1
|
Sun Y, Liu G, Liu G, Tang H, Sun C, Zhang W, Chen L. The novel amylase function of the carboxyl terminal domain of Amy63. Biochem Biophys Res Commun 2023; 671:10-17. [PMID: 37290279 DOI: 10.1016/j.bbrc.2023.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
α-amylase plays a crucial role in regulating metabolism and health by hydrolyzing of starch and glycogen. Despite comprehensive studies of this classic enzyme spanning over a century, the function of its carboxyl terminal domain (CTD) with a conserved eight β-strands is still not fully understood. Amy63, identified from a marine bacterium, was reported as a novel multifunctional enzyme with amylase, agarase and carrageenase activities. In this study, the crystal structure of Amy63 was determined at 1.8 Å resolution, revealing high conservation with some other amylases. Interestingly, the independent amylase activity of the carboxyl terminal domain of Amy63 (Amy63_CTD) was newly discovered by the plate-based assay and mass spectrometry. To date, the Amy63_CTD alone could be regarded as the smallest amylase subunit. Moreover, the significant amylase activity of Amy63_CTD was measured over a wide range of temperature and pH, with optimal activity at 60 °C and pH 7.5. The Small-angle X-ray scattering (SAXS) data showed that the high-order oligomeric assembly gradually formed with increasing concentration of Amy63_CTD, implying the novel catalytic mechanism as revealed by the assembly structure. Therefore, the discovery of the novel independent amylase activity of Amy63_CTD suggests a possible missing step or a new perspective in the complex catalytic process of Amy63 and other related α-amylases. This work may shed light on the design of nanozymes to process marine polysaccharides efficiently.
Collapse
Affiliation(s)
- Yufan Sun
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; The Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ge Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Haixu Tang
- Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, IN 47408, USA
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Wen Zhang
- Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; The Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Li Chen
- Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Flooding tolerance in Rice: adaptive mechanism and marker-assisted selection breeding approaches. Mol Biol Rep 2023; 50:2795-2812. [PMID: 36592290 DOI: 10.1007/s11033-022-07853-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 01/03/2023]
Abstract
Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
Collapse
|
3
|
Mashini AG, Oakley CA, Beepat SS, Peng L, Grossman AR, Weis VM, Davy SK. The Influence of Symbiosis on the Proteome of the Exaiptasia Endosymbiont Breviolum minutum. Microorganisms 2023; 11:292. [PMID: 36838257 PMCID: PMC9967746 DOI: 10.3390/microorganisms11020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Sandeep S. Beepat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
4
|
Xiong M, Yu J, Wang J, Gao Q, Huang L, Chen C, Zhang C, Fan X, Zhao D, Liu QQ, Li QF. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module. PLANT PHYSIOLOGY 2022; 189:402-418. [PMID: 35139229 PMCID: PMC9070845 DOI: 10.1093/plphys/kiac043] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Seed dormancy and germination, two physiological processes unique to seed-bearing plants, are critical for plant growth and crop production. The phytohormone brassinosteroid (BR) regulates many aspects of plant growth and development, including seed germination. The molecular mechanisms underlying BR control of rice (Oryza sativa) seed germination are mostly unknown. We investigated the molecular regulatory cascade of BR in promoting rice seed germination and post-germination growth. Physiological assays indicated that blocking BR signaling, including introducing defects into the BR-insensitive 1 (BRI1) receptor or overexpressing the glycogen synthase kinase 2 (GSK2) kinase delayed seed germination and suppressed embryo growth. Our results also indicated that brassinazole-resistant 1 (BZR1) is the key downstream transcription factor that mediates BR regulation of seed germination by binding to the alpha-Amylase 3D (RAmy3D) promoter, which affects α-amylase expression and activity and the degradation of starch in the endosperm. The BZR1-RAmy3D module functions independently from the established Gibberellin MYB-alpha-amylase 1A (RAmy1A) module of the gibberellin (GA) pathway. We demonstrate that the BZR1-RAmy3D module also functions in embryo-related tissues. Moreover, RNA-sequencing (RNA-seq) analysis identified more potential BZR1-responsive genes, including those involved in starch and sucrose metabolism. Our study successfully identified the role of the BZR1-RAmy3D transcriptional module in regulating rice seed germination.
Collapse
Affiliation(s)
| | | | | | - Qiang Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chen Chen
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Dongsheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | | | | |
Collapse
|
5
|
Chen Y, Armstrong Z, Artola M, Florea BI, Kuo CL, de Boer C, Rasmussen MS, Abou Hachem M, van der Marel GA, Codée JDC, Aerts JMF, Davies GJ, Overkleeft HS. Activity-Based Protein Profiling of Retaining α-Amylases in Complex Biological Samples. J Am Chem Soc 2021; 143:2423-2432. [PMID: 33497208 PMCID: PMC7883350 DOI: 10.1021/jacs.0c13059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/02/2022]
Abstract
Amylases are key enzymes in the processing of starch in many kingdoms of life. They are important catalysts in industrial biotechnology where they are applied in, among others, food processing and the production of detergents. In man amylases are the first enzymes in the digestion of starch to glucose and arguably also the preferred target in therapeutic strategies aimed at the treatment of type 2 diabetes patients through down-tuning glucose assimilation. Efficient and sensitive assays that report selectively on retaining amylase activities irrespective of the nature and complexity of the biomaterial studied are of great value both in finding new and effective human amylase inhibitors and in the discovery of new microbial amylases with potentially advantageous features for biotechnological application. Activity-based protein profiling (ABPP) of retaining glycosidases is inherently suited for the development of such an assay format. We here report on the design and synthesis of 1,6-epi-cyclophellitol-based pseudodisaccharides equipped with a suite of reporter entities and their use in ABPP of retaining amylases from human saliva, murine tissue as well as secretomes from fungi grown on starch. The activity and efficiency of the inhibitors and probes are substantiated by extensive biochemical analysis, and the selectivity for amylases over related retaining endoglycosidases is validated by structural studies.
Collapse
Affiliation(s)
- Yurong Chen
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Zachary Armstrong
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Marta Artola
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bogdan I. Florea
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Chi-Lin Kuo
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Casper de Boer
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mikkel S. Rasmussen
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plad, 2800 Kgs. Lyngby, Denmark
| | - Maher Abou Hachem
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plad, 2800 Kgs. Lyngby, Denmark
| | - Gijsbert A. van der Marel
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jeroen D. C. Codée
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johannes M. F.
G. Aerts
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gideon J. Davies
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Herman S. Overkleeft
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
6
|
The Molecular Regulatory Pathways and Metabolic Adaptation in the Seed Germination and Early Seedling Growth of Rice in Response to Low O 2 Stress. PLANTS 2020; 9:plants9101363. [PMID: 33066550 PMCID: PMC7602250 DOI: 10.3390/plants9101363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
As sessile organisms, flooding/submergence is one of the major abiotic stresses for higher plants, with deleterious effects on their growth and survival. Therefore, flooding/submergence is a large challenge for agriculture in lowland areas worldwide. Long-term flooding/submergence can cause severe hypoxia stress to crop plants and can result in substantial yield loss. Rice has evolved distinct adaptive strategies in response to low oxygen (O2) stress caused by flooding/submergence circumstances. Recently, direct seeding practice has been increasing in popularity due to its advantages of reducing cultivation cost and labor. However, establishment and growth of the seedlings from seed germination under the submergence condition are large obstacles for rice in direct seeding practice. The physiological and molecular regulatory mechanisms underlying tolerant and sensitive phenotypes in rice have been extensively investigated. Here, this review focuses on the progress of recent advances in the studies of the molecular mechanisms and metabolic adaptions underlying anaerobic germination (AG) and coleoptile elongation. Further, we highlight the prospect of introducing quantitative trait loci (QTL) for AG into rice mega varieties to ensure the compatibility of flooding/submergence tolerance traits and yield stability, thereby advancing the direct seeding practice and facilitating future breeding improvement.
