1
|
Gresh N, El Hage K, Lagardère L, Brégier F, Godard J, Piquemal JP, Perrée-Fauvet M, Sol V. Enforcing Local DNA Kinks by Sequence-Selective Trisintercalating Oligopeptides of a Tricationic Porphyrin: A Polarizable Molecular Dynamics Study. Chemphyschem 2024; 25:e202300776. [PMID: 38088522 DOI: 10.1002/cphc.202300776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Indexed: 02/03/2024]
Abstract
Bisacridinyl-bisarginyl porphyrin (BABAP) is a trisintercalating derivative of a tricationic porphyrin, formerly designed and synthesized in order to selectively target and photosensitize the ten-base pair palindromic sequence d(CGGGCGCCCG)2 . We resorted to the previously derived (Far et al., 2004) lowest energy-minimized (EM) structure of the BABAP complex with this sequence as a starting point. We performed polarizable molecular dynamics (MD) on this complex. It showed, over a 150 ns duration, the persistent binding of the Arg side-chain on each BABAP arm to the two G bases upstream from the central porphyrin intercalation site. We subsequently performed progressive shortenings of the connector chain linking the Arg-Gly backbone to the acridine, from n=6 methylenes to 4, followed by removal of the Gly backbone and further connector shortenings, from n=4 to n=1. These resulted into progressive deformations ('kinks') of the DNA backbone. In its most accented kinked structure, the DNA backbone was found to have a close overlap with that of DNA bound to Cre recombinase, with, at the level of one acridine intercalation site, negative roll and positive tilt values consistent with those experimentally found for this DNA at its own kinked dinucleotide sequence. Thus, in addition to their photosensitizing properties, some BABAP derivatives could induce sequence-selective, controlled DNA deformations, which are targets for cleavage by endonucleases or for repair enzymes.
Collapse
Affiliation(s)
- Nohad Gresh
- Laboratoire de Chimie Théorique UMR 7616, Sorbonne Université, 75005, Paris, France
| | - Krystel El Hage
- Qubit Pharmaceuticals, 29 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Louis Lagardère
- Laboratoire de Chimie Théorique UMR 7616, Sorbonne Université, 75005, Paris, France
| | | | - Jérémy Godard
- LABCiS UR22722, Univ. Limoges, F-87000, Limoges, France
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique UMR 7616, Sorbonne Université, 75005, Paris, France
| | | | - Vincent Sol
- LABCiS UR22722, Univ. Limoges, F-87000, Limoges, France
| |
Collapse
|
2
|
Radwan AS, Salim MM, Elkhoudary MM, Hadad GM, Shaldam MA, Belal F, Magdy G. Study of the binding interaction of salmon sperm DNA with nintedanib, a tyrosine kinase inhibitor using multi-spectroscopic, thermodynamic, and in silico approaches. J Biomol Struct Dyn 2024; 42:1170-1180. [PMID: 37079322 DOI: 10.1080/07391102.2023.2202776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
The study of the intermolecular binding interaction of small molecules with DNA can guide the rational drug design with greater efficacy and improved or more selective activity. In the current study, nintedanib's binding interaction with salmon sperm DNA (ssDNA) was thoroughly investigated using UV-vis spectrophotometry, spectrofluorimetry, ionic strength measurements, viscosity measurements, thermodynamics, molecular docking, and molecular dynamic simulation techniques under physiologically simulated conditions (pH 7.4). The obtained experimental results showed that nintedanib and ssDNA had an apparent binding interaction. Nintedanib's binding constant (Kb) with ssDNA, as determined using the Benesi-Hildebrand plot, was 7.9 × 104 M-1 at 298 K, indicating a moderate binding affinity. The primary binding contact forces were hydrophobic and hydrogen bonding interactions, as verified by the enthalpy and entropy changes (ΔH0 and ΔS0), which were - 16.25 kJ.mol-1 and 39.30 J mol-1 K-1, respectively. According to the results of UV-vis spectrophotometry, viscosity assays, and competitive binding interactions with ethidium bromide or rhodamine B, the binding mode of nintedanib to ssDNA was minor groove. Molecular docking and molecular dynamic simulation studies showed that nintedanib fitted into the B-DNA minor groove's AT-rich region with high stability. This study can contribute to further understanding of nintedanib's molecular mechanisms and pharmacological effects.
Collapse
Affiliation(s)
- Aya Saad Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed M Salim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mahmoud M Elkhoudary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Ghada M Hadad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Moataz A Shaldam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
3
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Timokhina EN, Serebryakova OG, Shchepochkin AV, Averkov MA, Utepova IA, Demina NS, Radchenko EV, Palyulin VA, Fisenko VP, Bachurin SO, Chupakhin ON, Charushin VN, Richardson RJ. Derivatives of 9-phosphorylated acridine as butyrylcholinesterase inhibitors with antioxidant activity and the ability to inhibit β-amyloid self-aggregation: potential therapeutic agents for Alzheimer's disease. Front Pharmacol 2023; 14:1219980. [PMID: 37654616 PMCID: PMC10466253 DOI: 10.3389/fphar.2023.1219980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of β-amyloid (Aβ42) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC50 = 2.90 ± 0.23 µM and 3.22 ± 0.25 µM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC50 = 6.90 ± 0.55 μM), consistent with docking results. Dihydroacridines inhibited Aβ42 self-aggregation; 1d and 1e were the most active (58.9% ± 4.7% and 46.9% ± 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS•+-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood-brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Aβ42 self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Yu Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Timokhina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Olga G. Serebryakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Alexander V. Shchepochkin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Maxim A. Averkov
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Irina A. Utepova
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Nadezhda S. Demina
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Fisenko
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Oleg N. Chupakhin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Valery N. Charushin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Rudy J. Richardson
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Zhang C, Zhao J, Lu B, Seeman NC, Sha R, Noinaj N, Mao C. Engineering DNA Crystals toward Studying DNA-Guest Molecule Interactions. J Am Chem Soc 2023; 145:4853-4859. [PMID: 36791277 DOI: 10.1021/jacs.3c00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Sequence-selective recognition of DNA duplexes is important for a wide range of applications including regulating gene expression, drug development, and genome editing. Many small molecules can bind DNA duplexes with sequence selectivity. It remains as a challenge how to reliably and conveniently obtain the detailed structural information on DNA-molecule interactions because such information is critically needed for understanding the underlying rules of DNA-molecule interactions. If those rules were understood, we could design molecules to recognize DNA duplexes with a sequence preference and intervene in related biological processes, such as disease treatment. Here, we have demonstrated that DNA crystal engineering is a potential solution. A molecule-binding DNA sequence is engineered to self-assemble into highly ordered DNA crystals. An X-ray crystallographic study of molecule-DNA cocrystals reveals the structural details on how the molecule interacts with the DNA duplex. In this approach, the DNA will serve two functions: (1) being part of the molecule to be studied and (2) forming the crystal lattice. It is conceivable that this method will be a general method for studying drug/peptide-DNA interactions. The resulting DNA crystals may also find use as separation matrices, as hosts for catalysts, and as media for material storage.
