1
|
Luo Y, Granzhan A, Marquevielle J, Cucchiarini A, Lacroix L, Amrane S, Verga D, Mergny JL. Guidelines for G-quadruplexes: I. In vitro characterization. Biochimie 2023; 214:5-23. [PMID: 36596406 DOI: 10.1016/j.biochi.2022.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Besides the well-known DNA double-helix, non-canonical nucleic acid structures regulate crucial biological activities. Among these oddities, guanine-rich DNA sequences can form unusual four-stranded secondary structures called G-quadruplexes (G4s). G4-prone sequences have been found in the genomes of most species, and G4s play important roles in essential processes such as transcription, replication, genome integrity and epigenetic regulation. Here, we present a short overview of G-quadruplexes followed by a detailed description of the biophysical and biochemical methods used to characterize G4s in vitro. The principles, experimental details and possible shortcomings of each method are discussed to provide a comprehensive view of the techniques used to study these structures. We aim to provide a set of guidelines for standardizing research on G-quadruplexes; these guidelines are not meant to be a dogmatic set of rules, but should rather provide useful information on the methods currently used to study these fascinating motifs.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
| | - Julien Marquevielle
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Anne Cucchiarini
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Laurent Lacroix
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Samir Amrane
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France.
| | - Jean-Louis Mergny
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
2
|
McCarte B, Yeung OT, Speakman AJ, Elfick A, Dunn KE. Using ultraviolet absorption spectroscopy to study nanoswitches based on non-canonical DNA structures. Biochem Biophys Rep 2022; 31:101293. [PMID: 35677630 PMCID: PMC9167695 DOI: 10.1016/j.bbrep.2022.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/21/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Non-canonical forms of DNA are attracting increasing interest for applications in nanotechnology. It is frequently convenient to characterize DNA molecules using a label-free approach such as ultraviolet absorption spectroscopy. In this paper we present the results of our investigation into the use of this technique to probe the folding of quadruplex and triplex nanoswitches. We confirmed that four G-quartets were necessary for folding at sub-mM concentrations of potassium and found that the wrong choice of sequence for the linker between G-tracts could dramatically disrupt folding, presumably due to the presence of kinetic traps in the folding landscape. In the case of the triplex nanoswitch we examined, we found that the UV spectrum showed a small change in absorbance when a triplex was formed. We anticipate that our results will be of interest to researchers seeking to design DNA nanoswitches based on quadruplexes and triplexes. Ultraviolet absorption spectroscopy can probe non-canonical DNA structures. Absorbance at 295 nm tends to increase as G-quadruplexes form. Four G-quartets are needed to form a quadruplex with less than 1 mM potassium. Formation of DNA triplexes can also yield a small change in UV spectra. UV absorption is a cheap label-free method for studying DNA nanoswitches.
Collapse
|
3
|
Salsbury AM, Lemkul JA. Cation competition and recruitment around the c-kit1 G-quadruplex using polarizable simulations. Biophys J 2021; 120:2249-2261. [PMID: 33794153 PMCID: PMC8390831 DOI: 10.1016/j.bpj.2021.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
Nucleic acid-ion interactions are fundamentally important to the physical, energetic, and conformational properties of DNA and RNA. These interactions help fold and stabilize highly ordered secondary and tertiary structures, such as G-quadruplexes (GQs), which are functionally relevant in telomeres, replication initiation sites, and promoter sequences. The c-kit proto-oncogene encodes for a receptor tyrosine kinase and is linked to gastrointestinal stromal tumors, mast cell disease, and leukemia. This gene contains three unique GQ-forming sequences that have proposed antagonistic effects on gene expression. The dominant GQ, denoted c-kit1, has been shown to decrease expression of c-kit transcripts, making the c-kit1 GQ a promising drug target. Toward disease intervention, more information is needed regarding its conformational dynamics and ion binding properties. Therefore, we performed molecular dynamics simulations of the c-kit1 GQ with K+, Na+, Li+, and mixed salt solutions using the Drude-2017 polarizable force field. We evaluated GQ structure, ion sampling, core energetics, ion dehydration and binding, and ion competition and found that each analysis supported the known GQ-ion specificity trend (K+ > Na+ > Li+). We also found that K+ ions coordinate in the tetrad core antiprismatically, whereas Na+ and Li+ align coplanar to guanine tetrads, partially because of their attraction to surrounding water. Further, we showed that K+ occupancy is higher around the c-kit1 GQ and its nucleobases than Na+ and Li+, which tend to interact with backbone and sugar moieties. Finally, we showed that K+ binding to the c-kit1 GQ is faster and more frequent than Na+ and Li+. Such descriptions of GQ-ion dynamics suggest the rate of dehydration as the dominant factor for preference of K+ by DNA GQs and provide insight into noncanonical nucleic acids for which little experimental data exist.
Collapse
Affiliation(s)
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
4
|
Siebenmorgen T, Zacharias M. Origin of Ion Specificity of Telomeric DNA G-Quadruplexes Investigated by Free-Energy Simulations. Biophys J 2017; 112:2280-2290. [PMID: 28591601 DOI: 10.1016/j.bpj.2017.04.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 11/29/2022] Open
Abstract
Telomeric DNA consists of tandem repeats of the sequence d(TTAGGG) that form G-quadruplex structures made of stacked guanines with monovalent cations bound at a central cavity. Although different ions can stabilize a G-quadruplex structure, the preferred bound ions are typically K+ or Na+. Several different strand-folding topologies have been reported for Q-quadruplexes formed from telomeric repeats depending on DNA length and ion solution condition. This suggests a possible dependence of the ion selectivity of the central pore on the folding topology of the quadruplex. Molecular dynamics free energy perturbation has been employed to systematically study the relative affinity of the central quadruplex pore for different cation types and the associated energetic and solvation contributions to ion selectivity. The calculations have been performed on two different common quadruplex folding topologies. For both topologies, the same ion selectivity was found with a preference for K+ followed by Rb+ and Na+, which agrees with the experimentally determined preference for most investigated quadruplexes. The selectivity is determined by a balance between attractive Coulomb interactions and loss of hydration but also modulated by van der Waals contributions. Specificity is mediated by the central guanines and no significant contribution of the nucleic acid backbone. The simulations indicate that different topologies might be stabilized by ions bound at the surface or alternative sites of the quadruplex because the ion specificity of the central pore does not depend on the strand folding topology.
Collapse
Affiliation(s)
- Till Siebenmorgen
- Physics Department, Technical University of Munich, Garching, Germany
| | - Martin Zacharias
- Physics Department, Technical University of Munich, Garching, Germany.
| |
Collapse
|
5
|
Effect of Cholesterol Anchoring Group on the Properties of G-Quadruplex-Based FRET Probes for Potassium Ion. CHEMOSENSORS 2014. [DOI: 10.3390/chemosensors2040267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Chang CC, Wu JY, Chang TC. A Carbazole Derivative Synthesis for Stabilizing the Quadruplex Structure. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200300026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Tseng TY, Wang ZF, Chien CH, Chang TC. In-cell optical imaging of exogenous G-quadruplex DNA by fluorogenic ligands. Nucleic Acids Res 2013; 41:10605-18. [PMID: 24030712 PMCID: PMC3905880 DOI: 10.1093/nar/gkt814] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Guanine-rich oligonucleotides (GROs) are promising therapeutic candidate for cancer treatment and other biomedical application. We have introduced a G-quadruplex (G4) ligand, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide, to monitor the cellular uptake of naked GROs and map their intracellular localizations in living cells by using confocal microscopy. The GROs that form parallel G4 structures, such as PU22, T40214 and AS1411, are detected mainly in the lysosome of CL1-0 lung cancer cells after incubation for 2 h. On the contrary, the GROs that form non-parallel G4 structures, such as human telomeres (HT23) and thrombin binding aptamer (TBA), are rarely detected in the lysosome, but found mainly in the mitochondria. Moreover, the fluorescence resonant energy transfer studies of fluorophore-labeled GROs show that the parallel G4 structures can be retained in CL1-0 cells, whereas the non-parallel G4 structures are likely distorted in CL1-0 cells after cellular uptake. Of interest is that the distorted G4 structure of HT23 from the non-parallel G4 structure can reform to a probable parallel G4 structure induced by a G4 ligand in CL1-0 living cells. These findings are valuable to the design and rationale behind the possible targeted drug delivery to specific cellular organelles using GROs.
