1
|
Langer R. My Struggles and Dreams as a Chemical Engineer. Annu Rev Chem Biomol Eng 2025; 16:1-22. [PMID: 40030148 DOI: 10.1146/annurev-chembioeng-082223-110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
My career has not been straightforward. Although I am a chemical engineer, and I'm proud of that, I took a path from chemistry and engineering to one that also involved experimental biology and medicine. This was very unusual many decades ago. In so doing, I met with rejection and ridicule early in my career. However, by going down that path, I was able to make discoveries and inventions that I hope have saved and improved lives, and I've been able to train a great number of people who are going down the road I began traveling over many years ago.
Collapse
Affiliation(s)
- Robert Langer
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
2
|
Ofuchi Y, Setoyama H, Miyoshi T, Kawano K, Hattori Y, Obata Y. Effect of Alcohols on the Skin Permeation of Various Drugs. Chem Pharm Bull (Tokyo) 2025; 73:291-297. [PMID: 40175108 DOI: 10.1248/cpb.c24-00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
In this study we have focused on three types of alcohols: ethanol (EtOH), 2-propanol (IPA), and 1-propanol (NPA), and examined the skin permeability of drugs with different physicochemical properties: ketoprofen (KPF; hydrophobic), cimetidine (CMT; slightly hydrophobic), and caffeine (CF; hydrophilic). The results revealed EtOH particularly enhanced the skin permeation of CF, while IPA enhanced skin permeation regardless of the type of drug. In contrast, NPA significantly increased the skin permeability of KPF and CMT, but had little effect on CF. The differing effects of the alcohols on skin permeation appear to be linked to the physicochemical properties of the drugs. KPF is more hydrophobic than the other drugs, suggesting that it uses the intercellular pathway in the stratum corneum for permeation. CMT has intermediate properties between hydrophilic and hydrophobic, resulting in low skin permeability and ineffective utilization of both the transepidermal and transappendageal pathways. CF mainly utilized the transappendageal pathways for skin permeation because of its smaller molecular weight and more hydrophilic as compared with the other drugs. These results suggest that the effect of different alcohols on enhancing drug skin permeation is not uniform and that the optimal alcohol for enhancing permeability may vary depending on the drug. Therefore, the selection of appropriate additives based on the physicochemical properties of the drug, such as hydrophilicity, hydrophobicity, and molecular weight, is crucial for developing effective transdermal formulation.
Collapse
Affiliation(s)
- Yuki Ofuchi
- Laboratory of Molecular Pharmaceutics, Hoshi University
| | | | - Tsubasa Miyoshi
- Laboratory of Pharmaceutical Science and Technology, Hoshi University
| | - Kumi Kawano
- Laboratory of Molecular Pharmaceutics, Hoshi University
| | | | - Yasuko Obata
- Laboratory of Pharmaceutical Science and Technology, Hoshi University
| |
Collapse
|
3
|
Brito S, Baek M, Bin BH. Skin Structure, Physiology, and Pathology in Topical and Transdermal Drug Delivery. Pharmaceutics 2024; 16:1403. [PMID: 39598527 PMCID: PMC11597055 DOI: 10.3390/pharmaceutics16111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Several industries are increasingly focused on enhancing the delivery of active ingredients through the skin to optimize therapeutic outcomes. By facilitating the penetration of active ingredients through the skin barrier, these enhancers can significantly improve the efficacy of various formulations, ranging from skincare products to therapeutic agents targeting systemic circulation. As the understanding of skin physiology and the mechanisms of drug absorption deepen, these industries are adopting permeation enhancers more widely, ultimately leading to better patient outcomes and expanded treatment options. However, the structure and physiological function of the skin can vary according to different factors, such as the area of the body and between individuals. These variations, along with external environmental exposures, aging and pathological conditions, introduce complexities that must be carefully considered when designing effective delivery systems. Considering the intricacies of skin structure and physiology, tailoring systems to account for regional differences, individual variability, and changes induced by environmental factors or disease is critical to optimizing therapeutic outcomes. This review discusses the features of skin structure, physiology, and pathologies, as well as the application of permeation enhancers in these contexts. Furthermore, it addresses the use of animal skin models in transdermal delivery and dermatological studies, along with the latest developments in this field.
Collapse
Affiliation(s)
- Sofia Brito
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Moonki Baek
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Bum-Ho Bin
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
4
|
Nguyen TD, Nguyen TH, Vo VT, Nguyen TQ. Panoramic review on polymeric microneedle arrays for clinical applications. Biomed Microdevices 2024; 26:41. [PMID: 39312013 DOI: 10.1007/s10544-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 11/01/2024]
Abstract
Transdermal drug delivery (TDD) has significantly advanced medical practice in recent years due to its ability to prevent the degradation of substances in the gastrointestinal tract and avoid hepatic metabolism. Among different available approaches, microneedle arrays (MNAs) technology represents a fascinating delivery tool for enhancing TDD by penetrating the stratum corneum painless and minimally invasive for delivering antibacterial, antifungal, and antiviral medications. Polymeric MNAs are extensively utilized among many available materials due to their biodegradability, biocompatibility, and low toxicity. Therefore, this review provides a comprehensive discussion of polymeric MNAs, starting with understanding stratum corneum and developing MNA technology. Furthermore, the engineering concepts, fundamental considerations, challenges, and future perspectives of polymeric MNAs in clinical applications are properly outlined, offering a comprehensive and unique overview of polymeric MNAs and their potential for a broad spectrum of clinical applications.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Van Toi Vo
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam.
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam.
| |
Collapse
|
5
|
Yoshida Y, Aoki M, Nagase K, Marubashi K, Kojima H, Itakura S, Komatsu S, Sugibayashi K, Todo H. Plasmid DNA Delivery into the Skin via Electroporation with a Depot-Type Electrode. Pharmaceutics 2024; 16:1219. [PMID: 39339255 PMCID: PMC11435037 DOI: 10.3390/pharmaceutics16091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: Non-viral mediated plasmid DNA transfection by electroporation (EP) is an established method for gene transfection. In this study, the usefulness of direct EP at an intradermal (i.d.) site (DEP) with implanted electrodes to achieve a high protein expression level was investigated. In addition, DEP application with various intervals with a low application voltage was also evaluated to confirm its effect on protein expression. Methods: Green fluorescent protein (GFP)- and luciferase-encoding DNA were administrated, and GFP and luciferase were evaluated. Results: A higher protein expression level was observed after green fluorescent protein (GFP)- and luciferase-encoding DNA were delivered by i.d. injection followed by DEP application. When luciferase expression was observed with an in vivo imaging system, continuous expression was confirmed over 21 days after i.d. injection followed by DEP at 100 V. This approach provided increased gene expression levels compared with conventional EP methods via the stratum corneum layer. In addition, the effect of application voltage on luciferase expression was investigated; two-time applications (repeated DEP) at 20 V with 5 min intervals showed similar luciferase expression level to single DEP application with 100 V. Histological observations showed the skin became thicker after a single DEP at 100 V, whereas no apparent thickness changes were confirmed after repeated DEP at 20 V with 5 min intervals. Conclusions: This study revealed that direct i.d. voltage application achieved high protein expression levels even at low voltages. Skin is a promising administration site for DNA vaccines, so this approach may be effective for DNA vaccine delivery into skin tissue.
Collapse
Affiliation(s)
- Yuya Yoshida
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., 180 Ozumi, Yaizu 425-0072, Shizuoka, Japan
| | - Manami Aoki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Kalin Nagase
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Koichi Marubashi
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., 180 Ozumi, Yaizu 425-0072, Shizuoka, Japan
| | - Hiroyuki Kojima
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., 180 Ozumi, Yaizu 425-0072, Shizuoka, Japan
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Syuuhei Komatsu
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
6
|
Guy RH. Drug delivery to and through the skin. Drug Deliv Transl Res 2024; 14:2032-2040. [PMID: 38837116 PMCID: PMC11208237 DOI: 10.1007/s13346-024-01614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
Drug delivery technology has advanced significantly over >50 years, and has produced remarkable innovation, countless publications and conferences, and generations of talented and creative scientists. However, a critical review of the current state-of-the-art reveals that the translation of clever and sophisticated drug delivery technologies into products, which satisfy important, unmet medical needs and have been approved by the regulatory agencies, has - given the investment made in terms of time and money - been relatively limited. Here, this point of view is illustrated using a case study of technology for drug delivery into and through the skin and aims: to examine the historical development of this field and the current state-of-the-art; to understand why the translation of drug delivery technologies into products that improve clinical outcomes has been quite slow and inefficient; and to suggest how the impact of technology may be increased and the process of concept to approved product accelerated.