Collapse
Affiliation(s)
- Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiemin Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
| | - Brandon Lu
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
6
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
7
|
Hadrovic I, Rebmann P, Klärner FG, Bitan G, Schrader T. Molecular Lysine Tweezers Counteract Aberrant Protein Aggregation. Front Chem 2019; 7:657. [PMID: 31632951 PMCID: PMC6779714 DOI: 10.3389/fchem.2019.00657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/13/2019] [Indexed: 01/10/2023] Open
Abstract
Molecular tweezers (MTs) are supramolecular host molecules equipped with two aromatic pincers linked together by a spacer (Gakh, 2018). They are endowed with fascinating properties originating from their ability to hold guests between their aromatic pincers (Chen and Whitlock, 1978; Zimmerman, 1991; Harmata, 2004). MTs are finding an increasing number of medicinal applications, e.g., as bis-intercalators for DNA such as the anticancer drug Ditercalinium (Gao et al., 1991), drug activity reverters such as the bisglycoluril tweezers Calabadion 1 (Ma et al., 2012) as well as radioimmuno detectors such as Venus flytrap clusters (Paxton et al., 1991). We recently embarked on a program to create water-soluble tweezers which selectively bind the side chains of lysine and arginine inside their cavity. This unique recognition mode is enabled by a torus-shaped, polycyclic framework, which is equipped with two hydrophilic phosphate groups. Cationic amino acid residues are bound by the synergistic effect of disperse, hydrophobic, and electrostatic interactions in a kinetically fast reversible process. Interactions of the same kind play a key role in numerous protein-protein interactions, as well as in pathologic protein aggregation. Therefore, these particular MTs show a high potential to disrupt such events, and indeed inhibit misfolding and self-assembly of amyloidogenic polypeptides without toxic side effects. The mini-review provides insight into the unique binding mode of MTs both toward peptides and aggregating proteins. It presents the synthesis of the lead compound CLR01 and its control, CLR03. Different biophysical experiments are explained which elucidate and help to better understand their mechanism of action. Specifically, we show how toxic aggregates of oligomeric and fibrillar protein species are dissolved and redirected to form amorphous, benign assemblies. Importantly, these new chemical tools are shown to be essentially non-toxic in vivo. Due to their reversible moderately tight binding, these agents are not protein-, but rather process-specific, which suggests a broad range of applications in protein misfolding events. Thus, MTs are highly promising candidates for disease-modifying therapy in early stages of neurodegenerative diseases. This is an outstanding example in the evolution of supramolecular concepts toward biological application.
Collapse
Affiliation(s)
- Inesa Hadrovic
- Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Philipp Rebmann
- Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | | | - Gal Bitan
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
McElfresh GW, Deligkaris C. A vibrational entropy term for DNA docking with autodock. Comput Biol Chem 2018; 74:286-293. [DOI: 10.1016/j.compbiolchem.2018.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022]
|
9
|
Yang Q, Wang L, He J, Yang Z, Huang X. Direct imaging of how lanthanides break the normal evolution of plants. J Inorg Biochem 2018; 182:158-169. [PMID: 29482161 DOI: 10.1016/j.jinorgbio.2018.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/09/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
After rare earth elements [REE(III)] are anchored outside of the plasma membrane, REE(III) break plant evolution to initiate leaf cell endocytosis, which finally affects plant growth. However, the molecule for anchoring REE(III) in the acidic environment outside of the plasma membrane is not clear, which is crucial for exploring the mechanism of REE(III) breaking plant evolution. Here, lanthanum(III) [La(III)] and terbium(III) [Tb(III)] were respectively served as a representative of REE(III) without and with f electrons, and Arabidopsis was served as a representative of plants, cellular and molecular basis for arabinogalactan proteins (AGP) anchoring REE(III) outside of the plasma membrane was investigated. By using interdisciplinary methods, when REE(III) initiated leaf cell phagocytosis, we observed the increase in the expression of AGP and their migration to the outside of the plasma membrane. In the acidic environment outside of the plasma membrane, Tb(III) formed more stable Lewis acid-base [REE(III)-AGP] complexes with a higher apparent binding constant (1.51 × 10-6) than La(III) (1.24 × 10-6). In REE(III)-AGP complexes, the bond lengths of REE(III)-O were in normal range and H-bonds were strong H-bonds. The formation of REE(III)-AGP complexes sequentially disturbed the secondary and tertiary structure of AGP, which were enhanced with increasing the concentration of REE(III), and Tb(III) caused stronger structural changes than La(III). Hence, AGP could be molecules for anchoring REE(III) outside of the plasma membrane. The results of this study are direct imaging of how lanthanides break the normal evolution of plants, and can serve as an important guidance for investigating mechanism of lanthanides in organisms.
Collapse
Affiliation(s)
- Qing Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jingfang He
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Sciences, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
10
|
Miri R, Bohlooli F, Razzaghi-Asl N, Ebadi A. Molecular Modeling of Indeno [1, 2-b] Quinoline-9, 11-Diones as Cytotoxic Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:1249-1262. [PMID: 30568685 PMCID: PMC6269552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deoxyribonucleic acid (DNA) is an important molecular target for anti-cancer agents due to its involvement in gene expression and protein synthesis which are fundamental steps in cell division and growth. A number of antineoplastic agents interfere with DNA and hence disturb the cell cycle. Compounds including planar aromatic rings are privileged scaffolds in binding to DNA. This characteristic is mainly arisen from the fact that such structural feature may be appropriate to insert between the base pairs of the DNA double helix and produce relatively stable non-covalent complexes. Besides π-π stacking interactions, binding to the DNA molecule might be intensified through H-bond interactions of heterocyclic rings. In the present contribution, a series of experimentally validated cytotoxic indeno[1,2-b]quinoline-9,11-diones (1-12) and their aromatized analogues (13-21) developed in our group were subjected to docking and molecular dynamics simulations to elucidate their most probable binding modes with DNA.
Collapse
Affiliation(s)
- Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Bohlooli
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Nima Razzaghi-Asl
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran. ,Drug and Advanced Sciences Research Center, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ahmad Ebadi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran. ,Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Corresponding author:E-mail:
| |
Collapse
|
11
|
Ahmadi F, Valadbeigi S, Sajjadi SE, Shokoohinia Y, Azizian H, Taheripak G. Grandivittin as a natural minor groove binder extracted from Ferulago macrocarpa to ct-DNA, experimental and in silico analysis. Chem Biol Interact 2016; 258:89-101. [PMID: 27569860 DOI: 10.1016/j.cbi.2016.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 08/06/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022]
Abstract
Ferulago macrocarpa (Fenzl) Boiss., is an endemic medicinal herb of Iran. In this study a dihydrofuranocoumarin called grandivittin (GRA) was separate and purified from Ferulago macrocarpa (Fenzl) Boiss, and characterized by (1)H NMR and Mass spectroscopic methods. The electrochemical behavior of GRA was evaluated by cyclic voltammetry (CV). The interaction of GRA with calf thymus double strand deoxyribonucleic acid (ct-DNA), was evaluated by CV, differential pulse voltammetry (DPV), fluorescence, UV-Vis, FT-IR and molecular modeling methods. The thermodynamic parameters of GRA-DNA complex were measured and reported as: ΔH = 15.04 kJ mol(-1), ΔS = 105.54 J mol(-1) and ΔG = -15.62 kJ mol(-1). Docking simulation was performed to investigate the probable binding mode of GRA to various DNA, too. The polymerase extension study was performed using real-time PCR to confirm the inhibitory effect of GRA on polymerase extension activity as a mirror of binding to ct-DNA. However, all data showed that the grooves binding especially minor groove between GRA and ct-DNA is more predominant rather than other binding modes.