Collapse
|
7
|
Yue C, Cao H, Lin H, Hu J, Ye Y, Li J, Hao Z, Hao X, Sun Y, Yang Y, Wang X. Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments. PLANTA 2019; 250:281-298. [PMID: 31025197 DOI: 10.1007/s00425-019-03171-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/22/2019] [Indexed: 05/27/2023]
Abstract
The alpha-amylase and beta-amylase genes have been identified from tea plants, and their bioinformatic characteristics and expression patterns provide a foundation for further studies to elucidate their biological functions. Alpha-amylase (AMY)- and beta-amylase (BAM)-mediated starch degradation plays central roles in carbohydrate metabolism and participates extensively in the regulation of a wide range of biological processes, including growth, development and stress response. However, the AMY and BAM genes in tea plants (Camellia sinensis) are poorly understood, and the biological functions of these genes remain to be elucidated. In this study, three CsAMY and nine CsBAM genes from tea plants were identified based on genomic and transcriptomic database analyses, and the genes were subjected to comprehensive bioinformatic characterization. Phylogenetic analysis showed that the CsAMY proteins could be clustered into three different subfamilies, and nine CsBAM proteins could be classified into four groups. Putative catalytically active proteins were identified based on multiple sequence alignments, and the tertiary structures of these proteins were analyzed. Cis-element analysis indicated that CsAMY and CsBAM were extensively involved in tea plant growth, development and stress response. In addition, the CsAMY and CsBAM genes were differentially expressed in various tissues and were regulated by stress treatments (e.g., ABA, cold, drought and salt stress), and the expression patterns of these genes were associated with the postharvest withering and rotation processes. Taken together, our results will enhance the understanding of the roles of the CsAMY and CsBAM gene families in the growth, development and stress response of tea plants and of the potential functions of these genes in determining tea quality during the postharvest processing of tea leaves.
Collapse
Affiliation(s)
- Chuan Yue
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China.
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China.
| | - Hongli Cao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Juan Hu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Yijun Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Jiamin Li
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Xinyuan Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science, Universities of Fujian Province, Fuzhou, China
| | - Yajun Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China.
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China.
| |
Collapse
|
8
|
New insights into the origin and evolution of α-amylase genes in green plants. Sci Rep 2019; 9:4929. [PMID: 30894656 PMCID: PMC6426938 DOI: 10.1038/s41598-019-41420-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/05/2018] [Indexed: 01/16/2023] Open
Abstract
Gene duplication is a source of genetic materials and evolutionary changes, and has been associated with gene family expansion. Functional divergence of duplicated genes is strongly directed by natural selections such as organism diversification and novel feature acquisition. We show that, plant α-amylase gene family (AMY) is comprised of six subfamilies (AMY1-AMY6) that fell into two ancient phylogenetic lineages (AMY3 and AMY4). Both AMY1 and AMY2 are grass-specific and share a single-copy ancestor, which is derived from grass AMY3 genes that have undergone massive tandem and whole-genome duplications during evolution. Ancestral features of AMY4 and AMY5/AMY6 genes have been retained among four green algal sequences (Chrein_08.g362450, Vocart_0021s0194, Dusali_0430s00012 and Monegl_16464), suggesting a gene duplication event following Chlorophyceae diversification. The observed horizontal gene transfers between plant and bacterial AMYs, and chromosomal locations of AMY3 and AMY4 genes in the most ancestral green body (C. reinhardtii), provide evidences for the monophyletic origin of plant AMYs. Despite subfamily-specific sequence divergence driven by natural selections, the active site and SBS1 are well-conserved across different AMY isoforms. The differentiated electrostatic potentials and hydrogen bands-forming residue polymorphisms, further imply variable digestive abilities for a broad substrates in particular tissues or subcellular localizations.
Collapse
|
9
|
Ju L, Deng G, Liang J, Zhang H, Li Q, Pan Z, Yu M, Long H. Structural organization and functional divergence of high isoelectric point α-amylase genes in bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). BMC Genet 2019; 20:25. [PMID: 30845909 PMCID: PMC6404323 DOI: 10.1186/s12863-019-0732-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND High isoelectric point α-amylase genes (Amy1) play major roles during cereal seed germination, and are associated with unacceptable high residual α-amylase activities in ripe wheat grains. However, in wheat and barley, due to extremely high homology of duplicated copies, and large and complex genome background, the knowledge on this multigene family is limited. RESULTS In the present work, we identified a total of 41 Amy1 genes among 13 investigated grasses. By using genomic resources and experimental validation, the exact copy numbers and chromosomal locations in wheat and barley were determined. Phylogenetic and syntenic analyses revealed tandem gene duplication and chromosomal rearrangement leading to separation of Amy1 into two distinct loci, Amy1θ and Amy1λ. The divergence of Amy1λ from Amy1θ was driven by adaptive selection pressures performed on two amino acids, Arg97 and Asn233 (P > 0.95*). The predicted protein structural alteration caused by substitution of Asp233Asn in the conserved starch binding surface site, and significantly expressional differentiation during seed germination and grain development provided evidence of functional divergence between Amy1θ and Amy1λ genes. We screened out candidate copies (TaAmy1-A1/A2 and TaAmy1-D1) associated with high residual α-amylase activities in ripe grains. Furthermore, we proposed an evolutionary model for expansion dynamics of Amy1 genes. CONCLUSIONS Our study provides comprehensive analyses of the Amy1 multigene family, and defines the fixation of two spatially structural Amy1 loci in wheat and barley. Potential functional divergence between them is reflected by their sequence features and expressional patterns, and driven by gene duplication, chromosome rearrangement and natural selections during gene family evolution. Furthermore, the discrimination of differentially effective copies during seed germination and/or grain development will provide guidance to manipulation of α-amylase activity in wheat and barley breeding for better yield and processing properties.
Collapse
Affiliation(s)
- Liangliang Ju
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| |
Collapse
|
10
|
Damaris RN, Lin Z, Yang P, He D. The Rice Alpha-Amylase, Conserved Regulator of Seed Maturation and Germination. Int J Mol Sci 2019; 20:E450. [PMID: 30669630 PMCID: PMC6359163 DOI: 10.3390/ijms20020450] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 11/29/2022] Open
Abstract
Alpha-amylase, the major form of amylase with secondary carbohydrate binding sites, is a crucial enzyme throughout the growth period and life cycle of angiosperm. In rice, alpha-amylase isozymes are critical for the formation of the storage starch granule during seed maturation and motivate the stored starch to nourish the developing seedling during seed germination which will directly affect the plant growth and field yield. Alpha-amylase has not yet been studied intensely to understand its classification, structure, expression trait, and expression regulation in rice and other crops. Among the 10-rice alpha-amylases, most were exclusively expressed in the developing seed embryo and induced in the seed germination process. During rice seed germination, the expression of alpha-amylase genes is known to be regulated negatively by sugar in embryos, however positively by gibberellin (GA) in endosperm through competitively binding to the specific promoter domain; besides, it is also controlled by a series of other abiotic or biotic factors, such as salinity. In this review, we overviewed the research progress of alpha-amylase with focus on seed germination and reflected on how in-depth work might elucidate its regulation and facilitate crop breeding as an efficient biomarker.
