1
|
Zhong Y, Lu Y, Li J, Ren Q, Fan Y, Meng X, Shao J, Qian H. Discovery of Novel SHP2 ATTEC Degraders against Pancreatic Ductal Adenocarcinoma Harboring KRAS(G12D) Mutations. J Med Chem 2025; 68:8143-8162. [PMID: 40233000 DOI: 10.1021/acs.jmedchem.4c02682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Aberrant expression of the phosphatase SHP2 is implicated in numerous cancers, including KRAS G12D mutation driven PDAC. Although several SHP2 inhibitors have been reported, specific inhibitors with potent efficacy are not yet available. Given the elevated autophagy in PDAC, herein, we first designed novel SHP2 degraders through autophagosome-tethering compound strategy. Among them, the preferred 11n formed hydrogen bonds with Arg 111 and Glu 250 residues of SHP2 to enhance interactions between SHP2 and LC3. 11n also possessed great efficacy and selectivity against KRAS G12D mutant cancer cells versus the wild type. Moreover, the degradation caused by 11n manipulated the signaling pathways associated with cell apoptosis, metastasis, and invasion to inhibit the tumor growth both in vitro and in vivo. These findings not only generated a useful tool for exploring the potential of targeting SHP2 degradation but also offered promising candidates to develop novel drugs based on the autophagy mechanism.
Collapse
Affiliation(s)
- Yue Zhong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yan Lu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jiahui Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qiang Ren
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yiqing Fan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiqi Meng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jieyu Shao
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24R Tongjiaxiang, Nanjing 210009, PR China
| |
Collapse
|
2
|
Fuhr D, Johnston J, Brooks EP, Fantauzzo KA. Additive effects on craniofacial development upon conditional ablation of PDGFRα and SHP2 in the mouse neural crest lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638176. [PMID: 39990469 PMCID: PMC11844557 DOI: 10.1101/2025.02.13.638176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Activity of the receptor tyrosine kinase PDGFRα and the tyrosine phosphatase SHP2 are critical for vertebrate craniofacial development. We sought to determine the effect of SHP2 binding to PDGFRα via phenotypic and biochemical analyses of an allelic series of mouse embryos with combined loss of both proteins in the neural crest lineage. Results We demonstrated that SHP2 preferentially binds PDGFRα/α homodimers among the three PDGFR dimers. Analysis of allelic series mutant embryos revealed increased cell death in the lateral nasal and maxillary processes at E10.5, variably penetrant facial blebbing, facial hemorrhaging, midline clefting and loss of the mandibular region at E13.5, and widespread craniofacial bone and cartilage defects at birth. Further, we showed that loss of SHP2 leads to increased phosphorylation of PDGFRα and the downstream effector Erk1/2 in E10.5 allelic series mutant embryo lysates. Conclusions Together, our findings demonstrate additive effects on craniofacial development upon conditional ablation of PDGFRα and SHP2 in the mouse neural crest lineage and indicate that SHP2 may negatively and positively regulate PDGFRα signaling through distinct mechanisms.
Collapse
Affiliation(s)
- Daniel Fuhr
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica Johnston
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elliott P. Brooks
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A. Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Marasco M, Kirkpatrick J, Carlomagno T, Hub JS, Anselmi M. Phosphopeptide binding to the N-SH2 domain of tyrosine phosphatase SHP2 correlates with the unzipping of its central β-sheet. Comput Struct Biotechnol J 2024; 23:1169-1180. [PMID: 38510972 PMCID: PMC10951427 DOI: 10.1016/j.csbj.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
SHP2 is a tyrosine phosphatase that plays a regulatory role in multiple intracellular signaling cascades and is known to be oncogenic in certain contexts. In the absence of effectors, SHP2 adopts an autoinhibited conformation with its N-SH2 domain blocking the active site. Given the key role of N-SH2 in regulating SHP2, this domain has been extensively studied, often by X-ray crystallography. Using a combination of structural analyses and molecular dynamics (MD) simulations we show that the crystallographic environment can significantly influence the structure of the isolated N-SH2 domain, resulting in misleading interpretations. As an orthogonal method to X-ray crystallography, we use a combination of NMR spectroscopy and MD simulations to accurately determine the conformation of apo N-SH2 in solution. In contrast to earlier reports based on crystallographic data, our results indicate that apo N-SH2 in solution primarily adopts a conformation with a fully zipped central β-sheet, and that partial unzipping of this β-sheet is promoted by binding of either phosphopeptides or even phosphate/sulfate ions.
Collapse
Affiliation(s)
- Michelangelo Marasco
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Kirkpatrick
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Teresa Carlomagno
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Jochen S. Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Massimiliano Anselmi
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Vanclooster P, Seghers S, Prenen H. State-of-the-art and upcoming trends in RAS-directed therapies in gastrointestinal malignancies. Curr Opin Oncol 2024; 36:313-319. [PMID: 38726828 DOI: 10.1097/cco.0000000000001042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW Overall, the review underscores the evolving landscape of KRAS-targeted therapy and the potential for these approaches to improve outcomes for patients with gastrointestinal malignancies. It highlights the importance of ongoing research and clinical trials in advancing precision medicine strategies for KRAS-driven cancers. This review provides a comprehensive overview of the RAS signaling pathway and its significance in gastrointestinal malignancies. RECENT FINDINGS The introduction of KRAS inhibitor represents a significant advancement in the treatment landscape for KRAS-mutant cancers. In this review, we discuss upcoming trends in KRAS-targeted therapy, including the development of mutant-specific direct KRAS inhibitors like MRTX1133 and pan-RAS inhibitors such as RMC-6236. It also explores indirect RAS inhibitors targeting upstream and downstream components of the RAS pathway. Additionally, the review examines other upcoming strategies like combination therapies, such as CDK4/6 and ERK MAPK inhibitors, as well as adoptive cell therapy and cancer vaccines targeting KRAS-mutant cancers. SUMMARY Targeting RAS has become an important strategy in treating gastrointestinal cancer. These findings in this review underscore the importance of a multidisciplinary approach, integrating advances in molecular profiling, targeted therapy, immunotherapy, and clinical research to optimize treatment strategies for patients with KRAS-mutant gastrointestinal malignancies.
Collapse
Affiliation(s)
| | - Sofie Seghers
- Department of Oncology, Antwerp University Hospital, Edegem
- Center for Oncological Research (CORE)
| | - Hans Prenen
- Department of Oncology, Antwerp University Hospital, Edegem
- Center for Oncological Research (CORE)
- Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
5
|
Telleria EL, Tinoco-Nunes B, Forrest DM, Di-Blasi T, Leštinová T, Chang KP, Volf P, Pitaluga AN, Traub-Csekö YM. Evidence of a conserved mammalian immunosuppression mechanism in Lutzomyia longipalpis upon infection with Leishmania. Front Immunol 2023; 14:1162596. [PMID: 38022562 PMCID: PMC10652419 DOI: 10.3389/fimmu.2023.1162596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Sand flies (Diptera: Phlebotominae) belonging to the Lutzomyia genus transmit Leishmania infantum parasites. To understand the complex interaction between the vector and the parasite, we have been investigating the sand fly immune responses during the Leishmania infection. Our previous studies showed that genes involved in the IMD, Toll, and Jak-STAT immunity pathways are regulated upon Leishmania and bacterial challenges. Nevertheless, the parasite can thrive in the vectors' gut, indicating the existence of mechanisms capable of modulating the vector defenses, as was already seen in mammalian Leishmania infections. Methods results and discussion In this study, we investigated the expression of Lutzomyia longipalpis genes involved in regulating the Toll pathway under parasitic infection. Leishmania infantum infection upregulated the expression of two L. longipalpis genes coding for the putative repressors cactus and protein tyrosine phosphatase SHP. These findings suggest that the parasite can modulate the vectors' immune response. In mammalian infections, the Leishmania surface glycoprotein GP63 is one of the inducers of host immune depression, and one of the known effectors is SHP. In L. longipalpis we found a similar effect: a genetically modified strain of Leishmania amazonensis over-expressing the metalloprotease GP63 induced a higher expression of the sand fly SHP indicating that the L. longipalpis SHP and parasite GP63 increased expressions are connected. Immuno-stained microscopy of L. longipalpis LL5 embryonic cells cultured with Leishmania strains or parasite conditioned medium showed cells internalization of parasite GP63. A similar internalization of GP63 was observed in the sand fly gut tissue after feeding on parasites, parasite exosomes, or parasite conditioned medium, indicating that GP63 can travel through cells in vitro or in vivo. When the sand fly SHP gene was silenced by RNAi and females infected by L. infantum, parasite loads decreased in the early phase of infection as expected, although no significant differences were seen in late infections of the stomodeal valve. Conclusions Our findings show the possible role of a pathway repressor involved in regulating the L. longipalpis immune response during Leishmania infections inside the insect. In addition, they point out a conserved immunosuppressive effect of GP63 between mammals and sand flies in the early stage of parasite infection.