Collapse
Affiliation(s)
- Richard H Guy
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, U.K..
| |
Collapse
|
7
|
Zhang W, Jiao Y, Zhang Z, Zhang Y, Yu J, Gu Z. Transdermal gene delivery. J Control Release 2024; 371:516-529. [PMID: 38849095 DOI: 10.1016/j.jconrel.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Jiao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziru Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
G Popova P, Chen SP, Liao S, Sadarangani M, Blakney AK. Clinical perspective on topical vaccination strategies. Adv Drug Deliv Rev 2024; 208:115292. [PMID: 38522725 DOI: 10.1016/j.addr.2024.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Vaccination is one of the most successful measures in modern medicine to combat diseases, especially infectious diseases, and saves millions of lives every year. Vaccine design and development remains critical and involves many aspects, including the choice of platform, antigen, adjuvant, and route of administration. Topical vaccination, defined herein as the introduction of a vaccine to any of the three layers of the human skin, has attracted interest in recent years as an alternative vaccination approach to the conventional intramuscular administration because of its potential to be needle-free and induce a superior immune response against pathogens. In this review, we describe recent progress in developing topical vaccines, highlight progress in the development of delivery technologies for topical vaccines, discuss potential factors that might impact the topical vaccine efficacy, and provide an overview of the current clinical landscape of topical vaccines.
Collapse
Affiliation(s)
- Petya G Popova
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sunny P Chen
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Suiyang Liao
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada; Life Science Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pediatrics, University of British Columbia, 4480 Oak St, Vancouver, BC V6H 0B3, Canada
| | - Anna K Blakney
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 2B9, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
9
|
Kougkolos G, Laudebat L, Dinculescu S, Simon J, Golzio M, Valdez-Nava Z, Flahaut E. Skin electroporation for transdermal drug delivery: Electrical measurements, numerical model and molecule delivery. J Control Release 2024; 367:235-247. [PMID: 38244842 DOI: 10.1016/j.jconrel.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Skin electroporation for drug delivery involves the application of Pulsed Electric Fields (PEFs) on the skin to disrupt its barrier function in a temporary and non-invasive manner, increasing the uptake of drugs. It represents a potential alternative to delivery methods that are invasive (e.g. injections) or limited. We have developed a drug delivery system comprising nanocomposite hydrogels which act as a reservoir for the drug and an electrode for applying electric pulses on the skin. In this study, we employed a multi-scale approach to investigate the drug delivery system on a mouse skin model, through electrical measurements, numerical modeling and fluorescence microscopy. The Electrical properties indicated a highly non-linear skin conductivity behavior and were used to fine-tune the simulations and study skin recovery after electroporation. Simulation of electric field distribution in the skin showed amplitudes in the range of reversible tissue electroporation (400-1200 V/cm), for 300 V PEF. Fluorescence microscopy revealed increased uptake of fluorescent molecules compared to the non-pulsed control. We reported two reversible electroporation domains for our configuration: (1) at 100 V PEF the first local transport regions appear in the extracellular lipids of the stratum corneum, demonstrated by a rapid increase in the skin's conductivity and an increased uptake of lucifer yellow, a small hydrophilic fluorophore and (2) at 300 V PEF, the first permeabilization of nucleated cells occurred, evidenced by the increased fluorescence of propidium iodide, a membrane-impermeable, DNA intercalating agent.
Collapse
Affiliation(s)
- Georgios Kougkolos
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France; LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France
| | - Lionel Laudebat
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France; INU Champollion, Université de Toulouse, Albi 81012, France
| | - Sorin Dinculescu
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France
| | - Juliette Simon
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France; IPBS, Université de Toulouse, CNRS UMR, UPS, Toulouse CEDEX 4 31077, France
| | - Muriel Golzio
- IPBS, Université de Toulouse, CNRS UMR, UPS, Toulouse CEDEX 4 31077, France.
| | - Zarel Valdez-Nava
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Toulouse CEDEX 9 31062, France.
| |
Collapse
|
10
|
Raghav RS, Verma S, Monika. A Comprehensive Review on Potential Chemical and Herbal Permeation Enhancers Used in Transdermal Drug Delivery Systems. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:21-34. [PMID: 38258784 DOI: 10.2174/0126673878272043240114123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 01/24/2024]
Abstract
Using skin patches to deliver drugs is dependable and doesn't have the same issues as permeation enhancers, which help drugs get through the skin but struggle because of the skin's natural barrier. Strategies are required to increase topical bioavailability to enhance drug absorption. Natural compounds offer a promising solution by temporarily reducing skin barrier resistance and improving drug absorption. Natural substances allow a wider variety of medications to be distributed through the stratum corneum, offering a dependable approach to enhancing transdermal drug delivery. Natural substances have distinct advantages as permeability enhancers. They are pharmacologically effective and safe, inactive, non-allergenic, and non-irritating. These characteristics ensure their suitability for use without causing adverse effects. Natural compounds are readily available and well tolerated by the body. Studies investigating the structure-activity relationship of natural chemicals have demonstrated significant enhancer effects. By understanding the connection between chemical composition and enhancer activity, researchers can identify effective natural compounds for improving drug penetration. In conclusion, current research focuses on utilizing natural compounds as permeability enhancers in transdermal therapy systems. These substances offer safety, non-toxicity, pharmacological inactivity, and non-irritation. Through structure-activity relationship investigations, promising advancements have been made in enhancing drug delivery. Using natural compounds holds enormous potential for improving the penetration of trans-dermally delivered medications.
Collapse
Affiliation(s)
- Rajat Singh Raghav
- Department of Pharmacy, Faculty of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Sushma Verma
- Department of Pharmacy, Faculty of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Monika
- Department of Pharmacy, Faculty of Pharmaceutics, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| |
Collapse
|
11
|
Joshi N, Azizi Machekposhti S, Narayan RJ. Evolution of Transdermal Drug Delivery Devices and Novel Microneedle Technologies: A Historical Perspective and Review. JID INNOVATIONS 2023; 3:100225. [PMID: 37744689 PMCID: PMC10514214 DOI: 10.1016/j.xjidi.2023.100225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
The history of transdermal drug delivery is as old as humankind. Transdermal drug delivery has undergone three generations of development; the third generation has involved the use of medical devices and instruments. This review provides a historical perspective on the primary approaches employed in the three generations of transdermal drug delivery. In addition, we explore some of the recently developed transdermal techniques that are deemed promising in the field of drug delivery. We discuss how advances in these techniques have led to the development of devices for the delivery of a therapeutically effective amount of drug across human skin and highlight the limitations of the first- and second-generation drug delivery tools. As such, a review of the performance of these techniques and the toxicity of the devices used in transdermal drug delivery are considered. In the last section of the review, a discussion of the fabrication and operation of different types of microneedles is presented. The applications of microneedles in the sensing and delivery of various therapeutic agents are described in detail. Furthermore, an overview of the efficacy of microneedles as emerging tools for the controlled release of drugs is presented.
Collapse
Affiliation(s)
- Naveen Joshi
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sina Azizi Machekposhti
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Roger J. Narayan
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
Woo MR, Prausnitz MR. Modulation of hair growth by topical drug delivery enhanced by STAR particles. J Control Release 2023; 361:766-776. [PMID: 37595668 DOI: 10.1016/j.jconrel.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Topical treatments to modulate hair growth are generally limited by low drug bioavailability due to poor skin permeability. Here, we studied the use of STAR particles, which are millimeter-sized ceramic particles with protruding microneedles, to form micropores in the skin to increase skin permeability to hair growth-modulating drugs. STAR particle design and fabrication were optimized, and the resulting STAR particles were shown to reduce lag time and increase skin permeability to minoxidil and acyclovir by more than three-fold compared to no treatment in pig skin ex vivo. In rats, STAR particles also improved topical delivery of minoxidil and acyclovir, which resulted in an increase or a decrease in the number, length and/or thickness of hairs and/or the number of anagen-phase hair follicles after minoxidil or acyclovir treatment, respectively. Clinical exam and histological evaluation showed no evidence of skin irritation or other adverse effects of the treatments. We conclude that STAR particles can increase topical delivery of minoxidil and acyclovir to improve modulation of hair growth promotion and inhibition, respectively.