Collapse
Affiliation(s)
- Rebecca Njeri Damaris
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhongyuan Lin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pingfang Yang
- School of Life Sciences, Hubei University, Wuhan 430070, China.
| | - Dongli He
- School of Life Sciences, Hubei University, Wuhan 430070, China.
| |
Collapse
|
11
|
Duke SH, Vinje MA, Henson CA. Tracking Amylolytic Enzyme Activities during Congress Mashing with North American Barley Cultivars: Comparisons of Patterns of Activity and β-Amylases with DifferingBmy1Intron III Alleles and Correlations of Amylolytic Enzyme Activities. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2012-0131-01] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Marcus A. Vinje
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Crops Research Unit (CCRU), Madison, WI
| | - Cynthia A. Henson
- USDA-ARS CCRU and Department of Agronomy, University of Wisconsin, Madison
| |
Collapse
|
12
|
Duke SH, Vinje MA, Henson CA. Comparisons of Amylolytic Enzyme Activities and β-Amylases with DifferingBmy1Intron III Alleles to Sugar Production during Congress Mashing with North American Barley Cultivars. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2012-0906-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Stanley H. Duke
- Department of Agronomy, University of Wisconsin, Madison, WI
| | - Marcus A. Vinje
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Madison, WI
| | - Cynthia A. Henson
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, and Department of Agronomy, University of Wisconsin, Madison, WI
| |
Collapse
|
13
|
Duke SH, Vinje MA, Henson CA. Comparisons of Amylolytic Enzyme Activities and β-Amylases with DifferingBmy1Intron III Alleles to Osmolyte Concentration and Malt Extract during Congress Mashing with North American Barley Cultivars. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2013-0912-01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Marcus A. Vinje
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Crops Research Unit (CCRU), Madison, WI
| | - Cynthia A. Henson
- Department of Agronomy, University of Wisconsin, Madison
- USDA-ARS CCRU
| |
Collapse
|
14
|
Duke SH, Henson CA, Vinje MA. Comparisons of Barley Malt Amylolytic Enzyme Thermostabilities to Wort Osmolyte Concentrations, Malt Extract, ASBC Measures of Malt Quality, and Initial Enzyme Activities. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2014-1027-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Stanley H. Duke
- Department of Agronomy, University of Wisconsin, Madison, WI
| | - Cynthia A. Henson
- Department of Agronomy, University of Wisconsin, Madison, WI
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Cereal Crops Research Unit (CCRU), Madison, WI
| | | |
Collapse
|
15
|
Duke SH, Henson CA, Bockelman HE. Comparisons of Modern U. S. and Canadian Malting Barley Cultivars with Those from Pre-Prohibition: III. Wort Sugar Production during Mashing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1080/03610470.2017.1402582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Stanley H. Duke
- Department of Agronomy, University of Wisconsin, Madison, WI, U.S.A
| | - Cynthia A. Henson
- Department of Agronomy, University of Wisconsin, Madison, WI, U.S.A
- United States Department of Agriculture–Agricultural Research Service Cereal Crops Research Unit, Madison, WI, U.S.A
| | - Harold E. Bockelman
- United States Department of Agriculture–Agricultural Research Service Small Grains and Potato Germplasm Research Unit, Aberdeen, ID, U.S.A
| |
Collapse
|
16
|
Lee SC, Kim SJ, Han SK, An G, Kim SR. A gibberellin-stimulated transcript, OsGASR1, controls seedling growth and α-amylase expression in rice. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:116-122. [PMID: 28482332 DOI: 10.1016/j.jplph.2017.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 05/07/2023]
Abstract
From a T-DNA-tagging population in rice, we identified OsGASR1 (LOC_Os03g55290), a member of the GAST (gibberellin (GA)-Stimulated Transcript) family that is induced by salt stress and ABA treatment. This gene was highly expressed in the regions of cell proliferation and panicle development, as revealed by a GUS assay of the mutant line. In the osgasr1 mutants, the second leaf blades were much longer than those of the segregating wild type due to an increase in cell length. In addition, five α-amylase genes were up-regulated in the mutants, implying that OsGASR1 is a negative regulator of those genes. These results suggest that OsGASR1 plays important roles in seedling growth and α-amylase gene expression.
Collapse
Affiliation(s)
- Sang-Choon Lee
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea; Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 151-921 Seoul, Republic of Korea
| | - Soo-Jin Kim
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Soon-Ki Han
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Gynheung An
- Crop Biotech Institute & Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Seong-Ryong Kim
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea.
| |
Collapse
|
17
|
Nakata M, Fukamatsu Y, Miyashita T, Hakata M, Kimura R, Nakata Y, Kuroda M, Yamaguchi T, Yamakawa H. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains. FRONTIERS IN PLANT SCIENCE 2017; 8:2089. [PMID: 29270189 PMCID: PMC5723670 DOI: 10.3389/fpls.2017.02089] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/23/2017] [Indexed: 05/05/2023]
Abstract
Global warming impairs grain filling in rice and reduces starch accumulation in the endosperm, leading to chalky-appearing grains, which damages their market value. We found previously that high temperature-induced expression of starch-lytic α-amylases during ripening is crucial for grain chalkiness. Because the rice genome carries at least eight functional α-amylase genes, identification of the α-amylase(s) that contribute most strongly to the production of chalky grains could accelerate efficient breeding. To identify α-amylase genes responsible for the production of chalky grains, we characterized the histological expression pattern of eight α-amylase genes and the influences of their overexpression on grain appearance and carbohydrate components through a series of experiments with transgenic rice plants. The promoter activity of most α-amylase genes was elevated to various extents at high temperature. Among them, the expression of Amy1A and Amy3C was induced in the internal, especially basal to dorsal, region of developing endosperm, whereas that of Amy3D was confined near the ventral aleurone. These regions coincided with the site of occurrence of chalkiness, which was in clear contrast to conventionally known expression patterns of the enzyme in the scutellum and aleurone during seed germination. Furthermore, overexpression of α-amylase genes, except for Amy3E, in developing endosperm produced various degrees of chalky grains without heat exposure, whereas that of Amy3E yielded normal translucent grains, as was the case in the vector control, even though Amy3E-overexpressing grains contained enhanced α-amylase activities. The weight of the chalky grains was decreased due to reduced amounts of starch, and microscopic observation of the chalky part of these grains revealed that their endosperm consisted of loosely packed round starch granules that had numerous pits on their surface, confirming the hydrolysis of the starch reserve by α-amylases. Moreover, the chalky grains contained increased amounts of soluble sugars including maltooligosaccharides at the expense of starch. The integrated analyses proposed that expression of Amy1A, Amy3C, and Amy3D at the specific regions of the developing endosperm could generate the chalkiness. This finding provides the fundamental knowledge to narrow down the targets for the development of high temperature-tolerant premium rice.
Collapse
|
18
|
Pirone-Davies C, Prior N, von Aderkas P, Smith D, Hardie D, Friedman WE, Mathews S. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production. ANNALS OF BOTANY 2016; 117:973-84. [PMID: 27045089 PMCID: PMC4866313 DOI: 10.1093/aob/mcw026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/08/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. METHODS Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. KEY RESULTS About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. CONCLUSIONS The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar breakdown during drop formation in Cephalotaxus The transcriptome data provide a framework for understanding multiple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus transcripts in Cephalotaxus ovules might be involved in pollen-ovule recognition.
Collapse
Affiliation(s)
| | | | | | - Derek Smith
- UVic Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Darryl Hardie
- UVic Genome BC Proteomics Centre, Victoria, BC, Canada
| | - William E Friedman
- The Arnold Arboretum of Harvard University, Boston, MA, USA, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Sarah Mathews
- CSIRO, Centre for Australian National Biodiversity Research, Canberra, Australia and
| |
Collapse
|
19
|
Ral JP, Whan A, Larroque O, Leyne E, Pritchard J, Dielen AS, Howitt CA, Morell MK, Newberry M. Engineering high α-amylase levels in wheat grain lowers Falling Number but improves baking properties. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:364-76. [PMID: 26010869 PMCID: PMC4736685 DOI: 10.1111/pbi.12390] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/25/2015] [Accepted: 03/28/2015] [Indexed: 05/06/2023]
Abstract
Late maturity α-amylase (LMA) and preharvest sprouting (PHS) are genetic defects in wheat. They are both characterized by the expression of specific isoforms of α-amylase in particular genotypes in the grain prior to harvest. The enhanced expression of α-amylase in both LMA and PHS results in a reduction in Falling Number (FN), a test of gel viscosity, and subsequent downgrading of the grain, along with a reduced price for growers. The FN test is unable to distinguish between LMA and PHS; thus, both defects are treated similarly when grain is traded. However, in PHS-affected grains, proteases and other degradative process are activated, and this has been shown to have a negative impact on end product quality. No studies have been conducted to determine whether LMA is detrimental to end product quality. This work demonstrated that wheat in which an isoform α-amylase (TaAmy3) was overexpressed in the endosperm of developing grain to levels of up to 100-fold higher than the wild-type resulted in low FN similar to those seen in LMA- or PHS-affected grains. This increase had no detrimental effect on starch structure, flour composition and enhanced baking quality, in small-scale 10-g baking tests. In these small-scale tests, overexpression of TaAmy3 led to increased loaf volume and Maillard-related browning to levels higher than those in control flours when baking improver was added. These findings raise questions as to the validity of the assumption that (i) LMA is detrimental to end product quality and (ii) a low FN is always indicative of a reduction in quality. This work suggests the need for a better understanding of the impact of elevated expression of specific α-amylase on end product quality.