Collapse
Affiliation(s)
- Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Bruno Tinoco-Nunes
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - David M. Forrest
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tatiana Di-Blasi
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Kwang Poo Chang
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - André Nóbrega Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Richards CE, Elamin YY, Carr A, Gately K, Rafee S, Cremona M, Hanrahan E, Smyth R, Ryan D, Morgan RK, Kennedy S, Hudson L, Fay J, O'Byrne K, Hennessy BT, Toomey S. Protein Tyrosine Phosphatase Non-Receptor 11 ( PTPN11/Shp2) as a Driver Oncogene and a Novel Therapeutic Target in Non-Small Cell Lung Cancer (NSCLC). Int J Mol Sci 2023; 24:10545. [PMID: 37445722 DOI: 10.3390/ijms241310545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
PTPN11 encodes the SHP2 protein tyrosine phosphatase that activates the mitogen-activated protein kinase (MAPK) pathway upstream of KRAS and MEK. PTPN11/Shp2 somatic mutations occur frequently in Juvenile myelomonocytic leukaemia (JMML); however, the role of mutated PTPN11 in lung cancer tumourigenesis and its utility as a therapeutic target has not been fully addressed. We applied mass-spectrometry-based genotyping to DNA extracted from the tumour and matched the normal tissue of 356 NSCLC patients (98 adenocarcinomas (LUAD) and 258 squamous cell carcinomas (LUSC)). Further, PTPN11 mutation cases were identified in additional cohorts, including TCGA, Broad, and MD Anderson datasets and the COSMIC database. PTPN11 constructs harbouring PTPN11 E76A, A72D and C459S mutations were stably expressed in IL-3 dependent BaF3 cells and NSCLC cell lines (NCI-H1703, NCI-H157, NCI-H1299). The MAPK and PI3K pathway activation was evaluated using Western blotting. PTPN11/Shp2 phosphatase activity was measured in whole-cell protein lysates using an Shp2 assay kit. The Shp2 inhibitor (SHPi) was assessed both in vitro and in vivo in a PTPN11-mutated cell line for improved responses to MAPK and PI3K targeting therapies. Somatic PTPN11 hotspot mutations occurred in 4/98 (4.1%) adenocarcinomas and 7/258 (2.7%) squamous cells of 356 NSCLC patients. Additional 26 PTPN11 hotspot mutations occurred in 23 and 3 adenocarcinomas and squamous cell carcinoma, respectively, across the additional cohorts. Mutant PTPN11 significantly increased the IL-3 independent survival of Ba/F3 cells compared to wildtype PTPN11 (p < 0.0001). Ba/F3, NCI-H1703, and NCI-H157 cells expressing mutant PTPN11 exhibited increased PTPN11/Shp2 phosphatase activity and phospho-ERK1/2 levels compared to cells expressing wildtype PTPN11. The transduction of the PTPN11 inactivating mutation C459S into NSCLC cell lines led to decreased phospho-ERK, as well as decreased phospho-AKT in the PTPN11-mutated NCI-H661 cell line. NCI-H661 cells (PTPN11-mutated, KRAS-wild type) were significantly more sensitive to growth inhibition by the PI3K inhibitor copanlisib (IC50: 13.9 ± 4.7 nM) compared to NCI-H1703 (PTPN11/KRAS-wild type) cells (IC50: >10,000 nM). The SHP2 inhibitor, in combination with the PI3K targeting therapy copanlisib, showed no significant difference in tumour development in vivo; however, this significantly prevented MAPK pathway induction in vitro (p < 0.0001). PTPN11/Shp2 demonstrated the in vitro features of a driver oncogene and could potentially sensitize NSCLC cells to PI3K inhibition and inhibit MAPK pathway activation following PI3K pathway targeting.
Collapse
Affiliation(s)
- Cathy E Richards
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
| | - Yasir Y Elamin
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
- Department of Thoracic Head and Neck Medical Oncology, Division of Cancer Medicine, M.D. Anderson Cancer Centre, Houston, TX 77030, USA
| | - Aoife Carr
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
| | - Kathy Gately
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, D08 NHY1 Dublin, Ireland
| | - Shereen Rafee
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, D08 NHY1 Dublin, Ireland
| | - Mattia Cremona
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
| | - Emer Hanrahan
- Department of Medical Oncology, St. Vincent's Hospital, D04 T6F4 Dublin, Ireland
| | - Robert Smyth
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
| | - Daniel Ryan
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
- Department of Respiratory Medicine, Beaumont Hospital, D09 V2N0 Dublin, Ireland
| | - Ross K Morgan
- Department of Respiratory Medicine, Beaumont Hospital, D09 V2N0 Dublin, Ireland
| | - Susan Kennedy
- Department of Pathology, St. Vincent's Hospital, D04 T6F4 Dublin, Ireland
| | - Lance Hudson
- Department of Surgery, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
| | - Joanna Fay
- RCSI Biobank Service, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
| | | | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, D09 YD60 Dublin, Ireland
| |
Collapse
|
7
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
8
|
The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol 2022; 19:637-655. [PMID: 36028717 PMCID: PMC9412785 DOI: 10.1038/s41571-022-00671-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/18/2022]
Abstract
Despite being the most frequently altered oncogenic protein in solid tumours, KRAS has historically been considered ‘undruggable’ owing to a lack of pharmacologically targetable pockets within the mutant isoforms. However, improvements in drug design have culminated in the development of inhibitors that are selective for mutant KRAS in its active or inactive state. Some of these inhibitors have proven efficacy in patients with KRASG12C-mutant cancers and have become practice changing. The excitement associated with these advances has been tempered by drug resistance, which limits the depth and/or duration of responses to these agents. Improvements in our understanding of RAS signalling in cancer cells and in the tumour microenvironment suggest the potential for several novel combination therapies, which are now being explored in clinical trials. Herein, we provide an overview of the RAS pathway and review the development and current status of therapeutic strategies for targeting oncogenic RAS, as well as their potential to improve outcomes in patients with RAS-mutant malignancies. We then discuss challenges presented by resistance mechanisms and strategies by which they could potentially be overcome. The RAS oncogenes are among the most common drivers of tumour development and progression but have historically been considered undruggable. The development of direct KRAS inhibitors has changed this paradigm, although currently clinical use of these novel therapeutics is limited to a select subset of patients, and intrinsic or acquired resistance presents an inevitable challenge to cure. Herein, the authors provide an overview of the RAS pathway in cancer and review the ongoing efforts to develop effective therapeutic strategies for RAS-mutant cancers. They also discuss the current understanding of mechanisms of resistance to direct KRAS inhibitors and strategies by which they might be overcome. Owing to intrinsic and extrinsic factors, KRAS and other RAS isoforms have until recently been impervious to targeting with small-molecule inhibitors. Inhibitors of the KRASG12C variant constitute a potential breakthrough in the treatment of many cancer types, particularly non-small-cell lung cancer, for which such an agent has been approved by the FDA. Several forms of resistance to KRAS inhibitors have been defined, including primary, adaptive and acquired resistance; these resistance mechanisms are being targeted in studies that combine KRAS inhibitors with inhibitors of horizontal or vertical signalling pathways. Mutant KRAS has important effects on the tumour microenvironment, including the immunological milieu; these effects must be considered to fully understand resistance to KRAS inhibitors and when designing novel treatment strategies.
Collapse
|
9
|
Quilang RC, Lui S, Forbes K. miR-514a-3p: a novel SHP-2 regulatory miRNA that modulates human cytotrophoblast proliferation. J Mol Endocrinol 2022; 68:99-110. [PMID: 34792485 PMCID: PMC8789026 DOI: 10.1530/jme-21-0175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP-2), encoded by the PTPN11 gene, forms a central component of multiple signalling pathways and is required for insulin-like growth factor (IGF)-induced placental growth. Altered expression of SHP-2 is associated with aberrant placental and fetal growth indicating that drugs modulating SHP-2 expression may improve adverse pregnancy outcome associated with altered placental growth. We have previously demonstrated that placental PTPN11/SHP-2 expression is controlled by miRNAs. SHP-2 regulatory miRNAs may have therapeutic potential; however, the individual miRNA(s) that regulate SHP-2 expression in the placenta remain to be established. We performed in silico analysis of 3'UTR target prediction databases to identify libraries of Hela cells transfected with individual miRNA mimetics, enriched in potential SHP-2 regulatory miRNAs. Analysis of PTPN11 levels by quantitative (q) PCR revealed that miR-758-3p increased, while miR-514a-3p reduced PTPN11 expression. The expression of miR-514a-3p and miR-758-3p within the human placenta was confirmed by qPCR; miR-514a-3p (but not miR-758-3p) levels inversely correlated with PTPN11 expression. To assess the interaction between these miRNAs and PTPN11/SHP-2, specific mimetics were transfected into first-trimester human placental explants and then cultured for up to 4 days. Overexpression of miR-514a-3p, but not miR-758-3p, significantly reduced PTPN11 and SHP-2 expression. microRNA-ribonucleoprotein complex (miRNP)-associated mRNA assays confirmed that this interaction was direct. miR-514a-3p overexpression attenuated IGF-I-induced trophoblast proliferation (BrdU incorporation). miR-758-3p did not alter trophoblast proliferation. These data demonstrate that by modulating SHP-2 expression, miR-514a-3p is a novel regulator of IGF signalling and proliferation in the human placenta and may have therapeutic potential in pregnancies complicated by altered placental growth.