Collapse
Affiliation(s)
- Ting-Yuan Tseng
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China, Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan, Republic of China and Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, Republic of China
| | | | | | | |
Collapse
|
8
|
Wu G, Zhu J. NMR studies of alkali metal ions in organic and biological solids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 61:1-70. [PMID: 22340207 DOI: 10.1016/j.pnmrs.2011.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 05/31/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada.
| | | |
Collapse
|
9
|
Delaurière L, Dong Z, Laxmi-Reddy K, Godde F, Toulmé JJ, Huc I. Deciphering Aromatic Oligoamide Foldamer-DNA Interactions. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Delaurière L, Dong Z, Laxmi-Reddy K, Godde F, Toulmé JJ, Huc I. Deciphering aromatic oligoamide foldamer-DNA interactions. Angew Chem Int Ed Engl 2011; 51:473-7. [PMID: 22135220 DOI: 10.1002/anie.201106208] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/28/2011] [Indexed: 01/16/2023]
Abstract
Finest selection: Side-chain selective, end-group selective, diastereoselective, and RNA- vs. DNA-selective interactions have been revealed between multiturn helical aromatic amide foldamers having cationic side chains and G-quadruplex aptamers.
Collapse
Affiliation(s)
- Laurence Delaurière
- Univ. Bordeaux, IECB, laboratoire ARNA, 2 rue Robert Escarpit, 33607 Pessac, France
| | | | | | | | | | | |
Collapse
|
11
|
Virgilio A, Esposito V, Citarella G, Pepe A, Mayol L, Galeone A. The insertion of two 8-methyl-2'-deoxyguanosine residues in tetramolecular quadruplex structures: trying to orientate the strands. Nucleic Acids Res 2011; 40:461-75. [PMID: 21908403 PMCID: PMC3245916 DOI: 10.1093/nar/gkr670] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this article, we report a structural study, based on NMR and CD spectroscopies, and molecular modelling of all possible d(TG3T) and d(TG4T) analogues containing two 8-methyl-2′-deoxyguanosine residues (M). Particularly, the potential ability of these modified residues to orientate the strands and then to affect the folding topology of tetramolecular quadruplex structures has been investigated. Oligodeoxynucleotides (ODNs) TMMGT (T12) and TMMGGT (F12) form parallel tetramolecular quadruplexes, characterized by an all-syn M-tetrad at the 5′-side stacked to all-anti M- and G-tetrads. ODNs TMGMT (T13) and TMGGMT (F14) form parallel tetramolecular quadruplexes, in which an all-anti G core is sandwiched between two all-syn M-tetrads at the 5′- and the 3′-side. Notably, the quadruplex formed by T13 corresponds to an unprecedented structure in which the syn residues exceed in number the anti ones. Conversely, ODN TGMGMT (F24) adopts a parallel arrangement in which all-anti G-tetrads alternate with all-syn M-tetrads. Most importantly, all data strongly suggest that ODN TMGMGT (F13) forms an unprecedented anti-parallel tetramolecular quadruplex in which G and M residues adopt anti and syn glycosidic conformations, respectively. This article opens up new understandings and perspectives about the intricate relationship between the quadruplex strands orientation and the glycosidic conformation of the residues.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Lin CT, Tseng TY, Wang ZF, Chang TC. Structural conversion of intramolecular and intermolecular G-quadruplexes of bcl2mid: the effect of potassium concentration and ion exchange. J Phys Chem B 2011; 115:2360-70. [PMID: 21338134 DOI: 10.1021/jp107623n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gel assay, circular dichroism, and differential scanning calorimetry results all demonstrate that a major monomer component of bcl2mid exists at low [K(+)] and an additional dimer component appears at high [K(+)]. This implies that bcl2mid is a good candidate for elucidating the mechanisms of structural conversion between different G-quadruplexes. We further discovered that the conversion between the monomer and dimer forms of bcl2mid does not occur at room temperature but is detected when heated above the melting point. In addition, the use of the lithium cation to keep the same ionic strength in a K(+) solution favors the formation of the bcl2mid dimer. We also found that the bcl2mid dimer is more stable than the monomer. However, after the bcl2mid monomer is formed in a K(+) solution, there is no appreciable structural conversion from the monomer to the dimer detected with addition of Li(+) at room temperature. Furthermore, the spectral changes of bcl2mid when transitioning from sodium form to potassium form take place upon K(+) titration. The absence of the dimer form for bcl2mid after the direct addition of 150 mM [K(+)] at room temperature suggests that the spectral changes are not due to rapid unfolding and refolding. In addition, this work reveals the conditions that would be useful for NMR studies of G-quadruplexes.
Collapse
Affiliation(s)
- Chang-Ting Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617, Taiwan, Republic of China
| | | | | | | |
Collapse
|
13
|
Zhang XF, Zhang HJ, Xiang JF, Li Q, Yang QF, Shang Q, Zhang YX, Tang YL. The binding modes of carbazole derivatives with telomere G-quadruplex. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Masiero S, Trotta R, Pieraccini S, De Tito S, Perone R, Randazzo A, Spada GP. A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures. Org Biomol Chem 2010; 8:2683-92. [PMID: 20440429 DOI: 10.1039/c003428b] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G-quadruplex DNA (G4-DNA) structures are four-stranded helical DNA (or RNA) structures, comprising stacks of G-tetrads, which are the outcome of planar association of four guanines in a cyclic Hoogsteen hydrogen-bonding arrangement. In the last decade the number of publications where CD spectroscopy has been used to study G4-DNAs, is extremely high. However, with very few exceptions, these investigations use an empirical interpretation of CD spectra. In this interpretation two basic types of CD spectra have been associated to a single specific difference in the features of the strand folding, i.e. the relative orientation of the strands, "parallel" (all strands have the same 5' to 3' orientation) or "antiparallel". Different examples taken from the literature where the empirical interpretation is not followed or is meaningless are presented and discussed. Furthermore, the case of quadruplexes formed by monomeric guanosine derivatives, where there is no strand connecting the adjacent quartets and the definition parallel/antiparallel strands cannot apply, will be discussed. The different spectral features observed for different G-quadruplexes is rationalised in terms of chromophores responsible for the electronic transitions. A simplified exciton coupling approach or more refined QM calculations allow to interpret the different CD features in terms of different stacking orientation (head-to-tail, head-to-head, tail-to-tail) between adjacent G-quartets irrespectively of the relative orientation of the stands (parallel/antiparallel).
Collapse
Affiliation(s)
- Stefano Masiero
- Alma Mater Studiorum-Università di Bologna, Dipartimento di Chimica Organica A. Mangini, via San Giacomo 11, I-40126, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Garbett NC, Mekmaysy CS, Chaires JB. Sedimentation velocity ultracentrifugation analysis for hydrodynamic characterization of G-quadruplex structures. Methods Mol Biol 2010; 608:97-120. [PMID: 20012418 PMCID: PMC3008627 DOI: 10.1007/978-1-59745-363-9_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Analytical ultracentrifugation (AUC) is a powerful technique for the characterization of hydrodynamic and thermodynamic properties. The intent of this article is to demonstrate the utility of sedimentation velocity (SV) studies to obtain hydrodynamic information for G-quadruplex (GQ) systems and to provide insights into one part of this process, namely, data analysis of existing SV data. An array of data analysis software is available, mostly written and continually developed by established researchers in the AUC field, with particularly rapid advances in the analysis of SV data. Each program has its own learning curve, and this article is intended as a resource in the data analysis process for beginning researchers in the field. We discuss the application of three of the most commonly used data analysis programs, DCDT+, Sedfit, and SedAnal, to the interpretation of SV data obtained in our laboratory on two GQ systems.
