1
|
O'Donnell VB, Murphy RC, Watson SP. Platelet lipidomics: modern day perspective on lipid discovery and characterization in platelets. Circ Res 2014; 114:1185-203. [PMID: 24677238 PMCID: PMC4021279 DOI: 10.1161/circresaha.114.301597] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipids are diverse families of biomolecules that perform essential structural and signaling roles in platelets. Their formation and metabolism are tightly controlled by enzymes and signal transduction pathways, and their dysregulation leads to significant defects in platelet function and disease. Platelet activation is associated with significant changes to membrane lipids, and formation of diverse bioactive lipids plays essential roles in hemostasis. In recent years, new generation mass spectrometry analysis of lipids (termed lipidomics) has begun to alter our understanding of how these molecules participate in key cellular processes. Although the application of lipidomics to platelet biology is still in its infancy, seminal earlier studies have shaped our knowledge of how lipids regulate key aspects of platelet biology, including aggregation, shape change, coagulation, and degranulation, as well as how lipids generated by platelets influence other cells, such as leukocytes and the vascular wall, and thus how they regulate hemostasis, vascular integrity, and inflammation, as well as contribute to pathologies, including arterial/deep vein thrombosis and atherosclerosis. This review will provide a brief historical perspective on the characterization of lipids in platelets, then an overview of the new generation lipidomic approaches, their recent application to platelet biology, and future perspectives for research in this area. The major platelet-regulatory lipid families, their formation, metabolism, and their role in health and disease, will be summarized.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- From the Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (V.B.O'D.); Department of Pharmacology, University of Colorado at Denver, Aurora (R.C.M.); and Birmingham Platelet Group, Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, Birmingham, United Kingdom (S.P.W.)
| | | | | |
Collapse
|
2
|
Abstract
Phosphatidylinositol and its phosphorylated derivatives, phosphoinositides, are minor constituents of phospholipids at the cellular membrane level. Nevertheless, phosphatidylinositol and phosphoinositides represent essential components of intracellular signaling that regulate diverse cellular processes, including platelet plug formation. Accumulating evidence indicates that the metabolism of phosphoinositides is temporally and spatially modulated by the opposing effects of specific phosphoinositide-metabolizing enzymes, including lipid kinases, lipid phosphatases, and phospholipases. Each of these enzymes generates a selective phosphoinositide or second messenger within precise cellular compartments. Intriguingly, phosphoinositide-metabolizing enzymes exist in different isoforms, which all produce the same phosphoinositide products. Recent studies using isoform-specific mouse models and chemical inhibitors have elucidated that the different isoforms of phosphoinositide-metabolizing enzymes have nonredundant functions and provide an additional layer of complexity to the temporo-spatial organization of intracellular signaling events. In this review, we will discuss recent advances in our understanding of phosphoinositide organization during platelet activation.
Collapse
|
3
|
Abstract
Reviewed are new concepts and models of Ca(2+) signalling originating from work with various animal cells, as well as the applicability of these models to the signalling systems used by blood platelets. The following processes and mechanisms are discussed: Ca(2+) oscillations and waves; Ca(2+) -induced Ca(2+) release; involvement of InsP(3)-receptors and quanta1 release of Ca(2+); different pathways of phospholipase C activation; heterogeneity in the intracellular Ca(2+) stores; store-and receptor-regulated Ca(2+) entry. Additionally, some typical aspects of Ca(2+) signalling in platelets are reviewed: involvement of protein serine/threonine and tyrosine kinases in the regulation of signal transduction; possible functions of platelet glycoproteins; and the importance of Ca(2+) for the exocytotic and procoagulant responses.
Collapse
Affiliation(s)
- J W Heemskerk
- Departments of Human Biology/ Biochemistry, University of Limburg, P.O. 616, 6200, MD, Maastricht, The Netherlands
| | | |
Collapse
|
4
|
Sylvester M, Kliche S, Lange S, Geithner S, Klemm C, Schlosser A, Großmann A, Stelzl U, Schraven B, Krause E, Freund C. Adhesion and degranulation promoting adapter protein (ADAP) is a central hub for phosphotyrosine-mediated interactions in T cells. PLoS One 2010; 5:e11708. [PMID: 20661443 PMCID: PMC2908683 DOI: 10.1371/journal.pone.0011708] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 06/08/2010] [Indexed: 01/13/2023] Open
Abstract
TCR stimulation leads to an increase in cellular adhesion among other outcomes. The adhesion and degranulation promoting adapter protein (ADAP) is known to be rapidly phosphorylated after T cell stimulation and relays the TCR signal to adhesion molecules of the integrin family. While three tyrosine phosphorylation sites have been characterized biochemically, the binding capabilities and associated functions of several other potential phosphotyrosine motifs remain unclear. Here, we utilize in vitro phosphorylation and mass spectrometry to map novel phosphotyrosine sites in the C-terminal part of human ADAP (486–783). Individual tyrosines were then mutated to phenylalanine and their relevance for cellular adhesion and migration was tested experimentally. Functionally important tyrosine residues include two sites within the folded hSH3 domains of ADAP and two at the C-terminus. Furthermore, using a peptide pulldown approach in combination with stable isotope labeling in cell culture (SILAC) we identified SLP-76, PLCγ, PIK3R1, Nck, CRK, Gads, and RasGAP as phospho-dependent binding partners of a central YDDV motif of ADAP. The phosphorylation-dependent interaction between ADAP and Nck was confirmed by yeast two-hybrid analysis, immunoprecipitation and binary pulldown experiments, indicating that ADAP directly links integrins to modulators of the cytoskeleton independent of SLP-76.
Collapse
Affiliation(s)
- Marc Sylvester
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Kliche
- Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Sabine Lange
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Sabine Geithner
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Clementine Klemm
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Andreas Schlosser
- Institut für Medizinische Immunologie CCM, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arndt Großmann
- Otto-Warburg-Laboratorium, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Ulrich Stelzl
- Otto-Warburg-Laboratorium, Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | - Burkhart Schraven
- Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Eberhard Krause
- Mass Spectrometry Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christian Freund
- Protein Engineering Group, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
5
|
Boudreaux MK, Catalfamo JL, Klok M. Calcium-diacylglycerol guanine nucleotide exchange factor I gene mutations associated with loss of function in canine platelets. Transl Res 2007; 150:81-92. [PMID: 17656327 DOI: 10.1016/j.trsl.2007.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 03/07/2007] [Accepted: 03/10/2007] [Indexed: 02/02/2023]
Abstract
Calcium-Diacylglycerol Guanine Nucleotide Exchange Factor I (CalDAG-GEFI) has been implicated in platelet aggregation signaling in CalDAG-GEFI knockouts. Functional mutations were identified in the gene encoding for CalDAG-GEFI in 3 dog breeds. Affected dogs experienced epistaxis, gingival bleeding, and petechiation. Platelet number, von Willebrand factor, clot retraction, and coagulation screening assays were normal, whereas bleeding time tests were prolonged. Platelet aggregation and release responses to all agonists, except thrombin, were markedly impaired. Platelet membranes had normal concentrations of integrin alphaIIb-beta3; however, ADP-induced fibrinogen binding by activated platelets was markedly impaired. Forskolin-stimulated platelets exhibited a marked increase in intraplatelet cAMP associated with impaired phosphodiesterase (PDE) activity, whereas levels of extractable phosphoinositides were 1.5-fold to 2-fold higher in thrombin-stimulated affected platelets. DNA analysis of the CalDAG-GEFI gene in affected dogs documented the existence of 3 distinct mutations within portions of the CalDAG-GEFI gene encoding for structurally conserved regions within the catalytic domain of the protein. The mutations are predicted to result in either lack of synthesis, enhanced degradation, or marked impairment of protein function. The dysfunctional profile of canine platelets observed in mutant dogs putatively links CalDAG-GEFI and its target Rap1 or other Ras family member, for the first time, to a role in pathways that regulate cAMP PDE activity and thrombin-stimulated phosphoinositide anchoring or metabolism. The finding of distinct functional mutations in 3 dog breeds suggests that mutations in the CalDAG-GEFI gene may be implicated in similar defects in human patients with congenital platelet disorders having primary secretion defects of unknown etiology.
Collapse
Affiliation(s)
- Mary K Boudreaux
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, USA.
| | | | | |
Collapse
|
6
|
Lova P, Campus F, Lombardi R, Cattaneo M, Sinigaglia F, Balduini C, Torti M. Contribution of protease-activated receptors 1 and 4 and glycoprotein Ib-IX-V in the G(i)-independent activation of platelet Rap1B by thrombin. J Biol Chem 2004; 279:25299-306. [PMID: 15078882 DOI: 10.1074/jbc.m313199200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin activates human platelets through three different membrane receptors, the protease-activated receptors PAR-1 and PAR-4 and the glycoprotein Ib (GPIb)-IX-V complex. We investigated the contribution of these three receptors to thrombin-induced activation of the small GTPase Rap1B. We found that, similarly to thrombin, selective stimulation of either PAR-1 or PAR-4 by specific activating peptides caused accumulation of GTP-bound Rap1B in a dose-dependent manner. By contrast, in PAR-1- and PAR-4-desensitized platelets, thrombin failed to activate Rap1B. Thrombin, PAR-1-, or PAR-4-activating peptides also induced the increase of intracellular Ca(2+) concentration and the release of serotonin in a dose-dependent manner. We found that activation of Rap1B by selected doses of agonists able to elicit comparable intracellular Ca(2+) increase and serotonin release was differently dependent on secreted ADP. In the presence of the ADP scavengers apyrase or phosphocreatine-phosphocreatine kinase, activation of Rap1B induced by stimulation of either PAR-1 or PAR-4 was totally inhibited. By contrast, thrombin-induced activation of Rap1B was only minimally affected by neutralization of secreted ADP. Concomitant stimulation of both PAR-1 and PAR-4 in the presence of ADP scavengers still resulted in a strongly reduced activation of Rap1B. A similar effect was also observed upon blockade of the P2Y12 receptor for ADP, as well as in P2Y12 receptor-deficient human platelets, but not after blockade of the P2Y1 receptor. Activation of Rap1B induced by thrombin was not affected by preincubation of platelets with the anti-GPIbalpha monoclonal antibody AK2 in the absence of ADP scavengers or a P2Y12 antagonist but was totally abolished when secreted ADP was neutralized or after blockade of the P2Y12 receptor. Similarly, cleavage of the extracellular portion of GPIbalpha by the cobra venom mocarhagin totally prevented Rap1B activation induced by thrombin in the presence of apyrase and in P2Y12 receptor-deficient platelets. By contrast, inhibition of MAP kinases or p160ROCK, which have been shown to be activated upon thrombin binding to GPIb-IX-V, did not affect agonist-induced activation of Rap1B in the presence of ADP scavengers. These results indicate that although both PAR-1 and PAR-4 signal Rap1B activation, the ability of thrombin to activate this GTPase independently of secreted ADP involves costimulation of both receptors as well as binding to GPIb-IX-V.