Collapse
Affiliation(s)
| | - Alex Whan
- CSIRO Agriculture Flagship, Canberra, ACT, Australia
| | | | - Emmett Leyne
- CSIRO Agriculture Flagship, Canberra, ACT, Australia
| | | | - Anne-Sophie Dielen
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
20
|
Kondhare K, Farrell A, Kettlewell P, Hedden P, Monaghan J. Pre-maturity α-amylase in wheat: The role of abscisic acid and gibberellins. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Lee KW, Chen PW, Yu SM. Metabolic adaptation to sugar/O2 deficiency for anaerobic germination and seedling growth in rice. PLANT, CELL & ENVIRONMENT 2014; 37:2234-44. [PMID: 24575721 DOI: 10.1111/pce.12311] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 05/20/2023]
Abstract
Rice is characterized by a broad range of metabolic and morphological adaptations to flooding, such as germination and mobilization of stored nutrients under submergence until seedlings reach the water surface to carry out photosynthesis, and sustainable growth of mature plants for long durations under partial submergence. The underlying mechanisms of the molecular basis of adaptation to anaerobic germination and seedling growth in rice are being uncovered. Induction of an ensemble of hydrolases to mobilize endosperm nutrient reserves is one of the key factors for successful germination and coleoptile elongation in rice under submergence. To compensate for reduced efficiency of Tricarboxylic Acid cycle and oxidative respiration in mitochondria under O2 deficient conditions, α-amylases play a central role in the hydrolysis of starch to provide sugar substrates for glycolysis and alcohol fermentation for generating ATP. We review the progress on the molecular mechanism regulating α-amylase expression that involves the integration of signals generated by the hormone gibberellin (GA), sugar starvation and O2 deprivation that results in germination and sustainable seedling growth in rice under anaerobic conditions. Comparisons are also made between dicots and monocots for the molecular mechanism of induction of genes involved in alcohol fermentation and sugar/O2 deficiency sensing system.
Collapse
Affiliation(s)
- Kuo-Wei Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | | | | |
Collapse
|
22
|
Whan A, Dielen AS, Mieog J, Bowerman AF, Robinson HM, Byrne K, Colgrave M, Larkin PJ, Howitt CA, Morell MK, Ral JP. Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5443-57. [PMID: 25053646 PMCID: PMC4157717 DOI: 10.1093/jxb/eru299] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 05/20/2023]
Abstract
Wheat starch degradation requires the synergistic action of different amylolytic enzymes. Our spatio-temporal study of wheat α-amylases throughout grain development shows that AMY3 is the most abundant isoform compared with the other known α-amylases. Endosperm-specific over-expression of AMY3 resulted in an increase of total α-amylase activity in harvested grains. Unexpectedly, increased activity did not have a significant impact on starch content or composition but led to an increase of soluble carbohydrate (mainly sucrose) in dry grain. In AMY3 overexpression lines (A3OE), germination was slightly delayed and triacylglycerol (TAG) content was increased in the endosperm of mature grain. Despite increased AMY3 transcript and protein content throughout grain development, alterations of α-amylase activity and starch granule degradation were not detected until grain maturation, suggesting a post-translational inhibition of α-amylase activity in the endosperm during the starch filling period. These findings show unexpected effects of a high level of α-amylase on grain development and composition, notably in carbon partitioning and TAG accumulation, and suggest the presence of a hitherto unknown regulatory pathway during grain filling.
Collapse
Affiliation(s)
- Alex Whan
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia
| | - Anne-Sophie Dielen
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Jos Mieog
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia
| | - Andrew F Bowerman
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Hannah M Robinson
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Keren Byrne
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. CSIRO Animal, Food and Health Sciences, St Lucia, Queensland, Australia
| | - Michelle Colgrave
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. CSIRO Animal, Food and Health Sciences, St Lucia, Queensland, Australia
| | - Philip J Larkin
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601 Australia
| | - Crispin A Howitt
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia
| | - Matthew K Morell
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia
| | - Jean-Philippe Ral
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia.
| |
Collapse
|
23
|
Nanjo Y, Asatsuma S, Itoh K, Hori H, Mitsui T. Proteomic Identification of α-Amylase Isoforms Encoded byRAmy3B/3Cfrom Germinating Rice Seeds. Biosci Biotechnol Biochem 2014; 68:112-8. [PMID: 14745172 DOI: 10.1271/bbb.68.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We isolated and identified 10 alpha-amylase isoforms by using beta-cyclodextrin Sepharose affinity column chromatography and two-dimensional polyacrylamide gel electrophoresis from germinating rice (Oryza sativa L.) seeds. Immunoblots with anti-alpha-amylase I-1 and II-4 antibodies indicated that 8 isoforms in 10 are distinguishable from alpha-amylase I-1 and II-4. Peptide mass fingerprinting analysis showed that there exist novel isoforms encoded by RAmy3B and RAmy3C genes. The optimum temperature for enzyme reaction of the RAmy3B and RAmy3C coding isoforms resembled that of alpha-amylase isoform II-4 (RAmy3D). Furthermore, complex protein polymorphism resulted from a single alpha-amylase gene was found to occur not only in RAmy3D, but also in RAmy3B.
Collapse
Affiliation(s)
- Yohei Nanjo
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | | | | | | | | |
Collapse
|
24
|
TSUJII Y, NAGAFUKU N, MIYAKE A, UCHINO M, TAKANO K. Presence and Activity of Various Amylases in Rice: Effect on Texture and Leached Sugar Composition during Cooking. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2013. [DOI: 10.3136/fstr.19.81] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Da Lage JL, Maczkowiak F, Cariou ML. Phylogenetic distribution of intron positions in alpha-amylase genes of bilateria suggests numerous gains and losses. PLoS One 2011; 6:e19673. [PMID: 21611157 PMCID: PMC3096672 DOI: 10.1371/journal.pone.0019673] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 04/03/2011] [Indexed: 11/19/2022] Open
Abstract
Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that "resets" of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Laboratoire Evolution, génomes et spéciation, UPR 9034 CNRS, Gif sur Yvette, France.
| | | | | |
Collapse
|
26
|
Raybould A, Tuttle A, Shore S, Stone T. Environmental risk assessments for transgenic crops producing output trait enzymes. Transgenic Res 2009; 19:595-609. [PMID: 19924556 PMCID: PMC2902732 DOI: 10.1007/s11248-009-9343-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 10/30/2009] [Indexed: 12/02/2022]
Abstract
The environmental risks from cultivating crops producing output trait enzymes can be rigorously assessed by testing conservative risk hypotheses of no harm to endpoints such as the abundance of wildlife, crop yield and the rate of degradation of crop residues in soil. These hypotheses can be tested with data from many sources, including evaluations of the agronomic performance and nutritional quality of the crop made during product development, and information from the scientific literature on the mode-of-action, taxonomic distribution and environmental fate of the enzyme. Few, if any, specific ecotoxicology or environmental fate studies are needed. The effective use of existing data means that regulatory decision-making, to which an environmental risk assessment provides essential information, is not unnecessarily complicated by evaluation of large amounts of new data that provide negligible improvement in the characterization of risk, and that may delay environmental benefits offered by transgenic crops containing output trait enzymes.