Collapse
Affiliation(s)
- Rachel C Quilang
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sylvia Lui
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- St. Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Karen Forbes
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Gu SH, Chen CH, Lin PL. Expression of protein tyrosine phosphatases and Bombyx embryonic development. JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104198. [PMID: 33549567 DOI: 10.1016/j.jinsphys.2021.104198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Protein phosphorylation is an integral component of signal transduction pathways within eukaryotic cells, and it is regulated by coordinated interactions between protein kinases and protein phosphatases. Our previous study demonstrated differential expressions of serine/threonine protein phosphatases (PP2A and calcineurin) between diapause and developing eggs in Bombyx mori. In the present study, we further investigated expression of protein tyrosine phosphatases (PTPs) in relation to the Bombyx embryonic development. An immunoblot analysis showed that eggs contained the proteins of the 51-kDa PTP 1B (PTP1B), the 55-kDa phosphatase and tensin homologue (PTEN), and the 70-kDa Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2), which undergo differential changes between diapause and developing eggs. Protein level of PTP1B and PTEN in eggs whose diapause initiation was prevented by HCl gradually increased toward embryonic development. The protein level of SHP2 also showed a dramatic increase on days 7 and 8 after HCl treatment. However, protein levels of PTP1B, PTEN, and SHP2 in diapause eggs remained at low levels during the first 9 days after oviposition. These differential changing patterns in protein levels were further confirmed using both non-diapause eggs and eggs in which diapause had been terminated by chilling of diapausing eggs at 5 °C for 70 days and then were transferred to 25 °C. Direct determination of PTP enzymatic activities showed higher activities in developing eggs (HCl-treated eggs, non-diapause eggs, and chilled eggs) compared to those in diapause eggs. Examination of temporal changes in mRNA expression levels of PTP1B, PTEN, and SHP2 did not show significant differences between diapause eggs and HCl-treated eggs except high expression in SHP2 variant B during the later embryonic development in HCl-treated eggs. These results demonstrate that higher protein levels of PTP1B, PTEN, and SHP2 and increased tyrosine phosphatase enzymatic activities in developing eggs are likely related to embryonic development of B. mori.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | - Chien-Hung Chen
- Chung Hwa University of Medical Technology, 89 Wen-Hwa 1st Road, Jen-Te Township, Tainan County 717, Taiwan, ROC
| | - Pei-Ling Lin
- Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC
| |
Collapse
|
11
|
Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Cancers (Basel) 2020; 12:E2799. [PMID: 33003469 PMCID: PMC7599540 DOI: 10.3390/cancers12102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| |
Collapse
|
12
|
Abstract
RAS was identified as a human oncogene in the early 1980s and subsequently found to be mutated in nearly 30% of all human cancers. More importantly, RAS plays a central role in driving tumor development and maintenance. Despite decades of effort, there remain no FDA approved drugs that directly inhibit RAS. The prevalence of RAS mutations in cancer and the lack of effective anti-RAS therapies stem from RAS' core role in growth factor signaling, unique structural features, and biochemistry. However, recent advances have brought promising new drugs to clinical trials and shone a ray of hope in the field. Here, we will exposit the details of RAS biology that illustrate its key role in cell signaling and shed light on the difficulties in therapeutically targeting RAS. Furthermore, past and current efforts to develop RAS inhibitors will be discussed in depth.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
13
|
Sang Y, Hou Y, Cheng R, Zheng L, Alvarez AA, Hu B, Cheng SY, Zhang W, Li Y, Feng H. Targeting PDGFRα-activated glioblastoma through specific inhibition of SHP-2-mediated signaling. Neuro Oncol 2020; 21:1423-1435. [PMID: 31232447 DOI: 10.1093/neuonc/noz107] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant primary brain tumor, with dismal median survival. Treatment of GBM is particularly challenging given the intrinsic resistance to chemotherapy and difficulty of drugs to reach the tumor beds due to the blood-brain barrier. Here, we examined the efficacy of SHP099, a potent, selective, and oral SHP-2 inhibitor for treating GBM with activated platelet derived growth factor receptor alpha (PDGFRα) signaling. METHODS The effects of SHP099 on cell survival of neural progenitor cells (NPCs), GBM cell lines, and patient-derived glioma stem-like cells (GSCs) were evaluated. Brain and plasma pharmacokinetics of SHP099 and its ability to inhibit SHP-2 signaling were assessed. SHP099 efficacy as a single agent or in combination with temozolomide (TMZ) was assessed using transformed mouse astrocyte and GSC orthotopic xenograft models. RESULTS Activated PDGFRα signaling in established GBM cells, GSCs, and transformed mouse astrocytes was significantly inhibited by SHP099 compared with NPCs in vitro and in vivo through targeting SHP-2-stimulated activation of extracellular signal-regulated protein kinases 1 and 2 in GBM. SHP099 treatment specifically inhibited expression of JUN, a downstream effector of PDGFR signaling, thereby attenuating cell cycle progression in GBM cells with activated PDGFRα. Moreover, SHP099 accumulated at efficacious concentrations in the brain and effectively inhibited orthotopic GBM tumor xenograft growth. SHP099 exhibited antitumor activity either as a single agent or in combination with TMZ and provided significant survival benefits for GBM tumor xenograft-bearing animals. CONCLUSIONS Our data demonstrate the utility and feasibility of SHP099 as a potential therapeutic option for improving the clinical treatment of GBM in combination with TMZ.
Collapse
Affiliation(s)
- Youzhou Sang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanli Hou
- Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rongrong Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Zheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Angel A Alvarez
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,The Ken and Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bo Hu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,The Ken and Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shi-Yuan Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,The Ken and Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Weiwei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanxin Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Okada Y, Zhang Y, Zhang L, Yeh LK, Wang YC, Saika S, Liu CY. Shp2-mediated MAPK pathway regulates ΔNp63 in epithelium to promote corneal innervation and homeostasis. J Transl Med 2020; 100:630-642. [PMID: 31653968 PMCID: PMC7102931 DOI: 10.1038/s41374-019-0338-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Corneal nerve fibers serving sensory, reflex, and neurotrophic functions sustain corneal homeostasis and transparency to promote normal visual function. It is not known whether corneal epithelium is also important for the corneal innervation. Herein, we generated a compound transgenic mouse strain, K14rtTA;tetO-Cre (TC);Shp2flox/flox, in which Shp2 was conditionally knocked out from K14-positive cells including corneal epithelium (Shp2K14ce-cko) upon doxycycline (dox) administration. Our data reveal that Shp2K14ce-cko caused corneal denervation. More specifically, corneal epithelium thickness and corneal sensitivity reduced dramatically in Shp2K14ce-cko mice. In addition, corneal epithelial wound healing after debridement was delayed substantially in the mutant mice. These defects manifested in Shp2K14ce-cko mice resemble the symptoms of human neurotrophic keratopathy. Our in vitro study shows that neurite outgrowth of the mouse primary trigeminal ganglion cells (TGCs) was inhibited when as cocultured with mouse corneal epithelial cells (TKE2) transfected by Shp2-, Mek1/2-, or ∆Np63-targeted siRNA but not by Akt1/2-targeted siRNA. Furthermore, ∆Np63 RNA interference downregulated Ngf expression in TKE2 cells. Cotransfection experiments reveal that Shp2 tightly monitored ΔNp63 protein levels in HEK293 and TKE2 cells. Taken together, our data suggest that the Shp2-mediated MAPK pathway regulated ΔNp63, which in turn positively regulated Ngf in epithelium to promote corneal innervation and epithelial homeostasis.
Collapse
Affiliation(s)
- Yuka Okada
- Indiana University School of Optometry, Bloomington, IN, USA.
- Department of Ophthalmology, Wakayama Medical University, School of Medicine, Wakayama, Japan.
| | - Yujin Zhang
- Indiana University School of Optometry, Bloomington, IN, USA
| | - Lingling Zhang
- Indiana University School of Optometry, Bloomington, IN, USA
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang-Gung Memorial Hospital, Linko, Taiwan
| | - Yen-Chiao Wang
- Indiana University School of Optometry, Bloomington, IN, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Chia-Yang Liu
- Indiana University School of Optometry, Bloomington, IN, USA.
| |
Collapse
|
15
|
Rad Pour S, Morikawa H, Kiani NA, Gomez-Cabrero D, Hayes A, Zheng X, Pernemalm M, Lehtiö J, Mole DJ, Hansson J, Eriksson H, Tegnér J. Immunometabolic Network Interactions of the Kynurenine Pathway in Cutaneous Malignant Melanoma. Front Oncol 2020; 10:51. [PMID: 32117720 PMCID: PMC7017805 DOI: 10.3389/fonc.2020.00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of the kynurenine pathway has been regarded as a mechanism of tumor immune escape by the enzymatic activity of indoleamine 2, 3 dioxygenase and kynurenine production. However, the immune-modulatory properties of other kynurenine metabolites such as kynurenic acid, 3-hydroxykynurenine, and anthranilic acid are poorly understood. In this study, plasma from patients diagnosed with metastatic cutaneous malignant melanoma (CMM) was obtained before (PRE) and during treatment (TRM) with inhibitors of mitogen-activated protein kinase pathway (MAPKIs). Immuno-oncology related protein profile and kynurenine metabolites were analyzed by proximity extension assay (PEA) and LC/MS-MS, respectively. Correlation network analyses of the data derived from PEA and LC/MS-MS identified a set of proteins that modulate the differentiation of Th1 cells, which is linked to 3-hydroxykynurenine levels. Moreover, MAPKIs treatments are associated with alteration of 3-hydroxykynurenine and 3hydroxyanthranilic acid (3HAA) concentrations and led to higher "CXCL11," and "KLRD1" expression that are involved in T and NK cells activation. These findings imply that the kynurenine pathway is pathologically relevant in patients with CMM.