Collapse
Affiliation(s)
- Nichola C. Garbett
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
| | - Chongkham S. Mekmaysy
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
| | - Jonathan B. Chaires
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
16
|
Snoussi K, Halle B. Internal sodium ions and water molecules in guanine quadruplexes: magnetic relaxation dispersion studies of [d(G3T4G3)]2 and [d(G4T4G4)]2. Biochemistry 2008; 47:12219-29. [PMID: 18950191 DOI: 10.1021/bi801657s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The structural stability of guanine quadruplexes depends critically on an unusual configuration of dehydrated Na (+) or K (+) ions, closely spaced along the central axis of the quadruplex. Crystallography and NMR spectroscopy indicate that these internal ions can be located between the G-quartet planes as well as in the thymine loops, but the precise ion coordination has been firmly established in only a few cases. Here, we examine the bimolecular diagonal-looped foldback quadruplexes [d(G 3T 4G 3)] 2 (Q3) and [d(G 4T 4G 4)] 2 (Q4) by (2)H, (17)O, and (23)Na magnetic relaxation dispersion (MRD). The MRD data indicate that both quadruplexes contain Na (+) ions between the T 4 loops and the terminal G-quartets and that these ions have one water ligand. These ions exchange with external ions on a time scale of 10-60 mus at 27 degrees C, while their highly ordered water ligands have residence times in the range 10 (-8)-10 (-6) s. The MRD data indicate that Q4 contains three Na (+) ions in the stem sites, in agreement with previous solid-state (23)Na NMR findings but contrary to the only crystal structure of this quadruplex. For Q3, the MRD data suggest a less symmetric coordination of the two stem ions. In both quadruplexes, the stem ions have residence times of 0.6-1.0 ms at 27 degrees C. The equilibrium constant for Na (+) --> K (+) exchange is approximately 4 for both loop and stem sites in Q3, in agreement with previous (1)H NMR findings.
Collapse
Affiliation(s)
- Karim Snoussi
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, SE-22100 Lund, Sweden.
| | | |
Collapse
|
17
|
Huang FC, Chang CC, Lou PJ, Kuo IC, Chien CW, Chen CT, Shieh FY, Chang TC, Lin JJ. G-quadruplex stabilizer 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide induces accelerated senescence and inhibits tumorigenic properties in cancer cells. Mol Cancer Res 2008; 6:955-64. [PMID: 18515756 DOI: 10.1158/1541-7786.mcr-07-0260] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbazole derivatives that stabilized G-quadruplex DNA structure formed by human telomeric sequence have been designed and synthesized. Among them, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC) showed an increase in G-quadruplex melting temperature by 13 degrees C and has a potent inhibitory effect on telomerase activity. Treatment of H1299 cancer cells with 0.5 mumol/L BMVC did not cause acute toxicity and affect DNA replication; however, the BMVC-treated cells ceased to divide after a lag period. Hallmarks of senescence, including morphologic changes, detection of senescence-associated beta-galactosidase activity, and decreased bromodeoxyuridine incorporation, were detected in BMVC-treated cancer cells. The BMVC-induced senescence phenotype is accompanied by progressive telomere shortening and detection of the DNA damage foci, indicating that BMVC caused telomere uncapping after long-term treatments. Unlike other telomerase inhibitors, the BMVC-treated cancer cells showed a fast telomere shortening rate and a lag period of growth before entering senescence. Interestingly, BMVC also suppressed the tumor-related properties of cancer cells, including cell migration, colony-forming ability, and anchorage-independent growth, indicating that the cellular effects of BMVC were not limited to telomeres. Consistent with the observations from cellular experiments, the tumorigenic potential of cancer cells was also reduced in mouse xenografts after BMVC treatments. Thus, BMVC repressed tumor progression through both telomere-dependent and telomere-independent pathways.
Collapse
Affiliation(s)
- Fong-Chun Huang
- Institute of Biopharmaceutical Science, National Yang-Ming University, Taipei 11221, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gray DM, Wen JD, Gray CW, Repges R, Repges C, Raabe G, Fleischhauer J. Measured and calculated CD spectra of G-quartets stacked with the same or opposite polarities. Chirality 2008; 20:431-40. [PMID: 17853398 DOI: 10.1002/chir.20455] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Circular dichroism (CD) spectroscopy is widely used to characterize the structures of DNA G-quadruplexes. CD bands at 200-300 nm have been empirically related to G-quadruplexes having parallel or antiparallel sugar-phosphate backbones. We propose that a more fundamental interpretation of the origin of the CD bands is in the stacking interactions of neighboring G-quartets, which can have the same or opposing polarities of hydrogen bond acceptors and donors. From an empirical summation of CD spectra of the d(G)5 G-quadruplex and of the thrombin binding aptamer that have neighboring G-quartets with the same and opposite polarities, respectively, the spectra of aptamers selected by the Ff gene 5 protein (g5p) appear to arise from a combination of the two types of polarities of neighboring G-quartets. The aptamer CD spectra resemble the spectrum of d(G3T4G3), in which two adjacent quartets have the same and two have opposite polarities. Quantum-chemical spectral calculations were performed using a matrix method, based on guanine chromophores oriented as in d(G3T4G3). The calculations show that the two types of G-quartet stacks have CD spectra with features resembling experimental spectra of the corresponding types of G-quadruplexes.
Collapse
Affiliation(s)
- Donald M Gray
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Long YF, Liao QG, Huang CZ, Ling J, Li YF. Conformational Change Detection of DNA with the Fluorogenic Reagent of o-Phthalaldehyde-β-Mercaptoethanol. J Phys Chem B 2008; 112:1783-8. [DOI: 10.1021/jp071601g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yun Fei Long
- College of Chemistry and Chemical Engineering, Southwest University, CQKL-LRTA, Chongqing 400715, China, and Institute of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan 411201, China
| | - Qie Gen Liao
- College of Chemistry and Chemical Engineering, Southwest University, CQKL-LRTA, Chongqing 400715, China, and Institute of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan 411201, China
| | - Cheng Zhi Huang
- College of Chemistry and Chemical Engineering, Southwest University, CQKL-LRTA, Chongqing 400715, China, and Institute of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan 411201, China
| | - Jian Ling
- College of Chemistry and Chemical Engineering, Southwest University, CQKL-LRTA, Chongqing 400715, China, and Institute of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan 411201, China
| | - Yuan Fang Li
- College of Chemistry and Chemical Engineering, Southwest University, CQKL-LRTA, Chongqing 400715, China, and Institute of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Hunan 411201, China
| |
Collapse
|
20
|
Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique. Anal Chim Acta 2007; 604:165-9. [DOI: 10.1016/j.aca.2007.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/06/2007] [Accepted: 10/12/2007] [Indexed: 11/21/2022]
|
21
|
Wei C, Tang Q, Li C. Structural transition from the random coil to quadruplex of AG(3)(T(2)AG(3))(3) induced by Zn(2+). Biophys Chem 2007; 132:110-3. [PMID: 18031921 DOI: 10.1016/j.bpc.2007.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 10/29/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Structures of G-quadruplex DNAs can be typically stabilized by monovalent cations such as K(+), Na(+). Some divalent and trivalent cations, such as Sr(2+), Pb(2+), Tb(3+) and Eu(3+), can also induce the formation of G-quadruplex DNA. Here we show that Zn(2+) can induce the human telomeric sequence AG(3)(T(2)AG(3))(3) to fold the G-quadruplex structure by UV absorbance difference spectra and circular dichroism (CD) spectroscopy. At micromolar concentrations, the Zn(2+)-induced changes in the UV absorbance difference spectra and CD spectra are the characteristics of antiparallel G-quadruplexes although the long wavelength CD maximum is around 285 nm rather than the typical value of 295 nm. The binding stoichometry of Zn(2+) per one AG(3)(T(2)AG(3))(3) molecule is four. To our knowledge, the structural transition of human telomeric sequence induced by Zn(2+) was observed for the first time.