Collapse
Affiliation(s)
- Mi Ran Woo
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA; College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mark R Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
13
|
Guillot AJ, Martínez-Navarrete M, Zinchuk-Mironova V, Melero A. Microneedle-assisted transdermal delivery of nanoparticles: Recent insights and prospects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1884. [PMID: 37041036 DOI: 10.1002/wnan.1884] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
Transdermal delivery of drugs offers an interesting alternative for the administration of molecules that present certain troubles when delivered by the oral route. It can produce systemic effects or perform a local action when the formulation exerts an optimal controlled drug release or a targeted delivery to the specific cell type or site. It also avoids several inconveniences of the oral administration such as the hepatic first pass effect, gastric pH-induced hydrolysis, drug malabsorption because of certain diseases or surgeries, and unpleasant organoleptic properties. Nanomedicine and microneedle array patches (MAPs) are two of the trendiest delivery systems applied to transdermal research nowadays. However, the skin is a protective barrier and nanoparticles (NPs) cannot pass through the intact stratum corneum. The association of NPs and MAPs (NPs@MAPs) work synergistically, since MAPs assist NPs to bypass the outer skin layers, and NPs contribute to the system providing controlled drug release and targeted delivery. Vaccination and tailored therapies have been proposed as fields where both NPs and MAPs have great potential due to inherent characteristics. MAPs conception and easy use could allow self-administration and therefore facilitate mass vaccination campaigns in undeveloped areas with weak healthcare services. Additionally, nanomedicine is being explored as a platform to personalize therapies in such an important field as oncology. In this work we show recent insights that prove the benefits of NPs@MAPs association and analyze the prospects and the discrete interest of the industry in NPs@MAPs, evaluating different limiting steps that restricts NPs@MAPs translation to the clinical practice. This article is categorized under: Nanotechnology Approaches to Biology > NA Therapeutic Approaches and Drug Discovery > NA.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Valeria Zinchuk-Mironova
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| |
Collapse
|
14
|
Han W, Liu F, Liu G, Li H, Xu Y, Sun S. Research progress of physical transdermal enhancement techniques in tumor therapy. Chem Commun (Camb) 2023; 59:3339-3359. [PMID: 36815500 DOI: 10.1039/d2cc06219d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The advancement and popularity of transdermal drug delivery (TDD) based on the physical transdermal enhancement technique (PTET) has opened a new paradigm for local tumor treatment. The drug can be directly delivered to the tumor site through the skin, thus avoiding the toxic side effects caused by the first-pass effect and achieving high patient compliance. Further development of PTETs has provided many options for antitumor drugs and laid the foundation for future applications of wearable closed-loop targeting drug delivery systems. In this highlight, the different types of PTETs and related mechanisms, and applications of PTET-related tumor detection and therapy are highlighted. According to their type and characteristics, PTETs are categorized as follows: (1) iontophoresis, (2) electroporation, (3) ultrasound, (4) thermal ablation, and (5) microneedles. PTET-related applications in the local treatment of tumors are categorized as follows: (1) melanoma, (2) breast tumor, (3) squamous cell carcinoma, (4) cervical tumor, and (5) others. The challenges and future prospects of existing PTETs are also discussed. This highlight will provide guidance for the design of PTET-based wearable closed-loop targeting drug delivery systems and personalized therapy for tumors.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, P. R. China.
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Guillot AJ, Martínez-Navarrete M, Garrigues TM, Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. J Control Release 2023; 355:624-654. [PMID: 36775245 DOI: 10.1016/j.jconrel.2023.02.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Lipid vesicles can provide a cost-effective enhancement of skin drug absorption when vesicle production process is optimised. It is an important challenge to design the ideal vesicle, since their properties and features are related, as changes in one affect the others. Here, we review the main components, preparation and characterization methods commonly used, and the key properties that lead to highly efficient vesicles for transdermal drug delivery purposes. We stand by size, deformability degree and drug loading, as the most important vesicle features that determine the further transdermal drug absorption. The interest in this technology is increasing, as demonstrated by the exponential growth of publications on the topic. Although long-term preservation and scalability issues have limited the commercialization of lipid vesicle products, freeze-drying and modern escalation methods overcome these difficulties, thus predicting a higher use of these technologies in the market and clinical practice.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Teresa M Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avda. Vicente A. Estelles SN, Burjassot (Valencia), Spain.
| |
Collapse
|
16
|
The Fundamental Role of Lipids in Polymeric Nanoparticles: Dermal Delivery and Anti-Inflammatory Activity of Cannabidiol. Molecules 2023; 28:molecules28041774. [PMID: 36838759 PMCID: PMC9962451 DOI: 10.3390/molecules28041774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
This report presents a nanoparticulate platform for cannabidiol (CBD) for topical treatment of inflammatory conditions. We have previously shown that stabilizing lipids improve the encapsulation of CBD in ethyl cellulose nanoparticles. In this study, we examined CBD release, skin permeation, and the capability of lipid-stabilized nanoparticles (LSNs) to suppress the release of IL-6 and IL-8. The nanoparticles were stabilized with cetyl alcohol (CA), stearic acid (SA), lauric acid (LA), and an SA/LA eutectic combination (SALA). LSN size and concentration were measured and characterized by differential scanning calorimetry (DSC), in vitro release of loaded CBD, and skin permeability. IL-6 and IL-8 secretions from TNF-α-induced HaCaT cells were monitored following different LSN treatments. CBD released from the LSNs in dispersion at increasing concentrations of polysorbate 80 showed non-linear solubilization, which was explained by recurrent precipitation. A significant high release of CBD in a cell culture medium was shown from SALA-stabilized nanoparticles. Skin permeation was >30% lower from SA-stabilized nanoparticles compared to the other LSNs. Investigation of the CBD-loaded LSNs' effect on the release of IL-6 and IL-8 from TNF-α-induced HaCaT cells showed that nanoparticles stabilized with CA, LA, or SALA were similarly effective in suppressing cytokine release. The applicability of the CBD-loaded LSNs to treat topical inflammatory conditions has been supported by their dermal permeation and release inhibition of pro-inflammatory cytokines.
Collapse
|
17
|
Saitoh H, Takami K, Ohnari H, Chiba Y, Ikeuchi-Takahashi Y, Obata Y. Effects and Mode of Action of Oleic Acid and Tween 80 on Skin Permeation of Disulfiram. Chem Pharm Bull (Tokyo) 2023; 71:289-298. [PMID: 36709972 DOI: 10.1248/cpb.c22-00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oral disulfiram (DSF) has been used clinically for alcohol dependence and recently has been found to have antitumor activity. A transdermal delivery system would be useful for maintaining drug concentration and reducing the frequency of administration of DSF for cancer treatment. Penetrating the stratum corneum (SC) barrier is a challenge to the transdermal delivery of DSF. Therefore, we investigated the promoting effects and mechanism of action of the combination of oleic acid (OA) and Tween 80 on the skin permeation of DSF. Hairless mouse skin was exposed to OA and Tween 80, combined in various ratios (1:0, 2:1, 1:1, 1:2, and 0:1). A permeation experiment was performed, and total internal reflection infrared spectroscopic measurements, differential scanning calorimetry, and synchrotron radiation X-ray diffraction measurements were taken of the SC with each applied formulation. The combination of OA and Tween 80 further enhanced the absorption-promoting effect of DSF, compared with individual application. The peak of the CH2 inverse symmetric stretching vibration near the skin surface temperature was shifted by a high frequency due to the application of OA, and DSF solubility increased in response to Tween 80. We believe that the increased fluidity of the intercellular lipids due to OA and the increased solubility of DSF due to Tween 80 promoted the absorption of DSF. Our study clarifies the detailed mechanism of action of the skin permeation and promoting effect of DSF through the combined use of OA and Tween 80, contributing to the development of a transdermal preparation of DSF.
Collapse
Affiliation(s)
| | - Ken Takami
- Department of Pharmaceutical Technology, Hoshi University
| | - Hiroki Ohnari
- Department of Pharmaceutical Technology, Hoshi University
| | | | | | - Yasuko Obata
- Department of Pharmaceutical Technology, Hoshi University
| |
Collapse
|
18
|
Suzuki T, Seki T, Seki T. Study on a Novel Transdermal Therapeutic System that Combines the Achievement of Supersaturation by pH-shift Method and User–Activated System. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Hong Y, Yu H, Wang L, Chen X, Huang Y, Yang J, Ren S. Transdermal Insulin Delivery and Microneedles-based Minimally Invasive Delivery Systems. Curr Pharm Des 2022; 28:3175-3193. [PMID: 35676840 DOI: 10.2174/1381612828666220608130056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 01/28/2023]
Abstract
Diabetes has become a serious threat to human health, causing death and pain to numerous patients. Transdermal insulin delivery is a substitute for traditional insulin injection to avoid pain from the injection. Transdermal methods include non-invasive and invasive methods. As the non-invasive methods could hardly get through the stratum corneum, minimally invasive devices, especially microneedles, could enhance the transappendageal route in transcutaneous insulin delivery, and could act as connectors between the tissue and outer environment or devices. Microneedle patches have been in quick development in recent years and with different types, materials and functions. In those patches, the smart microneedle patch could perform as a sensor and reactor responding to glucose to regulate the blood level. In the smart microneedles field, the phenylboronic acid system and the glucose oxidase system have been successfully applied on the microneedle platform. Insulin transdermal delivery strategy, microneedles technology and smart microneedles' development would be discussed in this review.