Collapse
Affiliation(s)
- F Ahmadi
- Department of Medicinal Chemistry, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy - International Campus, Iran University of Medical Sciences, Tehran, Iran.
| | - S Valadbeigi
- Department of Medicinal Chemistry, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - S E Sajjadi
- Department of Pharmacognosy, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Y Shokoohinia
- Department of Pharmacognosy, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - H Azizian
- Department of Medicinal Chemistry, Faculty of Pharmacy - International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - G Taheripak
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Lin C, Yang D. DNA Recognition by a Novel Bis-Intercalator, Potent Anticancer Drug XR5944. Curr Top Med Chem 2016; 15:1385-97. [PMID: 25866279 DOI: 10.2174/1568026615666150413155608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022]
Abstract
XR5944 is a potent anticancer drug with a novel DNA binding mode: DNA bisintercalationg with major groove binding. XR5944 can bind the estrogen response element (ERE) sequence to block ER-ERE binding and inhibit ERα activities, which may be useful for overcoming drug resistance to currently available antiestrogen treatments. This review discusses the progress relating to the structure and function studies of specific DNA recognition of XR5944. The sites of intercalation within a native promoter sequence appear to be different from the ideal binding site and are context- and sequence- dependent. The structural information may provide insights for rational design of improved EREspecific XR5944 derivatives, as well as of DNA bis-intercalators in general.
Collapse
Affiliation(s)
| | - Danzhou Yang
- College of Pharmacy, University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721, USA.
| |
Collapse
|
13
|
Wang M, Yu Y, Liang C, Lu A, Zhang G. Recent Advances in Developing Small Molecules Targeting Nucleic Acid. Int J Mol Sci 2016; 17:ijms17060779. [PMID: 27248995 PMCID: PMC4926330 DOI: 10.3390/ijms17060779] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/01/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
Nucleic acids participate in a large number of biological processes. However, current approaches for small molecules targeting protein are incompatible with nucleic acids. On the other hand, the lack of crystallization of nucleic acid is the limiting factor for nucleic acid drug design. Because of the improvements in crystallization in recent years, a great many structures of nucleic acids have been reported, providing basic information for nucleic acid drug discovery. This review focuses on the discovery and development of small molecules targeting nucleic acids.
Collapse
Affiliation(s)
- Maolin Wang
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Yuanyuan Yu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Chao Liang
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Ge Zhang
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
14
|
An Y, Doney AC, Andrade RB, Wheeler SE. Stacking Interactions between 9-Methyladenine and Heterocycles Commonly Found in Pharmaceuticals. J Chem Inf Model 2016; 56:906-14. [DOI: 10.1021/acs.jcim.5b00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi An
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Analise C. Doney
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Rodrigo B. Andrade
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Steven E. Wheeler
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
15
|
Biebricher AS, Heller I, Roijmans RFH, Hoekstra TP, Peterman EJG, Wuite GJL. The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics. Nat Commun 2015; 6:7304. [PMID: 26084388 PMCID: PMC4557362 DOI: 10.1038/ncomms8304] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/27/2015] [Indexed: 11/09/2022] Open
Abstract
DNA intercalators are widely used as fluorescent probes to visualize DNA and DNA transactions in vivo and in vitro. It is well known that they perturb DNA structure and stability, which can in turn influence DNA-processing by proteins. Here we elucidate this perturbation by combining single-dye fluorescence microscopy with force spectroscopy and measuring the kinetics of DNA intercalation by the mono- and bis-intercalating cyanine dyes SYTOX Orange, SYTOX Green, SYBR Gold, YO-PRO-1, YOYO-1 and POPO-3. We show that their DNA-binding affinity is mainly governed by a strongly tension-dependent dissociation rate. These rates can be tuned over a range of seven orders of magnitude by changing DNA tension, intercalating species and ionic strength. We show that optimizing these rates minimizes the impact of intercalators on strand separation and enzymatic activity. These new insights provide handles for the improved use of intercalators as DNA probes with minimal perturbation and maximal efficacy. DNA intercalators, a type of fluorescent probes widely used to visualize DNA, can perturb DNA structure and stability. Here, the authors show how DNA-binding affinity can be tuned using DNA tension, ionic strength and dye species, and how this can be used to minimize DNA structural perturbations.
Collapse
Affiliation(s)
- Andreas S Biebricher
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Iddo Heller
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Roel F H Roijmans
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Tjalle P Hoekstra
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| |
Collapse
|
16
|
Deligkaris C, Ascone AT, Sweeney KJ, Greene AJQ. Validation of a computational docking methodology to identify the non-covalent binding site of ligands to DNA. MOLECULAR BIOSYSTEMS 2015; 10:2106-25. [PMID: 24853173 DOI: 10.1039/c4mb00239c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite the biomedical consequences of carcinogen-DNA interactions and the potential of DNA as a drug target in medicinal chemistry, only a small number of studies have validated or used docking methods for the prediction of the physical binding of small molecules to DNA. Knowledge of the DNA-physically-bound ligand geometry can lead to the elucidation of the molecular-level mechanism of drugs as well as predicting the subsequent chemical interactions that lead to DNA damage from carcinogens. We sought to validate AutoDock 4.2, a docking method that includes a physics-based free energy function and a Lamarckian Genetic Algorithm, for the prediction of ligand geometries upon physical binding to DNA. We performed simulations by systematically changing the length of the search process for a comprehensive set of 32 ligand-DNA molecular systems with different physico-chemical properties, and we used a free-energy-based convergence criterion to terminate our simulations. For 11 out of 28 molecular systems for which convergence was achieved, the lowest binding free energy geometries were within 2 Å of the experimentally determined geometry. Considering all predicted sites with free energy changes within 20% of the lowest binding free energy site, we found a site within 2 Å of the experimentally determined geometry for 24 out of the 28 systems. However, the predicted hydrogen bonding interactions were different for most molecular systems compared to the same interactions in the experimentally determined geometry. We discuss reasons for the successes and failures, implications, and the importance of ensuring an adequate search in docking calculations. Overall, we concluded that AutoDock 4.2 can be used to predict the non-covalent binding geometry of a small molecule to DNA with some limitations.
Collapse
|
17
|
Nogueira JJ, González L. Molecular Dynamics Simulations of Binding Modes between Methylene Blue and DNA with Alternating GC and AT Sequences. Biochemistry 2014; 53:2391-412. [DOI: 10.1021/bi500068z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Juan J. Nogueira
- Institute
of Theoretical
Chemistry, University of Vienna, Währinger Strasse 17 A-1090 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical
Chemistry, University of Vienna, Währinger Strasse 17 A-1090 Vienna, Austria
| |
Collapse
|
18
|
Biancardi A, Biver T, Secco F, Mennucci B. An investigation of the photophysical properties of minor groove bound and intercalated DAPI through quantum-mechanical and spectroscopic tools. Phys Chem Chem Phys 2013; 15:4596-603. [PMID: 23423468 DOI: 10.1039/c3cp44058c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescent probe 4',6-diamidino-2-phenylindole (DAPI) is a dye known to interact with polynucleotides in a non-univocal manner, both intercalation and minor groove binding modes being possible, and to specifically change its photophysical properties according to the different environments. To investigate this behavior, quantum-mechanical calculations using time-dependent density functional theory (TDDFT), coupled with polarizable continuum and/or atomistic models, were performed in combination with spectroscopic measurements of the probe in the different environments, ranging from a homogeneous solution to the minor groove or intercalation pockets of double stranded nucleic acids. According to our simulation, the electronic transition involves a displacement of the electron charge towards the external amidine groups and this feature makes the absorption energies very environment-sensitive while a much smaller sensitivity is seen in the fluorescence energies. Moreover, the calculations show that the DAPI molecule, when minor groove bound to the nucleic acid, presents both a reduced geometrical flexibility because of the rigid DNA pocket and a reduced polarization due to the very "apolar" microenvironment. All these effects can be used to better understand the observed enhancement of the fluorescence, which makes it an excellent marker for DNA.