Collapse
Affiliation(s)
- Paolo Lova
- Center of Excellence in Applied Biology, Department of Biochemistry, University of Pavia, via Bassi 21, 27100 Pavia
| | | | | | | | | | | | | |
Collapse
|
7
|
Stouffer GA, Smyth SS. Effects of thrombin on interactions between beta3-integrins and extracellular matrix in platelets and vascular cells. Arterioscler Thromb Vasc Biol 2003; 23:1971-8. [PMID: 12947018 DOI: 10.1161/01.atv.0000093470.51580.0f] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The beta3-integrin family consists of alphaIIbbeta3 (also known as glycoprotein IIb/IIIa) and alpha(v)beta3. alphaIIbbeta3 is found on platelets and megakaryocytes and has an essential role in hemostasis. alpha(v)beta3 has a broader distribution, and it functions in angiogenesis, neointimal formation after vascular injury, and leukocyte trafficking. There are important interactions between thrombin and beta3-integrins relative to both "inside-out" (integrin activation) and "outside-in" (modification of cellular events by ligand binding to integrins) signaling. Thrombin, by binding to G protein-coupled, protease-activated receptors, is a potent activator of alphaIIbbeta3. Conversely, outside-in signaling through alphaIIbbeta3 amplifies events initiated by thrombin and is necessary for full platelet spreading, platelet aggregation, granule secretion, and the formation of a stable platelet thrombus. In smooth muscle cells, alpha(v)beta3-integrins influence various responses to thrombin, including proliferation, c-Jun NH2-terminal kinase-1 activation, and focal adhesion formation. Other interactions between beta3-integrins and thrombin include beta3-integrin promotion of the generation of thrombin by localizing prothrombin to cellular surfaces and/or enhancing the formation of procoagulant microparticles and the requirement of beta3-integrin function for platelet-dependent clot retraction. In summary, there is increasing evidence that interactions between beta3-integrins and thrombin play important roles in the regulation of hemostatic and vascular functions.
Collapse
Affiliation(s)
- G A Stouffer
- Division of Cardiology and Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599-7075, USA.
| | | |
Collapse
|
8
|
Lova P, Paganini S, Hirsch E, Barberis L, Wymann M, Sinigaglia F, Balduini C, Torti M. A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem 2003; 278:131-8. [PMID: 12407113 DOI: 10.1074/jbc.m204821200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTP-binding protein Rap1B is activated in human platelets upon stimulation of a G(i)-dependent signaling pathway. In this work, we found that inhibition of platelet adenylyl cyclase by dideoxyadenosine or SQ22536 did not cause activation of Rap1B and did not restore Rap1B activation in platelets stimulated by cross-linking of Fcgamma receptor IIA (FcgammaRIIA) in the presence of ADP scavengers. Moreover, elevation of the intracellular cAMP concentration did not impair the G(i)-dependent activation of Rap1B. Two unrelated inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002, totally prevented Rap1B activation in platelets stimulated by cross-linking of FcgammaRIIA, by stimulation of the P2Y(12) receptor for ADP, or by epinephrine. However, in platelets from PI3Kgamma-deficient mice, both ADP and epinephrine were still able to normally stimulate Rap1B activation through a PI3K-dependent mechanism, suggesting the involvement of a different isoform of the enzyme. Moreover, the lack of PI3Kgamma did not prevent the ability of epinephrine to potentiate platelet aggregation through a G(i)-dependent pathway. The inhibitory effect of wortmannin on Rap1B activation was overcome by addition of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), but not PtdIns(3,4)P(2), although both lipids were found to support phosphorylation of Akt. Moreover, PtdIns(3,4,5)P(3) was able to relieve the inhibitory effect of apyrase on FcgammaRIIA-mediated platelet aggregation. We conclude that stimulation of a G(i)-dependent signaling pathway causes activation of the small GTPase Rap1B through the action of the PI3K product PtdIns(3,4,5)P(3), but not PtdIns(3,4)P(2), and that this process may contribute to potentiation of platelet aggregation.
Collapse
Affiliation(s)
- Paolo Lova
- Department of Biochemistry, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lova P, Paganini S, Sinigaglia F, Balduini C, Torti M. A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets. J Biol Chem 2002; 277:12009-15. [PMID: 11815620 DOI: 10.1074/jbc.m111803200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of human platelets by cross-linking of the low affinity receptor for immunoglobulin, FcgammaRIIA, caused the rapid activation of the small GTPase Rap1B, as monitored by accumulation of the GTP-bound form of the protein. This process was totally dependent on the action of secreted ADP since it was completely prevented in the presence of either apyrase or creatine phosphate and creatine phosphokinase. Dose-dependent experiments revealed that the inhibitory effect of ADP scavengers was not related to the reduced increase of cytosolic Ca(2+) concentration in stimulated platelets. Activation of Rap1B induced by clustering of FcgammaRIIA was totally suppressed by AR-C69931MX, a specific antagonist of the G(i)-coupled ADP receptor P2Y12, but was not affected by blockade of the G(q)-coupled receptor, P2Y1. Similarly, direct stimulation of platelets with ADP induced the rapid activation of Rap1B. Pharmacological blockade of the P2Y1 receptor totally prevented ADP-induced Ca(2+) mobilization but did not affect activation of Rap1B. By contrast, prevention of ADP binding to the P2Y12 receptor totally suppressed activation of Rap1B without affecting Ca(2+) signaling. In platelets stimulated by cross-linking of FcgammaRIIA, inhibition of Rap1B activation by ADP scavengers could be overcome by the simultaneous recruitment of the G(i)-coupled alpha(2A)-adrenergic receptor by epinephrine. By contrast, serotonin, which binds to a G(q)-coupled receptor, could not restore activation of Rap1B. When tested alone, epinephrine was found to be able to induce GTP binding to Rap1B, whereas serotonin produced only a slight effect. Finally, activation of Rap1B induced by stimulation of the G(q)-coupled thromboxane A(2) receptor by was completely inhibited by ADP scavengers under conditions in which intracellular Ca(2+) mobilization was unaffected. Inhibition of -induced Rap1B activation was also observed upon blockade of the P2Y12 but not of the P2Y1 receptor for ADP. These results demonstrate that stimulation of a G(i)-dependent signaling pathway by either ADP of epinephrine is necessary and sufficient to activate the small GTPase Rap1B.
Collapse
Affiliation(s)
- Paolo Lova
- Department of Biochemistry, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
10
|
Abstract
Because shikimic acid is the key intermediate in the shikimate pathway in plants and microorganisms, shikimic acid and its derivatives have been described as herbicides and anti-microbial agents. Triacetylshikimic acid (TSA) is an acetylate derivative of shikimic acid. The possible anti-platelet activity and anti-thrombotic efficacy of TSA were evaluated and its effect on arachidonic acid (AA) metabolism and second messengers including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) was evaluated. After oral pretreatment with TSA, adenosine diphosphate (ADP)-, collagen-, and AA-induced rat platelet aggregation was inhibited ex vivo in a dose-dependent manner. In an arteriovenous-shunt thrombosis model, oral administration of TSA resulted in a dose-dependent inhibition of thrombus growth. TSA markedly increased the cAMP level and showed no effect on the cGMP level in rat platelets. Also, no significant changes in ADP-induced thromboxane B2 formation in rat platelets or 6-keto-prostaglandin F 1alpha production from the abdominal aorta were observed after oral administration of low and medium doses of TSA (12.5 and 50 mg/kg). Additionally, prothrombin time, activated partial thromboplastin time, and thrombin time were unchanged at effective anti-platelet doses of TSA. These results demonstrate that TSA exerts oral anti-platelet and anti-thrombotic efficacy without perturbation of systemic hemostasis in rats, which was partially concerned with the elevation of cAMP in platelets.
Collapse
Affiliation(s)
- Fengyang Huang
- Pharmacobiology Department, CINVESTAV-I.P.N., Mexico City, Mexico.
| | | | | | | |
Collapse
|
11
|
Tardito D, Maina G, Tura GB, Bogetto F, Pioli R, Ravizza L, Racagni G, Perez J. The cAMP-dependent protein kinase substrate Rap1 in platelets from patients with obsessive compulsive disorder or schizophrenia. Eur Neuropsychopharmacol 2001; 11:221-5. [PMID: 11418282 DOI: 10.1016/s0924-977x(01)00088-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have reported that the cAMP-dependent protein kinase and one of its substrates, namely Rap1, are altered in patients with affective disorders. Abnormalities in the cAMP-dependent protein kinase have also been reported in platelets of patients with obsessive compulsive disorder and schizophrenia. However, it remains to be determined whether abnormalities in Rap1 are specifically related to affective disorders or may also be present in schizophrenia and obsessive compulsive disorder. Thus, we investigated Rap1 in platelets from 12 drug-free patients with obsessive compulsive disorder, ten drug-free patients with schizophrenia, and 20 healthy subjects. While no difference was observed in the levels of Rap1 between groups, the phosphorylation state of Rap1 was significantly lower in patients with obsessive compulsive disorder than in schizophrenic patients and controls. These data further support the idea that abnormalities of cAMP signalling pathway could be associated, albeit in a somewhat different way, with several psychiatric disorders.