Collapse
Affiliation(s)
- Alan Raybould
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | | | | | | |
Collapse
|
27
|
Rajendra P, Sujatha Nayak H, Sashidhar RB, Subramanyam C, Devendranath D, Gunasekaran B, Aradhya RSS, Bhaskaran A. Effects of Power Frequency Electromagnetic Fields on Growth of GerminatingVicia fabaL., the Broad Bean. Electromagn Biol Med 2009. [DOI: 10.1081/jbc-200055058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Prokopyk DO, Antonyuk MZ, Ternovskaya TK. The genetic control of the α-amylase isozymes of the durum wheat (Triticum durum Desf.). CYTOL GENET+ 2009. [DOI: 10.3103/s0095452709030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Bak-Jensen KS, Laugesen S, Ostergaard O, Finnie C, Roepstorff P, Svensson B. Spatio-temporal profiling and degradation of α-amylase isozymes during barley seed germination. FEBS J 2007; 274:2552-65. [PMID: 17437525 DOI: 10.1111/j.1742-4658.2007.05790.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ten genes from two multigene families encode barley alpha-amylases. To gain insight into the occurrence and fate of individual isoforms during seed germination, the alpha-amylase repertoire was mapped by using a proteomics approach consisting of 2D gel electrophoresis, western blotting, and mass spectrometry. Mass spectrometric analysis confirmed that the 29 alpha-amylase positive 2D gel spots contained products of one (GenBank accession gi|113765) and two (gi|4699831 and gi|166985) genes encoding alpha-amylase 1 and 2, respectively, but lacked products from seven other genes. Eleven spots were identified only by immunostaining. Mass spectrometry identified 12 full-length forms and 12 fragments from the cultivar Barke. Products of both alpha-amylase 2 entries co-migrated in five full-length and one fragment spot. The alpha-amylase abundance and the number of fragments increased during germination. Assessing the fragment minimum chain length by peptide mass fingerprinting suggested that alpha-amylase 2 (gi|4699831) initially was cleaved just prior to domain B that protrudes from the (betaalpha)(8)-barrel between beta-strand 3 and alpha-helix 3, followed by cleavage on the C-terminal side of domain B and near the C-terminus. Only two shorter fragments were identified of the other alpha-amylase 2 (gi|166985). The 2D gels of dissected tissues showed alpha-amylase degradation to be confined to endosperm. In contrast, the aleurone layer contained essentially only full-length alpha-amylase forms. While only products of the above three genes appeared by germination also of 15 other barley cultivars, the cultivars had distinct repertoires of charge and molecular mass variant forms. These patterns appeared not to be correlated with malt quality.
Collapse
|
30
|
Chen PW, Chiang CM, Tseng TH, Yu SM. Interaction between rice MYBGA and the gibberellin response element controls tissue-specific sugar sensitivity of alpha-amylase genes. THE PLANT CELL 2006; 18:2326-40. [PMID: 16905658 PMCID: PMC1560908 DOI: 10.1105/tpc.105.038844] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Expression of alpha-amylase genes during cereal grain germination and seedling growth is regulated negatively by sugar in embryos and positively by gibberellin (GA) in endosperm through the sugar response complex (SRC) and the GA response complex (GARC), respectively. We analyzed two alpha-amylase promoters, alphaAmy3 containing only SRC and alphaAmy8 containing overlapped SRC and GARC. alphaAmy3 was sugar-sensitive but GA-nonresponsive in both rice (Oryza sativa) embryos and endosperms, whereas alphaAmy8 was sugar-sensitive in embryos and GA-responsive in endosperms. Mutation of the GA response element (GARE) in the alphaAmy8 promoter impaired its GA response but enhanced sugar sensitivity, and insertion of GARE in the alphaAmy3 promoter rendered it GA-responsive but sugar-insensitive in endosperms. Expression of the GARE-interacting transcription factor MYBGA was induced by GA in endosperms, correlating with the endosperm-specific alphaAmy8 GA response. alphaAmy8 became sugar-sensitive in MYBGA knockout mutant endosperms, suggesting that the MYBGA-GARE interaction overrides the sugar sensitivity of alphaAmy8. In embryos overexpressing MYBGA, alphaAmy8 became sugar-insensitive, indicating that MYBGA affects sugar repression. alpha-Amylase promoters active in endosperms contain GARE, whereas those active in embryos may or may not contain GARE, confirming that the GARE and GA-induced MYBGA interaction prevents sugar feedback repression of endosperm alpha-amylase genes. We demonstrate that the MYBGA-GARE interaction affects sugar feedback control in balanced energy production during seedling growth and provide insight into the control mechanisms of tissue-specific regulation of alpha-amylase expression by sugar and GA signaling interference.
Collapse
Affiliation(s)
- Peng-Wen Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Republic of China
| | | | | | | |
Collapse
|
31
|
Asatsuma S, Sawada C, Kitajima A, Asakura T, Mitsui T. .ALPHA.-Amylase Affects Starch Accumulation in Rice Grains. J Appl Glycosci (1999) 2006. [DOI: 10.5458/jag.53.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
32
|
Asatsuma S, Sawada C, Itoh K, Okito M, Kitajima A, Mitsui T. Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts. PLANT & CELL PHYSIOLOGY 2005; 46:858-69. [PMID: 15821023 DOI: 10.1093/pcp/pci091] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To determine the role of alpha-amylase isoform I-1 in the degradation of starch in rice leaf chloroplasts, we generated a series of transgenic rice plants with suppressed expression or overexpression of alpha-amylase I-1. In the lines with suppressed expression of alpha-amylase I-1 at both the mRNA and protein levels, seed germination and seedling growth were markedly delayed in comparison with those in the wild-type plants. However, the growth retardation was overcome by supplementation of sugars. Interestingly, a significant increase of starch accumulation in the young leaf tissues was observed under a sugar-supplemented condition. In contrast, the starch content of leaves was reduced in the plants overexpressing alpha-amylase I-1. In immunocytochemical analysis with specific anti-alpha-amylase I-1 antiserum, immuno-gold particles deposited in the chloroplasts and extracellular space in young leaf cells. We further examined the expression and targeting of alpha-amylase I-1 fused with the green fluorescent protein in re-differentiated green cells, and showed that the fluorescence of the expressed fusion protein co-localized with the chlorophyll autofluorescence in the transgenic cells. In addition, mature protein species of alpha-amylase I-1 bearing an oligosaccharide side chain were detected in the isolated chloroplasts. Based on these results, we concluded that alpha-amylase I-1 targets the chloroplasts through the endoplasmic reticulum-Golgi system and plays a significant role in the starch degradation in rice leaves.
Collapse
Affiliation(s)
- Satoru Asatsuma
- Laboratories of Plant and Microbial Genome Control, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181 Japan
| | | | | | | | | | | |
Collapse
|
33
|
Polakova KM, Kucera L, Laurie DA, Vaculova K, Ovesna J. Coding region single nucleotide polymorphism in the barley low-pI, alpha-amylase gene Amy32b. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:1499-1504. [PMID: 15809849 DOI: 10.1007/s00122-005-1985-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 02/26/2005] [Indexed: 05/24/2023]
Abstract
Barley alpha-amylase variability influences the quality of barley grain in the brewing, feed and food industries. alpha-Amylase proteins are encoded by multigene families in cereals, and this study focused on the barley Amy32b gene. We identified coding region single nucleotide polymorphism (cSNP) and insertion/deletion variation in DNA sequences, which resulted in amino acid substitution and stop codon formation, respectively. The substitution affected the beta1 strand in domain C, whereas the stop codon removed the beta5 strand. Possible effects of these changes on the protein are discussed. A cSNP in the coding region of the Amy32b gene was used as a specific marker to map Amy32b loci on chromosome 7H.