Collapse
Affiliation(s)
- Soudabeh Rad Pour
- Unit of Computational Medicine, Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hiromasa Morikawa
- Biological and Environmental Sciences and Engineering Division (BESE), Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Narsis A. Kiani
- Unit of Computational Medicine, Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Unit of Computational Medicine, Algorithmic Dynamics Lab, Department of Medicine Solna, Centre for Molecular Medicine, Karolinska Institute and SciLifeLab, Stockholm, Sweden
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Sweden
| | - Alistair Hayes
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Xiaozhong Zheng
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Pernemalm
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Damian J. Mole
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Oncology/Skin Cancer Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Hanna Eriksson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Oncology/Skin Cancer Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Tegnér
- Unit of Computational Medicine, Department of Medicine, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Biological and Environmental Sciences and Engineering Division (BESE), Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Unit of Computational Medicine, Algorithmic Dynamics Lab, Department of Medicine Solna, Centre for Molecular Medicine, Karolinska Institute and SciLifeLab, Stockholm, Sweden
| |
Collapse
|
16
|
Niogret C, Birchmeier W, Guarda G. SHP-2 in Lymphocytes' Cytokine and Inhibitory Receptor Signaling. Front Immunol 2019; 10:2468. [PMID: 31708921 PMCID: PMC6823243 DOI: 10.3389/fimmu.2019.02468] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Somewhat counterintuitively, the tyrosine phosphatase SHP-2 (SH2 domain-containing protein tyrosine phosphatase-2) is crucial for the activation of extracellular signal-regulated kinase (ERK) downstream of various growth factor receptors, thereby exerting essential developmental functions. This phosphatase also deploys proto-oncogenic functions and specific inhibitors have recently been developed. With respect to the immune system, the role of SHP-2 in the signaling of cytokines relevant for myelopoiesis and myeloid malignancies has been intensively studied. The function of this phosphatase downstream of cytokines important for lymphocytes is less understood, though multiple lines of evidence suggest its importance. In addition, SHP-2 has been proposed to mediate the suppressive effects of inhibitory receptors (IRs) that sustain a dysfunctional state in anticancer T cells. Molecules involved in IR signaling are of potential pharmaceutical interest as blockade of these inhibitory circuits leads to remarkable clinical benefit. Here, we discuss the dichotomy in the functions ascribed to SHP-2 downstream of cytokine receptors and IRs, with a focus on T and NK lymphocytes. Further, we highlight the importance of broadening our understanding of SHP-2′s relevance in lymphocytes, an essential step to inform on side effects and unanticipated benefits of its therapeutic blockade.
Collapse
Affiliation(s)
- Charlène Niogret
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Greta Guarda
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
17
|
Villegas SN, Ferres-Marco D, Domínguez M. Using Drosophila Models and Tools to Understand the Mechanisms of Novel Human Cancer Driver Gene Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:15-35. [PMID: 31520347 DOI: 10.1007/978-3-030-23629-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The formation, overgrowth and metastasis of tumors comprise a complex series of cellular and molecular events resulting from the combined effects of a variety of aberrant signaling pathways, mutations, and epigenetic alterations. Modeling this complexity in vivo requires multiple genes to be manipulated simultaneously, which is technically challenging. Here, we analyze how Drosophila research can further contribute to identifying pathways and elucidating mechanisms underlying novel cancer driver (risk) genes associated with tumor growth and metastasis in humans.
Collapse
Affiliation(s)
- Santiago Nahuel Villegas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain.
| | - Dolors Ferres-Marco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain.
| | - María Domínguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain
| |
Collapse
|
18
|
Yue J, Liang C, Wu K, Hou Z, Wang L, Zhang C, Liu S, Yang H. Upregulated SHP-2 expression in the epileptogenic zone of temporal lobe epilepsy and various effects of SHP099 treatment on a pilocarpine model. Brain Pathol 2019; 30:373-385. [PMID: 31398269 DOI: 10.1111/bpa.12777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is defined as the sporadic occurrence of spontaneous recurrent seizures, and its pathogenesis is complex. SHP-2 (Src homology 2-containing protein tyrosine phosphatase 2) is a widely expressed cytosolic tyrosine phosphatase protein that participates in the regulation of inflammation, angiogenesis, gliosis, neurogenesis and apoptosis, suggesting a potential role of SHP-2 in TLE. Therefore, we investigated the expression patterns of SHP-2 in the epileptogenic brain tissue of intractable TLE patients and the various effects of treatment with the SHP-2-specific inhibitor SHP099 on a pilocarpine model. Western blotting and immunohistochemistry results confirmed that SHP-2 expression was upregulated in the temporal neocortex of patients with TLE. Double-labeling experiments revealed that SHP-2 was highly expressed in neurons, astrocytes, microglia and vascular endothelial cells in the epileptic foci of TLE patients. In the pilocarpine-induced C57BL/6 mouse model, SHP-2 upregulation in the hippocampus began one day after status epilepticus, reached a peak at 21 days and then maintained a significantly high level until day 60. Similarly, we found a remarkable increase in SHP-2 expression at 1, 7, 21 and 60 days post-SE in the temporal neocortex. In addition, we also showed that SHP099 increased reactive gliosis, the release of IL-1β, neuronal apoptosis and neuronal loss, while reduced neurogenesis and albumin leakage. Taken together, the increased expression of SHP-2 in the epileptic zone may be involved in the process of TLE.
Collapse
Affiliation(s)
- Jiong Yue
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Liang
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kefu Wu
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Hou
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lukang Wang
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunqing Zhang
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Liu
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Yang
- Epilepsy research center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
19
|
Backus KM, Cao J, Maddox SM. Opportunities and challenges for the development of covalent chemical immunomodulators. Bioorg Med Chem 2019; 27:3421-3439. [PMID: 31204229 DOI: 10.1016/j.bmc.2019.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Compounds that react irreversibly with cysteines have reemerged as potent and selective tools for altering protein function, serving as chemical probes and even clinically approved drugs. The exquisite sensitivity of human immune cell signaling pathways to oxidative stress indicates the likely, yet still underexploited, general utility of covalent probes for selective chemical immunomodulation. Here, we provide an overview of immunomodulatory cysteines, including identification of electrophilic compounds available to label these residues. We focus our discussion on three protein classes essential for cell signaling, which span the 'druggability' spectrum from amenable to chemical probes (kinases), somewhat druggable (proteases), to inaccessible (phosphatases). Using existing inhibitors as a guide, we identify general strategies to guide the development of covalent probes for selected undruggable classes of proteins and propose the application of such compounds to alter immune cell functions.
Collapse
Affiliation(s)
- Keriann M Backus
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA.
| | - Jian Cao
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| | - Sean M Maddox
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| |
Collapse
|
20
|
Vitallé J, Terrén I, Orrantia A, Zenarruzabeitia O, Borrego F. CD300 receptor family in viral infections. Eur J Immunol 2018; 49:364-374. [DOI: 10.1002/eji.201847951] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/02/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Joana Vitallé
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Iñigo Terrén
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Ane Orrantia
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Olatz Zenarruzabeitia
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
| | - Francisco Borrego
- Immunopathology GroupBiocruces Bizkaia Health Research Institute Barakaldo Bizkaia Spain
- IkerbasqueBasque Foundation for Science Bilbao Bizkaia Spain
- Basque Center for Transfusion and Human Tissues Galdakao Spain
| |
Collapse
|
21
|
Pike KA, Tremblay ML. Protein Tyrosine Phosphatases: Regulators of CD4 T Cells in Inflammatory Bowel Disease. Front Immunol 2018; 9:2504. [PMID: 30429852 PMCID: PMC6220082 DOI: 10.3389/fimmu.2018.02504] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) play a critical role in co-ordinating the signaling networks that maintain lymphocyte homeostasis and direct lymphocyte activation. By dephosphorylating tyrosine residues, PTPs have been shown to modulate enzyme activity and both mediate and disrupt protein-protein interactions. Through these molecular mechanisms, PTPs ultimately impact lymphocyte responses to environmental cues such as inflammatory cytokines and chemokines, as well as antigenic stimulation. Mouse models of acute and chronic intestinal inflammation have been shown to be exacerbated in the absence of PTPs such as PTPN2 and PTPN22. This increase in disease severity is due in part to hyper-activation of lymphocytes in the absence of PTP activity. In accordance, human PTPs have been linked to intestinal inflammation. Genome wide association studies (GWAS) identified several PTPs within risk loci for inflammatory bowel disease (IBD). Therapeutically targeting PTP substrates and their associated signaling pathways, such as those implicated in CD4+ T cell responses, has demonstrated clinical efficacy. The current review focuses on the role of PTPs in controlling CD4+ T cell activity in the intestinal mucosa and how disruption of PTP activity in CD4+ T cells can contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Inception Sciences Canada, Montréal, QC, Canada
| | - Michel L Tremblay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
22
|
Genetic Polymorphisms Associated with the Neutrophil⁻Lymphocyte Ratio and Their Clinical Implications for Metabolic Risk Factors. J Clin Med 2018; 7:jcm7080204. [PMID: 30096757 PMCID: PMC6111840 DOI: 10.3390/jcm7080204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/26/2022] Open
Abstract
Background: The neutrophil–lymphocyte ratio (NLR) is a valuable prognostic or predictive biomarker in various diseases, but the genetic factors that underlie the NLR have not been studied. We attempted to investigate polymorphisms related to NLR phenotype and analyze their ability to predict metabolic risks. Methods: A genome-wide association study was performed with log-transformed NLR using an Affymetrix Axiom™ KORV1.1-96 Array. Regression models for metabolic risk status were designed using the identified significant single-nucleotide polymorphisms (SNPs). Results: We identified four SNPs near the TMEM116, NAA25, and PTPN11 genes that were associated with the NLR. The top SNP associated with the log-transformed NLR was rs76181728 in TMEM116. A case–control study was performed to analyze the metabolic risks associated with each SNP after adjusting for age, sex, and body mass index (BMI). Three SNPs displayed significant odds ratios (ORs) for increased blood pressure and increased waist circumference. In the regression model for metabolic syndrome, rs76181728 showed a significant association (OR = 1.465, 95% confidence interval (CI) = 1.091–1.969, P = 0.011) after adjustment for the NLR phenotype. Conclusions: We identified four novel SNPs that are associated with the NLR in healthy Koreans. SNPs in relevant genes might therefore serve as biomarkers for metabolic risks.