Collapse
Affiliation(s)
- D Tardito
- Center of Neuropharmacology, Institute of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chang TS, Lee KS, Lee GY, Jeon SD, So DS, Khil LY, Chung MK, Moon CK. NQ-Y15 inhibits the calcium mobilization by elevation of cyclic AMP in rat platelets. Biol Pharm Bull 2001; 24:480-3. [PMID: 11379764 DOI: 10.1248/bpb.24.480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2-1(4-Cyanophenyl)aminol-3-chloro-1,4-naphthalenedione (NQ-Y15) is a dual action drug which acts as a thromboxane A2 (TXA2) synthase inhibitor and TXA2/PGH2 receptor antagonist. In the present study, we examined the effects of NQ-Y15 on Ca2+ mobilization, which is the common event in various types of platelet activation, in arachidonic acid (AA)-stimulated rat platelets. The elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by AA was inhibited by NQ-Y15 in a concentration-dependent manner. This inhibition-effect of NQ-Y15 was found to be based on the suppression of the rise in [Ca2+]i by the inhibition of both Ca2+ release from internal stores and Ca2+ influx from the extracellular space. Our successive trial was focused on the role of cyclic AMP (cAMP) in the action of NQ-Y15, because cAMP was reported to be increased by dual action drugs such as picotamide and to inhibit the increase in [Ca2+]i. NQ-Y15 was confirmed to increase cAMP in AA-stimulated rat platelets. These results suggested that NQ-Y15 might inhibit the rise in [Ca2+]i in AA-treated rat platelets by increasing cAMP, which is involved in the inhibition of platelet activation.
Collapse
Affiliation(s)
- T S Chang
- College of Pharmacy, Seoul National University, Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Butt E, Immler D, Meyer HE, Kotlyarov A, Laass K, Gaestel M. Heat shock protein 27 is a substrate of cGMP-dependent protein kinase in intact human platelets: phosphorylation-induced actin polymerization caused by HSP27 mutants. J Biol Chem 2001; 276:7108-13. [PMID: 11383510 DOI: 10.1074/jbc.m009234200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of heat shock protein 27 (Hsp27) in human platelets by mitogen-activated protein kinase-activated protein kinase (MAPKAP) 2 is associated with signaling events involved in platelet aggregation and regulation of microfilament organization. We now show that Hsp27 is also phosphorylated by cGMP-dependent protein kinase (cGK), a signaling system important for the inhibition of platelet aggregation. Stimulation of washed platelets with 8-para-chlorophenylthio-cGMP, a cGK specific activator, resulted in a time-dependent phosphorylation of Hsp27. This is supported by the ability of cGK to phosphorylate Hsp27 in vitro to an extent comparable with the cGK-mediated phosphorylation of its established substrate vasodilator-stimulated phosphoprotein. Studies with Hsp27 mutants identified threonine 143 as a yet uncharacterized phosphorylation site in Hsp27 specifically targeted by cGK. To test the hypothesis that cGK could inhibit platelet aggregation by phosphorylating Hsp27 and interfering with the MAPKAP kinase phosphorylation of Hsp27, the known MAPKAP kinase 2-phosphorylation sites (Ser15, Ser78, and Ser82) as well as Thr143 were replaced by negatively charged amino acids, which are considered to mimic phosphate groups, and tested in actin polymerization experiments. Mimicry at the MAPKAP kinase 2 phosphorylation sites led to mutants with a stimulating effect on actin polymerization. Mutation of the cGK-specific site Thr143 alone had no effect on actin polymerization, but in the MAPKAP kinase 2 phosphorylation-mimicking mutant, this mutation reduced the stimulation of actin polymerization significantly. These data suggest that phosphorylation of Hsp27 and Hsp27-dependent regulation of actin microfilaments contribute to the inhibitory effects of cGK on platelet function.
Collapse
Affiliation(s)
- E Butt
- Institute of Clinical Biochemistry and Pathochemistry, Medical University Clinic, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Perez J, Tardito D, Racagni G, Smeraldi E, Zanardi R. Protein kinase A and Rap1 levels in platelets of untreated patients with major depression. Mol Psychiatry 2001; 6:44-9. [PMID: 11244484 DOI: 10.1038/sj.mp.4000795] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have recently reported altered levels of protein kinase A and Rap1 in patients with bipolar disorder. The purpose of the current investigation was to assess the levels of these proteins in platelets from untreated euthymic and depressed patients with major unipolar depression. Platelets were collected from 45 drug-free unipolar patients (13 euthymic and 32 depressed) and 45 healthy subjects. The levels of protein kinase A and Rap1 were assessed by Western blot analysis, immunostaining and computer-assisted imaging. The immunolabeling of the regulatory subunit type II of protein kinase A and that of Rap1 was significantly lower in untreated depressed patients compared with untreated euthymic patients and healthy subjects. No significant differences were found in the immunolabeling of both the regulatory type I and the catalytic subunits of protein kinase A among groups. Levels of the regulatory subunit type II of protein kinase A and Rap1 are altered in platelets of unipolar depressive patients. These findings may provide new insight about the relationship between components of cAMP signaling and affective disorders.
Collapse
Affiliation(s)
- J Perez
- Istituto Scientifico H San Raffaele, Department of Neuropsychiatric Sciences, School of Medicine, University of Milan, Via Stamira d'Ancona 20, 20127 Milan, Italy.
| | | | | | | | | |
Collapse
|
15
|
Su C, Shiao M, Wang C. Potentiation of ganodermic acid S on prostaglandin E(1)-induced cyclic AMP elevation in human platelets. Thromb Res 2000; 99:135-45. [PMID: 10946087 DOI: 10.1016/s0049-3848(00)00250-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ganodermic acid S (GAS), isolated from the Chinese medicinal fungus Ganoderma lucidum (Fr.) Karst (Polyporaceae), exhibits inhibitory effects on platelet responses to various aggregating agonists. Our study demonstrated that GAS also participated in potentiating the response of human gel-filtered platelets to prostaglandin (PG) E(1). GAS at <20 microM did not show any significant change of basal cyclic AMP level in gel-filtered platelets. However, GAS potentiated the PGE(1)-evoked cyclic AMP level in a bell-shaped, concentration-dependent manner. The agent at 7.5 microM enhanced the level up to 1.8-fold of that evoked by PGE(1) alone. Collagen did not inhibit the PGE(1)-induced cyclic AMP level in platelets pretreated with GAS at 6 to 7.5 microM. In the presence of 7.5 microM GAS, the agent enhanced the inhibition of PGE(1) on platelet response to collagen in: phosphorylation of myosin light chain and pleckstrin; alpha-granule secretion; cell aggregation and protein-tyrosine phosphorylation. In addition, the agent along with PGE(1) almost abolished the dense-granule secretion and thromboxane (TX) B(2) formation. The results suggest that GAS played an additional role in potentiating the PGE(1)-induced cyclic AMP synthesis. GAS and PGE(1) inhibited additively the platelet response to collagen.
Collapse
Affiliation(s)
- C Su
- Department of Life Science, National Tsing Hua University, 300, Hsinchu, Taiwan
| | | | | |
Collapse
|
16
|
Watson EL. GTP-binding proteins and regulated exocytosis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:284-306. [PMID: 10759410 DOI: 10.1177/10454411990100030301] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Regulated exocytosis, which occurs in response to stimuli, is a two-step process involving the docking of secretory granules (SGs) at specific sites on the plasma membrane (PM), with subsequent fusion and release of granule contents. This process plays a crucial role in a number of tissues, including exocrine glands, chromaffin cells, platelets, and mast cells. Over the years, our understanding of the proteins involved in vesicular trafficking has increased dramatically. Evidence from genetic, biochemical, immunological, and functional assays supports a role for ras-like monomeric GTP-binding proteins (smgs) as well as heterotrimeric GTP-binding protein (G-protein) subunits in various steps of the vesicular trafficking pathway, including the transport of secretory vesicles to the PM. Data suggest that the function of GTP-binding proteins is likely related to their localization to specific cellular compartments. The presence of both G-proteins and smgs on secretory vesicles/granules implicates a role for these proteins in the final stages of exocytosis. Molecular mechanisms of exocytosis have been postulated, with the identification of a number of proteins that modify, regulate, and interact with GTP-binding proteins, and with the advent of approaches that assess the functional importance of GTP-binding proteins in downstream, exocytotic events. Further, insight into vesicle targeting and fusion has come from the characterization of a SNAP receptor (SNARE) complex composed of vesicle, PM, and soluble membrane trafficking components, and identification of a functional linkage between GTP-binding and SNARES.
Collapse
Affiliation(s)
- E L Watson
- Department of Oral Biology, University of Washington, Health Sciences Center, Seattle 98195-7132, USA
| |
Collapse
|
17
|
Perez J, Tardito D, Mori S, Racagni G, Smeraldi E, Zanardi R. Altered Rap1 endogenous phosphorylation and levels in platelets from patients with bipolar disorder. J Psychiatr Res 2000; 34:99-104. [PMID: 10758250 DOI: 10.1016/s0022-3956(99)00047-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Previous studies have reported abnormalities either in the cAMP-dependent endogenous phosphorylation or in the levels of Rap1 in platelets from bipolar patients. One limitation of these findings was that they come from different groups of patients in independent studies. To overcome this limitation, we designed the present study in which both these biochemicals parameters were assessed in the same cohort of euthymic bipolar patients and healthy subjects. The results showed that the cAMP-dependent phosphorylation of Rap1 was significantly higher in platelets of bipolar patients with respect to healthy subjects. Furthermore, immunoblotting experiments revealed that also the levels of Rap1 were significantly higher in bipolar patients than in control subjects, thus supporting that the abnormal phosphorylation can be ascribed to the increased levels of Rap1. Taken together the results of the present study further support that downstream components of the cAMP signal cascade could be involved in the pathophysiology of bipolar disorders.
