pair portion of the period locus were generated in four to eight individuals from each of the five taxa. We found evidence of recombination and high levels of variation within species. We found no evidence of recent natural selection. Surprisingly there was no evidence of divergence between D. a. americana and D. a. texana, and they collectively appear to have had a large historical effective population size. The ranges of these two taxa overlap in a large hybrid zone that has been delineated in the eastern U.S. on the basis of the geographic pattern of a chromosomal fusion. Also surprisingly, D. novamexicana appears to consist of two distinct groups each with low population size and no gene flow between them.
Collapse
Affiliation(s)
- H Hilton
- Department of Biological Sciences, Rutgers University, Piscataway, NJ 08855-1059, USA.
| | | |
Collapse
|
23
|
Da Lage JL, Wegnez M, Cariou ML. Distribution and evolution of introns in Drosophila amylase genes. J Mol Evol 1996; 43:334-47. [PMID: 8798339 DOI: 10.1007/bf02339008] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
While the two amylase genes of Drosophila melanogaster are intronless, the three genes of D. pseudoobscura harbor a short intron. This raises the question of the common structure of the Amy gene in Drosophila species. We have investigated the presence or absence of an intron in the amylase genes of 150 species of Drosophilids. Using polymerase chain reaction (PCR), we have amplified a region that surrounds the intron site reported in D. pseudoobscura and a few other species. The results revealed that most species contain an intron, with a variable size ranging from 50 to 750 bp, although the very majoritary size was around 60-80 bp. Several species belonging to different lineages were found to lack an intron. This loss of intervening sequence was likely due to evolutionarily independent and rather frequent events. Some other species had both types of genes: In the obscura group, and to a lesser extent in the ananassae subgroup, intronless copies had much diverged from intron-containing genes. Base composition of short introns was found to be variable and correlated with that of the surrounding exons, whereas long introns were all A-T rich. We have extended our study to non-Drosophilid insects. In species from other orders of Holometaboles, Lepidoptera and Hymenoptera, an intron was found at an identical position in the Amy gene, suggesting that the intron was ancestral.
Collapse
Affiliation(s)
- J L Da Lage
- UPR 9034: Populations, Génétique et Evolution, CNRS, 91198 Gif sur Yvette cedex, France
| | | | | |
Collapse
|
24
|
Currie PD, Sullivan DT. Structure, expression and duplication of genes which encode phosphoglyceromutase of Drosophila melanogaster. Genetics 1994; 138:352-63. [PMID: 7828819 PMCID: PMC1206154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We report here the isolation and characterization of genes from Drosophila that encode the glycolytic enzyme phosphoglyceromutase (PGLYM). Two genomic regions have been isolated that have potential to encode PGLYM. Their cytogenetic localizations have been determined by in situ hybridization to salivary gland chromosomes. One gene, Pglym78, is found at 78A/B and the other, Pglym87, at 87B4,5 of the Drosophila polytene map. Pglym78 transcription follows a developmental pattern similar to other glycolytic genes in Drosophila, i.e., substantial maternal transcript deposited during oogenesis; a decline in abundance in the first half of embryogenesis; a subsequent increase in the second half of embryogenesis which continues throughout larval life; a decline in pupae and a second increase to a plateau in adults. This transcript has been mapped by cDNA and genomic sequence comparison, RNase protection, and primer extension. Using similar analyses transcripts of Pglym87 could not be detected. Pglym78 has two introns which interrupt the coding region, while the Pglym87 gene lacks introns. This and other features support a model of retrotransposition mediated gene duplication for the origin of Pglym87. The apparent absence of a complete, intact coding frame and transcript suggest that Pglym87 is a pseudogene. However, retention of reading frame and codon bias suggests that Pglym87 may retain coding function, or may have been inactivated recently, substantially after the time of duplication, or that the molecular evolution of Pglym87 is unusual. Similarities of the unusual molecular evolution of Pglym87 and other proposed pseudogenes are discussed.
Collapse
Affiliation(s)
- P D Currie
- Department of Biology, Syracuse University, New York 13244-1270
| | | |
Collapse
|
25
|
Abstract
Phylogenetic and physiological methods were used to study the evolution of the opsin gene family in Drosophila. A phylogeny based on DNA sequences from 13 opsin genes including representatives from the two major subgenera of Drosophila shows six major, well-supported clades: The "blue opsin" clade includes all of the Rh1 and Rh2 genes and is separated into two distinct subclades of Rh1 sequences and Rh2 sequences; the ultraviolet opsin clade includes all Rh3 and Rh4 genes and bifurcates into separate Rh3 and Rh4 clades. The duplications that generated this gene family most likely took place before the evolution of the subgenera Drosophila and Sophophora and their component species groups. Numerous changes have occurred in these genes since the duplications, including the loss and/or gain of introns in the different genes and even within the Rh1 and Rh4 clades. Despite these changes, the spectral sensitivity of each of the opsins has remained remarkably fixed in a sample of four species representing two species groups in each of the two subgenera. All of the strains that were investigated had R1-6 (Rh1) spectral sensitivity curves that peaked at or near 480 nm, R7 (Rh3 and Rh4) peaks in the ultraviolet range, and ocellar (Rh2) peaks near 420 nm. Each of the four gene clades on the phylogeny exhibits very conservative patterns of amino acid replacement in domains of the protein thought to influence spectral sensitivity, reflecting strong constraints on the spectrum of light visible to Drosophila.