Collapse
Affiliation(s)
- Chunying Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan China.
| | | | | |
Collapse
|
22
|
Guo X, Liu S, Yu Z. Bimolecular quadruplexes and their transitions to higher-order molecular structures detected by ESI-FTICR-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1467-76. [PMID: 17572101 DOI: 10.1016/j.jasms.2007.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 05/15/2023]
Abstract
Four individual quadruplexes, which are self-assembled in ammonium acetate solution from telomeric sequences of closely related DNA strands--d(G(4)T(4)G(4)), d(G(3)T(4)G(4)), d(G(3)T(4)G(3)), and d(G(4)T(4)G(3))--have been detected in the gas phase using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The bimolecular quadruplexes associate with the same number of NH(4)(+) in the gas phase as NMR shows that they do in solution. The quadruplex structures formed in solution are maintained in the gas phase. Furthermore, the mass spectra show that the bimolecular quadruplexes generated by the strands d(G(3)T(4)G(3)) and d(G(4)T(4)G(3)) are unstable, being converted into trimolecular and tetramolecular structures with increasing concentrations of NH(4)(+) in the solution. Circular dichroism (CD) spectra reveal structural changes during the process of strand stoichiometric transitions, in which the relative orientation of strands in the quadruplexes changes from an antiparallel to a parallel arrangement. Such changes were observed for the strand d(G(4)T(4)G(3)), but not for the strand d(G(3)T(4)G(3)). The present work provides a significant insight into the formation of various DNA quadruplexes, especially the higher-order species.
Collapse
Affiliation(s)
- Xinhua Guo
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | | | | |
Collapse
|
23
|
Abstract
The extreme ends of eukaryotic chromosomes contain 3' extensions in the form of single-stranded G-rich repeats, referred to as telomeric 3' G-tails or overhangs. Increasing evidence has suggested that telomeric 3' G-tails can adopt a G-quadruplex conformation both in vitro and in vivo. However, the role of G-quadruplexes on the structure and function of telomeric 3' G-tails remains unclear. In the current study, we showed that the human telomeric 3' G-tail sequence protected the duplex DNA ends in cis from being recognized as double strand breaks. This protection is dependent on the G-quadruplex conformation of the 3' G-tail sequence. These results suggest that the ability of telomeric 3' G-tails to adopt the endprotecting G-quadruplex conformation may be one of the reasons for the existence of the evolutionarily conserved G-stretch motifs in telomeric DNA sequences.
Collapse
Affiliation(s)
- Yuan-Chin Tsai
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
24
|
Szilagyi A, Bonn GK, Guttman A. Capillary gel electrophoresis analysis of G-quartet forming oligonucleotides used in DNA-protein interaction studies. J Chromatogr A 2007; 1161:15-21. [PMID: 17391683 DOI: 10.1016/j.chroma.2007.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
DNA-protein binding is among the most frequently studied biomolecular interactions with high importance in modern systems biology research. One interesting aspect of this rapidly developing field is the affinity capture of proteins by G-quartet forming oligonucleotides also referred to as aptamers. G-quartets are structural motifs formed by guanine-rich sequences commonly occurring in the human genome. In this paper, we describe a capillary gel electrophoresis based method to validate G-quartet formation of in-house designed oligonucleotides and discuss the effect of monovalent cation concentration on the development of this structure. The relevant aptamer was then bound to magnetic beads to form an affinity capture surface for target proteins, which were then analyzed by matrix-assisted laser desorption/ionization mass spectrometry.
Collapse
Affiliation(s)
- Agnes Szilagyi
- Horváth Laboratory of Bioseparation Sciences, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 66, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
25
|
Abstract
Stabilization of nucleic acid structures results from a balance of multiple interactions, including electrostatics, base stacking, hydrophobic interactions, hydrogen bonding, van der Waals forces, etc. Nucleic acid quadruplexes are unusual structures in that their formation is driven by specific binding of metal ions. This unique mode of metal binding, which is tightly coupled to oligonucleotide folding, can engender correspondingly unique solution behavior. In particular, we show that addition of many cosolvents, such as primary aliphatic alcohols, increases the thermal stability of quadruplexes, as determined by melting temperature, Tm, in direct contrast to the response of duplexes to the same admixture of solvents. Thermal stability is observed to increase as the dielectric constant of the composite solvent decreases. This behavior suggests a dominant role for electrostatics in quadruplex formation and stability. Additional studies done with other cosolvents and solutes suggest that, in some cases, other forces may come into play, including the possibility of direct interaction with the quadruplex structure. Nonetheless, many cosolvents and small molecules, such as ethanol, dimethylformamide, and betaine, stabilize the quadruplex conformation in sharp distinction to their destabilization of DNA duplexes.
Collapse
Affiliation(s)
- Ivan V Smirnov
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143-0446, USA
| | | |
Collapse
|
26
|
Srivastava S, Srivastava S, Singh S, Gupta VP, Gupta VD. STABILITY AND TRANSITION IN A DNA TETRAPLEX: A MODEL FOR TELOMERES. J MACROMOL SCI B 2007. [DOI: 10.1081/mb-100000050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shinoo Srivastava
- a Division of Biopolymers , Central Drug Research Institute , Lucknow, 226 001, India
| | - Seema Srivastava
- a Division of Biopolymers , Central Drug Research Institute , Lucknow, 226 001, India
| | - Shyam Singh
- a Division of Biopolymers , Central Drug Research Institute , Lucknow, 226 001, India
| | - Vijai Prakash Gupta
- a Division of Biopolymers , Central Drug Research Institute , Lucknow, 226 001, India
| | | |
Collapse
|
27
|
Mills M, Klump* HH. Systematic Mutation in the Third Strand of a Purine Motif DNA Triple Helix: a Story of a Molecule Which Hides Its Tail. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319808004731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Martin. Mills
- a Department of Biochemistry , University of Cape Town , Private Bag 7700, Rondebosch , South Africa
| | - Horst H. Klump*
- a Department of Biochemistry , University of Cape Town , Private Bag 7700, Rondebosch , South Africa
| |
Collapse
|
28
|
Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A, Jones RA, Yang D. An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc 2006; 128:1096-8. [PMID: 16433524 PMCID: PMC2556172 DOI: 10.1021/ja055636a] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report the first G-quadruplex structure formed in the promoter region of the human bcl-2. Bcl-2 is a potent oncoprotein that functions as an inhibitor of cell apoptosis and has been found to be aberrantly overexpressed in a wide range of human tumors. A highly GC-rich region upstream of the P1 promoter plays an important role in the regulation of the transcriptional activity of the bcl-2 oncogene. The purine-rich strand of this region contains multiple runs of guanines and can form three distinct intramolecular G-quadruplexes in K+-containing solution. Of these, the G-quadruplex formed within the middle four consecutive guanine runs has been shown to be the most stable G-quadruplex structure, while it is also a mixture of loop isomers. The predominant G-quadruplex structure formed in this region was studied by NMR. Our results demonstrate a novel folding of a unique intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands. This G-quadruplex structure contains three G-tetrads connected with a single-nucleotide double-chain-reversal side loop and two lateral loops. The first three-nucleotide CGC loop in the bcl-2 promoter sequence forms a lateral loop, as opposed to a double-chain-reversal side loop observed in a similar sequence in the c-MYC promoter, which appears to largely determine the overall folding of the bcl-2 G-quadruplex. Furthermore, both the bcl-2 and c-MYC promoter sequences contain the G3NG3 sequence motif, which forms a stable double-chain-reversal, parallel-stranded structural motif. This predominant bcl-2 G-quadruplex represents an attractive novel target for the design of new anticancer drugs that specifically modulate bcl-2 gene expression.