Collapse
|
23
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
24
|
Fodor M, Price E, Wang P, Lu H, Argintaru A, Chen Z, Glick M, Hao HX, Kato M, Koenig R, LaRochelle JR, Liu G, McNeill E, Majumdar D, Nishiguchi GA, Perez LB, Paris G, Quinn CM, Ramsey T, Sendzik M, Shultz MD, Williams SL, Stams T, Blacklow SC, Acker MG, LaMarche MJ. Dual Allosteric Inhibition of SHP2 Phosphatase. ACS Chem Biol 2018; 13:647-656. [PMID: 29304282 DOI: 10.1021/acschembio.7b00980] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SHP2 is a cytoplasmic protein tyrosine phosphatase encoded by the PTPN11 gene and is involved in cell proliferation, differentiation, and survival. Recently, we reported an allosteric mechanism of inhibition that stabilizes the auto-inhibited conformation of SHP2. SHP099 (1) was identified and characterized as a moderately potent, orally bioavailable, allosteric small molecule inhibitor, which binds to a tunnel-like pocket formed by the confluence of three domains of SHP2. In this report, we describe further screening strategies that enabled the identification of a second, distinct small molecule allosteric site. SHP244 (2) was identified as a weak inhibitor of SHP2 with modest thermal stabilization of the enzyme. X-ray crystallography revealed that 2 binds and stabilizes the inactive, closed conformation of SHP2, at a distinct, previously unexplored binding site-a cleft formed at the interface of the N-terminal SH2 and PTP domains. Derivatization of 2 using structure-based design resulted in an increase in SHP2 thermal stabilization, biochemical inhibition, and subsequent MAPK pathway modulation. Downregulation of DUSP6 mRNA, a downstream MAPK pathway marker, was observed in KYSE-520 cancer cells. Remarkably, simultaneous occupation of both allosteric sites by 1 and 2 was possible, as characterized by cooperative biochemical inhibition experiments and X-ray crystallography. Combining an allosteric site 1 inhibitor with an allosteric site 2 inhibitor led to enhanced pharmacological pathway inhibition in cells. This work illustrates a rare example of dual allosteric targeted protein inhibition, demonstrates screening methodology and tactics to identify allosteric inhibitors, and enables further interrogation of SHP2 in cancer and related pathologies.
Collapse
Affiliation(s)
- Michelle Fodor
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Edmund Price
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Ping Wang
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Hengyu Lu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Andreea Argintaru
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Zhouliang Chen
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Meir Glick
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Huai-Xiang Hao
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Mitsunori Kato
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Robert Koenig
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Jonathan R. LaRochelle
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana−Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Gang Liu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Eric McNeill
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Dyuti Majumdar
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Gisele A. Nishiguchi
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Lawrence B. Perez
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Gregory Paris
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Christopher M. Quinn
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Timothy Ramsey
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Martin Sendzik
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Michael David Shultz
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Sarah L. Williams
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Travis Stams
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Stephen C. Blacklow
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana−Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Michael G. Acker
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Matthew J. LaMarche
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Thaiwong T, Sirivisoot S, Takada M, Yuzbasiyan-Gurkan V, Kiupel M. Gain-of-function mutation inPTPN11in histiocytic sarcomas of Bernese Mountain Dogs. Vet Comp Oncol 2017; 16:220-228. [DOI: 10.1111/vco.12357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Affiliation(s)
- T. Thaiwong
- Veterinary Diagnostic Laboratory; Michigan State University; Lansing Michigan
| | - S. Sirivisoot
- Veterinary Diagnostic Laboratory; Michigan State University; Lansing Michigan
- Department of Pathology, Faculty of Veterinary Sciences; Chulalongkorn University; Bangkok Thailand
| | - M. Takada
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| | - V. Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| | - M. Kiupel
- Veterinary Diagnostic Laboratory; Michigan State University; Lansing Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| |
Collapse
|
26
|
Bowers JR, Readler JM, Sharma P, Excoffon KJDA. Poliovirus Receptor: More than a simple viral receptor. Virus Res 2017; 242:1-6. [PMID: 28870470 DOI: 10.1016/j.virusres.2017.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/27/2022]
Abstract
The human poliovirus receptor (PVR) is a cell surface protein with a multitude of functions in human biology. PVR was initially identified as the receptor for the human poliovirus and recent discoveries have given a greater insight into both its morphology and its function. Alternative splicing of the PVR gene results in a total of 4 alternatively spliced isoforms. Two of these isoforms lack a complete transmembrane domain and are considered soluble and block viral infection; the remaining two transmembrane isoforms differ only at their extreme C-terminal domains resulting in differential localization in epithelia and polarity of viral infection. In addition to its role as a receptor for the human poliovirus, several native biological functions have also been uncovered. PVR is an important cell adhesion protein and is involved in the transendothelial migration of leukocytes. Through its interactions with CD226 and TIGIT, transmembrane proteins found on leukocytes, PVR is a key regulator of the cell-mediated immune response. As PVR is differentially regulated in a broad spectrum of cancers, it has a strong potential for clinical use as a biomarker. PVR is also a possible target for novel cancer therapies. Utilizing its natural tropism for PVR, a genetically modified form of the live attenuated poliovirus vaccine is currently being tested for its ability to locate and destroy certain tumors. These recent studies emphasize the importance of PVR in human biology and demonstrate its utility beyond being a viral receptor protein.
Collapse
Affiliation(s)
- Jonathan R Bowers
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, United States
| | - James M Readler
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, United States
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, OH, 45435, United States
| | | |
Collapse
|
27
|
Shp2 Inhibits Proliferation of Esophageal Squamous Cell Cancer via Dephosphorylation of Stat3. Int J Mol Sci 2017; 18:ijms18010134. [PMID: 28085101 PMCID: PMC5297767 DOI: 10.3390/ijms18010134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Shp2 (Src-homology 2 domain-containing phosphatase 2) was originally reported as an oncogene in kinds of solid tumors and hematologic malignancies. However, recent studies indicated that Shp2 may act as tumor suppressors in several tumor types. We investigated the function of Shp2 in esophageal squamous cell cancer (ESCC). The expression level of Shp2 was analyzed in tumor tissues in comparison with adjacent normal tissues of ESCC patients by immunohistochemistry and Western blot. Shp2 was knocked down by Short hairpin RNA to evaluate its function in ESCC cell lines. The relationship between Shp2 and p-Stat3 (signal transducer and activator of transcription 3) in human ESCC tissues was statistically examined. A significant low expression of Shp2 was found in ESCC tissues. Low expression of Shp2 was related to poorer overall survival in patients from The Cancer Genome Atlas (TCGA) dataset. Knockdown of Shp2 increased the growth of ESCC cell lines both in vivo and vitro. Activation of Stat3 (p-Stat3) was induced by Shp2 depletion. Expression of p-Stat3 was negatively correlated with Shp2 expression in ESCC tissues. Furthermore, knockdown of Shp2 attenuated cisplatin-sensitivity of ESCC cells. Shp2 might suppress the proliferation of ESCC by dephosphorylation of p-Stat3 and represents a novel research field for targeted therapy.
Collapse
|
28
|
Li X, Dong L, Xu W, Bhuyan SS, Chen C, Wang R. Study of SHP-2 ( PTPN11 ) allosterism on structural movement using solution perturbed molecular dynamics simulation. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.08.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
|
30
|
SIRPα1-SHP2 Interaction Regulates Complete Freund Adjuvant–Induced Inflammatory Pain via Src-Dependent GluN2B Phosphorylation in Rats. Anesth Analg 2016; 122:871-881. [DOI: 10.1213/ane.0000000000001116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Zheng J, Huang S, Huang Y, Song L, Yin Y, Kong W, Chen X, Ouyang X. Expression and prognosis value of SHP2 in patients with pancreatic ductal adenocarcinoma. Tumour Biol 2015; 37:7853-9. [PMID: 26695153 DOI: 10.1007/s13277-015-4675-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022] Open
Abstract
SHP2 is an src homology (SH) 2 domain-containing protein tyrosine phosphatase (PTP). SHP2 implicitly contributes to tumorigenesis, but the role of SHP2 in pancreatic ductal adenocarcinoma is still unknown. The purpose of this study was to evaluate the prognostic significance and associated expression of SHP2 in pancreatic ductal adenocarcinoma (PDAC) patients. We used immunohistochemistry to assess the protein expression levels of SHP2 in 79 PDAC specimens. The correlations between SHP2 expression and various clinicopathological features were evaluated by Pearson's chi-square (χ (2)) test, Fisher's exact test, and Spearman's rank. Univariate and multivariate Cox regression analyses were used to identify correlations between the immunohistochemical data for SHP2 expression and the clinicopathologic characteristics in PDAC. Kaplan-Meier survival analysis was used to demonstrate the relation between overall survival and the expression of SHP2. Immunohistochemistry revealed significantly higher rates of high SHP2 expression in PDAC tissues (55.7 %) versus adjacent non-cancer tissues (10.1 %) (P < 0.05). Expression of SHP2 was only significantly correlated with histological differentiation (P = 0.033) and vital status (P = 0.025). Patients with high SHP2 expression had shorter overall survival times compared to those with low SHP2 expression (P = 0.000). Multivariate Cox regression analysis revealed that SHP2 overexpression was an independent prognostic factor in PDAC (P = 0.012). Our study demonstrated for the first time that higher expression of SHP2 might be involved in the progression of pancreatic ductal adenocarcinoma, suggesting that SHP2 may be a potential prognostic marker and target for therapy.