Collapse
Affiliation(s)
- J P Carulli
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | | | | | | |
Collapse
|
26
|
Abstract
Intermediate between DNA sequences and broad patterns of karyotypic change there is a major gap in understanding genome structure and evolution. The gap is at the megabase level between genes and chromosomes. New methods for analyzing large DNA fragments cloned in yeast or bacterial vectors provide experimental access to genome evolution at the megabase level by enabling the assembly of megabase-size contiguous regions. Genome evolution at the megabase level can also be studied using high-resolution genetic maps. Rates and patterns of genome evolution in mammals (mouse versus humans) and Drosophila (D. virilis versus D. melanogaster) are compared and contrasted. Opportunities for research in genome evolution using the new technologies are enumerated and discussed.
Collapse
Affiliation(s)
- D L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
27
|
Morris A, Bowmaker JK, Hunt DM. The molecular basis of a spectral shift in the rhodopsins of two species of squid from different photic environments. Proc Biol Sci 1993; 254:233-40. [PMID: 8108455 DOI: 10.1098/rspb.1993.0151] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The molecular basis of spectral tuning of rhodopsin pigments in two squid species is examined. The absorbance spectra of rhodopsin extracts from Alloteuthis subulata (lambda max 499 nm) showed a 5 nm red shift compared with Loligo forbesi (lambda max 494 nm). The rhodopsin gene sequence of A. subulata opsin was determined from polymerase chain reaction (PCR) amplified fragments by using genomic DNA as template. The deduced amino acid sequence was compared with that obtained from the previously published cDNA sequence of Loligo forbesi. A total of 22 amino acid differences are present, although only seven can be considered to be non-homologous substitutions. Three of these changes occur in helical transmembrane regions but only one, the substitution of phenylalanine by serine at site 270 in Alloteuthis subulata, involves the replacement of an apolar with a hydroxyl-bearing residue at a site located near the centre of helix VI and on the inner face of the retinal-binding pocket. The equivalent site is also used for the spectral tuning of primate cone pigments, an example of convergent evolution. It is proposed that substitution at this site is responsible for the 5 nm red shift. The relation between this spectral shift and the maximum depth distribution of Alloteuthis subulata of about 200 m, compared with about 360 m for Loligo forbesi, is discussed. An unexpected finding was that the rhodopsin gene of both species appears to lack introns.
Collapse
Affiliation(s)
- A Morris
- Department of Molecular Genetics, University of London, U.K
| | | | | |
Collapse
|
28
|
Kress H. The salivary gland chromosomes of Drosophila virilis: a cytological map, pattern of transcription and aspects of chromosome evolution. Chromosoma 1993; 102:734-42. [PMID: 8149815 DOI: 10.1007/bf00650901] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
By combining information from microscopical observation and photography a graphical map of Drosophila virilis salivary gland chromosomes was constructed. About 1,560 individual bands are shown and patterns of transcription at about 360 sites are indicated. The application of the map is demonstrated by using genetic, morphological and in situ hybridization data to identify the white-Notch regions of D. virilis and Drosophila melanogaster as homologous chromosome segments with constant and variable features.
Collapse
Affiliation(s)
- H Kress
- Genetisches Institut der Freien Universität Berlin, Germany
| |
Collapse
|
29
|
Smith WC, Price DA, Greenberg RM, Battelle BA. Opsins from the lateral eyes and ocelli of the horseshoe crab, Limulus polyphemus. Proc Natl Acad Sci U S A 1993; 90:6150-4. [PMID: 8327495 PMCID: PMC46885 DOI: 10.1073/pnas.90.13.6150] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
cDNA clones encoding opsins from the lateral eyes and median ocelli of the horseshoe crab, Limulus polyphemus, were isolated from cDNA libraries. The opsin cDNAs obtained from the lateral eye and ocellar libraries code for deduced proteins with 376 amino acids. The two cDNAs are 96% identical at the nucleic acid level, differing primarily at the 3' untranslated region, and are apparently the products of two separate genes. The deduced opsin proteins are 99% identical to each other, differing at only 5 amino acids. The opsins encoded by these cDNAs are most likely the protein moiety of the visible-wavelength rhodopsins in this animal. In the lateral eye, expression of the opsin gene is restricted to the photoreceptor cells of the ommatidia. Comparisons with opsins of other species show that the Limulus opsin proteins are most similar (53% identity) to the opsin from the R1-6 photoreceptors of flies.