Collapse
Affiliation(s)
- J Perez
- Istituto Scientifico HSR, Department of Neuropsychiatric Sciences, School of Medicine, University of Milan, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Perez J, Tardito D, Mori S, Racagni G, Smeraldi E, Zanardi R. Abnormalities of cAMP signaling in affective disorders: implication for pathophysiology and treatment. Bipolar Disord 2000; 2:27-36. [PMID: 11254016 DOI: 10.1034/j.1399-5618.2000.020104.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE During the last decade, much attention has been given to the role of signal transduction pathways in affective disorders. This review describes the possible role of the cAMP signaling in such disorders. METHODS Among the components of cAMP signaling, this review focuses on the cAMP-dependent phosphorylation system. We analyzed the basic components of the cAMP-dependent phosphorylation system and the preclinical evidence supporting their involvement in the biochemical action of antidepressants and mood stabilizers. The clinical data available until now, concerning the possible link between the cAMP-dependent phosphorylation system and the pathophysiology of affective disorders, are also reviewed. RESULTS The studies herein presented demonstrated that the levels and the activity of cAMP-dependent protein kinase are altered by antidepressants and mood stabilizers. Furthermore. these medications are able to modify the phosphorylation state, as well as the levels of some of the cAMP-dependent protein kinase substrates. More recently, clinical studies have reported abnormalities in the cAMP-dependent phosphorylation system in both peripheral cells and the postmortem brain of patients with affective disorders. CONCLUSIONS Overall, these studies support an involvement of cAMP signaling in affective disorders. The precise knowledge of the findings has the potential to improve the understanding of pharmacotherapy and to provide directions for the development of novel biochemical and genetic research strategies on the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- J Perez
- Istituto Scientifico H. San Raffaele, Department of Neuropsychiatric Sciences, School of Medicine, University of Milan, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Torti M, Bertoni A, Canobbio I, Sinigaglia F, Lapetina EG, Balduini C. Interaction of the low-molecular-weight GTP-binding protein rap2 with the platelet cytoskeleton is mediated by direct binding to the actin filaments. J Cell Biochem 1999; 75:675-85. [PMID: 10572250 DOI: 10.1002/(sici)1097-4644(19991215)75:4<675::aid-jcb13>3.0.co;2-m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The interaction of the low-molecular-weight GTP-binding protein rap2 with the cytoskeleton from thrombin-aggregated platelets was investigated by inducing depolymerization of the actin filaments, followed by in vitro-promoted repolymerization. We found that the association of rap2 with the cytoskeleton was spontaneously restored after one cycle of actin depolymerization and repolymerization. Exogenous rap2, but not unrelated proteins, added to depolymerized actin and solubilized actin-binding proteins, was also specifically incorporated into the in vitro reconstituted cytoskeleton. The incorporation of exogenous rap2 was also observed when the cytoskeleton from resting or thrombin-activated platelets was subjected to actin depolymerization-repolymerization. Moreover, such interaction occurred equally well when exogenous rap2 was loaded with either GDP or GTPgammaS. We also found that polyhistidine-tagged rap2 immobilized on Ni(2+)-Sepharose and loaded with either GDP or GTPgammaS, could specifically bind to cytoskeletal actin. Moreover, when purified monomeric actin was induced to polymerize in vitro in the presence of rap2, the small G-protein specifically associated with the actin filaments. Finally, rap2 loaded with either GDP or GTPgammaS was able to bind to purified F-actin immobilized on a plastic surface. These results demonstrate that rap2 interacts with the platelet cytoskeleton by direct binding to the actin filaments and that this interaction is not regulated by the activation state of the protein.
Collapse
Affiliation(s)
- M Torti
- Department of Biochemistry, University of Pavia, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Hodson EA, Ashley CC, Lymn JS. Association of heterotrimeric G-proteins with bovine aortic phospholipase C gamma. Biochem Biophys Res Commun 1999; 258:425-30. [PMID: 10329403 DOI: 10.1006/bbrc.1999.0657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The widely expressed phospholipase C gamma1 (PLCgamma1) isoform has been implicated in the signalling of cell growth through its ability to hydrolyse phosphatidylinositol 4,5-bisphosphate to give inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. Stimulation of PLCgamma1 activity occurs upon phosphorylation of specific tyrosine residues, although it is unclear how this phosphorylation actually stimulates catalytic activity. Indeed recent reports suggest that accessory factors such as GTP-binding proteins may also be required for complete activation of PLCgamma1 in some cells. This may be of importance in vascular smooth muscle where traditionally G-protein linked PLCbeta isoforms are often absent. Here, we show that bovine aortic PLCgamma1 activity is substantially enhanced by both GTPgammaS and sodium fluoride. Similarly, immunoprecipitated PLCgamma1 is associated with an approximately 40kDa GTPgammaS-binding protein and both Galphai and Galphaq were detected in this immunoprecipitate. This data suggests that bovine aortic PLCgamma1 is both associated with, and may be activated by, heterotrimeric G-proteins.
Collapse
Affiliation(s)
- E A Hodson
- Physiology Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | | | | |
Collapse
|
21
|
Torti M, Bertoni A, Canobbio I, Sinigaglia F, Lapetina EG, Balduini C. Rap1B and Rap2B translocation to the cytoskeleton by von Willebrand factor involves FcgammaII receptor-mediated protein tyrosine phosphorylation. J Biol Chem 1999; 274:13690-7. [PMID: 10224142 DOI: 10.1074/jbc.274.19.13690] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of human platelets with von Willebrand factor (vWF) induced the translocation of the small GTPases Rap1B and Rap2B to the cytoskeleton. This effect was specifically prevented by an anti-glycoprotein Ib monoclonal antibody or by the omission of stirring, but was not affected by the peptide RGDS, which antagonizes binding of adhesive proteins to platelet integrins. Association of Rap2B with the cytoskeleton was very rapid, while translocation of Rap1B occurred in a later phase of platelet activation and was totally inhibited by cytochalasin D. vWF also induced the rapid tyrosine phosphorylation of several proteins that was prevented by the tyrosine kinases inhibitor genistein and by cAMP-increasing agents. Under these conditions, also the association of Rap1B and Rap2B with the cytoskeleton was prevented. Translocation of Rap proteins to the cytoskeleton induced by vWF, but not by thrombin, was inhibited by a monoclonal antibody against the FcgammaII receptor. The same antibody inhibited vWF-induced tyrosine phosphorylation of selected substrates with molecular masses of about 75, 95, and 150 kDa. Three of these substrates were identified as the tyrosine kinase pp72(syk), the phospholipase Cgamma2, and the inositol 5-phosphatase SHIP. Our results indicate that translocation of Rap1B and Rap2B to the cytoskeleton is regulated by tyrosine kinases and suggest a novel role for the FcgammaII receptor in the mechanism of platelet activation by vWF.
Collapse
Affiliation(s)
- M Torti
- Department of Biochemistry, University of Pavia, via Bassi 21, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
D'Silva NJ, Jacobson KL, Ott SM, Watson EL. Beta-adrenergic-induced cytosolic redistribution of Rap1 in rat parotid acini: role in secretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1667-73. [PMID: 9611133 DOI: 10.1152/ajpcell.1998.274.6.c1667] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rap1 has recently been identified on the secretory granule membrane and plasma membrane of rat parotid acinar cells (N. J. D'Silva, D. DiJulio, C. B. Belton, K. L. Jacobson, and E. L. Watson. J. Histochem. Cytochem. 45: 965-973, 1997). In the present study, we examined the cellular redistribution of Rap1 following treatment of acini with isoproterenol (ISO), the beta-adrenergic agonist, and determined the relationship between translocation and amylase release. In the presence of ISO, Rap1 translocated to the cytosol in a concentration- and time-dependent manner; this effect was not mimicked by the muscarinic agonist, carbachol. Translocation was maximal at 1 microM ISO and paralleled amylase release immediately after ISO stimulation. Rap1 translocation and amylase release were blocked by the beta-adrenergic antagonist, propranolol, whereas okadaic acid, a downstream secretory inhibitor, significantly blocked amylase release but did not inhibit Rap1 redistribution. Results suggest that the translocation of Rap1 is causally related to secretion and that the role of Rap1 in secretion is at a site proximal to the exocytotic event.
Collapse
Affiliation(s)
- N J D'Silva
- Department of Oral Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
23
|
Lacabaratz-Porret C, Corvazier E, Kovàcs T, Bobe R, Bredoux R, Launay S, Papp B, Enouf J. Platelet sarco/endoplasmic reticulum Ca2+ATPase isoform 3b and Rap 1b: interrelation and regulation in physiopathology. Biochem J 1998; 332 ( Pt 1):173-81. [PMID: 9576865 PMCID: PMC1219465 DOI: 10.1042/bj3320173] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platelet Ca2+ signalling involves intracellular Ca2+ pools, whose content is controlled by sarco/endoplasmic reticulum Ca2+ATPases (SERCAs). Among these, a key role is played by the inositol trisphosphate-sensitive Ca2+ pool, associated with the SERCA 3b isoform. We have investigated the control of this Ca2+ pool through the cAMP-dependent phosphorylation of the GTP-binding protein, Rap (Ras-proximate) 1b. We first looked for this Ca2+ pool target of regulation by studying the expression of the different SERCA and Rap 1 proteins in human platelets and various cell lines, by Western blotting and reverse transcription-PCR. Since co-expression of Rap 1b and SERCA 3b was obtained, we looked for their protein-protein interaction as a function of the cAMP-dependent phosphorylation of Rap 1b. Co-immunoprecipitations of SERCA 3b and Rap 1b proteins were found in the absence of phosphorylation, induced by the catalytic subunit of the cAMP-dependent protein kinase (csPKA). In contrast, upon pre-treatment of platelet membranes with csPKA, the SERCA 3b dissociated from the Rap 1b protein, in agreement with a role of its phosphorylated state in their interaction. Finally, we looked for adaptation of this complex in a platelet pathological model of hypertension. We investigated the expression of both proteins, as well as the cAMP-dependent phosphorylation of Rap 1b and SERCA 3b activity in platelets from control normotensive Wistar-Kyoto rats and from spontaneously hypertensive rats (SHRs). A decrease in SERCA 3b activity was associated with a decrease in Rap 1b endogenous phosphorylation in SHR platelets, consistent with a functional role in the regulation of the SERCA 3b-associated Ca2+ pool.