Collapse
Affiliation(s)
- Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Xiang Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
20
|
Min JWS, Saeed N, Coene A, Adriaens M, Ceelen W. Electromotive Enhanced Drug Administration in Oncology: Principles, Evidence, Current and Emerging Applications. Cancers (Basel) 2022; 14:4980. [PMID: 36291762 PMCID: PMC9599758 DOI: 10.3390/cancers14204980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 08/30/2023] Open
Abstract
Local-regional administration of cytotoxic drugs is an important adjunct to systemic chemotherapy amongst cancer patients. It allows for targeted delivery of agents at high concentration to target sites while minimizing systemic side effects. Despite the pharmacokinetic advantages of the local-regional approach, drug transport into tumor nodules remains limited due to the biophysical properties of these tissues. Electromotive enhanced drug administration (EMDA) represents a potential solution to overcome challenges in local drug transport by applying electric currents. Through electrokinetic phenomena of electromigration, electroosmosis and electroporation, electric currents have been shown to improve drug penetration and distribution in a wide variety of clinical applications. Amongst patients with non-muscular invasive bladder cancer (NMIBC) and basal and squamous cell skin cancers, EMDA has been successfully adopted and proven efficacious in several pre-clinical and clinical studies. Its application in ophthalmological and other conditions has also been explored. This review provides an overview of the underlying principles and factors that govern EMDA and discusses its application in cancer patients. We also discuss novel EMDA approaches in pre-clinical studies and explore future opportunities of developments in this field.
Collapse
Affiliation(s)
- Jolene Wong Si Min
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Nidda Saeed
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Annelies Coene
- Department of Electromechanical, Systems and Metal Engineering, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Mieke Adriaens
- Department of Chemistry, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| |
Collapse
|
21
|
Muralidharan A, Pesch GR, Hubbe H, Rems L, Nouri-Goushki M, Boukany PE. Microtrap array on a chip for localized electroporation and electro-gene transfection. Bioelectrochemistry 2022; 147:108197. [PMID: 35810498 DOI: 10.1016/j.bioelechem.2022.108197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/09/2022] [Accepted: 06/25/2022] [Indexed: 11/19/2022]
Abstract
We developed a localized single-cell electroporation chip to deliver exogenous biomolecules with high efficiency while maintaining high cell viability. In our microfluidic device, the cells are trapped in a microtrap array by flow, after which target molecules are supplied to the device and electrotransferred to the cells under electric pulses. The system provides the ability to monitor the electrotransfer of exogenous biomolecules in real time. We reveal through numerical simulations that localized electroporation is the mechanism of permeabilization in the microtrap array electroporation device. We demonstrate the simplicity and accuracy of this microtrap technology for electroporation by delivery of both small molecules using propidium iodide and large molecules using plasmid DNA for gene expression, illustrating the potential of this minimally invasive method to be widely used for precise intracellular delivery purposes (from bioprocess engineering to therapeutic applications).
Collapse
Affiliation(s)
- Aswin Muralidharan
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| | - Georg R Pesch
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hendrik Hubbe
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Lea Rems
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000 Ljubljana, Slovenia
| | - Mahdiyeh Nouri-Goushki
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
22
|
Chen Y, An Q, Teng K, Zhang Y, Zhao Y. Latest development and versatile applications of highly integrating drug delivery patch. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Cytotoxicity of a Cell Culture Medium Treated with a High-Voltage Pulse Using Stainless Steel Electrodes and the Role of Iron Ions. MEMBRANES 2022; 12:membranes12020184. [PMID: 35207105 PMCID: PMC8877239 DOI: 10.3390/membranes12020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023]
Abstract
High-voltage pulses applied to a cell suspension cause not only cell membrane permeabilization, but a variety of electrolysis reactions to also occur at the electrode–solution interfaces. Here, the cytotoxicity of a culture medium treated by a single electric pulse and the role of the iron ions in this cytotoxicity were studied in vitro. The experiments were carried out on mouse hepatoma MH-22A, rat glioma C6, and Chinese hamster ovary cells. The cell culture medium treated with a high-voltage pulse was highly cytotoxic. All cells died in the medium treated by a single electric pulse with a duration of 2 ms and an amplitude of just 0.2 kV/cm. The medium treated with a shorter pulse was less cytotoxic. The cell viability was inversely proportional to the amount of electric charge that flowed through the solution. The amount of iron ions released from the stainless steel anode (>0.5 mM) was enough to reduce cell viability. However, iron ions were not the sole reason of cell death. To kill all MH-22A and CHO cells, the concentration of Fe3+ ions in a medium of more than 2 mM was required.
Collapse
|
24
|
An ultra-low-cost electroporator with microneedle electrodes (ePatch) for SARS-CoV-2 vaccination. Proc Natl Acad Sci U S A 2021; 118:2110817118. [PMID: 34670842 PMCID: PMC8609327 DOI: 10.1073/pnas.2110817118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Low-cost and rapidly distributable vaccines are urgently needed to combat COVID-19 and future pandemics, especially for developing countries and other low-resource settings. DNA vaccines are inexpensive, rapidly developed, and safe, but require bulky and expensive electroporation devices for effective vaccination, which presents challenges to affordable and mass vaccination. We developed an ultra-low-cost (<1 USD), handheld (<50 g), battery-free electroporation system combining a thumb-actuated piezoelectric pulser and a microneedle electrode array skin interface for DNA vaccination against COVID-19, which was shown to be immunogenic and well-tolerated in animal studies. This study provides a proof-of-concept that DNA vaccination against epidemics can be achieved using an ultra-low-cost electroporator that is inexpensive enough for single use and robust enough for repeated use if desired. Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other pathogens with pandemic potential requires safe, protective, inexpensive, and easily accessible vaccines that can be developed and manufactured rapidly at a large scale. DNA vaccines can achieve these criteria, but induction of strong immune responses has often required bulky, expensive electroporation devices. Here, we report an ultra-low-cost (<1 USD), handheld (<50 g) electroporation system utilizing a microneedle electrode array (“ePatch”) for DNA vaccination against SARS-CoV-2. The low cost and small size are achieved by combining a thumb-operated piezoelectric pulser derived from a common household stove lighter that emits microsecond, bipolar, oscillatory electric pulses and a microneedle electrode array that targets delivery of high electric field strength pulses to the skin’s epidermis. Antibody responses against SARS-CoV-2 induced by this electroporation system in mice were strong and enabled at least 10-fold dose sparing compared to conventional intramuscular or intradermal injection of the DNA vaccine. Vaccination was well tolerated with mild, transient effects on the skin. This ePatch system is easily portable, without any battery or other power source supply, offering an attractive, inexpensive approach for rapid and accessible DNA vaccination to combat COVID-19, as well as other epidemics.
Collapse
|
25
|
Kopyl S, Surmenev R, Surmeneva M, Fetisov Y, Kholkin A. Magnetoelectric effect: principles and applications in biology and medicine- a review. Mater Today Bio 2021; 12:100149. [PMID: 34746734 PMCID: PMC8554634 DOI: 10.1016/j.mtbio.2021.100149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Magnetoelectric (ME) effect experimentally discovered about 60 years ago remains one of the promising research fields with the main applications in microelectronics and sensors. However, its applications to biology and medicine are still in their infancy. For the diagnosis and treatment of diseases at the intracellular level, it is necessary to develop a maximally non-invasive way of local stimulation of individual neurons, navigation, and distribution of biomolecules in damaged cells with relatively high efficiency and adequate spatial and temporal resolution. Recently developed ME materials (composites), which combine elastically coupled piezoelectric (PE) and magnetostrictive (MS) phases, have been shown to yield very strong ME effects even at room temperature. This makes them a promising toolbox for solving many problems of modern medicine. The main ME materials, processing technologies, as well as most prospective biomedical applications will be overviewed, and modern trends in using ME materials for future therapies, wireless power transfer, and optogenetics will be considered.