Collapse
Affiliation(s)
- K Machova Polakova
- Research Institute of Crop Production, Drnovska 507, Prague-Ruzyne, 16106, Czech Republic.
| | | | | | | | | |
Collapse
|
34
|
Jensen LG. Developmental Patterns of Enzymes and Proteins During Mobilization of Endosperm Stores in Germinating Barley Grains. Hereditas 2004. [DOI: 10.1111/j.1601-5223.1994.00053.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Jensen M, Gottschalk T, Svensson B. Differences in conformational stability of barley alpha-amylase isozymes 1 and 2. Role of charged groups and isozyme 2 specific salt-bridges. J Cereal Sci 2003. [DOI: 10.1016/s0733-5210(03)00032-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Furtado A, Henry R, Scott K, Meech S. The promoter of the asi gene directs expression in the maternal tissues of the seed in transgenic barley. PLANT MOLECULAR BIOLOGY 2003; 52:787-799. [PMID: 13677467 DOI: 10.1023/a:1025097218768] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The bifunctional alpha-amylase/subtilisin inhibitor (BASI) is an abundant protein in barley seeds, proposed to play multiple and apparently diverse roles in regulation of starch hydrolysis and in seed defence against pathogens. In the Triticeae, the protein has evolved the ability to specifically inhibit the main group of alpha-amylases expressed during germination of barley and encoded by the amyl gene family found only in the Triticeae. The expression of the asi gene that encodes BASI has been reported to be controlled by the hormones abscisic acid (ABA) and gibberellic acid (GA). Despite many studies at the gene and protein level, the function of this gene in the plant remains unclear. In this study, the 5'-flanking region (1033 bp, 1033-asi promoter) and the 3'-flanking region (655 bp) of the asi gene were isolated and characterised. The 1033-asi promoter sequence showed homology to a number of ciselements that play a role in ABA and GA regulated expression of other genes. With a green fluorescent protein gene (gfp) as reporter, the 1033-asi promoter was studied for spatial, temporal and hormonal control of gene expression. The 1033-asi promoter and its deletions direct transient gfp expression in the pericarp and at low levels in mature aleurone cells, and this expression is not regulated by ABA or GA. In transgenic barley plants, the 1033-asi promoter directed tissue-specific expression of the gfp gene in developing grain and germinating grain but not in roots or leaves. In developing grain, expression of gfp was observed specifically in the pericarp, the vascular tissue, the nucellar projection cells and the endosperm transfer cells and the hormones ABA or GA did not regulate this expression. In mature germinating grain gfp expression was observed in the embryo but not in aleurone or starchy endosperm. However, GA induced gfp expression in the aleurone of mature imbibed seeds from which the embryo had been removed. Expression in maternal rather than endosperm tissues of the grain suggests that earlier widespread assumptions that the protein is expressed largely in the endosperm may have been largely based on analysis of mixed grain tissues. This novel pattern of expression suggests that both activities of the protein may be primarily involved in seed defence in the peripheral tissues of the seed.
Collapse
MESH Headings
- 3' Flanking Region/genetics
- 5' Flanking Region/genetics
- Abscisic Acid/pharmacology
- Base Sequence
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Plant/drug effects
- Germination/genetics
- Gibberellins/pharmacology
- Green Fluorescent Proteins
- Hordeum/genetics
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Molecular Sequence Data
- Plant Growth Regulators/pharmacology
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Seeds/genetics
- Seeds/growth & development
- Seeds/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Trypsin Inhibitor, Kunitz Soybean/genetics
- Trypsin Inhibitor, Kunitz Soybean/metabolism
Collapse
Affiliation(s)
- Agnelo Furtado
- Department of Biochemistry, University of Queensland, St. Lucia, QLD-4072, Australia
| | | | | | | |
Collapse
|
37
|
Gómez-Cadenas A, Zentella R, Sutliff TD, Ho THD. Involvement of multiple cis-elements in the regulation of GA responsive promoters: Definition of a new cis-element in the Amy32b gene promoter of barley (Hordeum vulgare). PHYSIOLOGIA PLANTARUM 2001; 112:211-216. [PMID: 11454226 DOI: 10.1034/j.1399-3054.2001.1120209.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Amy32b gene is a member of the low-pI alpha-amylase gene family of barley, whose expression is tightly regulated by hormones in the aleurone layer. Four cis-elements are known to be important for the GA induction of this gene: GARE, amylase box, pyrimidine box, and O2S. These sequences are located between -101 and -149 relative to the transcription start site. In the present work, we have created a series of Amy32b promoter-GUS reporter constructs introducing mutations in the -79 to -93 region. Using a transient expression system, we have functionally defined an additional region (-81 to -89) essential for the GA activation of the Amy32b promoter. This region is highly conserved among barley, wheat, and wild oat low-pI alpha-amylase promoters. Interestingly, in contrast with the variability in the relative distances among other cis-elements, this region maintains a nearly constant distance to GARE, which suggests that the function of these elements might be coupled. The involvement of this and other sequences in the transactivation of Amy32b by a transcription factor, GAMyb, has also been studied. Our results indicate that the only indispensable element for the GAMyb transactivation of the alpha-amylase promoter is GARE. The present work brings new evidence to the proposed model that considers the GAMyb-GARE interaction as a critical point for the GA induction of alpha-amylase genes, but also strengthens the notion that multiple sequences are required for full regulation of alpha-amylase promoters.
Collapse
Affiliation(s)
- Aurelio Gómez-Cadenas
- Plant Biology Program, Department of Biology, Washington University, St Louis, MO 63130, USA Present address: Department of Experimental Sciences, Universitat Jaume I, E-12071 Castellón, Spain
| | | | | | | |
Collapse
|
38
|
Abstract
A family of CONSTANS LIKE genes (COLs) has recently been identified in Arabidopsis thaliana and other plant species. CONSTANS, the first isolated member, is a putative zinc finger transcription factor that promotes the induction of flowering in A. thaliana in long photoperiods. Phylogenetic analysis of the COL family demonstrated that it is organized into a few distinct groups, some of which evolved before the divergence of gymnosperms and angiosperms. Molecular evolutionary analyses showed that COL genes within the Brassicaceae family evolve rapidly. The number of nonsynonymous substitutions was larger, and the ratio of nonsynonymous to synonymous substitutions was higher. The analysis also indicated that the rate of evolution is heterogeneous between different domains in the COL genes. The results support previous data indicating that plant regulatory genes evolve relatively fast and that the rate of evolution varies significantly between different regions of those genes. The rate of evolution of COL genes seems to have accelerated during later stages of evolution, possibly as an effect of frequent gene duplications.
Collapse
Affiliation(s)
- U Lagercrantz
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | |
Collapse
|
39
|
Wegrzyn T, Reilly K, Cipriani G, Murphy P, Newcomb R, Gardner R, MacRae E. A novel alpha-amylase gene is transiently upregulated during low temperature exposure in apple fruit. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1313-22. [PMID: 10691968 DOI: 10.1046/j.1432-1327.2000.01087.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An alpha-amylase gene product was isolated from apple fruit by reverse-transcriptase PCR using redundant primers, followed by 5' and 3' RACE. The gene is a member of a small gene family. It encodes a putative 46.9 kDa protein that is most similar to an alpha-amylase gene from potato (GenBank accession M79328). In apple fruit this new gene was expressed at low levels, as detected by reverse-transcriptase PCR, in a number of plant tissues and during fruit development. Highest levels of mRNA for this transcript were observed 3 to 9 days after placing apple fruit at 0.5 degrees C. Phylogenetic analysis of amino acid sequence places the potato and apple proteins as a distinct and separate new subgroup within the plant alpha-amylases, which appears to have diverged prior to the split between monocotyledonous and dicotyledonous plants. These two divergent alpha-amylases lack the standard signal peptide structures found in all other plant alpha-amylases, and have sequence differences within the B-domain and C-domain. However, comparisons with structures of known starch hydrolases suggest that these differences are unlikely to affect the enzymatic alpha-1,4-amylase function of the protein. This is the first report of upregulation of a dicotyledonous alpha-amylase in response to low temperature, and confirms the presence of a new family of alpha-amylases in plants.