Collapse
Affiliation(s)
- C Lacabaratz-Porret
- Institut National de la Santé et de la Recherche Médicale U 348, IFR Circulation Lariboisière, Hôpital Lariboisière, 8 rue Guy Patin, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Schmitz U, Ishida M, Berk BC. Angiotensin II stimulates tyrosine phosphorylation of phospholipase C-gamma-associated proteins. Characterization of a c-Src-dependent 97-kD protein in vascular smooth muscle cells. Circ Res 1997; 81:550-7. [PMID: 9314836 DOI: 10.1161/01.res.81.4.550] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stimulation of phospholipase C-gamma (PLC-gamma) is a critical event in angiotensin II (Ang II) signal transduction. We have previously shown that in rat aortic smooth muscle (RASM) cells Ang II stimulates tyrosine phosphorylation of PLC-gamma via activation of c-Src. Because we failed to demonstrate a direct association between c-Src and PLC-gamma, we hypothesized that a linker protein mediates the interaction between these molecules. To identify PLC-gamma-associated proteins, RASM cells were labeled with [32P]orthophosphate and stimulated with 100 nmol/L Ang II for 5 minutes. PLC-gamma was immunoprecipitated, and associated proteins were characterized by autoradiography and Western blotting with anti-phosphotyrosine antibodies. Ang II stimulated the phosphorylation of 47-, 60-, 84-, and 97-kD PLC-gamma-associated proteins. Because Ang II increased tyrosine phosphorylation of only the 97-kD protein, we characterized p97 further. An important role for Src in tyrosine phosphorylation of p97 was suggested by findings that p97 phosphorylation was inhibited by the selective Src-family kinase inhibitor CP-118,556, diminished in mouse aortic smooth muscle (MASM) cells from c-Src knockout mice compared with wild-type MASM cells, and increased in v-Src-transformed NIH-3T3 cells compared with wild-type NIH-3T3 cells. These studies are the first to define a PLC-gamma-associated protein that may be required for Ang II-mediated signal transduction.
Collapse
Affiliation(s)
- U Schmitz
- Department of Medicine, University of Washington, Seattle 98195-7710, USA
| | | | | |
Collapse
|
25
|
D'Silva NJ, DiJulio DH, Belton CM, Jacobson KL, Watson EL. Immunolocalization of rap1 in the rat parotid gland: detection on secretory granule membranes. J Histochem Cytochem 1997; 45:965-73. [PMID: 9212822 DOI: 10.1177/002215549704500706] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to localize rap1 in the rat parotid gland. Rap1 is a small GTP-binding protein that has been linked to phagocytosis in neutrophils and various functions in platelets. In this study, we used [alpha-32P]-GTP-blot overlay analysis, immunoblot analysis, and immunohistochemistry to identify rap1 in rat parotid gland. The immunohistochemical techniques included immunoperoxidase and widefield microscopy with image deconvolution. Rap1 was identified in the secretory granule membrane (SGM), plasma membrane (PM), and cytosolic (CY) fractions, with the largest signal being in the SGM fraction. The tightly bound vs loosely adherent nature of SGM-associated rap1 was determined using sodium carbonate, and its orientation on whole granules was assessed by trypsin digestion. Rap1 was found to be a tightly bound protein rather than a loosely adherent contaminant protein of the SGM. Its orientation on the cytosolic face of the secretory granule (SG) is of significance in postulating a function for rap1 because exocytosis involves the fusion of the cytoplasmic face of the SG with the cytoplasmic face of the PM, with subsequent release of granule contents (CO). Therefore, the localization and high concentration of rap1 on the SGM and its cytosolic orientation suggest that it may play a role in the regulation of secretion.
Collapse
Affiliation(s)
- N J D'Silva
- Department of Oral Biology, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
26
|
Shock DD, He K, Wencel-Drake JD, Parise LV. Ras activation in platelets after stimulation of the thrombin receptor, thromboxane A2 receptor or protein kinase C. Biochem J 1997; 321 ( Pt 2):525-30. [PMID: 9020890 PMCID: PMC1218100 DOI: 10.1042/bj3210525] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Several reports have indicated that the small G-protein Ras is not present immunologically in platelets. However, here we report the identification of Ras in platelets by immunoprecipitation with the Ras-specific monoclonal antibodies Y13-259 or Y13-238, followed by Western blotting. The presence of Ras was not due to contamination of samples with erythrocytes or leucocytes. Immunofluorescence studies indicated that Ras was present in a peripheral rim pattern in fixed, permeabilized platelets, suggesting an intracellular, plasma membrane location. Activation of platelets with the thrombin receptor peptide42-50, the prostaglandin H2/thromboxane A2 mimetic U46619 or phorbol 12-myristate 13-acetate induced a rapid increase in GTP-bound, activated Ras. In each case, this increase was inhibited by the protein kinase C (PKC) inhibitor bisindolylmaleimide GF 109203X, suggesting that Ras is activated downstream of PKC in platelets. Thus the activation of Ras in platelets by agonists will now allow consideration of multiple potential Ras-dependent signal transduction pathways in platelet activation processes.
Collapse
Affiliation(s)
- D D Shock
- Department of Pharmacology, University of North Carolina at Chapel Hill 27599-7365, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Rap1 is a small, Ras-like GTPase whose function and regulation are still largely unknown. We have developed a novel assay to monitor the active, GTP-bound form of Rap1 based on the differential affinity of Rap1GTP and Rap1GDP for the Rap binding domain of RalGDS (RBD). Stimulation of blood platelets with alpha-thrombin or other platelet activators caused a rapid and strong induction of Rap1 that associated with RBD in vitro. Binding to RBD increased from undetectable levels in resting platelets to >50% of total Rap1 within 30 s after stimulation. An increase in the intracellular Ca2+ concentration is both necessary and sufficient for Rap1 activation since it was induced by agents that increase intracellular Ca2+ and inhibited by a Ca2+-chelating agent. Neither inhibition of translocation of Rap1 to the cytoskeleton nor inhibition of platelet aggregation affected thrombin-induced activation of Rap1. In contrast, prostaglandin I2 (PGI2), a strong negative regulator of platelet function, inhibited agonist-induced as well as Ca2+-induced activation of Rap1. From our results, we conclude that Rap1 activation in platelets is an important common event in early agonist-induced signalling, and that this activation is mediated by an increased intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- B Franke
- Laboratory for Physiological Chemistry, Utrecht University, The Netherlands
| | | | | |
Collapse
|
28
|
Heemskerk JW, Farndale RW, Sage SO. Effects of U73122 and U73343 on human platelet calcium signalling and protein tyrosine phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1355:81-8. [PMID: 9030204 DOI: 10.1016/s0167-4889(96)00113-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the actions of the PLC inhibitor, U73122, and its close analogue, U73343, which does not inhibit PLC, in Fura-2-loaded human platelets. Rises in [Ca2+]i evoked by thrombin and collagen, and the TxA2-dependent rise in [Ca2+]i evoked by thapsigargin, were abolished by U73122, indicating that it inhibits the activity of both beta and gamma isoforms of PLC. The supposed control compound U73343, was found to inhibit TxA2 formation; it therefore partially inhibited the rise in [Ca2+]i evoked by low concentrations of thrombin, by thapsigargin or by collagen. U73343 had a greater effect than aspirin on the action of collagen, indicating an action on the TxA2-independent component of the signal, via PLC gamma-U73343 lowered TxA2 production by inhibiting the activation of cPLA2, probably at a tyrosine phosphorylation step. U73343 seems to inhibit only the tyrosine kinases involved in the activation of PLC gamma and the generation of TxA2. In contrast, U73122 increased tyrosine phosphorylation of platelet proteins, perhaps by inhibiting receptor independent tyrosine phosphatases, but inhibited all further tyrosine phosphorylation on addition of thrombin or other agonists.