Collapse
Affiliation(s)
- Jiawei Zheng
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Shanshan Huang
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Yufang Huang
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Li Song
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Yin Yin
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Medical College, Xiamen University, Xiamen, China
| | - Wencui Kong
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Xiong Chen
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China.
| | - Xuenong Ouyang
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| |
Collapse
|
32
|
Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration. Sci Rep 2015; 5:18476. [PMID: 26681405 PMCID: PMC4683442 DOI: 10.1038/srep18476] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023] Open
Abstract
Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.
Collapse
|
33
|
Coulombe G, Rivard N. New and Unexpected Biological Functions for the Src-Homology 2 Domain-Containing Phosphatase SHP-2 in the Gastrointestinal Tract. Cell Mol Gastroenterol Hepatol 2015; 2:11-21. [PMID: 28174704 PMCID: PMC4980741 DOI: 10.1016/j.jcmgh.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
SHP-2 is a tyrosine phosphatase expressed in most embryonic and adult tissues. SHP-2 regulates many cellular functions including growth, differentiation, migration, and survival. Genetic and biochemical evidence show that SHP-2 is required for rat sarcoma viral oncogene/extracellular signal-regulated kinases mitogen-activated protein kinase pathway activation by most tyrosine kinase receptors, as well as by G-protein-coupled and cytokine receptors. In addition, SHP-2 can regulate the Janus kinase/signal transducers and activators of transcription, nuclear factor-κB, phosphatidyl-inositol 3-kinase/Akt, RhoA, Hippo, and Wnt/β-catenin signaling pathways. Emerging evidence has shown that SHP-2 dysfunction represents a key factor in the pathogenesis of gastrointestinal diseases, in particular in chronic inflammation and cancer. Variations within the gene locus encoding SHP-2 have been associated with increased susceptibility to develop ulcerative colitis and gastric atrophy. Furthermore, mice with conditional deletion of SHP-2 in intestinal epithelial cells rapidly develop severe colitis. Similarly, hepatocyte-specific deletion of SHP-2 induces hepatic inflammation, resulting in regenerative hyperplasia and development of tumors in aged mice. However, the SHP-2 gene initially was suggested to be a proto-oncogene because activating mutations of this gene were found in pediatric leukemias and certain forms of liver and colon cancers. Moreover, SHP-2 expression is up-regulated in gastric and hepatocellular cancers. Notably, SHP-2 functions downstream of cytotoxin-associated antigen A (CagA), the major virulence factor of Helicobacter pylori, and is associated with increased risks of gastric cancer. Further compounding this complexity, most recent findings suggest that SHP-2 also coordinates carbohydrate, lipid, and bile acid synthesis in the liver and pancreas. This review aims to summarize current knowledge and recent data regarding the biological functions of SHP-2 in the gastrointestinal tract.
Collapse
Key Words
- CagA, cytotoxin-associated gene A
- ERK, extracellular signal-regulated kinases
- FGF, fibroblast growth factor
- GI, gastrointestinal
- HCC, hepatocellular carcinoma
- IBD, inflammatory bowel disease
- IEC, intestinal epithelial cell
- JMML, juvenile myelomonocytic leukemia
- KO, knockout
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor-κB
- PI3K, phosphatidyl-inositol 3-kinase
- PTP, protein tyrosine phosphatase
- PTPN11
- RAS, rat sarcoma viral oncogene
- epithelium
- gastrointestinal cancer
- inflammation
Collapse
Affiliation(s)
| | - Nathalie Rivard
- Correspondence Address correspondence to: Nathalie Rivard, PhD, 3201, Jean Mignault, Sherbrooke, Quebec, Canada, J1E4K8.3201Jean Mignault, SherbrookeQuebecCanada, J1E4K8
| |
Collapse
|
34
|
Han T, Xiang DM, Sun W, Liu N, Sun HL, Wen W, Shen WF, Wang RY, Chen C, Wang X, Cheng Z, Li HY, Wu MC, Cong WM, Feng GS, Ding J, Wang HY. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J Hepatol 2015; 63:651-60. [PMID: 25865556 DOI: 10.1016/j.jhep.2015.03.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/04/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS We have previously reported that Shp2, a tyrosine phosphatase previously known as a pro-leukemogenic molecule, suppresses the initiation of hepatocellular carcinoma (HCC). However, the role of Shp2 in HCC progression remains obscure. METHODS Shp2 expression was determined in human HCC using real-time PCR, immunoblotting and immunohistochemistry. Clinical significance of Shp2 expression was analyzed in 301 HCC tissues with clinico-pathological characteristics and follow-up information. Short hairpin RNA was utilized to investigate the function of Shp2 in hepatoma cell behavior. Role of Shp2 in HCC progression was monitored through nude mice xenograft assay. Kinase activity assay and co-immunoprecipitation were used for mechanism analysis. RESULTS Elevated expression of Shp2 was detected in 65.9% (394/598) of human HCCs, and its levels were even higher in metastasized foci. Overexpression of Shp2 correlated well with the malignant clinico-pathological characteristics of HCC and predicted the poor prognosis of patients. Interference of Shp2 expression suppressed the proliferation of hepatoma cells in vitro and inhibited the growth of HCC xenografts in vivo. Down-regulation of Shp2 attenuated the adhesion and migration of hepatoma cells and diminished metastasized HCC formation in mice. Our data demonstrated that Shp2 promotes HCC growth and metastasis by coordinately activating Ras/Raf/Erk pathway and PI3-K/Akt/mTOR cascade. Moreover, down-regulation of Shp2 enhanced the sensitivity of hepatoma cells upon sorafenib treatment, and patients with low Shp2 expression exhibited superior prognosis to sorafenib. CONCLUSIONS Shp2 promotes the progression of HCC and may serve as a prognostic biomarker for patients.
Collapse
Affiliation(s)
- Tao Han
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Dai-Min Xiang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wen Sun
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Na Liu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Huan-Lin Sun
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wen Wen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei-Feng Shen
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Ruo-Yu Wang
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Cheng Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xue Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhuo Cheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Heng-Yu Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Meng-Chao Wu
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Wen-Ming Cong
- The Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jin Ding
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| | - Hong-Yang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| |
Collapse
|
35
|
|
36
|
Sun Q, Mu L, Qiao W, Li H, Tang J, Wang C, Hu W, Zhao T, Dong B, Song Y, Liu X. Inhibition of SHP-2 promotes radiosensitivity in glioma. Mol Med Rep 2015; 12:3563-3568. [PMID: 26004555 DOI: 10.3892/mmr.2015.3829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 04/20/2015] [Indexed: 11/06/2022] Open
Abstract
As a phosphatase, SHP-2 has been identified to be involved in regulating several cell functions, including growth, division, adhesion and motility. Therefore, SHP‑2 may affect the response of glioma to radiotherapy, such as via enhancing angiogenesis. The present study aimed to investigate the function of SHP‑2, a protein tyrosine phosphatase, in the radiosensitivity of glioma. U251, U87 and SHG44 glioma cell lines were transfected with small interfering (si)RNA against SHP‑2 and cell proliferation was assessed using a cell counting kit 8 assay, cell apoptosis was assessed by fluorescence‑activated cell sorting and immunoblotting, cell invasion was determined by an invasion assay, and the vasculogenic mimicry capacity was assessed by a tube formation assay. SHP‑2 siRNA transfection reduced the proliferation and increased apoptosis in the glioma cell lines. Downregulation of SHP‑2 suppressed glioma cell invasion and vasculogenic mimicry. These results demonstrated that no significant difference was observed between glioma tissues and normal brain tissues, however, silencing of SHP‑2 inhibited cell proliferation, invasion and vasculogenic mimicry in the glioma cell lines. SHP‑2 may be a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Quanye Sun
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Luyan Mu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wanchen Qiao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hui Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jiabin Tang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ce Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Hu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tianshu Zhao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Baijing Dong
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuwen Song
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaoqian Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
37
|
Dong B, Gao Y, Zheng X, Gao G, Gu H, Chen X, Zhang J. T cell activation is reduced by the catalytically inactive form of protein tyrosine phosphatase SHP-2. Int J Clin Exp Med 2015; 8:6568-6577. [PMID: 26131287 PMCID: PMC4483852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
Src-homology 2 domain-containing tyrosine phosphatase-2 (SHP-2) is a ubiquitously expressed cytosolic tyrosine phosphatase implicated in many different signaling pathways involving cytokine receptors and T and B cell receptors; however, the precise functional role of SHP-2 in T cell signaling is not entirely clear. In this study, we overexpressed a catalytically inactive form of SHP-2 with a classic cysteine 459-to-serine mutation (dnSHP-2) to elucidate the in vivo effects of SHP-2 on T cells. We found that mice overexpressing dnSHP-2 showed reduced T cell activation, presumably due to increased tyrosine phosphorylation of Grb2-binding protein (Gab2) and inhibition of mitogen-activated protein kinase (MAPK) activity. SHP-2 appears to be a positive regulator of the MAPK pathway in T cells, likely through coupling of the multimeric complex to the Ras/MAPK pathway. However, SHP-2 does not appear to affect T cell antigen receptor (TCR)-evoked calcium mobilization, stress-activated protein kinase/c-jun N-terminal kinases (SAPK/JNKs) activation, or overall tyrosine phosphorylation.
Collapse
Affiliation(s)
- Baoxia Dong
- Department of Hematology, Xijing Hospital, Fourth Military Medical UniversityXi’an, Shanxi Province, China
| | - Yubo Gao
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Xuan Zheng
- Department of Hematology, Xijing Hospital, Fourth Military Medical UniversityXi’an, Shanxi Province, China
| | - Guangxun Gao
- Department of Hematology, Xijing Hospital, Fourth Military Medical UniversityXi’an, Shanxi Province, China
| | - Hongtao Gu
- Department of Hematology, Xijing Hospital, Fourth Military Medical UniversityXi’an, Shanxi Province, China
| | - Xiequn Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical UniversityXi’an, Shanxi Province, China
| | - Jinyi Zhang
- Samuel Lunenfeld Research Institute, Mount Sinai HospitalOntario, Canada
| |
Collapse
|
38
|
He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35:1227-46. [PMID: 25220640 DOI: 10.1038/aps.2014.80] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022]
Abstract
Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.