Collapse
Affiliation(s)
- Jixun Dai
- College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | | | - Ding Chen
- College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | - Megan Carver
- College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | - Attila Ambrus
- College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | - Roger A. Jones
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Danzhou Yang
- College of Pharmacy, University of Arizona, Tucson, AZ 85721
- Arizona Cancer Center, Tucson, AZ 85724
| |
Collapse
|
29
|
Rankin S, Reszka AP, Huppert J, Zloh M, Parkinson GN, Todd AK, Ladame S, Balasubramanian S, Neidle S. Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc 2005; 127:10584-9. [PMID: 16045346 PMCID: PMC2195896 DOI: 10.1021/ja050823u] [Citation(s) in RCA: 481] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The DNA sequence, d(AGGGAGGGCGCTGGGAGGAGGG), occurs within the promoter region of the c-kit oncogene. We show here, using a combination of NMR, circular dichroism, and melting temperature measurements, that this sequence forms a four-stranded quadruplex structure under physiological conditions. Variations in the sequences that intervene between the guanine tracts have been examined, and surprisingly, none of these modified sequences forms a quadruplex arrangement under these conditions. This suggests that the occurrence of quadruplex-forming sequences within the human and other genomes is less than was hitherto expected. The c-kit quadruplex may be a new target for therapeutic intervention in cancers where there is elevated expression of the c-kit gene.
Collapse
Affiliation(s)
- Sarah Rankin
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Anthony P. Reszka
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Julian Huppert
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Mire Zloh
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gary N. Parkinson
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alan K. Todd
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sylvain Ladame
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Shankar Balasubramanian
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Stephen Neidle
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
- E-mail:
| |
Collapse
|
30
|
Zhou T, Chen G, Wang Y, Zhang Q, Yang M, Li T. Synthesis of unimolecularly circular G-quadruplexes as prospective molecular probes. Nucleic Acids Res 2004; 32:e173. [PMID: 15591017 PMCID: PMC535693 DOI: 10.1093/nar/gnh162] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synthesis of unimolecularly circular G-quadruplex has been accomplished for the first time during our investigation on the template basis of G-quadruplex through chemical ligations of guanine-rich linear sequences of oligodeoxyribonucleotides. The uniqueness of this newly designed circularization course is its self-recognition and self-templating on the scale of individual strand of oligodeoxyribonucleotide in which the same linear sequence serves both as a template and as a substrate simultaneously. The results from our exonuclease and DNAse hydrolysis studies confirm that there is indeed absence of open termini within the structure of the identified circular product. Our subsequent investigation on the loop-size effect indicates that the unimolecularly circular G-quadruplex possessing two or more thymine nucleotides within their connecting loops is readily attainable, while the linear sequence with a single thymine nucleotide between guanine tracts is not a proper precursor for our ligation reaction. In addition, conformation dependency of the circularization course as well as the effects of alkali ions, pH values and concentration of potassium ions on the circularization reaction are examined during our investigation. The implication of our current studies and possible application of the obtained unimolecularly circular G-quadruplex in certain biological processes are also discussed in this report.
Collapse
Affiliation(s)
- Tianyan Zhou
- Department of Pharmaceutics, School of Pharmacy, Peking University, 38 Xueyuan Road, Hiandian District, Beijing 100083
| | | | | | | | | | | |
Collapse
|
31
|
Huang CC, Cao Z, Chang HT, Tan W. Protein−Protein Interaction Studies Based on Molecular Aptamers by Affinity Capillary Electrophoresis. Anal Chem 2004; 76:6973-81. [PMID: 15571349 DOI: 10.1021/ac049158i] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-DNA/protein-protein interactions play critical roles in many biological processes. We report here the investigation of protein-protein interactions using molecular aptamers with affinity capillary electrophoresis (ACE). A human alpha-thrombin binding aptamer was labeled with 6-carboxyfluorescein and exploited as a selective fluorescent probe for studying thrombin-protein interactions using capillary electrophoresis with laser-induced fluorescence. A 15-mer binding DNA aptamer can be separated into two peaks in CE that correspond to the linear aptamer (L-Apt) and the thrombin-binding G-quadruplex structure in the presence of K(+) or Ba(2+). In a bare capillary, the peak area of G-quadruplex aptamer (G-Apt) was found to decrease with the addition of thrombin while that of L-Apt remained unchanged. Even though the peak of the G-Apt/thrombin binding complex is broad due to a weaker binding affinity between aptamer and thrombin, we were still able to quantify the thrombin and anti-thrombin proteins (human anti-thrombin III, AT III) based on the peak areas of free G-Apt. The detection limits of thrombin and AT III were 9.8 and 2.1 nM, respectively. The aptamer-based competitive ACE assay has also been applied to quantify thrombin-anti-thrombin III interaction and to monitor this reaction in real time. The addition of poly(ethylene glycol) to the sample matrix stabilized the complex of the G-Aptthrombin. This assay can be used to study the interactions between thrombin and proteins that do not disrupt G-Apt binding property at Exosit I site of the thrombin. Our aptamer-based ACE assay can be an effective approach for studying protein-protein interactions and for analyzing binding site and binding constant information in protein-protein and protein-DNA interaction studies.
Collapse
Affiliation(s)
- Chih-Ching Huang
- Center for Research at Bio/nano Interface, Department of Chemistry and Shands Cancer Center, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | |
Collapse
|
32
|
He Y, Neumann RD, Panyutin IG. Intramolecular quadruplex conformation of human telomeric DNA assessed with 125I-radioprobing. Nucleic Acids Res 2004; 32:5359-67. [PMID: 15475390 PMCID: PMC524286 DOI: 10.1093/nar/gkh875] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A repeated non-coding DNA sequence d(TTAGGG)n is present in the telomeric ends of all human chromosomes. These repeats can adopt multiple inter and intramolecular non-B-DNA conformations that may play an important role in biological processes. Two intramolecular structures of the telomeric oligonucleotide dAGGG(TTAGGG)3, antiparallel and parallel, have been solved by NMR and X-ray crystallography. In both structures, the telomeric sequence adopts an intramolecular quadruplex structure that is stabilized by G-4 quartets, but the ways in which the sequence folds into the quadruplex are different. The folds of the human telomeric DNA were described as an anti-parallel basket-type and a parallel propeller-type. We applied 125I-radioprobing to determine the conformation of the telomeric quadruplex in solution, in the presence of either Na+ or K+ ions. The probability of DNA breaks caused by decay of 125I is inversely related to the distance between the radionuclide and the sugar unit of the DNA backbone; hence, the conformation of the DNA backbone can be deduced from the distribution of breaks. The probability of breaks measured in the presence of Na+ and K+ were compared with the distances in basket-type and propeller-type quadruplexes obtained from the NMR and crystal structures. Our radioprobing data demonstrate that the antiparallel conformation was present in solution in the presence of both K+ and Na+. The preferable conformation in the Na+-containing solution was the basket-type antiparallel quadruplex whereas the presence of K+ favored the chair-type antiparallel quadruplex. Thus, we believe that the two antiparallel and the parallel conformations may coexist in solution, and that their relative proportion is determined by the type and concentration of ions.