Collapse
Affiliation(s)
- Alessandro Biancardi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento, 35-56126 Pisa, Italy.
| | | | | | | |
Collapse
|
19
|
Sheng J, Gan J, Huang Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med Res Rev 2013; 33:1119-73. [PMID: 23633219 DOI: 10.1002/med.21278] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics.
Collapse
Affiliation(s)
- Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
20
|
Drug-DNA intercalation: from discovery to the molecular mechanism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 92:1-62. [PMID: 23954098 DOI: 10.1016/b978-0-12-411636-8.00001-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability of small molecules to perturb the natural structure and dynamics of nucleic acids is intriguing and has potential applications in cancer therapeutics. Intercalation is a special binding mode where the planar aromatic moiety of a small molecule is inserted between a pair of base pairs, causing structural changes in the DNA and leading to its functional arrest. Enormous progress has been made to understand the nature of the intercalation process since its idealistic conception five decades ago. However, the biological functions were detected even earlier. In this review, we focus mainly on the acridine and anthracycline types of drugs and provide a brief overview of the development in the field through various experimental methods that led to our present understanding of the subject. Subsequently, we discuss the molecular mechanism of the intercalation process, free-energy landscapes, and kinetics that was revealed recently through detailed and rigorous computational studies.
Collapse
|
21
|
Affiliation(s)
- Emil Paleček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| | - Martin Bartošík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| |
Collapse
|
22
|
|
23
|
Chemical and structural biology of nucleic acids and protein-nucleic acid complexes for novel drug discovery. Sci China Chem 2011. [DOI: 10.1007/s11426-010-4174-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Liu Q, Zhang J, Wang MQ, Zhang DW, Lu QS, Huang Y, Lin HH, Yu XQ. Synthesis, DNA binding and cleavage activity of macrocyclic polyamines bearing mono- or bis-acridine moieties. Eur J Med Chem 2010; 45:5302-8. [DOI: 10.1016/j.ejmech.2010.08.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/06/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
|
25
|
Szumilak M, Szulawska-Mroczek A, Koprowska K, Stasiak M, Lewgowd W, Stanczak A, Czyz M. Synthesis and in vitro biological evaluation of new polyamine conjugates as potential anticancer drugs. Eur J Med Chem 2010; 45:5744-51. [PMID: 20974504 DOI: 10.1016/j.ejmech.2010.09.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
The synthesis of new polyamine derivatives containing dimeric quinoline (3a-c), cinnoline (4a-c) and phthalimide (7a-c and 8a-c) moieties is described. Three different polyamines: (1,4-bis(3-aminopropyl)piperazine (a), 4,9-dioxa-1,12-dodecanediamine (b), 3,3'-diamino-N-methyldipropylamine (c) were used as linkers. The new compounds were obtained according to known procedures. Their biological activity was assessed in vitro in a highly aggressive melanoma cell line A375. Polyamine diimides containing phthalimide moieties demonstrated no inhibitory activities against melanoma cells. Quinoline diamides were more efficient than cinnoline ones. Mainly cytostatic activity exerted as altered cell cycle profiles was observed at the concentrations causing about 50% reduction of adherent cell proliferation. Based on their structure as well as their biological activity, we assume that some of the newly synthesized compounds may act as DNA bisintercalators. This study might be useful for further designing and developing anticancer drugs with potent activities.
Collapse
Affiliation(s)
- Marta Szumilak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
26
|
Platts JA, Gkionis K. NMR shielding as a probe of intermolecular interactions: ab initio and density functional theory studies. Phys Chem Chem Phys 2009; 11:10331-9. [DOI: 10.1039/b822560e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Strekowski L, Wilson B. Noncovalent interactions with DNA: an overview. Mutat Res 2007; 623:3-13. [PMID: 17445837 DOI: 10.1016/j.mrfmmm.2007.03.008] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/14/2007] [Accepted: 03/15/2007] [Indexed: 05/15/2023]
Abstract
Over the last four decades, intense research has focused on the effects of small organic compounds that noncovalently bind to nucleic acids. These interactions have been shown to disrupt replication and/or transcription culminating in cellular death. Accordingly, DNA binding compounds have potential applications as anti-cancer and anti-viral agents. This report provides an overview of the different DNA-binding modes with an emphasis on DNA groove specificity for the groove-binding and intercalation modes. While most DNA-interacting agents selectively bind to DNA by either groove binding or intercalation, some compounds can exhibit both binding modes. The binding mode with the most favorable free energy for complex formation depends on the DNA sequence and structural features of the bound ligand.
Collapse
Affiliation(s)
- Lucjan Strekowski
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-4098, United States.
| | | |
Collapse
|
28
|
Rosu F, Nguyen CH, De Pauw E, Gabelica V. Ligand binding mode to duplex and triplex DNA assessed by combining electrospray tandem mass spectrometry and molecular modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1052-62. [PMID: 17459721 DOI: 10.1016/j.jasms.2007.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 05/15/2023]
Abstract
In this paper, we report the analysis of seven benzopyridoindole and benzopyridoquinoxaline drugs binding to different duplex DNA and triple helical DNA, using an approach combining electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and molecular modeling. The ligands were ranked according to the collision energy (CE(50)) necessary to dissociate 50% of the complex with the duplex or the triplex in tandem MS. To determine the probable ligand binding site and binding mode, molecular modeling was used to calculate relative ligand binding energies in different binding sites and binding modes. For duplex DNA binding, the ligand-DNA interaction energies are roughly correlated with the experimental CE(50), with the two benzopyridoindole ligands more tightly bound than the benzopyridoquinoxaline ligands. There is, however, no marked AT versus GC base preference in binding, as supported both by the ESI-MS and the calculated ligand binding energies. Product ion spectra of the complexes with triplex DNA show only loss of neutral ligand for the benzopyridoquinoxalines, and loss of the third strand for the benzopyridoindoles, the ligand remaining on the duplex part. This indicates a higher binding energy of the benzopyridoindoles, and also shows that the ligands interact with the triplex via the duplex. The ranking of the ligand interaction energies compared with the CE(50) values obtained by MS/MS on the complexes with the triplex clearly indicates that the ligands intercalate via the minor groove of the Watson-Crick duplex. Regarding triplex versus duplex selectivity, our experiments have demonstrated that the most selective drugs for triplex share the same heteroaromatic core.