Collapse
|
39
|
Bonetti M, Paardekooper Overman J, Tessadori F, Noël E, Bakkers J, den Hertog J. Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish. Development 2014; 141:1961-70. [PMID: 24718990 DOI: 10.1242/dev.106310] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Germline mutations in PTPN11, encoding Shp2, cause Noonan syndrome (NS) and LEOPARD syndrome (LS), two developmental disorders that are characterized by multiple overlapping symptoms. Interestingly, Shp2 catalytic activity is enhanced by NS mutations and reduced by LS mutations. Defective cardiac development is a prominent symptom of both NS and LS, but how the Shp2 variants affect cardiac development is unclear. Here, we have expressed the most common NS and LS Shp2-variants in zebrafish embryos to investigate their role in cardiac development in vivo. Heart function was impaired in embryos expressing NS and LS variants of Shp2. The cardiac anomalies first occurred during elongation of the heart tube and consisted of reduced cardiomyocyte migration, coupled with impaired leftward heart displacement. Expression of specific laterality markers was randomized in embryos expressing NS and LS variants of Shp2. Ciliogenesis and cilia function in Kupffer's vesicle was impaired, likely accounting for the left/right asymmetry defects. Mitogen-activated protein kinase (MAPK) signaling was activated to a similar extent in embryos expressing NS and LS Shp2 variants. Interestingly, inhibition of MAPK signaling prior to gastrulation rescued cilia length and heart laterality defects. These results suggest that NS and LS Shp2 variant-mediated hyperactivation of MAPK signaling leads to impaired cilia function in Kupffer's vesicle, causing left-right asymmetry defects and defective early cardiac development.
Collapse
Affiliation(s)
- Monica Bonetti
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Qiu W, Wang X, Romanov V, Hutchinson A, Lin A, Ruzanov M, Battaile KP, Pai EF, Neel BG, Chirgadze NY. Structural insights into Noonan/LEOPARD syndrome-related mutants of protein-tyrosine phosphatase SHP2 (PTPN11). BMC STRUCTURAL BIOLOGY 2014; 14:10. [PMID: 24628801 PMCID: PMC4007598 DOI: 10.1186/1472-6807-14-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
Abstract
Background The ubiquitous non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) plays a key role in RAS/ERK signaling downstream of most, if not all growth factors, cytokines and integrins, although its major substrates remain controversial. Mutations in PTPN11 lead to several distinct human diseases. Germ-line PTPN11 mutations cause about 50% of Noonan Syndrome (NS), which is among the most common autosomal dominant disorders. LEOPARD Syndrome (LS) is an acronym for its major syndromic manifestations: multiple Lentigines, Electrocardiographic abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormalities of genitalia, Retardation of growth, and sensorineural Deafness. Frequently, LS patients have hypertrophic cardiomyopathy, and they might also have an increased risk of neuroblastoma (NS) and acute myeloid leukemia (AML). Consistent with the distinct pathogenesis of NS and LS, different types of PTPN11 mutations cause these disorders. Results Although multiple studies have reported the biochemical and biological consequences of NS- and LS-associated PTPN11 mutations, their structural consequences have not been analyzed fully. Here we report the crystal structures of WT SHP2 and five NS/LS-associated SHP2 mutants. These findings enable direct structural comparisons of the local conformational changes caused by each mutation. Conclusions Our structural analysis agrees with, and provides additional mechanistic insight into, the previously reported catalytic properties of these mutants. The results of our research provide new information regarding the structure-function relationship of this medically important target, and should serve as a solid foundation for structure-based drug discovery programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Benjamin G Neel
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, M5G 2C4, Canada.
| | | |
Collapse
|
41
|
Ng GY, Yeh LK, Zhang Y, Liu H, Feng GS, Kao WWY, Liu CY. Role of SH2-containing tyrosine phosphatase Shp2 in mouse corneal epithelial stratification. Invest Ophthalmol Vis Sci 2013; 54:7933-42. [PMID: 24204042 DOI: 10.1167/iovs.13-12646] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Shp2 protein tyrosine phosphatase mediates a wide variety of receptor tyrosine kinases (RTK) cell signaling. Herein, we investigate the role of Shp2 in corneal morphogenesis and homeostasis. METHODS Shp2 was conditionally knocked out (Shp2(cko)) in Krt14-rtTA;tet-O-Cre;Shp2(f/f) triple transgenic mice administrated with doxycycline (Dox) from postnatal day 1 (P1) to P10, P15, and P25, respectively. In addition, corneal epithelial debridement was performed in adult (P42) mice treated with or without Dox for 8 days (from P42-P50). Mouse eyes were then subjected to histology and immunohistochemistry. RESULTS Shp2(cko) revealed impaired stratification of conjunctival and corneal epithelia during morphogenesis. Likewise, Shp2(cko) failed to restore epithelial stratification after a corneal epithelial wound in adult Shp2(cko). At the cellular level, the ratio of proliferating cell nuclear antigen (PCNA-positive)/total basal cells remained unchanged, but cells in G2/M (survivin-positive) phase was significantly increased in Shp2(cko) as compared with those in the control littermate. Interestingly, deltaN-p63 (ΔNp63) expression and the asymmetric division of the basal cells were coincidentally dampened in Shp2(cko). Transmission electron microscopic study showed that desmosome and hemidesmosome densities were reduced in the corneal epithelium of Shp2(cko). Immunohistochemistry also demonstrated that expression of E-cadherin/β-catenin junction and laminin-β1 was extensively downregulated in Shp2(cko). On the other hand, corneal epithelium lacking Shp2 remained positive for K14, Pax-6, and keratin 12 (K12), suggesting that Shp2 was dispensable for the corneal epithelial-type differentiation. CONCLUSIONS These data argued that Shp2 deficiency predominantly impacted p63-dependent cell division and cell adhesive ability, which resulted in the impairment of stratification during corneal epithelial development and wound healing.
Collapse
Affiliation(s)
- Gracia Y Ng
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
42
|
Craig J, Mikhailenko I, Noyes N, Migliorini M, Strickland DK. The LDL receptor-related protein 1 (LRP1) regulates the PDGF signaling pathway by binding the protein phosphatase SHP-2 and modulating SHP-2- mediated PDGF signaling events. PLoS One 2013; 8:e70432. [PMID: 23922991 PMCID: PMC3724782 DOI: 10.1371/journal.pone.0070432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/18/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The PDGF signaling pathway plays a major role in several biological systems, including vascular remodeling that occurs following percutaneous transluminal coronary angioplasty. Recent studies have shown that the LDL receptor-related protein 1 (LRP1) is a physiological regulator of the PDGF signaling pathway. The underlying mechanistic details of how this regulation occurs have yet to be resolved. Activation of the PDGF receptor β (PDGFRβ) leads to tyrosine phosphorylation of the LRP1 cytoplasmic domain within endosomes and generates an LRP1 molecule with increased affinity for adaptor proteins such as SHP-2 that are involved in signaling pathways. SHP-2 is a protein tyrosine phosphatase that positively regulates the PDGFRβ pathway, and is required for PDGF-mediated chemotaxis. We investigated the possibility that LRP1 may regulate the PDGFRβ signaling pathway by binding SHP-2 and competing with the PDGFRβ for this molecule. METHODOLOGY/PRINCIPAL FINDINGS To quantify the interaction between SHP-2 and phosphorylated forms of the LRP1 intracellular domain, we utilized an ELISA with purified recombinant proteins. These studies revealed high affinity binding of SHP-2 to phosphorylated forms of both LRP1 intracellular domain and the PDGFRβ kinase domain. By employing the well characterized dynamin inhibitor, dynasore, we established that PDGF-induced SHP-2 phosphorylation primarily occurs within endosomal compartments, the same compartments in which LRP1 is tyrosine phosphorylated by activated PDGFRβ. Immunofluorescence studies revealed colocalization of LRP1 and phospho-SHP-2 following PDGF stimulation of fibroblasts. To define the contribution of LRP1 to SHP-2-mediated PDGF chemotaxis, we employed fibroblasts expressing LRP1 and deficient in LRP1 and a specific SHP-2 inhibitor, NSC-87877. Our results reveal that LRP1 modulates SHP-2-mediated PDGF-mediated chemotaxis. CONCLUSIONS/SIGNIFICANCE Our data demonstrate that phosphorylated forms of LRP1 and PDGFRβ compete for SHP-2 binding, and that expression of LRP1 attenuates SHP-2-mediated PDGF signaling events.