Collapse
Affiliation(s)
- J W Heemskerk
- Department of Human Biology and Biochemistry, University of Limburg, Maastricht, The Netherlands
| | | | | |
Collapse
|
29
|
Signal Transduction by Cyclic Nucleotide-Dependent Protein Kinases in Platelets. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
G Proteins and the Early Events of Platelet Activation. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
The Platelet Integrin, GP IIb-IIIa (αIIbß3). ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Grönroos E, Andersson T, Schippert A, Zheng L, Sjölander A. Leukotriene D4-induced mobilization of intracellular Ca2+ in epithelial cells is critically dependent on activation of the small GTP-binding protein Rho. Biochem J 1996; 316 ( Pt 1):239-45. [PMID: 8645211 PMCID: PMC1217328 DOI: 10.1042/bj3160239] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have previously shown that the leukotriene D4 (LTD4)-induced mobilization of intracellular Ca2+ in epithelial cells is mediated by a G-protein that is distinctly different from the pertussis toxin-sensitive G-protein that regulates the subsequent influx of Ca2+. In the present study, we attempted to gain further knowledge about the mechanisms involved in the LTD4-induced mobilization of intracellular Ca2+ in epithelial cells by investigating the effects of compactin, an inhibitor of the isoprenylation pathway, on this signalling event. In cells preincubated with 10 microM compactin for 48 h, the LTD4-induced mobilization of intracellular Ca2+ was reduced by 75% in comparison with control cells. This reduction was reversed by co-administration of mevalonate (1 mM). The effect of compactin occurred regardless of whether or not Ca2+ was present in the extracellular medium, suggesting that isoprenylation must occur before Ca2+ is released from intracellular stores. In accordance with this, we also found that both the LTD4-induced formation of inositol 1,4,5-trisphosphate and the LTD4-induced phosphorylation of phospholipase C gamma 1 (PLC gamma 1) on tyrosine residues were significantly reduced in compactin-pretreated cells. These results open up the possibility that the activation of PLC gamma 1 is related to a molecule that is sensitive to impaired activity of the isoprenylation pathway, such as a small monomeric G-protein. This idea was supported by the observation that Clostridium botulinum C3 exoenzyme-induced inhibition of Rho proteins abolished the LTD4-induced intracellular mobilization of Ca2+. A regulatory role of Rho proteins in the LTD4-induced activation of PLC gamma 1 is unlikely to be indirectly mediated via an effect on the cytoskeleton, since cytochalasin D had no major effect on the LTD4-induced mobilization of Ca2+. Although the mechanism of interaction remains to be elucidated, the present findings indicate an important role of an isoprenylated protein such as Rho in the LTD4-induced Ca2+ signal.
Collapse
Affiliation(s)
- E Grönroos
- Department of Cell Biology, Faculty of Health Sciences, Linköping University, Sweden
| | | | | | | | | |
Collapse
|
33
|
Magnier C, Corvazier E, Aumont MC, Le Jemtel TH, Enouf J. Relationship between Rap1 protein phosphorylation and regulation of Ca2+ transport in platelets: a new approach. Biochem J 1995; 310 ( Pt 2):469-75. [PMID: 7654184 PMCID: PMC1135919 DOI: 10.1042/bj3100469] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although the interrelationship between the two messengers Ca2+ and cyclic AMP in platelet function is well documented, its mechanism of action still remains to be established. We investigated here the question of the regulation of platelet Ca(2+)-ATPases by cyclic AMP through the phosphorylation of the Rap1 protein using a pathological model. We first found experimental conditions where Ca(2+)-transport by platelet membrane vesicles appeared to be dependent on the phosphorylation of the Rap1 protein. Then, we studied platelets of patients with congestive heart failure for their expression of the potential 97 kDa Ca(2+)-ATPase target of regulation through the Rap1 protein as well as the phosphorylation of the Rap1 protein using the catalytic subunit of the cyclic AMP-dependent protein kinase (C. Sub.). In the first patients studied, we found no significant modification in the expression of the 97 kDa Ca(2+)-ATPase by Western blotting using the PL/IM 430 monoclonal antibody which specifically recognized this isoform. In contrast, the Rap1 protein was differentially phosphorylated when using 15 micrograms/ml of the C. Sub. These results allowed us to use these pathological platelets to study the relationship between the expression of Rap1 protein and the regulation of Ca2+ transport by selecting a patient with severe heart failure. We could show a decrease in the expression as well as in the phosphorylation of Rap1 protein and demonstrate a lower effect of C. Sub. on Ca2+ transport. Finally, by studying a further series of patients, we could confirm that the decrease in Rap1 protein expression in heart failure, whatever its extent, was variable, and could strictly correlate the expression of Rap1 protein with the stimulatory effect of C. Sub. on Ca2+ transport. Besides the evidence for regulation of the expression of the Rap1 protein in platelets from patients with heart failure, these findings constitute a new approach in favour of the regulation of platelet Ca2+ transport through the phosphorylation of the Rap1 protein.
Collapse
Affiliation(s)
- C Magnier
- U 348 INSERM, Hôpital Lariboisière, Paris, France
| | | | | | | | | |
Collapse
|
34
|
Nagata K, Nozawa Y. A low M(r) GTP-binding protein, Rap1, in human platelets: localization, translocation and phosphorylation by cyclic AMP-dependent protein kinase. Br J Haematol 1995; 90:180-6. [PMID: 7786783 DOI: 10.1111/j.1365-2141.1995.tb03398.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Subcellular fractions were prepared from human platelet membranes by sucrose density gradient centrifugation and the localization of a low M(r) GTP-binding protein, rap1 protein (Rap1) was analysed by immunoblotting using a specific antibody. Rap1, which has been purified from human platelets, was found to be located in plasma membrane and alpha-granule fractions in resting platelets. Treatment of isolated alpha-granules with pronase led to proteolysis of Rap1, indicating that this protein is exposed to the cytoplasmic face of the granules. Degranulation of alpha-granules consists of translocation and subsequent fusion of the granules with the open canalicular system. Activation of this process by thrombin induced the redistribution of Rap1 on the alpha-granules to plasma membranes. On the other hand, Rap1 is known to be phosphorylated by cyclic AMP-dependent protein kinase (A-kinase) in vitro and in vivo. In intact human platelets, phosphorylation of Rap1 by A-kinase in response to prostaglandin E1 (PGE1) was observed only in Rap1 localized in plasma membranes and not on alpha-granules, although Rap1 was phosphorylated in a cell-free system when plasma membranes and alpha-granule membranes were exposed to A-kinase as substrates. These results strongly suggest that Rap1 in plasma membranes and the protein on alpha-granules are regulated by different mechanisms, and have different functions.
Collapse
Affiliation(s)
- K Nagata
- Department of Biochemistry, Gifu University School of Medicine, Japan
| | | |
Collapse
|
35
|
Torti M, Ramaschi G, Sinigaglia F, Balduini C. Dual mechanism of protein-tyrosine phosphorylation in concanavalin A-stimulated platelets. J Cell Biochem 1995; 57:30-8. [PMID: 7721957 DOI: 10.1002/jcb.240570105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Treatment of human platelets with the lectin Concanavalin A (Con A) resulted in the tyrosine phosphorylation of several proteins with molecular masses 65, 80, 85, 95, 120, 135, and 150 kDa. These proteins were divided in two groups: the first group included the 65-, 85-, 95-, and 120-kDa bands, which were tyrosine phosphorylated also in thrombin-stimulated platelets; the second group (80-, 135-, and 150-kDa bands) included proteins whose tyrosine phosphorylation was exclusively promoted by Con A, but not by thrombin. Members of the second group were rapidly dephosphorylated when the lectin was displaced from the cell surface by methyl alpha-D-mannopyranoside. Pretreatment of intact platelets with the prostacyclin analog iloprost, inhibited Con A-induced tyrosine phosphorylation of the first group of proteins, but had no effect on the tyrosine phosphorylation of the proteins of the second group. Succinyl-Con A, a dimeric derivative of the lectin, which binds to the platelet surface but does not promote clustering of the receptor, did not induce tyrosine phosphorylation of the second group of proteins, although phosphorylation of some members of the first group was observed. Our results demonstrate the presence of two different mechanisms leading to protein-tyrosine phosphorylation in Con A-stimulated platelets, and identify a new signal transduction pathway, promoted by the clustering of membrane glycoproteins, that produces tyrosine phosphorylation of specific substrates. This new pathway may be activated by platelet interaction with multivalent ligands, such as adhesive proteins, during adhesion, spreading, and aggregation.
Collapse
Affiliation(s)
- M Torti
- Department of Biochemistry, Faculty of Science, University of Pavia, Italy
| | | | | | | |
Collapse
|
36
|
Blake RA, Schieven GL, Watson SP. Collagen stimulates tyrosine phosphorylation of phospholipase C-gamma 2 but not phospholipase C-gamma 1 in human platelets. FEBS Lett 1994; 353:212-6. [PMID: 7523195 DOI: 10.1016/0014-5793(94)01037-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Collagen is an important primary stimulus of platelets during the process of hemostasis. As with many other platelet stimuli, collagen signal transduction involves the hydrolysis of inositol phospholipids; however, the mechanisms which underlies this event is not well understood. Neither the collagen receptor nor the isoform of phospholipase C that is activated have been identified. We report that collagen-activation of platelets induces tyrosine phosphorylation of phospholipase C-gamma 2 but not phospholipase C-gamma 1. We also show that the platelet low affinity Fc receptor (Fc gamma RII), which mediates activation of platelets by immune complexes, and wheat germ agglutinin, which binds non-specifically to glycoprotein, stimulate phospholipase C-gamma 2 tyrosine phosphorylation. In contrast, we could not detect phospholipase C-gamma 2 tyrosine phosphorylation in platelets stimulated by either thrombin or a stable thromboxane A2 analogue, U46619.
Collapse
Affiliation(s)
- R A Blake
- Department of Pharmacology, Oxford, UK
| | | | | |
Collapse
|
37
|
Berger G, Quarck R, Tenza D, Levy-Toledano S, de Gunzburg J, Cramer EM. Ultrastructural localization of the small GTP-binding protein Rap1 in human platelets and megakaryocytes. Br J Haematol 1994; 88:372-82. [PMID: 7803284 DOI: 10.1111/j.1365-2141.1994.tb05033.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several functions have been proposed for Rap1B in human platelets, including the regulation of phospholipase (PL) C gamma and Ca2+ ATPase. However, its localization is largely unknown. In the present study we have investigated the subcellular distribution of Rap1 by immunocytochemical techniques using affinity purified polyclonal antibodies raised against residues 121-137 common to the 95% homologous Rap1A and Rap1B proteins. By immunofluorescence, a positive labelling was obtained on intact resting platelets and was abolished after adsorption of the antibodies with the control peptide. Immunoelectron microscopy was then used to further define the subcellular localization of Rap1B in platelets and megakaryocytes (MK). In resting cells, immunolabelling for Rap1B was associated with the plasma membrane, mostly at its inner face, and lined the membrane of the open canalicular system (OCS). Some labelling was also found outlining the alpha-granules, identified as such by a double labelling with an anti-GPIIb-IIIa. On thrombasthenic platelets the same localization was observed. When platelets were stimulated by thrombin, immunolabelling for Rap1B was redistributed to the zones of fusion of the granules with the OCS, and to the plasma membrane with a higher concentration on pseudopods. Human MK expressed Rap1 and the staining revealed the association of the protein with the demarcation membranes and alpha-granules. This study presents a first approach to the localization of a small GTP binding-protein Rap1B in whole platelets and MK, and shows its association with both the plasma and OCS membranes, as well as with the alpha-granule membranes.