Collapse
Affiliation(s)
- S. Kopyl
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - R. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - M. Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Y. Fetisov
- Research & Education Centre ‘Magnetoelectric Materials and Devices’, MIREA – Russian Technological University, Moscow, Russia
| | - A. Kholkin
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
26
|
Todo H, Hasegawa Y, Okada A, Itakura S, Sugibayashi K. Improvement of Skin Permeation of Caffeine, a Hydrophilic Drug, by the Application of Water Droplets Provided by a Novel Humidifier Device. Chem Pharm Bull (Tokyo) 2021; 69:727-733. [PMID: 34334516 DOI: 10.1248/cpb.c21-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, a novel humidifier that sprays water fine droplets equipped with a copolymer, poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT/PSS) was developed. PEDOT/PSS in the humidifier absorbs water from the environment and releases fine water droplets by heating. In the present study, the effect of hydration on the skin barrier, stratum corneum, was first determined by the application of fine water droplets using the humidifier. The skin-penetration enhancement effect of a model hydrophilic drug, caffeine, was also investigated using the humidifier and compared with a conventional water-evaporative humidifier. More prolonged skin hydration effect was observed after application of the fine water droplet release humidifier using PEDOT/PSS than that using a conventional humidifier. In addition, markedly higher skin permeation of caffeine was observed in both infinite and finite dose conditions. Furthermore, higher skin permeation of caffeine from oil/water emulsion containing caffeine was observed in finite dose conditions by pretreatment with the humidifier using PEDOT/PSS. This device can provide water droplets without replenishing water, so it is more convenient for enhancing the skin permeation of chemical compounds from topical drugs and cosmetic formulations.
Collapse
Affiliation(s)
- Hiroaki Todo
- Graduate School of Pharmaceutical Sciences, Josai University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Yuya Hasegawa
- Graduate School of Pharmaceutical Sciences, Josai University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Akie Okada
- Graduate School of Pharmaceutical Sciences, Josai University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Shoko Itakura
- Graduate School of Pharmaceutical Sciences, Josai University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Kenji Sugibayashi
- Graduate School of Pharmaceutical Sciences, Josai University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
27
|
Zhou C, Yan Z, Liu K. Response characteristics and optimization of electroporation: simulation based on finite element method. Electromagn Biol Med 2021; 40:321-337. [PMID: 34278913 DOI: 10.1080/15368378.2021.1951484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Electroporation has been widely used in biology, medicine, and the food industry as a means to transport various molecules through the cell membrane. The phenomenon of electroporation is the result of cell membrane damage caused by the application of an electric field. In order to understand more precisely how cells function, we established a dielectric model of a spherical cell and analyzed its characteristics by the finite element method. The effects of altering different electrical parameters were determined. The results showed that the electric field strength was positively related to the transmembrane voltage (TMV) and pore density. There was a minimum electric field strength necessary to induce a critical TMV for the formation of pores. Pulse width also had to be long enough to charge the cell membrane, compared with the normal membrane charging time constant of about 1 μs. When the pulse width was shorter than the charging time constant, it was necessary to increase pulse frequency to create a high enough TMV. The rise-time of the electric pulse also affected electroporation: a fast rise-time pulse not only allowed penetration of the plasma membrane but also the organelle membrane. With slow rise-time pulse, the organelle was shielded from electroporation. This study defines the response characteristics of electrical parameters on the electric load cell and establishes the specificity of parameters for different purposes.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Light Sources & Illuminating Engineering, Fudan University, Shanghai China
| | - Zeyao Yan
- Department of Light Sources & Illuminating Engineering, Fudan University, Shanghai China
| | - Kefu Liu
- Department of Light Sources & Illuminating Engineering, Fudan University, Shanghai China
| |
Collapse
|
28
|
Sugibayashi K, Futaki M, Hashimoto M, Fukuhara A, Matsumoto K, Oshizaka T, Itakura S, Todo H. Effect of Iontophoresis on the Intradermal Migration Rate of Medium Molecular Weight Drugs. Chem Pharm Bull (Tokyo) 2021; 69:639-645. [PMID: 34193712 DOI: 10.1248/cpb.c21-00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to evaluate whether iontophoresis (IP) accelerates the intradermal migration rate of medium molecular weight drugs. Sodium polystyrene sulfonate (PSA) and fluorescein isothiocyanate-dextran (FD) were used as model medium molecular weight acidic and non-electrolyte drugs, respectively. Low molecular weight acid and non-electrolyte drugs were also used for comparison. Drug-loaded excised split-layered skin (SL skin) was used in the experiment. SL skin was prepared using (i) whole skin was split once, (ii) the drug solution was applied on the lower skin, and (iii) the upper skin was layered onto the lower skin containing the drug solution as in the original skin. The effect of constant-current cathodal or anodal IP was applied to the SL skin, and the time course of the cumulative amount of drug migration from the SL skin through the dermis to the receiver was followed. In cases without IP and with anodal IP, the intradermal migration rates of medium molecular weight drugs were much lower than those of small molecules. The driving force for drug migration was thought to be simple diffusion through the skin layer. In contrast, cathodal IP significantly increased the intradermal migration rate of PSA not but of FD or low molecular weight drugs. This IP-facilitated migration of PSA was probably due to electrorepulsion. These results suggest that IP can be used to increase the intradermal migration of medium molecular weight charged drugs.
Collapse
Affiliation(s)
- Kenji Sugibayashi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University.,Faculty of Pharmaceutical Sciences, Josai International University
| | - Mika Futaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Miyu Hashimoto
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Asuka Fukuhara
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Kengo Matsumoto
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Shoko Itakura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
29
|
Sharma G, Alle M, Chakraborty C, Kim JC. Strategies for transdermal drug delivery against bone disorders: A preclinical and clinical update. J Control Release 2021; 336:375-395. [PMID: 34175368 DOI: 10.1016/j.jconrel.2021.06.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/01/2022]
Abstract
The transdermal drug delivery system is an exceptionally safe and well-tolerable therapeutic approach that has immense potential for delivering active components against bone-related pathologies. However, its use is limited in the current clinical practices due to the low skin permeability of most active drugs in the formulation. Thus, innovations in the methodologies of skin permeation enhancement techniques are suggested to overcome this limitation. Although various transdermal drug delivery systems are studied to date, there are insufficient studies comparing the therapeutic efficacy of transdermal delivery systems to oral delivery systems. Thus, creating a decision-making dilemma between oral or transdermal therapies. Therefore, a timely review is inevitable to develop a platform for future researchers to develop next-generation transdermal drug delivery strategies against skeletal diseases that must be convenient and cost-effective for the patients with improved therapeutic efficacy. Here, we will outline the most recent strategies that can overcome the choice limitation of the drug and enhance the transdermal adsorption of various types of drugs to treat bone disorders. For the first time, in this review paper, we will highlight the preclinical and clinical studies on the different transdermal delivery methods. Thus, providing insight into the current therapeutic approaches and suggesting new directions for the advancements in transdermal drug delivery systems against bone disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
30
|
Ma Z, Bao G, Li J. Multifaceted Design and Emerging Applications of Tissue Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007663. [PMID: 33956371 DOI: 10.1002/adma.202007663] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 05/24/2023]
Abstract
Tissue adhesives can form appreciable adhesion with tissues and have found clinical use in a variety of medical settings such as wound closure, surgical sealants, regenerative medicine, and device attachment. The advantages of tissue adhesives include ease of implementation, rapid application, mitigation of tissue damage, and compatibility with minimally invasive procedures. The field of tissue adhesives is rapidly evolving, leading to tissue adhesives with superior mechanical properties and advanced functionality. Such adhesives enable new applications ranging from mobile health to cancer treatment. To provide guidelines for the rational design of tissue adhesives, here, existing strategies for tissue adhesives are synthesized into a multifaceted design, which comprises three design elements: the tissue, the adhesive surface, and the adhesive matrix. The mechanical, chemical, and biological considerations associated with each design element are reviewed. Throughout the report, the limitations of existing tissue adhesives and immediate opportunities for improvement are discussed. The recent progress of tissue adhesives in topical and implantable applications is highlighted, and then future directions toward next-generation tissue adhesives are outlined. The development of tissue adhesives will fuse disciplines and make broad impacts in engineering and medicine.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
31
|
Cristiano MC, Mancuso A, Fresta M, Torella D, De Gaetano F, Ventura CA, Paolino D. Topical Unsaturated Fatty Acid Vesicles Improve Antioxidant Activity of Ammonium Glycyrrhizinate. Pharmaceutics 2021; 13:548. [PMID: 33919824 PMCID: PMC8070842 DOI: 10.3390/pharmaceutics13040548] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/06/2023] Open
Abstract
Linoleic and oleic acids are natural unsaturated fatty acids involved in several biological processes and recently studied as structural components of innovative nanovesicles. The use of natural components in the pharmaceutical field is receiving growing attention from the scientific world. The aim of this research work is to design, to perform physico-chemical characterization and in vitro/in vivo studies of unsaturated fatty acids vesicles containing ammonium glycyrrhizinate, obtaining a new topical drug delivery system. The chosen active substance is well known as an anti-inflammatory compound, but its antioxidant activity is also noteworthy. In this way, the obtained nanocarriers are totally natural vesicles and they have shown to have suitable physico-chemical features for topical administration. Moreover, the proposed nanocarriers have proven their ability to improve the in vitro percutaneous permeation and antioxidant activity of ammonium glycyrrhizinate on human keratinocytes (NCTC 2544 cells). In vivo studies, carried out on human volunteers, have demonstrated the biocompatibility of unsaturated fatty acid vesicles toward skin tissue, indicating a possible clinical application of unsaturated fatty acid vesicles for the treatment of topical diseases.