Collapse
Affiliation(s)
- Julie Craig
- Center for Vascular and Inflammatory Diseases and
| | - Irina Mikhailenko
- Center for Vascular and Inflammatory Diseases and
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases and
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
43
|
Zheng H, Li S, Hsu P, Qu CK. Induction of a tumor-associated activating mutation in protein tyrosine phosphatase Ptpn11 (Shp2) enhances mitochondrial metabolism, leading to oxidative stress and senescence. J Biol Chem 2013; 288:25727-25738. [PMID: 23884424 DOI: 10.1074/jbc.m113.462291] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activating mutations in Ptpn11 (Shp2), a protein tyrosine phosphatase involved in diverse cell signaling pathways, are associated with pediatric leukemias and solid tumors. However, the pathogenic effects of these mutations have not been fully characterized. Here, we report that induction of the Ptpn11(E76K/+) mutation, the most common and active Ptpn11 mutation found in leukemias and solid tumors, in primary mouse embryonic fibroblasts resulted in proliferative arrest and premature senescence. As a result, apoptosis was markedly increased. These cellular responses were accompanied and mediated by up-regulation of p53 and p21. Moreover, intracellular levels of reactive oxygen species (ROS), byproducts of mitochondrial oxidative phosphorylation, were elevated in Ptpn11(E76K/+) cells. Since Shp2 is also distributed to the mitochondria (in addition to the cytosol), the impact of the Ptpn11(E76K/+) mutation on mitochondrial function was analyzed. These analyses revealed that oxygen consumption of Ptpn11(E76K/+) cells and the respiratory function of Ptpn11(E76K/+) mitochondria were significantly increased. Furthermore, we found that phosphorylation of mitochondrial Stat3, one of the substrates of Shp2 phosphatase, was greatly decreased in the mutant cells with the activating mutation Ptpn11(E76K/+). This study provides novel insights into the initial effects of tumor-associated Ptpn11 mutations.
Collapse
Affiliation(s)
- Hong Zheng
- From the Department of Medicine, Division of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Shanhu Li
- From the Department of Medicine, Division of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Peter Hsu
- From the Department of Medicine, Division of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Cheng-Kui Qu
- From the Department of Medicine, Division of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106.
| |
Collapse
|
44
|
Ahmed Z, Lin CC, Suen KM, Melo FA, Levitt JA, Suhling K, Ladbury JE. Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity. ACTA ACUST UNITED AC 2013; 200:493-504. [PMID: 23420874 PMCID: PMC3575544 DOI: 10.1083/jcb.201204106] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Constitutive receptor tyrosine kinase phosphorylation requires regulation of kinase and phosphatase activity to prevent aberrant signal transduction. A dynamic mechanism is described here in which the adaptor protein, growth factor receptor-bound protein 2 (Grb2), controls fibroblast growth factor receptor 2 (FGFR2) signaling by regulating receptor kinase and SH2 domain-containing protein tyrosine phosphatase 2 (Shp2) phosphatase activity in the absence of extracellular stimulation. FGFR2 cycles between its kinase-active, partially phosphorylated, nonsignaling state and its Shp2-dephosphorylated state. Concurrently, Shp2 cycles between its FGFR2-phosphorylated and dephosphorylated forms. Both reciprocal activities of FGFR2 and Shp2 were inhibited by binding of Grb2 to the receptor. Phosphorylation of Grb2 by FGFR2 abrogated its binding to the receptor, resulting in up-regulation of both FGFR2's kinase and Shp2's phosphatase activity. Dephosphorylation of Grb2 by Shp2 rescued the FGFR2-Grb2 complex. This cycling of enzymatic activity results in a homeostatic, signaling-incompetent state. Growth factor binding perturbs this background cycling, promoting increased FGFR2 phosphorylation and kinase activity, Grb2 dissociation, and downstream signaling. Grb2 therefore exerts constitutive control over the mutually dependent activities of FGFR2 and Shp2.
Collapse
Affiliation(s)
- Zamal Ahmed
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Hartman ZR, Schaller MD, Agazie YM. The tyrosine phosphatase SHP2 regulates focal adhesion kinase to promote EGF-induced lamellipodia persistence and cell migration. Mol Cancer Res 2013; 11:651-64. [PMID: 23512980 DOI: 10.1158/1541-7786.mcr-12-0578] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Src homology phosphotyrosyl phosphatase 2 (SHP2) is a positive effector of receptor tyrosine kinases (RTK) signaling. Furthermore, SHP2 is known to promote cell migration and invasiveness, key steps in cancer metastasis. To date, however, the mechanism by which SHP2 regulates cell movement is not fully understood. In the current report, a new role for SHP2 in regulating cell migration has been suggested. We show that SHP2 mediates lamellipodia persistence and cell polarity to promote directional cell migration in the MDA-MB231 and the MDA-MB468 basal-like and triple-negative breast cancer cell lines. We further show that SHP2 modulates the activity of focal adhesion kinase (FAK) by dephosphorylating pTyr397, the autophosphorylation site that primes FAK function. Because hyperactivation of FAK is known to counter the maturation of nascent focal complexes to focal adhesions, we propose that one of the mechanisms by which SHP2 promotes lamellipodia persistence is by downregulating FAK activity through dephosphorylation of pTyr397. The finding that inhibition of FAK activity partially restores EGF-induced lamellipodia persistence and cell migration in SHP2-silenced cells supports our proposition that SHP2 promotes growth factor-induced cell movement by acting, at least in part, on FAK. However, the effect of SHP2 inhibition in nonstimulated cells seems FAK independent as there was no significant difference between the control and the SHP2-silenced cells in pY397-FAK levels. Also, FAK inhibition did not rescue Golgi orientation defects in SHP2-silenced cells, suggesting that SHP2 acts through other mechanisms to promote cell polarity.
Collapse
Affiliation(s)
- Zachary R Hartman
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, West Virginia, WV 26506, USA
| | | | | |
Collapse
|
46
|
Tsou RC, Bence KK. Central regulation of metabolism by protein tyrosine phosphatases. Front Neurosci 2013; 6:192. [PMID: 23308070 PMCID: PMC3538333 DOI: 10.3389/fnins.2012.00192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/17/2012] [Indexed: 11/13/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are important regulators of intracellular signaling pathways via the dephosphorylation of phosphotyrosyl residues on various receptor and non-receptor substrates. The phosphorylation state of central nervous system (CNS) signaling components underlies the molecular mechanisms of a variety of physiological functions including the control of energy balance and glucose homeostasis. In this review, we summarize the current evidence implicating PTPs as central regulators of metabolism, specifically highlighting their interactions with the neuronal leptin and insulin signaling pathways. We discuss the role of a number of PTPs (PTP1B, SHP2, TCPTP, RPTPe, and PTEN), reviewing the findings from genetic mouse models and in vitro studies which highlight these phosphatases as key central regulators of energy homeostasis.
Collapse
Affiliation(s)
- Ryan C Tsou
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
47
|
Broxmeyer HE, Etienne-Julan M, Gotoh A, Braun SE, Lu L, Cooper S, Feng GS, Li XJ, Chan RJ. Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function. Stem Cells Dev 2012; 22:998-1006. [PMID: 23082805 DOI: 10.1089/scd.2012.0478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stanford SM, Rapini N, Bottini N. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Immunology 2012; 137:1-19. [PMID: 22862552 DOI: 10.1111/j.1365-2567.2012.03591.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
More than half of the known protein tyrosine phosphatases (PTPs) in the human genome are expressed in T cells, and significant progress has been made in elucidating the biology of these enzymes in T-cell development and function. Here we provide a systematic review of the current understanding of the roles of PTPs in T-cell activation, providing insight into their mechanisms of action and regulation in T-cell receptor signalling, the phenotypes of their genetically modified mice, and their possible involvement in T-cell-mediated autoimmune disease. Our projection is that the interest in PTPs as mediators of T-cell homeostasis will continue to rise with further functional analysis of these proteins, and PTPs will be increasingly considered as targets of immunomodulatory therapies.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The protein tyrosine phosphatase Shp2 is encoded by PTPN11 and positively regulates physiologic hematopoiesis. Mutations of PTPN11 cause the congenital disorder Noonan syndrome and pathologically promote human leukemias. Given the high frequency of PTPN11 mutations in human disease, several animal models have been generated to investigate Shp2 in hematopoietic stem cell (HSC) function and leukemic transformation. RECENT FINDINGS Two independent animal models bearing knockout of Shp2 in hematopoietic tissues clearly demonstrate the necessity of Shp2 in HSC repopulating capacity. Reduced HSC quiescence and increased apoptosis accounts for diminished HSC function in the absence of Shp2. The germline mutation Shp2D61G enhances HSC activity and induces myeloproliferative disease (MPD) in vivo by HSC transformation. The somatic mutation Shp2D61Y produces MPD in vivo but fails to induce acute leukemia, whereas somatic Shp2E76K produces MPD in vivo that transforms into full-blown leukemia. HSCs expressing Shp2D61Y do not generate MPD in recipient animals upon transplantation, whereas Shp2E76K-expressing HSCs yield MPD as well as acute leukemia in recipient animals. The mechanisms underlying the unique functions of Shp2D61Y and Shp2E76K in HSC transformation and leukemogenesis continue to be under investigation. SUMMARY Further understanding of the physiologic and pathologic role of Shp2 in hematopoiesis and leukemogenesis, respectively, will yield information needed to develop therapeutic strategies targeted to Shp2 in human disease.
Collapse
|
50
|
Li S, Hsu DD, Wang H, Feng GS. Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis. Front Med 2012; 6:275-9. [PMID: 22869052 DOI: 10.1007/s11684-012-0216-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/06/2012] [Indexed: 02/07/2023]
Abstract
PTPN11, which encodes tyrosine phosphatase Shp2, is a critical gene mediating cellular responses to hormones and cytokines. Against original prediction as tumor suppressor for tyrosine phosphatases, PTPN11 was first identified as a proto-oncogene because activating mutations of this gene are associated with leukemogenesis. However, most recent experimental data suggest PTPN11/Shp2 acting as a tumor suppressor in hepatocarcinogenesis. This review focuses on the tumor-promoting or suppressing roles of the gene PTPN11/Shp2 in different cell types.
Collapse
Affiliation(s)
- Shuangwei Li
- Department of Pathology, and Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0864, USA
| | | | | | | |
Collapse
|