Collapse
Affiliation(s)
- G Berger
- ISERM U.348, Hôpital Lariboisière, Faculté de Médecine Lariboisière-Saint Louis, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Korc M, Friess H, Yamanaka Y, Kobrin MS, Buchler M, Beger HG. Chronic pancreatitis is associated with increased concentrations of epidermal growth factor receptor, transforming growth factor alpha, and phospholipase C gamma. Gut 1994; 35:1468-73. [PMID: 7959207 PMCID: PMC1375027 DOI: 10.1136/gut.35.10.1468] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The epidermal growth factor (EGF) receptor is a transmembrane protein that binds EGF and transforming growth factor alpha (TGF alpha), and that stimulates phospholipase C gamma 1 (PLC gamma 1) activity. In this study the role of the EGF receptor in chronic pancreatitis was studied. By immunohistochemistry, the EGF receptor, TGF alpha, and PLC gamma 1 were found to be expressed at high concentrations in pancreatic ductal and acinar cells from chronic pancreatitis patients. Northern blot analysis showed that, by comparison with normal controls, 19 of 27 chronic pancreatitis tissues exhibited a 5.7-fold increase in EGF receptor mRNA concentrations, and 20 of 27 chronic pancreatitis tissues exhibited a sixfold increase in TGF alpha mRNA concentrations. In situ hybridisation confirmed that overexpression occurred in ductal and acinar cells, and showed that both mRNA moieties colocalised with their respective proteins. These findings suggest that TGF alpha may act through autocrine and paracrine mechanisms to excessively activate the overexpressed EGF receptor in the two major cell types of the exocrine pancreas, thereby contributing to the pathobiology of this disorder.
Collapse
Affiliation(s)
- M Korc
- Department of Medicine, University of California, Irvine 92717
| | | | | | | | | | | |
Collapse
|
39
|
A protein that is highly related to GTPase-activating protein-associated p62 complexes with phospholipase C gamma. Mol Cell Biol 1994. [PMID: 7518563 DOI: 10.1128/mcb.14.8.5466] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p62 is a highly tyrosyl phosphorylated protein that was first identified in immunoprecipitates of the GTPase-activating protein (GAP) of p21ras from cells transformed by oncogenic nonreceptor tyrosine kinases or stimulated through tyrosine kinase receptors (C. Ellis, M. Moran, F. McCormick, and T. Pawson, Nature 343:377-381, 1991). In this article we describe a highly related 62-kDa protein that becomes tyrosyl phosphorylated and associated with phospholipase C gamma (PLC gamma) in C3H10T1/2 cells stimulated with epidermal growth factor (EGF) or transformed by v-src. GAP-associated and PLC gamma-associated p62 comigrated in one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and exhibited nearly identical phosphotryptic peptide patterns. That the association of p62 with PLC gamma was direct and not mediated through binding of GAP-p62 to PLC gamma or to the EGF receptor (and coprecipitation of the receptor with PLC gamma) was demonstrated by (i) the inability to detect GAP in PLC gamma immunocomplexes or PLC gamma in GAP immunocomplexes, (ii) the association of p62 with PLC gamma in v-src-transformed cells in the absence of EGF stimulation, and (iii) in vitro solution binding and direct blotting of p62 with a glutathione S-transferase fusion protein containing the Src homology 2 (SH2) domains of PLC gamma. Unlike GAP, whose N-terminal SH2 mediates the interaction between GAP and p62, PLC gamma was found to require both its N- and C-terminal SH2 regions for p62 binding. These studies demonstrate that a protein identical to or highly related to GAP-associated p62 binds PLC gamma and suggest a means by which "cross-talk" between PLC gamma- and GAP-mediated signalling may occur.
Collapse
|
40
|
Maa MC, Leu TH, Trandel BJ, Chang JH, Parsons SJ. A protein that is highly related to GTPase-activating protein-associated p62 complexes with phospholipase C gamma. Mol Cell Biol 1994; 14:5466-73. [PMID: 7518563 PMCID: PMC359066 DOI: 10.1128/mcb.14.8.5466-5473.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
p62 is a highly tyrosyl phosphorylated protein that was first identified in immunoprecipitates of the GTPase-activating protein (GAP) of p21ras from cells transformed by oncogenic nonreceptor tyrosine kinases or stimulated through tyrosine kinase receptors (C. Ellis, M. Moran, F. McCormick, and T. Pawson, Nature 343:377-381, 1991). In this article we describe a highly related 62-kDa protein that becomes tyrosyl phosphorylated and associated with phospholipase C gamma (PLC gamma) in C3H10T1/2 cells stimulated with epidermal growth factor (EGF) or transformed by v-src. GAP-associated and PLC gamma-associated p62 comigrated in one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and exhibited nearly identical phosphotryptic peptide patterns. That the association of p62 with PLC gamma was direct and not mediated through binding of GAP-p62 to PLC gamma or to the EGF receptor (and coprecipitation of the receptor with PLC gamma) was demonstrated by (i) the inability to detect GAP in PLC gamma immunocomplexes or PLC gamma in GAP immunocomplexes, (ii) the association of p62 with PLC gamma in v-src-transformed cells in the absence of EGF stimulation, and (iii) in vitro solution binding and direct blotting of p62 with a glutathione S-transferase fusion protein containing the Src homology 2 (SH2) domains of PLC gamma. Unlike GAP, whose N-terminal SH2 mediates the interaction between GAP and p62, PLC gamma was found to require both its N- and C-terminal SH2 regions for p62 binding. These studies demonstrate that a protein identical to or highly related to GAP-associated p62 binds PLC gamma and suggest a means by which "cross-talk" between PLC gamma- and GAP-mediated signalling may occur.
Collapse
Affiliation(s)
- M C Maa
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | | | | | |
Collapse
|
41
|
Torti M, Ramaschi G, Sinigaglia F, Lapetina EG, Balduini C. Glycoprotein IIb-IIIa and the translocation of Rap2B to the platelet cytoskeleton. Proc Natl Acad Sci U S A 1994; 91:4239-43. [PMID: 8183895 PMCID: PMC43760 DOI: 10.1073/pnas.91.10.4239] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The stimulation of human platelets with physiological agonists results in the incorporation of several proteins into the cytoskeleton, fibrinogen binding, and platelet aggregation. We recently demonstrated that the Ras-related low molecular weight GTP-binding protein Rap2B associates with the cytoskeleton in activated platelets and that this interaction requires platelet aggregation. In the present study we demonstrate that agonist-induced actin polymerization is necessary for the translocation of Rap2B to the cytoskeleton, suggesting that Rap2B interacts with the newly formed actin filaments. Moreover, the association of Rap2B with Triton X-100-insoluble material from platelets was totally blocked by treatment of intact platelets with monoclonal antibodies against the fibrinogen receptor glycoprotein IIb-IIIa. Platelets from patients affected by Glanzmann thrombastenia, a genetic disorder in which platelet plasma membranes lack glycoprotein IIb-IIIa but possess normal levels of Ras-related proteins, failed to incorporate Rap2B into the cytoskeleton upon activation by thrombin. Comparative immunoblotting revealed that the translocation of Rap2B to the cytoskeleton during platelet aggregation was accompanied by the simultaneous translocation of glycoprotein IIb-IIIa. Moreover, the cytoskeleton from aggregated platelets contained Rap2B and glycoprotein IIb-IIIa in comparable amounts. These results demonstrate the association of Rap2B and glycoprotein IIb-IIIa and their translocation to the cytoskeleton in aggregated human platelets.
Collapse
Affiliation(s)
- M Torti
- Department of Biochemistry, University of Pavia, Italy
| | | | | | | | | |
Collapse
|
42
|
Peterson SN, Lapetina EG. Platelet activation and inhibition. Novel signal transduction mechanisms. Ann N Y Acad Sci 1994; 714:53-63. [PMID: 7517117 DOI: 10.1111/j.1749-6632.1994.tb12030.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- S N Peterson
- Division of Cell Biology, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
43
|
Enouf J, Corvazier E, Papp B, Quarck R, Magnier C, Kovàcs T, Bredoux R, Lévy-Tolédano S, de Gunzburg J, Wuytack F. Abnormal cAMP-induced phosphorylation of rap 1 protein in grey platelet syndrome platelets. Br J Haematol 1994; 86:338-46. [PMID: 8199024 DOI: 10.1111/j.1365-2141.1994.tb04736.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We previously demonstrated abnormal Ca2+ transport by microsomes in platelets from a grey platelet syndrome patient. Here, we investigated the platelet Ca2+ ATPases that mediate this transport, as well as its possible regulation by rap 1 protein. We showed that grey platelet syndrome platelets expressed the same two distinct Ca2+ ATPases as those recently described in normal platelets; the 100 kD SERCA2-b isoform (Sarco/Endoplasmic Reticulum Ca2+ATPase) and a new 97 kD SERCA isoform. The two Ca2+ATPases formed similar amounts of transient phosphorylated intermediates. The expression of these two Ca2+ATPases was compared by Western blotting using specific antibodies, which again emerged in similar amounts in normal and grey platelet syndrome platelets. As regards the protein phosphorylated by cAMP, it was found to be identical to rap 1 protein when it was immunoprecipitated with an antibody raised against a synthetic peptide specific for rap 1 protein. Although the expression of rap 1 protein was similar in membranes isolated from grey platelet syndrome and normal platelets, its exogenous phosphorylation by cAMP was abnormal, with a concentration (10 micrograms/ml) of the catalytic subunits of the cAMP-dependent protein kinase (C.Sub.), as it decreased to half the control level. It is concluded that the abnormal Ca2+ transport found in grey platelet syndrome platelets is not due to the abnormal expression of the Ca2+ATPases, but is associated with an abnormality of rap 1 protein phosphorylation by cAMP.