Collapse
Affiliation(s)
- Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (M.C.C.); (D.T.)
| | - Antonia Mancuso
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (A.M.); (M.F.)
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (A.M.); (M.F.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (M.C.C.); (D.T.)
| | - Federica De Gaetano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (C.A.V.)
| | - Cinzia Anna Ventura
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università Degli Studi di Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.D.G.); (C.A.V.)
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., 88100 Catanzaro, Italy; (M.C.C.); (D.T.)
| |
Collapse
|
32
|
Yu YQ, Yang X, Wu XF, Fan YB. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front Bioeng Biotechnol 2021; 9:646554. [PMID: 33855015 PMCID: PMC8039394 DOI: 10.3389/fbioe.2021.646554] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/25/2021] [Indexed: 12/28/2022] Open
Abstract
The transdermal route of administration provides numerous advantages over conventional routes i.e., oral or injectable for the treatment of different diseases and cosmetics applications. The skin also works as a reservoir, thus deliver the penetrated drug for more extended periods in a sustained manner. It reduces toxicity and local irritation due to multiple sites for absorption and owes the option of avoiding systemic side effects. However, the transdermal route of delivery for many drugs is limited since very few drugs can be delivered at a viable rate using this route. The stratum corneum of skin works as an effective barrier, limiting most drugs' penetration posing difficulty to cross through the skin. Fortunately, some non-invasive methods can significantly enhance the penetration of drugs through this barrier. The use of nanocarriers for increasing the range of available drugs for the transdermal delivery has emerged as a valuable and exciting alternative. Both the lipophilic and hydrophilic drugs can be delivered via a range of nanocarriers through the stratum corneum with the possibility of having local or systemic effects to treat various diseases. In this review, the skin structure and major obstacle for transdermal drug delivery, different nanocarriers used for transdermal delivery, i.e., nanoparticles, ethosomes, dendrimers, liposomes, etc., have been discussed. Some recent examples of the combination of nanocarrier and physical methods, including iontophoresis, ultrasound, laser, and microneedles, have also been discussed for improving the therapeutic efficacy of transdermal drugs. Limitations and future perspectives of nanocarriers for transdermal drug delivery have been summarized at the end of this manuscript.
Collapse
Affiliation(s)
- Yi-Qun Yu
- Scientific Research and Education Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
- Nursing Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Fang Wu
- Nursing Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Yi-Bin Fan
- Department of Dermatology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
33
|
Hu Q, Joshi RP. Continuum analysis to assess field enhancements for tailoring electroporation driven by monopolar or bipolar pulsing based on nonuniformly distributed nanoparticles. Phys Rev E 2021; 103:022402. [PMID: 33736030 DOI: 10.1103/physreve.103.022402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 11/07/2022]
Abstract
Recent reports indicate that nanoparticle (NP) clusters near cell membranes could enhance local electric fields, leading to heightened electroporation. This aspect is quantitatively analyzed through numerical simulations whereby time dependent transmembrane potentials are first obtained on the basis of a distributed circuit mode, and the results then used to calculate pore distributions from continuum Smoluchowski theory. For completeness, both monopolar and bipolar nanosecond-range pulse responses are presented and discussed. Our results show strong increases in TMP with the presence of multiple NP clusters and demonstrate that enhanced poration could be possible even over sites far away from the poles at the short pulsing regime. Furthermore, our results demonstrate that nonuniform distributions would work to enable poration at regions far away from the poles. The NP clusters could thus act as distributed electrodes. Our results were roughly in line with recent experimental observations.
Collapse
Affiliation(s)
- Q Hu
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, USA
| | - R P Joshi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
34
|
Machado N, Callegaro C, Christoffolete MA, Martinho H. Tuning the transdermal transport by application of external continuous electric field: a coarse-grained molecular dynamics study. Phys Chem Chem Phys 2021; 23:8273-8281. [PMID: 33656026 DOI: 10.1039/d1cp00354b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The control of skin permeability to specific substances (e.g., medications, vitamins, and nutrients) through stratum corneum is a challenge. Iontophoresis is an option in spite of the lack of a detailed understanding of the underlying molecular mechanism. In the present work, the simulations concerning application of an external continuous electric field to stratum corneum, in a range of low intensity (0-24 mV nm-1), were carried out using the coarse-grained molecular dynamics approach. Using a set of random seed replicas of the starting configuration, we observed that in the range of electric field intensity of 22-23 mV nm-1, water-rich lipid vesicles were formed in 20% of cases. Pores appeared in the remaining 80%. We argue that lipids undergo fast re-orientations under electric field inducing mechanical instability, which originates the pores. We presented a simple electrostatic model to interpret the results where the mismatch between electrical permittivities of the membrane and external media and the gradient of the local electric field in the membrane surface, govern the time scales and electric fields for vesicle formation. Our results indicate that just 10% difference between electrical permittivities of the membrane and external media decreases 1/6 the minimal time required for vesicle formation. The minimal electric field required decreases 10 times. The control and tunning of formation of biologically compatible vesicles, capable of transporting substances under low-intensity electric fields, has a promising application in fields such as drug therapy and dermo-cosmetics allowing the use of hydrophilic substances in dermal applications.
Collapse
Affiliation(s)
- Neila Machado
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
| | | | | | | |
Collapse
|
35
|
Xu X, Zhang H, Yan Y, Wang J, Guo L. Effects of electrical stimulation on skin surface. ACTA MECHANICA SINICA = LI XUE XUE BAO 2021; 37:1843-1871. [PMID: 33584001 PMCID: PMC7866966 DOI: 10.1007/s10409-020-01026-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 05/10/2023]
Abstract
ABSTRACT Skin is the largest organ in the body, and directly contact with the external environment. Articles on the role of micro-current and skin have emerged in recent years. The function of micro-current is various, including introducing various drugs into the skin locally or throughout the body, stimulating skin wounds healing through various currents, suppressing pain caused by various diseases, and promoting blood circulation for postoperative muscle rehabilitation, etc. This article reviews these efforts. Compared with various physical and chemical medical therapies, micro-current stimulation provides a relatively safe, non-invasive therapy with few side effects, giving modern medicine a more suitable treatment option. At the same time, the cost of the electrical stimulation generating device is relatively low, which makes it have wider space to and more clinical application value. The current micro-current stimulation technology has become more and more mature, but there are still many problems in its research. The design of the experiment and the selection of the current parameters not standardized and rigorous. Now, clear regulations are needed to regulate this field. Micro-current skin therapy has become a robust, reliable, and well-structured system.
Collapse
Affiliation(s)
- Xinkai Xu
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Han Zhang
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Noise and Vibration, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190 China
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Yan Yan
- Cosmetic Technology Center, Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Jianru Wang
- Xi’an Aerospace Propulsion Institute, Xi’an, 710100 China
| | - Liang Guo
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
36
|
Morin M, Ruzgas T, Svedenhag P, Anderson CD, Ollmar S, Engblom J, Björklund S. Skin hydration dynamics investigated by electrical impedance techniques in vivo and in vitro. Sci Rep 2020; 10:17218. [PMID: 33057021 PMCID: PMC7557913 DOI: 10.1038/s41598-020-73684-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Skin is easily accessible for transdermal drug delivery and also attractive for biomarker sampling. These applications are strongly influenced by hydration where elevated hydration generally leads to increased skin permeability. Thus, favorable transdermal delivery and extraction conditions can be easily obtained by exploiting elevated skin hydration. Here, we provide a detailed in vivo and in vitro investigation of the skin hydration dynamics using three techniques based on electrical impedance spectroscopy. Good correlation between in vivo and in vitro results is demonstrated, which implies that simple but realistic in vitro models can be used for further studies related to skin hydration (e.g., cosmetic testing). Importantly, the results show that hydration proceeds in two stages. Firstly, hydration between 5 and 10 min results in a drastic skin impedance change, which is interpreted as filling of superficial voids in skin with conducting electrolyte solution. Secondly, a subtle impedance change is observed over time, which is interpreted as leveling of the water gradient across skin leading to structural relaxation/changes of the macromolecular skin barrier components. With respect to transdermal drug delivery and extraction of biomarkers; 1 h of hydration is suggested to result in beneficial and stable conditions in terms of high skin permeability and extraction efficiency.