Collapse
Affiliation(s)
- Frédéric Rosu
- Laboratory of Mass Spectrometry, University of Liège, Liège, Belgium
| | | | | | | |
Collapse
|
29
|
Blaney JM, Dixon JS. Distance Geometry in Molecular Modeling. REVIEWS IN COMPUTATIONAL CHEMISTRY 2007. [DOI: 10.1002/9780470125823.ch6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Hopcroft NH, Brogden AL, Searcey M, Cardin CJ. X-ray crystallographic study of DNA duplex cross-linking: simultaneous binding to two d(CGTACG)2 molecules by a bis(9-aminoacridine-4-carboxamide) derivative. Nucleic Acids Res 2006; 34:6663-72. [PMID: 17145714 PMCID: PMC1751537 DOI: 10.1093/nar/gkl930] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/16/2006] [Accepted: 10/18/2006] [Indexed: 11/13/2022] Open
Abstract
Acridine-4-carboxamides form a class of known DNA mono-intercalating agents that exhibit cytotoxic activity against tumour cell lines due to their ability to inhibit topoisomerases. Previous studies of bis-acridine derivatives have yielded equivocal results regarding the minimum length of linker necessary between the two acridine chromophores to allow bis-intercalation of duplex DNA. We report here the 1.7 A resolution X-ray crystal structure of a six-carbon-linked bis(acridine-4-carboxamide) ligand bound to d(CGTACG)2 molecules by non-covalent duplex cross-linking. The asymmetric unit consists of one DNA duplex containing an intercalated acridine-4-carboxamide chromophore at each of the two CG steps. The other half of each ligand is bound to another DNA molecule in a symmetry-related manner, with the alkyl linker threading through the minor grooves. The two crystallographically independent ligand molecules adopt distinct side chain interactions, forming hydrogen bonds to either O6 or N7 on the major groove face of guanine, in contrast to the semi-disordered state of mono-intercalators bound to the same DNA molecule. The complex described here provides the first structural evidence for the non-covalent cross-linking of DNA by a small molecule ligand and suggests a possible explanation for the inconsistent behaviour of six-carbon linked bis-acridines in previous assays of DNA bis-intercalation.
Collapse
Affiliation(s)
- Nicholas H. Hopcroft
- School of Chemistry, University of ReadingWhiteknights, Reading, Berkshire RG6 6AD, UK
| | - Anna L. Brogden
- School of Chemistry, University of ReadingWhiteknights, Reading, Berkshire RG6 6AD, UK
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London29-39 Brunswick Square, London WC1N 1AX, UK
| | - Mark Searcey
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London29-39 Brunswick Square, London WC1N 1AX, UK
| | - Christine J. Cardin
- School of Chemistry, University of ReadingWhiteknights, Reading, Berkshire RG6 6AD, UK
| |
Collapse
|
31
|
Sobhani AM, Amini SR, Tyndall JDA, Azizi E, Daneshtalab M, Khalaj A. A theory of mode of action of azolylalkylquinolines as DNA binding agents using automated flexible ligand docking. J Mol Graph Model 2006; 25:459-69. [PMID: 16621634 DOI: 10.1016/j.jmgm.2006.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 01/19/2006] [Accepted: 02/26/2006] [Indexed: 11/18/2022]
Abstract
Azolylalkylquinolines (AAQs) are a family of quinolines with varying degrees of cytotoxic activity (comparable or moderately superior to adriamycin in some cases) developed in the past decade in our group where their exact mode of action is still unclear. In this study the most probable DNA binding mode of AAQs was investigated employing a novel flexible ligand docking approach by using AutoDock 3.0. Forty-nine AAQs with known experimental inhibitory activity were docked onto d(CGCAAATTTGCG)(2), d(CGATCG)(2) and d(CGCG)(2) oligonucleotides retrieved from the Protein Data Bank (PDB IDs: 102D, 1D12 and 1D32, respectively) as the representatives of the three plausible models of interactions between chemotherapeutic agents and DNA (groove binding, groove binding plus intercalation and bisintercalation, respectively). Good correlation (r(2)=0.64) between calculated binding energies and experimental inhibitory activities was obtained using groove binding plus intercalation model for phenyl-azolylalkylquinoline (PAAQ) series. Our findings show that the most probable mode of action of PAAQs as DNA binding agents is via intercalation of quinolinic moiety between CG base pairs with linker chain and azole moiety binding to the minor groove.
Collapse
Affiliation(s)
- Armin Madadkar Sobhani
- Computational Chemistry Lab., Razi Institute for Drug Research, Iran University of Medical Sciences, Iran.
| | | | | | | | | | | |
Collapse
|
32
|
Dai J, Punchihewa C, Mistry P, Ooi AT, Yang D. Novel DNA bis-intercalation by MLN944, a potent clinical bisphenazine anticancer drug. J Biol Chem 2004; 279:46096-103. [PMID: 15317822 DOI: 10.1074/jbc.m404053200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The new bisphenazine anticancer drug MLN944 is a novel cytotoxic agent with exceptional anti-tumor activity against a range of human and murine tumor models both in vitro and in vivo. MLN944 has recently entered Phase I clinical trials. Despite the structural similarity with its parent monophenazine carboxamide and acridine carboxamide anticancer compounds, MLN944 appears to work by a distinct mechanism of inhibiting DNA transcription rather than the expected mechanism of topoisomerase I and II inhibition. Here we present the first NMR structure of MLN944 complexed with d(ATGCAT)(2) DNA duplex, demonstrating a novel binding mode in which the two phenazine rings bis-intercalate at the 5'-TpG site, with the carboxamide amino linker lying in the major groove of DNA. The MLN944 molecule adopts a significantly unexpected conformation and side chain orientation in the DNA complex, with the N10 on the phenazine ring protonated at pH 7. The phenazine chromophore of MLN944 is very well stacked with the flanking DNA base pairs using the parallel base-stacking intercalation binding mode. The DNA sequence specificity and the groove recognition of MLN944 binding is determined by several site-specific hydrogen bond interactions with the central G:C base pair as well as the favorable stacking interactions with the 5'-flanking thymine. The specific binding site of MLN944 is known to be recognized by a number of important transcription factors. Our electrophoretic gel mobility shift assay results demonstrated that the c-Jun DNA binding to the AP-1 site is significantly inhibited by MLN944 in a dose-dependent manner. Thus, the exceptional biological activity of MLN944 may be due to its novel DNA binding mode leading to a unique mechanism of action.
Collapse
Affiliation(s)
- Jixun Dai
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
33
|
Zhu Y, Zeng H, Xie J, Ba L, Gao X, Lu Z. Atomic force microscopy studies on DNA structural changes induced by vincristine sulfate and aspirin. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2004; 10:286-290. [PMID: 15306054 DOI: 10.1017/s1431927604040127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Indexed: 05/24/2023]
Abstract
We report that atomic force microscopy (AFM) studies on structural variations of a linear plasmid DNA interact with various concentrations of vincristine sulfate and aspirin. The different binding images show that vincrinstine sulfate binding DNA chains caused some loops and cleavages of the DNA fragments, whereas aspirin interaction caused the width changes and conformational transition of the DNA fragments. Two different DNA structural alternations could be explained by the different mechanisms of the interactions with these two components. Our work indicates that the AFM is a powerful tool in studying the interaction between DNA and small molecules.