Collapse
Affiliation(s)
- J Enouf
- U.348 INSERM, Hôpital Lariboisière, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Magnier C, Bredoux R, Kovacs T, Quarck R, Papp B, Corvazier E, de Gunzburg J, Enouf J. Correlated expression of the 97 kDa sarcoendoplasmic reticulum Ca(2+)-ATPase and Rap1B in platelets and various cell lines. Biochem J 1994; 297 ( Pt 2):343-50. [PMID: 8297341 PMCID: PMC1137835 DOI: 10.1042/bj2970343] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Evidence has accumulated that cyclic AMP (cAMP)-induced phosphorylation of a Ras-related protein (Rap1) regulates platelet Ca2+ transport. As this transport was recently found to be controlled by two isoforms of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA), the 100 kDa SERCA2b and the newly identified 97 kDa SERCA, we attempted to establish which isoform is involved in this regulation. For this purpose, we studied the expression and regulation of both the SERCA and Rap1 isoforms in platelets, haemopoietic cells and various cancer cell lines. SERCA2b was shown to be equally expressed in all the cell lines tested, as determined by detection of its phosphoenzyme formation and by Western blotting using an isoform-specific antibody. In contrast, the expression of the 97 kDa SERCA, studied by the same methods, varied from total absence in the cancer cells to high levels in the megakaryocytic cell lines. With regard to the potential regulatory Rap1 proteins, Western blotting showed different expression of total Rap1 isoforms among the cell lineages, thus ruling out any possible relationship between Rap1 and SERCA2b. However, the expression of Rap1 proteins correlated with that of the 97 kDa SERCA isoform. More refined analysis of the rap1A and rap1B isoforms by reverse transcription PCR and by determining cAMP-induced phosphorylation of Rap1B, i.e. its functional mechanism, confirmed the correlation between Rap1B and the 97 kDa SERCA expression. This relationship was also established by the concerted up-regulation of these two proteins demonstrated in the pathological model of platelets from hypertensive rats. It is concluded that the expressions of 97 KDa SERCA and Rap1B are related, suggesting that regulation of the platelet Ca(2+)-ATPase system by cAMP-induced phosphorylation of Rap1B specifically involves the 97 kDa SERCA.
Collapse
Affiliation(s)
- C Magnier
- INSERM U348, Hôpital Lariboisière, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Fox JE, Lipfert L, Clark EA, Reynolds CC, Austin CD, Brugge JS. On the role of the platelet membrane skeleton in mediating signal transduction. Association of GP IIb-IIIa, pp60c-src, pp62c-yes, and the p21ras GTPase-activating protein with the membrane skeleton. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74482-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
McNicol A, Drouin J, Clemetson KJ, Gerrard JM. Phospholipase C activity in platelets from Bernard-Soulier syndrome patients. ARTERIOSCLEROSIS AND THROMBOSIS : A JOURNAL OF VASCULAR BIOLOGY 1993; 13:1567-71. [PMID: 8218096 DOI: 10.1161/01.atv.13.11.1567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The levels of glycoprotein (GP) Ib and GPV and phospholipase C activity were measured in platelets from three Bernard-Soulier syndrome patients. The patients' platelets had 46%, 46%, and 24% of control levels of GPIb alpha and 43%, trace, and 13% of control levels of GPV as determined by immunoblot analysis. Stimulation by thrombin, trypsin, the thromboxane analogue U46619, and the combination of U46619 and trypsin caused the formation of [32P]phosphatidic acid, an index of phospholipase C activity, in [32P]orthophosphate-prelabeled platelets. With all agonists, however, the formation of [32P]phosphatidic acid was markedly reduced in Bernard-Soulier syndrome platelets compared with control platelets. These data indicated a postreceptor defect in phospholipase C activation in Bernard-Soulier syndrome platelets and confirmed earlier observations of potential proteolytic and nonproteolytic mechanisms of platelet activation.
Collapse
Affiliation(s)
- A McNicol
- Manitoba Institute of Cell Biology, Winnipeg, Canada
| | | | | | | |
Collapse
|
47
|
Torti M, Ramaschi G, Sinigaglia F, Lapetina EG, Balduini C. Association of the low molecular weight GTP-binding protein rap2B with the cytoskeleton during platelet aggregation. Proc Natl Acad Sci U S A 1993; 90:7553-7. [PMID: 8356055 PMCID: PMC47180 DOI: 10.1073/pnas.90.16.7553] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The intracellular distribution of the low-molecular-weight GTP-binding protein rap2B was investigated in resting and agonist-activated human platelets. In both cases, platelets were lysed by Triton X-100, and cell fractions were obtained by differential centrifugations. Using a specific polyclonal antiserum, we found that rap2B in resting platelets was completely detergent-soluble. When platelets were aggregated with thrombin, the thromboxane analogue U46619, or the Ca(2+)-ATPase inhibitor thapsigargin, a significant amount of rap2B became associated with the cytoskeleton. This association was paralleled by a decrease of rap2B in the Triton X-100-soluble fraction. Translocation of rap2B to the cytoskeleton strictly depended on platelet aggregation, and maximal incorporation was found when approximately 50% aggregation was measured. Inhibition of fibrinogen binding to the glycoprotein IIb-IIIa complex completely prevented the interaction of rap2B with the cytoskeleton. These results clearly demonstrate that changes in the intracellular localization of rap2B occur during platelet activation and represent evidence that this low molecular weight GTP-binding protein may be involved in platelet function.
Collapse
Affiliation(s)
- M Torti
- Department of Biochemistry, University of Pavia, Italy
| | | | | | | | | |
Collapse
|
48
|
Guinebault C, Payrastre B, Sultan C, Mauco G, Breton M, Levy-Toledano S, Plantavid M, Chap H. Tyrosine kinases and phosphoinositide metabolism in thrombin-stimulated human platelets. Biochem J 1993; 292 ( Pt 3):851-6. [PMID: 8391259 PMCID: PMC1134192 DOI: 10.1042/bj2920851] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study we have examined the implication of tyrosine kinase activities in aggregation, 5-hydroxytryptamine secretion and mainly phosphoinositide metabolism in response to human platelet stimulation by thrombin. Using the potent tyrosine kinase inhibitor tyrphostin AG-213, we have observed a significant inhibition of aggregation and 5-hydroxytryptamine release; however, this percentage inhibition was lower at high thrombin concentrations. On the other hand, tyrphostin treatment of metabolically 32P-labelled platelets significantly inhibited the thrombin-dependent accumulation of PtdIns(3,4)P2, which involves at least a PtdIns 3-kinase and/or a PtdIns3P 4-kinase, whereas the synthesis of phosphatidic acid (PtdOH), a good reflection of the phospholipase C (PLC) activation in platelets, was partially blocked. Inositol phosphate production was also inhibited by about 40% when tyrphostin-treated platelets were stimulated with thrombin. In addition, we show by Western-blot analysis that PLC gamma 1, as well as the regulatory subunit (p85) of the PtdIns 3-kinase, were present in the anti-phosphotyrosine immunoprecipitate isolated from thrombin-stimulated platelets. Furthermore, tyrphostin treatment clearly decreased the PLC gamma 1 and p85 contents in such an anti-phosphotyrosine immunoprecipitate. Our results provide the first evidence for a direct or indirect regulation of PtdIns(3,4)P2 accumulation and PLC gamma 1 activity by tyrosine phosphorylation during thrombin stimulation of human platelets.
Collapse
Affiliation(s)
- C Guinebault
- Institut National de la Santé et de la Recherche Médicale, Unité 326, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Altschuler D, Lapetina E. Mutational analysis of the cAMP-dependent protein kinase-mediated phosphorylation site of Rap1b. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53207-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
White GC, Crawford N, Fischer TH. Cytoskeletal interactions of Rap1b in platelets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 344:187-94. [PMID: 8209787 DOI: 10.1007/978-1-4615-2994-1_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have presented evidence that rap1b, a 22 kDa low molecular weight GTP binding protein, becomes associated with the cytoskeleton in thrombin-activated platelets. The initial incorporation is very rapid and occurs as fast as we can measure it. Thus, some rap1b is associated with the cytoskeleton as fast as it is formed. The remainder of the rap1b is incorporated more slowly. This biphasic incorporation of rap1b is similar to the incorporation of GPIIb/IIIa into the cytoskeleton, but no interaction between GPIIb/IIIa and rap1b could be demonstrated. Phosphorylation of rap1b by cAMP-dependent protein kinase did not inhibit its association with the cytoskeleton. We conclude that rap1b is one of an increasing number of proteins that associate with the cytoskeleton during cell activation. The function of rap1b in the cytoskeleton is unclear at this time. However, it is possible to speculate on potential roles. There is growing evidence that low molecular weight G proteins participate in the formation of multi-molecular aggregates. For example, p21rac promotes the assembly of a membrane-associated complex composed of NADPH oxidase, p47, and p67 and this complex is important for activation of NADPH oxidase in neutrophils. Similarly, in yeast, BUD1, a homolog of rap1, forms a complex with BUD5 (a homolog of GDI), BEMI, CDC24, and CDC42 (a homolog of G25K). This multi-protein aggregate may be important in cytoskeletal structure in yeast. In platelets, rad1b, which is membrane associated, may promote the assembly of a complex of proteins during cell activation and may localize this complex to the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G C White
- Center for Thrombosis and Hemostasis, University of North Carolina, Chapel Hill 27599-7035
| | | | | |
Collapse
|