Collapse
Affiliation(s)
- T Wegrzyn
- The Horticulture and Food Research Institute of New Zealand, Mt. Albert Research Centre, Auckland
| | | | | | | | | | | | | |
Collapse
|
40
|
Rodenburg KW, Vallée F, Juge N, Aghajari N, Guo X, Haser R, Svensson B. Specific inhibition of barley alpha-amylase 2 by barley alpha-amylase/subtilisin inhibitor depends on charge interactions and can be conferred to isozyme 1 by mutation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1019-29. [PMID: 10672010 DOI: 10.1046/j.1432-1327.2000.01094.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
alpha-Amylase 2 (AMY2) and alpha-amylase/subtilisin inhibitor (BASI) from barley bind with Ki = 0.22 nM. AMY2 is a (beta/alpha)8-barrel enzyme and the segment Leu116-Phe143 in domain B (Val89-Ile152), protruding at beta-strand 3 of the (beta/alpha)8-barrel, was shown using isozyme hybrids to be crucial for the specificity of the inhibitor for AMY2. In the AMY2-BASI crystal structure [F. Vallée, A. Kadziola, Y. Bourne, M. Juy, K. W. Rodenburg, B. Svensson & R. Haser (1998) Structure 6, 649-659] Arg128AMY2 forms a hydrogen bond with Ser77BASI, while Asp142AMY2 makes a salt-bridge with Lys140BASI. These two enzyme residues are substituted by glutamine and asparagine, respectively, to assess their contribution in binding of the inhibitor. These mutations were performed in the well-expressed, inhibitor-sensitive hybrid barley alpha-amylase 1 (AMY1)-(1-90)/AMY2-(90-403) with Ki = 0.33 nM, because of poor production of AMY2 in yeast. In addition Arg128, only found in AMY2, was introduced into an AMY1 context by the mutation T129R/K130P in the inhibitor-insensitive hybrid AMY1-(1-161)/AMY2-(161-403). The binding energy was reduced by 2.7-3.0 kcal.mol-1 as determined from Ki after the mutations R128Q and D142N. This corresponds to loss of a charged interaction between the protein molecules. In contrast, sensitivity to the inhibitor was gained (Ki = 7 microM) by the mutation T129R/K130P in the insensitive isozyme hybrid. Charge screening raised Ki 14-20-fold for this latter mutant, AMY2, and the sensitive isozyme hybrid, but only twofold for the R128Q and D142N mutants. Thus electrostatic stabilization was effectively introduced and lost in the different mutant enzyme-inhibitor complexes and rational engineering using an inhibitor recognition motif to confer binding to the inhibitor mimicking the natural AMY2-BASI complex.
Collapse
Affiliation(s)
- K W Rodenburg
- Carlsberg Laboratory, Department of Chemistry, Copenhagen Valby, Denmark
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Appressed pubescence genes in soybean cause hairs on the upper surface of leaves to lie flat, while pubescence remains erect elsewhere on the plant. For decades this trait was believed to be controlled in soybean by duplicated single genes, Pa1 and Pa2. However, reports in the literature conflicted as to which phenotype was dominant or recessive. Two populations were developed, each approximately 100 individuals, and each segregating for one of the appressed pubescence genes. A combination of SSRs (simple sequence repeats) and RFLPs (restriction fragment length polymorphisms) were used in each of these populations to map the independent genes. Two-point analysis weakly linked Pa1 and Pa2 to separate linkage groups. Lack of strong linkage suggested the trait may not be controlled by single genes. When QTL (quantitative trait loci) analysis was performed, one major locus and several minor loci were detected in each population. We report the mapping of the genes controlling appressed pubescence in soybean and their placement in homologous regions. Although appressed pubescence was originally reported to be single duplicate genes, we report that it is actually a more complex phenotype with major duplicated genes and minor modifying genes. These results offer interesting implications regarding the evolution of duplicate genetic factors and the definition of qualitative traits.Key words: homoeologous, Glycine, evolution, appressed pubescence, quantitative genetics.
Collapse
|
42
|
Hwang YS, Thomas BR, Rodriguez RL. Differential expression of rice alpha-amylase genes during seedling development under anoxia. PLANT MOLECULAR BIOLOGY 1999; 40:911-20. [PMID: 10527416 DOI: 10.1023/a:1006241811136] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The unique capability of rice (Oryza sativa L.) seedlings to grow under anoxic conditions may result in part from their ability to express alpha-amylase and maintain the supply of sugar needed for energy metabolism. Previous studies have demonstrated that under aerobic conditions the Amy1 and Amy2 subfamily genes are regulated primarily by phytohormones while the Amy3 subfamily genes are induced during sugar starvation. The expression patterns for these alpha-amylase genes were considerably different in anoxic vs. aerobic rice seedlings. The level of total alpha-amylase mRNA under anoxic conditions was decreased in aleurone layers while it increased in the embryo. Anoxic conditions greatly diminished the expression of the Amy1A gene in aleurone. Conversely, expression of many Amy3 subfamily genes was up-regulated and prolonged in embryo tissues under anoxic conditions.
Collapse
Affiliation(s)
- Y S Hwang
- Section of Molecular and Cellular Biology, University of California, Davis 95616-8535, USA
| | | | | |
Collapse
|
43
|
Jones RA, Jermiin LS, Easteal S, Patel BK, Beacham IR. Amylase and 16S rRNA genes from a hyperthermophilic archaebacterium. J Appl Microbiol 1999; 86:93-107. [PMID: 10030014 DOI: 10.1046/j.1365-2672.1999.00642.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A hyperthermophilic and amylolytic prokaryote, designated Rt3, was isolated from a thermal spring near Rotorua, New Zealand. The 16S rRNA gene of Rt3 was cloned and sequenced with the aim of determining its phylogenetic affiliations. The phylogenetic analysis of this sequence, which included a selection of archaebacterial and eubacterial 16S rRNA sequences, indicates that Rt3 most likely belongs to the archaebacterial order Thermococcales. An amylase gene (amyA) from Rt3, encoding a highly thermostable amylase activity, was cloned and its DNA sequence determined. Transcriptional signals typical of archaebacteria were evident in this sequence. The sequence is homologous to a broad range of enzymes from the AMY superfamily and contains a typical N-terminal signal peptide. Phylogenetic analysis and comparison of structural features with other AMY superfamily enzymes reveals that, firstly, the closest homologues of the Rt3 amylase are members of the Bacillus and Plant alpha-amylase groups; and secondly, that the Rt3 amylase is closely related to only one other currently known archaebacterial enzyme, i.e. an (AMY superfamily) alpha-amylase from Natronococcus.
Collapse
Affiliation(s)
- R A Jones
- School of Biomolecular and Biomedical Science, Griffith University, Nathan, Queensland, Australia
| | | | | | | | | |
Collapse
|
44
|
Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J. Functional dissection of a sugar-repressed alpha-amylase gene (RAmy1 A) promoter in rice embryos. FEBS Lett 1998; 423:81-5. [PMID: 9506846 DOI: 10.1016/s0014-5793(98)00067-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gibberellin-inducible rice alpha-amylase gene, RAmy1 A, was demonstrated to be sugar repressed in rice embryos and functional dissection of the promoter of RAmy1 A in relation of its sugar-modulated expression was performed. Gibberellin-response cis-elements of GARE (TAACAAA) and pyrimidine box (CCTTTT) were partially involved in the sugar repression.