Collapse
Affiliation(s)
- Maxim Morin
- Biofilms - Research Center for Biointerfaces, Malmö University, Malmö, Sweden.,Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Tautgirdas Ruzgas
- Biofilms - Research Center for Biointerfaces, Malmö University, Malmö, Sweden.,Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | | | | | - Stig Ollmar
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Engblom
- Biofilms - Research Center for Biointerfaces, Malmö University, Malmö, Sweden.,Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Sebastian Björklund
- Biofilms - Research Center for Biointerfaces, Malmö University, Malmö, Sweden. .,Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden.
| |
Collapse
|
37
|
Liu T, Luo G, Xing M. Biomedical Applications of Polymeric Microneedles for Transdermal Therapeutic Delivery and Diagnosis: Current Status and Future Perspectives. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research State Key Laboratory of Trauma Burn and Combined Injury Southwest Hospital Third Military Medical University (Army Medical University) Gaotanyan Street Chongqing 400038 China
- Department of Mechanical Engineering University of Manitoba Winnipeg Manitoba R3T 5V6 Canada
| | - Gaoxing Luo
- Institute of Burn Research State Key Laboratory of Trauma Burn and Combined Injury Southwest Hospital Third Military Medical University (Army Medical University) Gaotanyan Street Chongqing 400038 China
| | - Malcolm Xing
- Department of Mechanical Engineering University of Manitoba Winnipeg Manitoba R3T 5V6 Canada
| |
Collapse
|
38
|
Guillot AJ, Cordeiro AS, Donnelly RF, Montesinos MC, Garrigues TM, Melero A. Microneedle-Based Delivery: An Overview of Current Applications and Trends. Pharmaceutics 2020; 12:pharmaceutics12060569. [PMID: 32575392 PMCID: PMC7355570 DOI: 10.3390/pharmaceutics12060569] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Microneedle arrays (MNA) are considered as one of the most promising resources to achieve systemic effects by transdermal delivery of drugs. They are designed as a minimally invasive, painless system which can bypass the stratum corneum, overcoming the potential drawbacks of subcutaneous injections and other transdermal delivery systems such as chemical enhancers, nano and microparticles, or physical treatments. As a trendy field in pharmaceutical and biomedical research, its applications are constantly evolving, even though they are based on very well-established techniques. The number of molecules administered by MNA are also increasing, with insulin and vaccines administration being the most investigated. Furthermore, MNA are being used to deliver cells and applied in other organs and tissues like the eyes and buccal mucosae. This review intends to offer a general overview of the current state of MNA research, focusing on the strategies, applications, and types of molecules delivered recently by these systems. In addition, some information about the materials and manufacturing processes is presented and safety data is discussed.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
| | - Ana Sara Cordeiro
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.S.C.); (R.F.D.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.S.C.); (R.F.D.)
| | - M. Carmen Montesinos
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
- Center of Molecular Recognition and Technological Development (IDM), 46100 Burjassot, Spain
- Correspondence: (M.C.M.); (T.M.G.)
| | - Teresa M. Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
- Correspondence: (M.C.M.); (T.M.G.)
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
| |
Collapse
|
39
|
STAR particles for enhanced topical drug and vaccine delivery. Nat Med 2020; 26:341-347. [PMID: 32152581 DOI: 10.1038/s41591-020-0787-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/03/2020] [Indexed: 11/08/2022]
Abstract
Drug delivery to the skin is highly constrained by the stratum corneum barrier layer1. Here, we developed star-shaped particles, termed STAR particles, to dramatically increase skin permeability. STAR particles are millimeter-scale particles made of aluminum oxide or stainless steel with micron-scale projections designed to create microscopic pores across the stratum corneum. After gentle topical application for 10 s to porcine skin ex vivo, delivery of dermatological drugs and macromolecules, including those that cannot be given topically, was increased by 1 to 2 orders of magnitude. In mice treated with topical 5-fluorouracil, use of STAR particles increased the efficacy of the drug in suppressing the growth of subcutaneous melanoma tumors and prolonging survival. Moreover, topical delivery of tetanus toxoid vaccine to mice using STAR particles generated immune responses that were at least as strong as delivery of the vaccine by intramuscular injection, albeit at a higher dose for topical than intramuscular vaccine administration. STAR particles were well tolerated and effective at creating micropores when applied to the skin of human participants. Use of STAR particles provides a simple, low-cost and well-tolerated method for increasing drug and vaccine delivery to the skin and could widen the range of compounds that can be topically administered.
Collapse
|
40
|
Khizroev S, Liang P. Engineering Future Medicines With Magnetoelectric Nanoparticles: Wirelessly controlled, targeted therapies. IEEE NANOTECHNOLOGY MAGAZINE 2020. [DOI: 10.1109/mnano.2019.2952227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
LaFreniere JMJ, Roberge EJ, Halpern JM. Reorientation of Polymers in an Applied Electric Field for Electrochemical Sensors. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:037556. [PMID: 32265575 PMCID: PMC7138228 DOI: 10.1149/1945-7111/ab6cfe] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This mini review investigates the relationship and interactions of polymers under an applied electric field (AEF) for sensor applications. Understanding how and why polymers are reoriented and manipulated by under an AEF is essential for future growth in polymer-based electrochemical sensors. Examples of polymers that can be manipulated in an AEF for sensor applications are provided. Current methods of monitoring polymer reorientation will be described, but new techniques are needed characterize polymer response to various AEF stimuli. The unique and reproducible stimuli response of polymers elicited by an AEF has significant potential for growth in the sensing community.
Collapse
Affiliation(s)
| | - Emma J. Roberge
- Department of Chemical Engineering, University of New Hampshire, Durham, USA
| | - Jeffrey M. Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, USA
| |
Collapse
|
42
|
An Y, Park MJ, Lee J, Ko J, Kim S, Kang DH, Hwang NS. Recent Advances in the Transdermal Delivery of Protein Therapeutics with a Combinatorial System of Chemical Adjuvants and Physical Penetration Enhancements. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Young‐Hyeon An
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University Seoul 08826 Republic of Korea
| | - Mihn Jeong Park
- Interdisciplinary Program in BioengineeringSeoul National University Seoul 08826 Republic of Korea
| | - Joon Lee
- Interdisciplinary Program in BioengineeringSeoul National University Seoul 08826 Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University Seoul 08826 Republic of Korea
| | - Su‐Hwan Kim
- Interdisciplinary Program in BioengineeringSeoul National University Seoul 08826 Republic of Korea
| | - Dong Hyeon Kang
- Interdisciplinary Program in BioengineeringSeoul National University Seoul 08826 Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University Seoul 08826 Republic of Korea
- Interdisciplinary Program in BioengineeringSeoul National University Seoul 08826 Republic of Korea
- BioMAX Institute, Institute of BioengineeringSeoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
43
|
Abstract
Electroporation is a basic yet powerful method for delivering small molecules (RNA, DNA, drugs) across cell membranes by application of an electrical field. It is used for many diverse applications, from genetically engineering cells to drug- and DNA-based vaccine delivery. Despite this broad utility, the high cost of electroporators can keep this approach out of reach for many budget-conscious laboratories. To address this need, we develop a simple, inexpensive, and handheld electroporator inspired by and derived from a common household piezoelectric stove lighter. The proposed "ElectroPen" device can cost as little as 23 cents (US dollars) to manufacture, is portable (weighs 13 g and requires no electricity), can be easily fabricated using 3D printing, and delivers repeatable exponentially decaying pulses of about 2,000 V in 5 ms. We provide a proof-of-concept demonstration by genetically transforming plasmids into Escherichia coli cells, showing transformation efficiency comparable to commercial devices, but at a fraction of the cost. We also demonstrate the potential for rapid dissemination of this approach, with multiple research groups across the globe validating the ease of construction and functionality of our device, supporting the potential for democratization of science through frugal tools. Thus, the simplicity, accessibility, and affordability of our device holds potential for making modern synthetic biology accessible in high school, community, and resource-poor laboratories. This Community Page article describes an ultra-low–cost (23-cent) 3D-printed electroporator, inspired by a common barbecue lighter, designed to enable broader access to synthetic biology in high-school, community, and budget-conscious laboratories.