Collapse
Affiliation(s)
- Yujian He
- Department of Nuclear Medicine, Warren G. Magnuson Clinical Center, Building 10, Room 1C401, National Institutes of Health, Bethesda, MD 20892-1180, USA
| | | | | |
Collapse
|
33
|
Chang CC, Wu JY, Chien CW, Wu WS, Liu H, Kang CC, Yu LJ, Chang TC. A fluorescent carbazole derivative: high sensitivity for quadruplex DNA. Anal Chem 2004; 75:6177-83. [PMID: 14615998 DOI: 10.1021/ac034789i] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have synthesized a novel molecule, 3,6-bis(1-methyl-4-vinylpyridium)carbazole diiodide (BMVC), for recognizing specific quadruplex structures, particularly the quadruplex of human telomeric sequence d(T(2)AG(3))(4). The fluorescence intensity of the BMVC molecule increases from 1 to almost 2 orders of magnitude upon interacting with various DNAs. At a concentration of BMVC of 10 microM, fluorescence bands with different colors of BMVC in electrophoresis gels of various DNAs can be observed. The fluorescence of BMVC can be used to discriminate between duplex and quadruplex DNAs. At the low concentration of 0.1 microM BMVC in prestained gels, the fluorescence is observed in the presence of quadruplexes with anti-anti-anti-anti and anti-anti-syn-syn arrangements. However, no fluorescence band is detected upon interacting with duplexes and quadruplexes with anti-syn-anti-syn arrangement. Moreover, the sensitivity assays show that as little as 0.2 pmol of quadruplex of d(T(2)AG(3))(4) can be revealed by BMVC.
Collapse
Affiliation(s)
- Cheng-Chung Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei, 10764, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bhavesh NS, Patel PK, Karthikeyan S, Hosur RV. Distinctive features in the structure and dynamics of the DNA repeat sequence GGCGGG. Biochem Biophys Res Commun 2004; 317:625-33. [PMID: 15063804 DOI: 10.1016/j.bbrc.2004.03.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Indexed: 10/26/2022]
Abstract
G-rich DNA has been known to form a variety of folded and multistranded structures, with even single base modifications causing important structural changes. But, very little is known about the dynamic characteristics of the structures, which may play crucial roles in facilitating the structural transitions. In this background, we report here NMR investigations on the structure and dynamics of a DNA repeat sequence GGCGGG in aqueous solution containing Na+ ions at neutral pH. The chosen sequence d-TGGCGGGT forms a parallel quadruplex with a C-tetrad in the middle, formed by symmetrical pairing of four Cs in a plane via NH2-O2 H-bonds. 13C relaxation measurements at natural abundance for C' sugar carbons provided valuable insight into the sequence specific dynamism of G and C-tetrads in the quadruplex. The C4 tetrad seems to introduce high conformational dynamism at milli- to micro-second time scale in the quadruplex. Concomitantly, there is a decrease in the pico-second time scale dynamics. Interestingly, these effects are seen more prominently at the G-tetrads on the 3' end of C-tetrad than on its 5' end. These observations would have important implications for the roles the tetrads may play in many biological functions.
Collapse
Affiliation(s)
- Neel S Bhavesh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | | | | | | |
Collapse
|
35
|
Wong A, Wu G. Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5'-monophosphate: a solid-state NMR study. J Am Chem Soc 2004; 125:13895-905. [PMID: 14599230 DOI: 10.1021/ja0302174] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a solid-state multinuclear ((23)Na, (15)N, (13)C, and (31)P) NMR study on the relative affinity of monovalent cations for a stacking G-quartet structure formed by guanosine 5'-monophosphate (5'-GMP) self-association at pH 8. Two major types of cations are bound to the 5'-GMP structure: one at the surface and the other within the channel cavity between two G-quartets. The channel cation is coordinated to eight carbonyl oxygen atoms from the guanine bases, whereas the surface cation is close to the phosphate group and likely to be only partially hydrated. On the basis of solid-state (23)Na NMR results from a series of ion titration experiments, we have obtained quantitative thermodynamic parameters concerning the relative cation binding affinity for each of the two major binding sites. For the channel cavity site, the values of the free energy difference (Delta G degrees at 25 degrees C) for ion competition between M(+) and Na(+) ions are K(+) (-1.9 kcal mol(-1)), NH(4)(+) (-1.8 kcal mol(-1)), Rb(+) (-0.3 kcal mol(-1)), and Cs(+) (1.8 kcal mol(-1)). For the surface site, the values Delta G degrees are K(+) (2.5 kcal mol(-1)), NH(4)(+) (-1.3 kcal mol(-1)), Rb(+) (1.1 kcal mol(-1)), and Cs(+) (0.9 kcal mol(-1)). Solid-state NMR data suggest that the affinity of monovalent cations for the 5'-GMP structure follows the order NH(4)(+) > Na(+) > Cs(+) > Rb(+) > K(+) at the surface site and K(+) > NH(4)(+) > Rb(+) > Na(+) > Cs(+) > Li(+) at the channel cavity site. We have found that the cation-induced stability of a 5'-GMP structure is determined only by the affinity of monovalent cations for the channel site and that the binding of monovalent cations to phosphate groups plays no role in 5'-GMP self-ordered structure. We have demonstrated that solid-state (23)Na and (15)N NMR can be used simultaneously to provide mutually complementary information about competitive binding between Na(+) and NH(4)(+) ions.
Collapse
Affiliation(s)
- Alan Wong
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
36
|
Lewis FD, Wu Y, Zhang L. Reversible formation of DNA G-quadruplex hairpin dimers from stilbenediether conjugates. Chem Commun (Camb) 2004:636-7. [PMID: 15010756 DOI: 10.1039/b315265k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rapid and reversible G-quadruplex hairpin dimer formation is observed for bis(oligonucleotide) conjugates possessing stilbenediether (Sd) linkers connecting two short poly(G) sequences.
Collapse
Affiliation(s)
- Frederick D Lewis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA.
| | | | | |
Collapse
|
37
|
Wu JY, Chang CC, Yan CS, Chen KY, Kuo IC, Mou CY, Chang TC. Structural isomers and binding sites of guanine-rich quadruplexes investigated by induced circular dichroism of thionin: loops and tails. J Biomol Struct Dyn 2003; 21:135-40. [PMID: 12854965 DOI: 10.1080/07391102.2003.10506911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Induced circular dichroism has been used to study the binding of thionin molecule to twelve guanine-rich quadruplexes. Substituting the base in the loops and varying the length of the tails could substantial change the induced circular dichroism spectra, which allow us to distinguish structural isomers and to determine the binding sites of quadruplexes. Our results show that external stacking on the end surface of the G-quartet associated with electrostatic interaction with the loops or tails is the major binding mode of thionin with these G-quadruplexes.
Collapse
Affiliation(s)
- Jin-Yi Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei, 106, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Dapić V, Abdomerović V, Marrington R, Peberdy J, Rodger A, Trent JO, Bates PJ. Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. Nucleic Acids Res 2003; 31:2097-107. [PMID: 12682360 PMCID: PMC153744 DOI: 10.1093/nar/gkg316] [Citation(s) in RCA: 336] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Single-stranded guanosine-rich oligodeoxyribonucleotides (GROs) have a propensity to form quadruplex structures that are stabilized by G-quartets. In addition to intense speculation about the role of G-quartet formation in vivo, there is considerable interest in the therapeutic potential of quadruplex oligonucleotides as aptamers or non-antisense antiproliferative agents. We previously have described several GROs that inhibit proliferation and induce apoptosis in cancer cell lines. The activity of these GROs was related to their ability to bind to a specific cellular protein (GRO-binding protein, which has been tentatively identified as nucleolin). In this report, we describe the physical properties and biological activity of a group of 12 quadruplex oligonucleotides whose structures have been characterized previously. This group includes the thrombin-binding aptamer, an anti-HIV oligonucleotide, and several quadruplexes derived from telomere sequences. Thermal denaturation and circular dichroism (CD) spectropolarimetry were utilized to investigate the stability, reversibility and ion dependence of G-quartet formation. The ability of each oligonucleotide to inhibit the proliferation of cancer cells and to compete for binding to the GRO-binding protein was also examined. Our results confirm that G-quartet formation is essential for biological activity of GROs and show that, in some cases, quadruplex structures formed in the presence of potassium ions are significantly more active than those formed in the presence of sodium ions. However, not all quadruplex structures exhibit antiproliferative effects, and the most accurate factor in predicting biological activity was the ability to bind to the GRO-binding protein. Our data also indicate that the CD spectra of quadruplex oligonucleotides may be more complex than previously thought.