Collapse
Affiliation(s)
- A Morita
- Bioscience Center, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Van Wormhoudt A, Sellos D. Cloning and sequencing analysis of three amylase cDNAs in the shrimp Penaeus vannamei (Crustacea decapoda): evolutionary aspects. J Mol Evol 1996; 42:543-51. [PMID: 8661999 DOI: 10.1007/bf02352284] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In Penaeus vannamei, alpha-amylase is the most important glucosidase and is present as at least two major isoenzymes which have been purified. In order to obtain information on their structure, a hepatopancreas cDNA library constructed in phage lambda-Zap II (Strategene) was screened using a synthetic oligonucleotide based on the amino acid sequence of a V8 staphylococcal protease peptide of P. vannamei alpha-amylase. Three clones were selected: AMY SK 37 (EMBL sequence accession number: X 77318) is the most complete of the analyzed clones and was completely sequenced. It contains the complete cDNA sequence coding for one of the major isoenzymes of shrimp amylase. The deduced amino acid sequence shows the existence of a 511-residue-long pre-enzyme containing a highly hydrophobic signal peptide of 16 amino acids. Northern hybridization of total RNA with the amylase cDNA confirms the size of the messenger at around 1,600 bases. AMY SK 28, which contains the complete mature sequence of amylase, belonged to the same family characterized by a common 3' terminus and presented four amino acid changes. Some other variants of this family were also partially sequenced. AMY SK 20 was found to encode a minor variant of the protein with a different 3' terminus and 57 amino acid changes. Phylogenetic analysis established with the conserved amino acid regions of the (beta/alpha) eight-barrel domain and with the total sequence of P. vannamei showed close evolutionary relationships with mammals (59-63% identity) and with insect alpha-amylase (52-62% identity). The use of conserved sequences increased the level of similarity but it did not alter the ordering of the groupings. Location of the secondary structure elements confirmed the high level of sequence similarity of shrimp alpha-amylase with pig alpha-amylase.
Collapse
Affiliation(s)
- A Van Wormhoudt
- Laboratoire de Biologie Marine du Collège de France, Concarneau, France
| | | |
Collapse
|
46
|
Terashima M, Katoh S, Thomas BR, Rodriguez RL. Characterization of rice alpha-amylase isozymes expressed by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1995; 43:1050-5. [PMID: 8590656 DOI: 10.1007/bf00166924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two rice alpha-amylase isozymes, AmylA and Amy3D, were produced by secretion from genetically engineered strains of Saccharomyces cerevisiae. They have distinct differences in enzymatic characteristics that can be related to the physiology of the germinating rice seed. The rice isozymes were purified with immunoaffinity chromatography. The pH optima for Amy3D (pH optimum 5.5) and Amy1A (pH optimum 4.2) correlate with the pH of the endosperm tissue at the times in rice seedling development when these isozymes are produced. Amy3D showed 10-14 times higher reactivity to oligosaccharides than Amy1A. Amy1A, on the other hand, showed higher reactivity to soluble starch and starch granules than Amy3D. These results suggest that the isozyme Amy3D, which is expressed at an early stage of germination, produces sugars from soluble starch during the early stage of seed germination and that the isozyme Amy1A works to initiate hydrolysis of the starch granules.
Collapse
Affiliation(s)
- M Terashima
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Japan
| | | | | | | |
Collapse
|
47
|
Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 1995; 140:345-56. [PMID: 7635298 PMCID: PMC1206560 DOI: 10.1093/genetics/140.1.345] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Floral homeotic genes that control the specification of meristem and organ identity in developing flowers have been isolated from both Arabidopsis thaliana and Antirrhinum majus. Most of these genes belong to a large family of regulatory genes and possess a characteristic DNA binding domain known as the MADS-box. Members of this gene family display primarily floral-specific expression and are homologous to transcription factors found in several animal and fungal species. Molecular evolutionary analyses reveal that there are appreciable differences in the substitution rates between different domains of these plant MADS-box genes. Phylogenetic analyses also demonstrate that members of the plant MADS-box gene family are organized into several distinct gene groups: the AGAMOUS, APETALA3/PISTILLATA and APETALA1/AGL9 groups. The shared evolutionary history of members of a gene group appear to reflect the distinct functional roles these MADS-box genes play in flower development. Molecular evolutionary analyses also suggest that these different gene groups were established in a relatively short span of evolutionary time and that the various floral homeotic loci originated even before the appearance of the flowering plants.
Collapse
Affiliation(s)
- M D Purugganan
- Department of Biology, University of California at San Diego, La Jolla 92093, USA
| | | | | | | |
Collapse
|
48
|
Hooley R. Gibberellins: perception, transduction and responses. PLANT MOLECULAR BIOLOGY 1994; 26:1529-1555. [PMID: 7858203 DOI: 10.1007/bf00016489] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- R Hooley
- Department of Agricultural Sciences, University of Bristol, Long Ashton, UK
| |
Collapse
|
49
|
Abstract
Anthocyanin pigmentation patterns in different plant species are controlled in part by members of the myc-like R regulatory gene family. We have examined the molecular evolution of this gene family in seven plant species. Three regions of the R protein show sequence conservation between monocot and dicot R genes. These regions encode the basic helix-loop-helix domain, as well as conserved N-terminal and C-terminal domains; mean replacement rates for these conserved regions are 1.02 x 10(-9) nonsynonymous nucleotide substitutions per site per year. More than one-half of the protein, however, is diverging rapidly, with nonsynonymous substitution rates of 4.08 x 10(-9) substitutions per site per year. Detailed analysis of R homologs within the grasses (Poaceae) confirm that these variable regions are indeed evolving faster than the flanking conserved domains. Both nucleotide substitutions and small insertion/deletions contribute to the diversification of the variable regions within these regulatory genes. These results demonstrate that large tracts of sequence in these regulatory loci are evolving at a fairly rapid rate.
Collapse
Affiliation(s)
- M D Purugganan
- Department of Botany, University of Georgia, Athens 30602
| | | |
Collapse
|
50
|
Janecek S. Sequence similarities and evolutionary relationships of microbial, plant and animal alpha-amylases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:519-24. [PMID: 7925367 DOI: 10.1111/j.1432-1033.1994.00519.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Amino acid sequence comparison of 37 alpha-amylases from microbial, plant and animal sources was performed to identify their mutual sequence similarities in addition to the five already described conserved regions. These sequence regions were examined from structure/function and evolutionary perspectives. An unrooted evolutionary tree of alpha-amylases was constructed on a subset of 55 residues from the alignment of sequence similarities along with conserved regions. The most important new information extracted from the tree was as follows: (a) the close evolutionary relationship of Alteromonas haloplanctis alpha-amylase (thermolabile enzyme from an antarctic psychrotroph) with the already known group of homologous alpha-amylases from streptomycetes, Thermomonospora curvata, insects and mammals, and (b) the remarkable 40.1% identity between starch-saccharifying Bacillus subtilis alpha-amylase and the enzyme from the ruminal bacterium Butyrivibrio fibrisolvens, an alpha-amylase with an unusually large polypeptide chain (943 residues in the mature enzyme). Due to a very high degree of similarity, the whole amino acid sequences of three groups of alpha-amylases, namely (a) fungi and yeasts, (b) plants, and (c) A. haloplanctis, streptomycetes, T. curvata, insects and mammals, were aligned independently and their unrooted distance trees were calculated using these alignments. Possible rooting of the trees was also discussed. Based on the knowledge of the location of the five disulfide bonds in the structure of pig pancreatic alpha-amylase, the possible disulfide bridges were established for each of these groups of homologous alpha-amylases.
Collapse
Affiliation(s)
- S Janecek
- Institute of Ecobiology, Slovak Academy of Sciences, Bratislava
| |
Collapse
|