Collapse
Affiliation(s)
- W C Smith
- Whitney Marine Laboratory, University of Florida, Gainesville 32086
| | | | | | | |
Collapse
|
30
|
Lozovskaya ER, Petrov DA, Hartl DL. A combined molecular and cytogenetic approach to genome evolution in Drosophila using large-fragment DNA cloning. Chromosoma 1993; 102:253-66. [PMID: 8486077 DOI: 10.1007/bf00352399] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Methods of genome analysis, including the cloning and manipulation of large fragments of DNA, have opened new strategies for uniting molecular evolutionary genetics with chromosome evolution. We have begun the development of a physical map of the genome of Drosophila virilis based on large DNA fragments cloned in bacteriophage P1. A library of 10,080 P1 clones with average insert sizes of 65.8 kb, containing approximately 3.7 copies of the haploid genome of D. virilis, has been constructed and characterized. Approximately 75% of the clones have inserts exceeding 50 kb, and approximately 25% have inserts exceeding 80 kb. A sample of 186 randomly selected clones was mapped by in situ hybridization with the salivary gland chromosomes. A method for identifying D. virilis clones containing homologs of D. melanogaster genes has also been developed using hybridization with specific probes obtained from D. melanogaster by means of the polymerase chain reaction. This method proved successful for nine of ten genes and resulted in the recovery of 14 clones. The hybridization patterns of a sample of P1 clones containing repetitive DNA were also determined. A significant fraction of these clones hybridizes to multiple euchromatic sites but not to the chromocenter, which is a pattern of hybridization that is very rare among clones derived from D. melanogaster. The materials and methods described will make it possible to carry out a direct study of molecular evolution at the level of chromosome structure and organization as well as at the level of individual genes.
Collapse
Affiliation(s)
- E R Lozovskaya
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | | | | |
Collapse
|
31
|
Liaw GJ, Steingrimsson E, Pignoni F, Courey AJ, Lengyel JA. Characterization of downstream elements in a Raf-1 pathway. Proc Natl Acad Sci U S A 1993; 90:858-62. [PMID: 8430097 PMCID: PMC45769 DOI: 10.1073/pnas.90.3.858] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
At the poles of the Drosophila embryo, cell fate is established by a pathway that begins with the activation of a membrane-associated tyrosine kinase (the torso gene product); this then leads to activation of a serine/threonine kinase (Drosophila Raf-1). Activated Raf-1 then leads, by an undefined mechanism, to the transcriptional activation of the tailless (tll) gene; the tll gene product, itself a transcription factor, subsequently regulates the expression of an array of target genes. To further define this pathway, we have utilized sequence comparison between Drosophila melanogaster and Drosophila virilis to identify conserved elements in the tll promoter region. As assessed by DNase I footprinting and promoter dissection experiments, two of these elements are potential regulatory targets of Raf-1-activated transcription factors. Sequence comparison also reveals that the unique residues in the DNA-binding domain of the tll protein, the next component in the pathway, are conserved. One of these residues, the alanine after the last cysteine in the first zinc finger, may be responsible for part of the difference between the tll protein DNA binding site and the closely related half-site of the retinoid/estrogen receptors. Consistent with the rapid turnover of the tll protein, it contains a PEST sequence (rich in proline, glutamate and aspartate, serine, and threonine) that is also conserved.
Collapse
Affiliation(s)
- G J Liaw
- Department of Biology, University of California, Los Angeles 90024
| | | | | | | | | |
Collapse
|
32
|
Bucheton A, Vaury C, Chaboissier MC, Abad P, Pélisson A, Simonelig M. I elements and the Drosophila genome. TRANSPOSABLE ELEMENTS AND EVOLUTION 1993. [DOI: 10.1007/978-94-011-2028-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Bucheton A, Vaury C, Chaboissier MC, Abad P, Pélisson A, Simonelig M. I elements and the Drosophila genome. Genetica 1992; 86:175-90. [PMID: 1281801 DOI: 10.1007/bf00133719] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
LINEs are a large class of transposable elements in eukaryotes. They transpose by reverse transcription of an RNA intermediate. I elements of Drosophila melanogaster belong to this class and are responsible for the I-R system of hybrid dysgenesis. Many results indicate that at the beginning of the century natural populations of this species were devoid of active I elements and that they were invaded by functional I elements in the last decades. Many Drosophila species contain both defective and active I elements. It seems that the latter were lost in Drosophila melanogaster before its spread throughout the world, and that the recent invasion results from the spread of functional elements originating either from another species by horizontal transfer or from an isolated population of the same species. These data are discussed, as well as their significance in evolutionary processes.
Collapse
Affiliation(s)
- A Bucheton
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|