Collapse
Affiliation(s)
- Virna Dapić
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu H, Kugimiya A, Sakurai T, Katahira M, Uesugi S. A comparison of the properties and the solution structure for RNA and DNA quadruplexes which contain two GGAGG sequences joined with a tetranucleotide linker. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2002; 21:785-801. [PMID: 12537021 DOI: 10.1081/ncn-120016481] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have determined solution structure of r(GGAGGUUUUGGAGG) (R14) by NMR; the RNA 14-mer forms an intra-strand parallel quadruplex with a G-tetrad and a hexad, in which a G-tetrad core is augmented by association of two A residues. The quadruplex further forms a dimer through stacking interaction between the hexads. In order to obtain insight into the difference between RNA and DNA quadruplexes, we synthesized the corresponding DNA 14-mer, d(GGAGGTTTTGGAGG) (D14), and examined its properties and structure by CD, gel electrophoresis, and NMR. K+ ions increased the thermal stability of both R14 and D14 structures. The binding affinity of K+ ions to R14 was much higher than that to D14. The CD and gel electrophoretic studies suggest that D14 forms a quadruplex entirely different from that of R14 in the presence of K+ ions; two molecules of D14 form a quadruplex with both antiparallel and parallel strand alignments and with diagonal loops at both ends of the stacked G-tetrads. The NMR study also gave results that are consistent with such structure: alternate glycosidic conformation, 5'G(syn)-G(anti)3', and characteristic chemical shift data observed for many quadruplexes containing diagonal TTTT loops.
Collapse
Affiliation(s)
- Hui Liu
- Department of Environment and Natural Sciences, Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | | | | | | | | |
Collapse
|
40
|
Crnugelj M, Hud NV, Plavec J. The solution structure of d(G(4)T(4)G(3))(2): a bimolecular G-quadruplex with a novel fold. J Mol Biol 2002; 320:911-24. [PMID: 12126614 DOI: 10.1016/s0022-2836(02)00569-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The G-rich 11-mer oligonucleotide d(G(4)T(4)G(3)) forms a bimolecular G-quadruplex in the presence of sodium ions with a topology that is distinct from the folds of the closely related and well-characterized sequences d(G(4)T(4)G(4)) and d(G(3)T(4)G(3)). The solution structure of d(G(4)T(4)G(3))(2) has been determined using a combination of NMR spectroscopy and restrained molecular dynamics calculations. d(G(4)T(4)G(3))(2) forms an asymmetric dimeric fold-back structure consisting of three stacked G-quartets. The two T(4) loops that span diagonally across the outer faces of the G-quartets assume different conformations. The glycosidic torsion angle conformations of the guanine bases are 5'-syn-anti-syn-anti-(T(4) loop)-anti-syn-anti in one strand and 5'-syn-anti-syn-anti-(T(4) loop)-syn-anti-syn in the other strand. The guanine bases of the two outer G-quartets exhibit a clockwise donor-acceptor hydrogen-bonding directionality, while those of the middle G-quartet exhibit the anti-clockwise directionality. The topology of this G-quadruplex, like other bimolecular fold-back structures with diagonal loops, places each strand of the G-quartet region next to a neighboring parallel and an anti-parallel strand. The two guanine residues not involved in G-quartet formation, G4 and G12 (i.e. the fourth guanine base of one strand and the first guanine base of the other strand), adopt distinct conformations. G4 is stacked on top of an adjacent G-quartet, and this base-stacking continues along with the bases of the loop residues T5 and T6. G12 is orientated away from the core of G-quartets; stacked on the T7 base and apparently involved in hydrogen-bonding interactions with the phosphodiester group of this same residue. The cation-dependent folding of the d(G(4)T(4)G(3))(2) quadruplex structure is distinct from that observed for similar sequences. While both d(G(4)T(4)G(4)) and d(G(3)T(4)G(3)) form bimolecular, diagonally looped G-quadruplex structures in the presence of Na(+), K(+) and NH(4)(+), we have observed this folding to be favored for d(G(4)T(4)G(3)) in the presence of Na(+), but not in the presence of K(+) or NH(4)(+). The structure of d(G(4)T(4)G(3))(2) exhibits a "slipped-loop" element that is similar to what has been proposed for structural intermediates in the folding pathway of some G-quadruplexes, and therefore provides support for the feasibility of these proposed transient structures in G-quadruplex formation.
Collapse
Affiliation(s)
- Martin Crnugelj
- NMR center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | | | | |
Collapse
|
41
|
Chen J, Zhang LR, Min JM, Zhang LH. Studies on the synthesis of a G-rich octaoligoisonucleotide (isoT)2(isoG)4(isoT)2 by the phosphotriester approach and its formation of G-quartet structure. Nucleic Acids Res 2002; 30:3005-14. [PMID: 12087187 PMCID: PMC117050 DOI: 10.1093/nar/gkf395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The octaoligoisonucleotide (isoT)2(isoG)4(isoT)2 (I), consisting of isonucleoside units 6'-O-allyl-4'-deoxy-4'-(nucleobase)-2',5'-anhydro-L-mannitol, was synthesized by the phosphotriester approach in solution phase. Based on CD spectra and capillary electrophoresis, it was confirmed that iso-oligomer I could form a parallel intermolecular G-quadruplex structure. K+, Na+ and Li+ can prompt the formation of G-quartet structures and stabilize them. The effective order of these cations is K+ > Na+ > Li+.
Collapse
Affiliation(s)
- Jun Chen
- National Research Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100083, People's Republic of China
| | | | | | | |
Collapse
|
42
|
Abstract
DNA oligonucleotides that have repetitive tracts of guanine bases can form G-quadruplex structures that display an amazing polymorphism. Structures of several new G-quadruplexes have been solved recently that greatly expand the known structural motifs observed in nucleic acid quadruplexes. Base triads, base hexads, and quartets that contain cytosine have recently been identified stacked over the familiar G-quartets. The current status of the diverse array of structural features in quadruplexes is described and used to provide insight into the polymorphism and folding pathways. This review also summarizes recent progress in the techniques used to probe the structures of G-quadruplexes and discusses the role of ion binding in quadruplex formation. Several of the quadruplex structures featured in this review can be accessed in the online version of this review as CHIME representations.
Collapse
Affiliation(s)
- M A Keniry
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
43
|
Sitohy M, Chobert JM, Schmidt M, Gozdzicka-Jozefiak A, Haertlé T. Interactions between esterified whey proteins (alpha-lactalbumin and beta-lactoglobulin) and DNA studied by differential spectroscopy. JOURNAL OF PROTEIN CHEMISTRY 2001; 20:633-40. [PMID: 11890204 DOI: 10.1023/a:1013716202650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spectroscopic study of interactions between esterified whey proteins and nucleic acids, at neutral pH, showed positive differential spectra over a range of wavelength between 210 and 340 nm. In contrast, native forms of whey proteins added to DNA did not produce any differential spectra. The positive difference in UV absorption was observed after addition of amounts of proteins as low as 138 molar ratio (MR) of protein/DNA, indicating high sensitivity of the applied method to detect interactions between basic proteins and DNA. UV-absorption differences increased with MR of added whey protein up to saturation. The saturation points were reached at relatively lower MR in the case of methylated forms of the esterified protein as compared to its ethylated form. Saturation of nucleic acid (2996 bp long) was achieved using 850 and 1100 MR of methylated beta-lactoglobulin and of methylated alpha-lactalbumin, respectively. Saturation with ethylated forms of the proteins was reached at MR of 3160 and 2750. Lysozyme, a native basic protein, showed a behavior similar to what was observed in the case of methylated forms of the dairy proteins studied. However, in the case of lysozyme, saturation was achieved at relatively lower MR (700). Methylated ,-casein failed to give positive spectra at pH 7 in the presence of DNA. It interacted with DNA only when the pH of the medium was lowered to 6.5, below its pI. Generally, amounts of proteins needed to saturate nucleic acid were much higher than those needed to neutralize it only electrostatically, demonstrating the presence on DNA of protein-binding sites other than the negative charges on the sugar-phosphate DNA backbones. Addition of 0.1% SDS to the medium suppressed totally all spectral differences between 210-340 nm. The presence of 5 M urea in the medium reduced only the spectral differences between 210-340 nm, pointing to the role played by hydrophobic interactions. Peptic hydrolysates of esterified and native proteins or their cationic fractions (pH > 7) produced negative differential spectra when mixed with DNA. The negative differences in UV absorption spectra were the most important in the case of peptic hydrolysates of methylated derivatives of whey proteins.