Collapse
Affiliation(s)
- Yi Zhu
- Laboratory of Molecular and Biomolecular Electronics, Southeast University, Nanjing 210096, P.R. China
| | | | | | | | | | | |
Collapse
|
34
|
Habbersett RC, Jett JH. An analytical system based on a compact flow cytometer for DNA fragment sizing and single-molecule detection. ACTA ACUST UNITED AC 2004; 60:125-34. [PMID: 15290713 DOI: 10.1002/cyto.a.20042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Previous reports have demonstrated accurate DNA fragment sizing of linear DNA fragments, from 564 to approximately 4 x 10(5) bp, in a flow system. B-phycoerythrin (B-PE), commonly used in conventional cytometric applications that require high-sensitivity, was the first fluorophore detected in flow at the single-molecule level. METHODS Dilute solutions of stained DNA fragments or B-PE were analyzed in a simplified, compact flow system, with enhanced performance and lower cost, utilizing a solid-state laser and a single-photon sensing avalanche photodiode detector (SSAPD). Extensive data processing and display software, developed specifically for the photon-counting data stream, extracts correlated height, width, and area features from bursts of photons due to discrete molecules passing through the sensing region in the flow channel. RESULTS DNA fragment sizing in flow has now been demonstrated for SYTOX-orange-stained fragments ranging in size over 3.4 orders of magnitude, from 125 to 5 x 10(5) bp. For Lambda bacteriophage DNA (lambda DNA; 48.5 kbp) a CV of 1.2 % has been achieved. Analysis of a femtomolar B-PE solution demonstrates that the bursts of photons from individual molecules can be baseline-resolved with 0.5 mW of laser power at a signal to noise ratio (SNR) of approximately 30, with approximately 100 photons detected from each molecule. CONCLUSIONS A compact, low-power, high-sensitivity system detects DNA fragments as small as 125 bp or individual B-PE molecules in a flowing liquid stream. Demonstrated linearity, sensitivity, and resolution indicate that <1.0 mW of laser power is optimal, permitting further miniaturization of the system and additional cost reduction. Comprehensive analytical software exploits the standard cytometric paradigm of multiple 2D graphs and gating to extract features from classes of individually analyzed biomolecules. This complete system is thus poised to engage high-sensitivity applications not amenable to conventional flow cytometric instrumentation.
Collapse
Affiliation(s)
- Robert C Habbersett
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | |
Collapse
|
35
|
Malliavin TE, Gau J, Snoussi K, Leroy JL. Stability of the I-motif structure is related to the interactions between phosphodiester backbones. Biophys J 2003; 84:3838-47. [PMID: 12770889 PMCID: PMC1302965 DOI: 10.1016/s0006-3495(03)75111-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2002] [Accepted: 02/26/2003] [Indexed: 11/28/2022] Open
Abstract
The i-motif DNA tetrameric structure is formed of two parallel duplexes intercalated in a head-to-tail orientation, and held together by hemiprotonated cytosine pairs. The four phosphodiester backbones forming the structure define two narrow and wide grooves. The short interphosphate distances across the narrow groove induce a strong repulsion which should destabilize the tetramer. To investigate this point, molecular dynamics simulations were run on the [d(C2)]4 and [d(C4)]4 tetramers in 3'E and 5'E topologies, for which the interaction of the phosphodiester backbones through the narrow groove is different. The analysis of the simulations, using the Molecular Mechanics Generalized Born Solvation Area and Molecular Mechanics Poisson-Boltzmann Solvation Area approaches, shows that it is the van der Waals energy contribution which displays the largest relative difference between the two topologies. The comparison of the solvent-accessible area of each topology reveals that the sugar-sugar interactions account for the greater stability of the 3'E topology. This stresses the importance of the sugar-sugar contacts across the narrow groove which, enforcing the optimal backbone twisting, are essential to the base stacking and the i-motif stability. Tighter interactions between the sugars are observed in the case of N-type sugar puckers.
Collapse
Affiliation(s)
- Thérèse E Malliavin
- Laboratoire de Biochimie Théorique, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France.
| | | | | | | |
Collapse
|
36
|
Howerton SB, Nagpal A, Williams LD. Surprising roles of electrostatic interactions in DNA-ligand complexes. Biopolymers 2003; 69:87-99. [PMID: 12717724 DOI: 10.1002/bip.10319] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The positions of cations in x-ray structures are modulated by sequence, conformation, and ligand interactions. The goal here is to use x-ray diffraction to help resolve structural and thermodynamic roles of specifically localized cations in DNA-anthracycline complexes. We describe a 1.34 A resolution structure of a CGATCG(2)-adriamycin(2) complex obtained from crystals grown in the presence of thallium (I) ions. Tl(+) can substitute for biological monovalent cations, but is readily detected by distinctive x-ray scattering, obviating analysis of subtle differences in coordination geometry and x-ray scattering of water, sodium, potassium, and ammonium. Six localized Tl(+) sites are observable adjacent to each CGATCG(2)-adriamycin(2) complex. Each of these localized monovalent cations are found within the G-tract major groove of the intercalated DNA-drug complex. Adriamycin appears to be designed by nature to interact favorably with the electrostatic landscape of DNA, and to conserve the distribution of localized cationic charge. Localized inorganic cations in the major groove are conserved upon binding of adriamycin. In the minor groove, inorganic cations are substituted by a cationic functional group of adriamycin. This partitioning of cationic charge by adriamycin into the major groove of CG base pairs and the minor groove of AT base pairs may be a general feature of sequence-specific DNA-small molecule interactions and a potentially useful important factor in ligand design.
Collapse
Affiliation(s)
- Shelley B Howerton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332-0400, USA
| | | | | |
Collapse
|
37
|
Carrasco C, Rosu F, Gabelica V, Houssier C, De Pauw E, Garbay-Jaureguiberry C, Roques B, Wilson WD, Chaires JB, Waring MJ, Bailly C. Tight binding of the antitumor drug ditercalinium to quadruplex DNA. Chembiochem 2002; 3:1235-41. [PMID: 12465032 DOI: 10.1002/1439-7633(20021202)3:12<1235::aid-cbic1235>3.0.co;2-i] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The structural selectivity of the DNA-binding antitumor drug ditercalinium was investigated by competition dialysis with a series of nineteen different DNA substrates. The 7H-pyridocarbazole dimer was found to bind to double-stranded DNA with a preference for GC-rich species but can in addition form stable complexes with triplex and quadruplex structures. The preferential interaction of the drug with four-stranded DNA structures was independently confirmed by electrospray mass spectrometry and a detailed analysis of the binding reaction was performed by surface plasmon resonance (SPR) spectroscopy. The BIAcore SPR study showed that the kinetic parameters for the interaction of ditercalinium with the human telomeric quadruplex sequence are comparable to those measured with a duplex sequence. Slow association and dissociation were observed with both the quadruplex and duplex structures. The newly discovered preferential binding of ditercalinium to the antiparallel quadruplex sequence d(AG(3)[T(2)AG(3)](3)) provides new perspectives for the design of drugs that can bind to human telomeres.
Collapse
Affiliation(s)
- Carolina Carrasco
- INSERM U-524 et Laboratoire de Pharmacologie, Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Berge T, Jenkins NS, Hopkirk RB, Waring MJ, Edwardson JM, Henderson RM. Structural perturbations in DNA caused by bis-intercalation of ditercalinium visualised by atomic force microscopy. Nucleic Acids Res 2002; 30:2980-6. [PMID: 12087184 PMCID: PMC117064 DOI: 10.1093/nar/gkf409] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Atomic force microscopy (AFM) has been used to examine perturbations in the tertiary structure of DNA induced by the binding of ditercalinium, a DNA bis-intercalator with strong anti-tumour properties. We report AFM images of plasmid DNA of both circular and linearised forms showing a difference in the formation of supercoils and plectonemic coils caused at least in part by alterations in the superhelical stress upon bis-intercalation. A further investigation of the effects of drug binding performed with 292 bp mixed-sequence DNA fragments, and using increment in contour length as a reliable measure of intercalation, revealed saturation occurring at a point where sufficient drug was present to interact with every other available binding site. Moment analysis based on the distribution of angles between segments along single DNA molecules showed that at this level of bis-intercalation, the apparent persistence length of the molecules was 91.7 +/- 5.7 nm, approximately twice as long as that of naked DNA. We conclude that images of single molecules generated using AFM provide a valuable supplement to solution-based techniques for evaluation of physical properties of biological macromolecules.
Collapse
Affiliation(s)
- Torunn Berge
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Shinomiya M, Chu W, Carlson RG, Weaver RF, Takusagawa F. Structural, Physical, and Biological Characteristics of RNA.cntdot.DNA Binding Agent N8-Actinomycin D. Biochemistry 2002. [DOI: 10.1021/bi00026a032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Braña MF, Casarrubios L, Domínguez G, Fernández C, Pérez JM, Quiroga AG, Navarro-Ranninger C, de Pascual-Teresa B. Synthesis, cytotoxic activities and proposed mode of binding of a series of bis([(9-oxo-9,10-dihydroacridine-4-carbonyl)amino]alkyl) alkylamines. Eur J Med Chem 2002; 37:301-13. [PMID: 11960665 DOI: 10.1016/s0223-5234(02)01348-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A series of bis([(9-oxo-9,10-dihydroacridine-4-carbonyl)amino]alkyl) alkylamines have been prepared and their antiproliferative properties have been tested against HT-29 cell lines. Compounds 6b and 6d showed an interesting cytotoxic profile and were subjected to further cytotoxic evaluation, DNA binding properties and molecular modelling studies. The evaluation of the cytotoxic activity of compounds 6b and 6d against pairs of cisplatin-sensitive and -resistant ovarian tumour cells shows that both compounds may be endowed with interesting antitumour properties because they are able to circumvent cisplatin resistance in A2780cisR, CH1cisR and Pam 212-ras tumour cells. On the other hand, DNA binding data indicate that compounds 6b and 6d are able to intercalate stronger than acridine within the double helix. Both compounds displace ethidium bromide with an efficiency ten times higher than acridine from several linear double-stranded DNAs and induce 43 degrees unwinding in supercoiled pBR322 DNA while acridine unwinds pBR322 DNA by only 24 degrees. Altogether these data indicate that the significant conformational changes induced by compounds 6b and 6d in the double helix are due to a bis-intercalative DNA binding mode. We propose that binding to DNA through bisintercalation might be at least in part responsible for the remarkable cytotoxic properties of these acridine derivatives. The complex of 6b with d(GCGCGC)(2) in the four possible orientations that the ligand can adopt when binding to the DNA hexamer have been modelled and subjected to molecular dynamics simulations with the aim of evaluating the binding preferences of this bisintercalating agent into the DNA molecule. The predictions suggest that 6b binds to d(GCGCGC)(2) with a parallel orientation of the chromophores relative to each other and with a preference for binding through the minor groove of the hexamer. The possible relevance of these findings to the process of bisintercalation and the antitumour profile of these compounds is discussed in this paper.
Collapse
Affiliation(s)
- Miguel F Braña
- Departamento de Química Orgánica y Farmacéutica, Facultad de Ciencias Experimentales y de la Salud, Universidad San Pablo CEU, Boadilla del Monte, E-28668 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Guelev V, Lee J, Ward J, Sorey S, Hoffman DW, Iverson BL. Peptide bis-intercalator binds DNA via threading mode with sequence specific contacts in the major groove. ACTA ACUST UNITED AC 2001; 8:415-25. [PMID: 11358689 DOI: 10.1016/s1074-5521(01)00013-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We previously described a general class of DNA polyintercalators in which 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) intercalating units are connected via peptide linkers, resulting in the first known tetrakis- and octakis-intercalators. We showed further that changes in the composition of the peptide tether result in novel DNA binding site specificities. We now examine in detail the DNA binding mode and sequence specific recognition of Compound 1, an NDI bis-intercalator containing the peptide linker gly-gly-gly-lys. RESULTS 1H-NMR structural studies of Compound 1 bound to d(CGGTACCG)(2) confirmed a threading mode of intercalation, with four base pairs between the diimide units. The NMR data, combined with DNAse I footprinting of several analogs, suggest that specificity depends on a combination of steric and electrostatic contacts by the peptide linker in the floor of the major groove. CONCLUSIONS In view of the modular nature and facile synthesis of our NDI-based polyintercalators, such structural knowledge can be used to improve or alter the specificity of the compounds and design longer polyintercalators that recognize correspondingly longer DNA sequences with alternating access to both DNA grooves.
Collapse
Affiliation(s)
- V Guelev
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 78722, USA
| | | | | | | | | | | |
Collapse
|
42
|
Lemeshko SV, Powdrill T, Belosludtsev YY, Hogan M. Oligonucleotides form a duplex with non-helical properties on a positively charged surface. Nucleic Acids Res 2001; 29:3051-8. [PMID: 11452030 PMCID: PMC55799 DOI: 10.1093/nar/29.14.3051] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The double helix is known to form as a result of hybridization of complementary nucleic acid strands in aqueous solution. In the helix the negatively charged phosphate groups of each nucleic acid strand are distributed helically on the outside of the duplex and are available for interaction with cationic groups. Cation-coated glass surfaces are now widely used in biotechnology, especially for covalent attachment of cDNAs and oligonucleotides as surface-bound probes on microarrays. These cationic surfaces can bind the nucleic acid backbone electrostatically through the phosphate moiety. Here we describe a simple method to fabricate DNA microarrays based upon adsorptive rather than covalent attachment of oligonucleotides to a positively charged surface. We show that such adsorbed oligonucleotide probes form a densely packed monolayer, which retains capacity for base pair-specific hybridization with a solution state DNA target strand to form the duplex. However, both strand dissociation kinetics and the rate of DNase digestion suggest, on symmetry grounds, that the target DNA binds to such adsorbed oligonucleotides to form a highly asymmetrical and unwound duplex. Thus, it is suggested that, at least on a charged surface, a non-helical DNA duplex can be the preferred structural isomer under standard biochemical conditions.
Collapse
Affiliation(s)
- S V Lemeshko
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
43
|
Abstract
The DNA-binding properties of many ligands can be rationalized on the basis of their structural and electronic complementarity with the functional groups present in the minor and major grooves of particular DNA sequences. Specific hydrogen bonding patterns are particularly useful for the purpose of sequence recognition. Less obvious, however, is the influence of base composition on the conformational preferences of individual base steps and on the binding of intercalating moieties which become sandwiched between contiguous base pairs. Improved knowledge of stacking interactions may lead to a better understanding of the architecture and inherent flexibility of particular DNA sequences and may provide insight into the principles that dictate the structural changes and specificity patterns observed in the binding of some intercalating ligands to DNA.