Collapse
Affiliation(s)
- M Sitohy
- Institut National de la Recherche Agronomique, Laboratoire d'Etude des Interactions des Molecules Alimentaires, Nantes, France
| | | | | | | | | |
Collapse
|
44
|
Chowdhury S, Bansal M. G-Quadruplex Structure Can Be Stable with Only Some Coordination Sites Being Occupied by Cations: A Six-Nanosecond Molecular Dynamics Study. J Phys Chem B 2001. [DOI: 10.1021/jp010929l] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shibasish Chowdhury
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
45
|
Chowdhury S, Bansal M. A nanosecond molecular dynamics study of antiparallel d(G)7 quadruplex structures: effect of the coordinated cations. J Biomol Struct Dyn 2001; 18:647-69. [PMID: 11334103 DOI: 10.1080/07391102.2001.10506696] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G7) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of approximately 1.5 A from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.
Collapse
Affiliation(s)
- S Chowdhury
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | |
Collapse
|
46
|
Saha T, Usdin K. Tetraplex formation by the progressive myoclonus epilepsy type-1 repeat: implications for instability in the repeat expansion diseases. FEBS Lett 2001; 491:184-7. [PMID: 11240124 DOI: 10.1016/s0014-5793(01)02190-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The repeat expansion diseases are a group of genetic disorders resulting from an increase in size or expansion of a specific array of tandem repeats. It has been suggested that DNA secondary structures are responsible for this expansion. If this is so, we would expect that all unstable repeats should form such structures. We show here that the unstable repeat that causes progressive myoclonus epilepsy type-1 (EPM1), like the repeats associated with other diseases in this category, forms a variety of secondary structures. However, EPM1 is unique in that tetraplexes are the only structures likely to form in long unpaired repeat tracts under physiological conditions.
Collapse
Affiliation(s)
- T Saha
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Kidney Diseases, Building 8, Room 202, National Institutes of Health, 8 CENTER DR MSC 0830, Bethesda, MD 20892-0830, USA
| | | |
Collapse
|
47
|
Patel PK, Bhavesh NS, Hosur RV. Cation-dependent conformational switches in d-TGGCGGC containing two triplet repeats of Fragile X Syndrome: NMR observations. Biochem Biophys Res Commun 2000; 278:833-8. [PMID: 11095993 DOI: 10.1006/bbrc.2000.3878] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Higher ordered structures formed by different DNA sequences have been widely investigated in recent years because of their implications in a variety of biological functions. Among these, G-quadruplexes have exhibited a great variety depending on the exact sequence, the lengths of the G-stretches, interception by other nucleotides, and environmental conditions such as pH, temperature, salt type, and its concentration. We report here interesting conformational switches observed by NMR in the sequence d-TGGCGGC containing two GGC triplet repeats related to the disease Fragile X-Syndrome. At neutral pH, the solution structure is a parallel-stranded quadruplex in presence of K(+) ions. Lowering the pH does not cause a major change in the structure; however, the chemical shift patterns of the C4 and G3 base protons suggest protonation of the C-tetrad in the center of the quadruplex. In contrast, the sequence forms an antiparallel duplex in Na(+) containing solutions. As the pH of the Na(+) sample is lowered, an equilibrium mixture of a duplex and a quadruplex appears, and at pH 2.2, the molecule exists entirely as a quadruplex. These results would be of significance from the point of view of recognition and regulation by different helicase enzymes, which have been found to discriminate between different types of quadruplex structures.
Collapse
Affiliation(s)
- P K Patel
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400 005, India
| | | | | |
Collapse
|
48
|
Catalanotti B, Galeone A, Gomez-Paloma L, Mayol L, Pepe A. 2'-Deoxy-8-(propyn-1-yl)adenosine-containing oligonucleotides: effects on stability of duplex and quadruplex structures. Bioorg Med Chem Lett 2000; 10:2005-9. [PMID: 10987437 DOI: 10.1016/s0960-894x(00)00381-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
2'-Deoxy-8-(propyn-1-yl)adenosine has been incorporated in synthetic oligodeoxyribonucleotides and its influence on thermal stability of duplex and quadruplex structures investigated by UV, CD and 1H NMR. The obtained results seem to indicate that the presence of the modified base negatively affects the stability of double stranded DNA whereas remarkably increases the stability of parallel quadruplex structures.
Collapse
Affiliation(s)
- B Catalanotti
- Dip. di Chimica delle Sostanze Naturali, Univ. di Napoli Federico II, Italy
| | | | | | | | | |
Collapse
|
49
|
Chowdhury S, Bansal M. Effect of coordinated ions on structure and flexiblity of parallel G-quandruplexes: a molecular dynamics study. J Biomol Struct Dyn 2000; 18:11-28. [PMID: 11021649 DOI: 10.1080/07391102.2000.10506581] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.
Collapse
Affiliation(s)
- S Chowdhury
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | |
Collapse
|
50
|
Patil SD, Rhodes DG. Influence of divalent cations on the conformation of phosphorothioate oligodeoxynucleotides: a circular dichroism study. Nucleic Acids Res 2000; 28:2439-45. [PMID: 10871378 PMCID: PMC102740 DOI: 10.1093/nar/28.12.2439] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1999] [Revised: 05/02/2000] [Accepted: 05/02/2000] [Indexed: 11/13/2022] Open
Abstract
Phosphorothioate oligodeoxynucleotides (ODNs) have been extensively investigated in vivo and in vitro for antisense control of gene expression. It has been shown that cellular uptake of phosphorothioate ODNs in some in vitro cell systems increases in the presence of divalent cations. In this work, we analyze the conformation of phosphorothioate ODNs and specific changes induced in it by various divalent cations using circular dichroism (CD) spectroscopy. CD data were obtained with several phosphorothioate ODNs in the absence and presence of the divalent cations Mg(2+), Ca(2+), Sr(2+), Ba(2+) and Mn(2+). All CD spectra indicated stable conformations of the ODNs in solution. The spectra were strongly dependent on ODN sequence and composition. Some ODNs such as T(23) and another with 'random' distribution of bases showed CD spectra characteristic of B-form DNA. Other ODNs which had at least three consecutive guanines in their sequences exhibited spectra characteristic of parallel G-tetraplexes. CD spectra of antisense ODNs exhibited specific responses to divalent cations. Changes in the conformation were not simply due to ionic strength effects. Mn(2+) diminished secondary structure in some ODNs. Group II divalent ions stabilized the parallel G-tetraplexes, and Mg(2+) generally had the weakest stabilizing efficiency. Each sequence/ion combination had a specific response so these effects cannot be generalized. These sequence-dependent, divalent ion-sensitive, and structurally unique solution conformations may be related to ion-mediated ODN uptake.
Collapse
Affiliation(s)
- S D Patil
- Department of Pharmaceutical Sciences, The University of Connecticut, Storrs, CT 06269-2092, USA
| | | |
Collapse
|