Collapse
Affiliation(s)
- F Gago
- Departamento de Farmacología, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
44
|
Molina A, Vaquero JJ, Garcia-Navio JL, Alvarez-Builla J, de Pascual-Teresa B, Gago F, Rodrigo MM, Ballesteros M. Synthesis and DNA Binding Properties of γ-Carbolinium Derivatives and Benzologues. J Org Chem 1996. [DOI: 10.1021/jo960266h] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrés Molina
- Departamento de Química Orgánica, Departamento de Farmacología, Departamento de Química-Física, and Departamento de Química Analítica, Universidad de Alcalá de Henares, 28871-Alcalá de Henares, Madrid, Spain
| | - Juan J. Vaquero
- Departamento de Química Orgánica, Departamento de Farmacología, Departamento de Química-Física, and Departamento de Química Analítica, Universidad de Alcalá de Henares, 28871-Alcalá de Henares, Madrid, Spain
| | - José L. Garcia-Navio
- Departamento de Química Orgánica, Departamento de Farmacología, Departamento de Química-Física, and Departamento de Química Analítica, Universidad de Alcalá de Henares, 28871-Alcalá de Henares, Madrid, Spain
| | - Julio Alvarez-Builla
- Departamento de Química Orgánica, Departamento de Farmacología, Departamento de Química-Física, and Departamento de Química Analítica, Universidad de Alcalá de Henares, 28871-Alcalá de Henares, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química Orgánica, Departamento de Farmacología, Departamento de Química-Física, and Departamento de Química Analítica, Universidad de Alcalá de Henares, 28871-Alcalá de Henares, Madrid, Spain
| | - Federico Gago
- Departamento de Química Orgánica, Departamento de Farmacología, Departamento de Química-Física, and Departamento de Química Analítica, Universidad de Alcalá de Henares, 28871-Alcalá de Henares, Madrid, Spain
| | - María M. Rodrigo
- Departamento de Química Orgánica, Departamento de Farmacología, Departamento de Química-Física, and Departamento de Química Analítica, Universidad de Alcalá de Henares, 28871-Alcalá de Henares, Madrid, Spain
| | - Milagros Ballesteros
- Departamento de Química Orgánica, Departamento de Farmacología, Departamento de Química-Física, and Departamento de Química Analítica, Universidad de Alcalá de Henares, 28871-Alcalá de Henares, Madrid, Spain
| |
Collapse
|
45
|
Molecular modeling of intercalation complexes of antitumor active 9-aminoacridine and a [d, e]-anellated isoquinoline derivative with base paired deoxytetranucleotides. MONATSHEFTE FUR CHEMIE 1996. [DOI: 10.1007/bf00817256] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Carlsson C, Jonsson M, Akerman B. Double bands in DNA gel electrophoresis caused by bis-intercalating dyes. Nucleic Acids Res 1995; 23:2413-20. [PMID: 7630719 PMCID: PMC307045 DOI: 10.1093/nar/23.13.2413] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many bis-intercalating dyes used for fluorescence detection of DNA in electrophoresis have been reported to give band-splitting and band-broadening, which results in poor resolution and a decreased detection sensitivity. We have studied the dimeric dye YOYO-1, and to some extent also TOTO-1 and EthD-1, and found that in complex with DNA these dyes give rise to two components with different electrophoretic mobilities. Electrophoresis experiments and spectroscopic measurements on the two components show that they differ in that the DNA molecules have different amounts of dye bound. Our results exclude that the extra bands are caused by intermolecular cross-linking. Incubation of the samples for increasing times before electrophoresis makes the bands move closer and closer to each other as the dye molecules become more homogeneously distributed among the DNA molecules. Finally, the two bands merge into one at an intermediate position. This equilibration process is extremely slow at room temperature (days), and is therefore not a practical method to eliminate band-splitting in routine analysis. However, we find that if the temperature is raised to 50 degrees C, the dye-DNA complexes equilibrate completely in only 2 h.
Collapse
Affiliation(s)
- C Carlsson
- Department of Physical Chemistry, Chalmers University of Technology, Göteborg, Sweden
| | | | | |
Collapse
|
47
|
Gresh N, René B, Hui XW, Barsi MC, Roques BP, Garbay C. Theoretical Design, Chemical Synthesis and Footprinting Analysis of a Novel Peptide Derivative of the Intercalator 7-H Pyridocarbazole Targeted Towards the Major Groove of DNA. J Biomol Struct Dyn 1994; 12:91-110. [DOI: 10.1080/07391102.1994.10508090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Mouscadet JF, Ketterlé C, Goulaouic H, Carteau S, Subra F, Le Bret M, Auclair C. Triple helix formation with short oligonucleotide-intercalator conjugates matching the HIV-1 U3 LTR end sequence. Biochemistry 1994; 33:4187-96. [PMID: 8155634 DOI: 10.1021/bi00180a011] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In an attempt to target short purine sequences in view of pharmacological application, we have synthesized three new TFO (triple-helix-forming oligonucleotide) conjugates in which an intercalating oxazolopyridocarbazole (OPC) chromophore is linked by a pentamethylene linker to a 7-mer oligonucleotide matching the polypurine/polypyrimidine sequence located in the HIV-1 U3 LTR end region. The TFO moiety of conjugates are 5'CCTTCCC, 5'GGGAAGG, and 5'GGGTTGG. Their ability to bind to double-stranded DNA targets was examined. This binding is demonstrated by a footprinting technique using DNase I as a cleaving agent. The complex involved intermolecular pyr-pur*pyr or pur-pur*pyr triple helix. Pyrimidine TFO-OPC binds in a pH-dependent manner, whereas the others do not. The formation of the complex has been investigated at neutral pH and increasing temperature. We observed that the protection due to the purine and mixed TFO-OPC was pH independent and remained identical up to 40 degrees C. To determine the position of the OPC chromophore, molecular modeling was undertaken on the purine-conjugate/target complex. It has been suggested that the complex involved the intercalation of the OPC at the triplex-duplex junction with a small unwinding at the next excluded site.
Collapse
Affiliation(s)
- J F Mouscadet
- Laboratoire de Physicochimie et de Pharmacologie des Macromolécules Biologiques, Institut Gustave-Roussy, CNRS URA 147, INSERM, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Pindur U, Haber M, Sattler K. [Intercalation model of cytostatics with B-DNA]. PHARMAZIE IN UNSERER ZEIT 1992; 21:21-36. [PMID: 1553386 DOI: 10.1002/pauz.19920210108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- U Pindur
- Institut für Pharmazie, Universität Mainz
| | | | | |
Collapse
|
50
|
Pothier J, Delepierre M, Barsi MC, Garbay-Jaureguiberry C, Igolen J, Le Bret M, Roques BP. Comparison of the bis-intercalating complexes formed between either ditercalinium or a flexible analogue and d(CpGpCpG)2 or d(TpTpCpGpCpGpApA)2 minihelices: 1H- and 31P-NMR analyses. Biopolymers 1991; 31:1309-23. [PMID: 1777582 DOI: 10.1002/bip.360311109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 400-MHz 1H- and 162-MHz 31P-nmr have been used to study complexes constituted by (a) the d(TpTpCpGpCpGpApA)2 or the d(CpGpCpG)2 self-complementary oligonucleotides and (b) two bifunctional 7H-pyrido [4,3-c] carbazole dimer drugs, the antitumoral ditercalinium (NSC 366241), a dimer with a rigid bis-piperidine linking chain and its pharmacologically inactive analogue, a dimer with a flexible spermine-like linking chain. Nearly all proton and phosphorus signals have been assigned by two-dimensional (2D) nmr (correlated spectroscopy, homonuclear Hartmann-Hahn, nuclear Overhauser enhancement spectroscopy, 2D 31P (1H) heteronuclear correlated spectroscopy and 31P-31P chemical exchange experiments). Both drugs bis-intercalate into the two CpG sites. The complexes show small differences in the position of the 7H-pyrido [4,3-c] carbazole ring into the intercalation site and possibly in the ribose-phosphate backbone deformation. However, the inactive analogue exhibits a longer residence lifetime in octanucleotide than the ditercalinium does. All these results are discussed in terms of differences in dimer activities.
Collapse
Affiliation(s)
- J Pothier
- Département de Chimie Organique U266 INSERM, Paris, France
| | | | | | | | | | | | | |
Collapse
|