Collapse
|
44
|
Robertson J, Squire M, Becker S. Circulation Cooling in Continuous Skin Sonoporation at Constant Coupling Fluid Temperatures. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:137-148. [PMID: 31630889 DOI: 10.1016/j.ultrasmedbio.2019.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Exposure of the skin to low-frequency ultrasound in the Franz diffusion cell has been found to increase the permeability of the skin to molecular transport. In many cases, significant heating of the coupling fluid requires the use of duty cycles that extend the total experimental time. This is a methodological study in which the coupling fluid is circulated between a modified Franz diffusion cell and a heat exchanger to allow for the continuous application of low-frequency ultrasound while the coupling fluid temperature is held constant. Dermatomed porcine skin was exposed to continuous ultrasound at 20 kHz for 10 min at an intensity of 55 W/cm2 while the coupling fluid was maintained at one of three target temperatures (13°C, 33°C or 46°C). Foil pitting and passive cavitation detection revealed that inertial cavitation activity decreased with increasing coupling fluid target temperature. Transport measurements revealed an increase in mean donor calcein concentration with increasing coupling fluid temperature, though these were not statistically significant. Taken together these findings suggest that the weakened stratum corneum lipid structure at higher temperatures is more susceptible to the introduction of defects from the jetting of cavitation.
Collapse
Affiliation(s)
- Jeremy Robertson
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Marie Squire
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - Sid Becker
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
45
|
Kryukov AI, Kunelskaya NL, Shershunova EA, Rebrov IE, Yamshchikov VA, Garov EV, Tsarapkin GY, Mishchenko VV. [Topical drug administration to the inner ear. Modern state of the problem and development perspectives]. Vestn Otorinolaringol 2019; 84:6-14. [PMID: 31793520 DOI: 10.17116/otorino2019840516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The work assessed modern methods of drug delivery through biological barriers to the lesion, in particular, through the most studied - skin. The main advantages and disadvantages of the existing methods for the topical administration of drugs into the inner ear - intra-imperial and intra-labyrinth delivery are analyzed. A brief review of medicinal substances for topical administration to the inner ear, both widely used (for example, aminoglycosides, steroid drugs) and undergoing clinical trials, is given. An assessment is made of the prospects for the use of transmembrane drug delivery to the inner ear using an electric field, which has a combined electro-creative and iontophoretic effect.
Collapse
Affiliation(s)
- A I Kryukov
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - N L Kunelskaya
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - E A Shershunova
- The Institute for Electrophysics and Electric Power of the Russian Academy of Sciences, Sanct-Petersburg, Russia, 191186
| | - I E Rebrov
- The Institute for Electrophysics and Electric Power of the Russian Academy of Sciences, Sanct-Petersburg, Russia, 191186
| | - V A Yamshchikov
- The Institute for Electrophysics and Electric Power of the Russian Academy of Sciences, Sanct-Petersburg, Russia, 191186
| | - E V Garov
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - G Yu Tsarapkin
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - V V Mishchenko
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| |
Collapse
|
46
|
Yin M, Xiao L, Liu Q, Kwon SY, Zhang Y, Sharma PR, Jin L, Li X, Xu B. 3D Printed Microheater Sensor-Integrated, Drug-Encapsulated Microneedle Patch System for Pain Management. Adv Healthc Mater 2019; 8:e1901170. [PMID: 31664794 PMCID: PMC6918473 DOI: 10.1002/adhm.201901170] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Indexed: 02/04/2023]
Abstract
Microneedle patch devices have been widely utilized for transdermal drug delivery in pain management, but is challenged by accurate control of drug release and subsequent diffusion to human body. The recent emerging wearable electronics that could be integrated with microneedle devices offer a facile approach to address such a challenge. Here a 3D-printed microheater integrated drug-encapsulated microneedle patch system for drug delivery is presented. The ink solution comprised polydimethylsiloxane (PDMS) and multiwalled carbon nanotubes (MWCNTs) with a mass concentration of up to 45% (≈10 times higher of existing ones) is prepared and used to print crack-free stretchable microheaters on substrates with a broad range of materials and geometric curves. The adhesion strength of the printed microheater on the microneedle patch in elevated temperatures is measured to evaluate their integration performance. Assessments of encapsulated drug release into rat's skin are confirmed by examining degradation of microneedles, skin morphologies, and released fluorescent signals. Results and demonstrations established here creates a new opportunity for developing sensor controlled smart microneedle patch systems by integrating with wearable electronics, potentially useful in clinical and biomedical research.
Collapse
Affiliation(s)
- Mengtian Yin
- Department of Mechanical and Aerospace Engineering, University of Virginia, PO Box 400746 122 Engineer's Way, Charlottesville, VA, 22904, USA
| | - Li Xiao
- Department of Orthopedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, VA, 22908, USA
| | - Qingchang Liu
- Department of Mechanical and Aerospace Engineering, University of Virginia, PO Box 400746 122 Engineer's Way, Charlottesville, VA, 22904, USA
| | - Sung-Yun Kwon
- Theraject, Inc., 39270 Paseo Padre #112, Fremont, CA, 94538, USA
| | - Yi Zhang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N. Robertson Blvd, Pacific Theatres Building, Suite 400, Los Angeles, CA, 90048, USA
| | - Poonam R Sharma
- Department of Biomedical Engineering, University of Virginia, 135 Hospital Drive, Charlottesville, VA, 22908, USA
| | - Li Jin
- Department of Orthopedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, VA, 22908, USA
| | - Xudong Li
- Department of Orthopedic Surgery, University of Virginia, 135 Hospital Drive, Charlottesville, VA, 22908, USA
- Department of Biomedical Engineering, University of Virginia, 135 Hospital Drive, Charlottesville, VA, 22908, USA
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, PO Box 400746 122 Engineer's Way, Charlottesville, VA, 22904, USA
| |
Collapse
|
47
|
Cascone S, Lamberti G. Hydrogel-based commercial products for biomedical applications: A review. Int J Pharm 2019; 573:118803. [PMID: 31682963 DOI: 10.1016/j.ijpharm.2019.118803] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
Hydrogels are hydrophilic polymer networks, able to absorb large amount of water, increasing their volume and showing a plethora of different material behaviors. Since their first practical application, dating from sixties of last century, they have been employed in several fields of biomedical sciences. After more than half a century of industrial uses, nowadays a lot of hydrogels are currently on the market for different purposes, and offering a wide spectra of features. In this review, even if it is virtually impossible to list all the commercial products based on hydrogels for biomedical applications, an extensive analysis of those materials that have reached the market has been carried out. The hydrogel-based materials used for drug delivery, wound dressing, tissue engineering, the building of contact lens, and hygiene products are enlisted and briefly described. A detailed snapshot of the set of these products that have reached the commercial maturity has been then obtained and presented. For each class of application, the basics of requirements are described, and then the materials are listed and classified on the basis of their chemical nature. For each product the commercial name, the producer, the chemical nature and the main characteristics are reported.
Collapse
Affiliation(s)
- Sara Cascone
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy.
| | - Gaetano Lamberti
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
48
|
Vaiwala R, Jadhav S, Thaokar R. Establishing an Electrostatics Paradigm for Membrane Electroporation in the Framework of Dissipative Particle Dynamics. J Chem Theory Comput 2019; 15:5737-5749. [PMID: 31430431 DOI: 10.1021/acs.jctc.9b00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With an exclusive aim to looking into a mechanism of membrane electroporation on mesoscopic length and time scales, we report the dissipative particle dynamics (DPD) simulation results for systems with and without electrolytes. A polarizable DPD model of water is employed for accurate modeling of long-range electrostatics near the water-lipid interfaces. A great deal of discussion on field induced change in dipole moments of water and lipids together with the special variation of electric field is made in order to understand the dielectrophoretic movement of water, initiating a pore formation via an intrusion through the bilayer core. The presence of salt alters the dipolar arrangement of lipids and water, and thereby it reduces the external field required to create a pore in the membrane. The species fluxes through the pore, distributions for bead density, electrostatic potential, stresses across the membrane, etc. are used to answer some of the key questions pertaining to mechanism of electroporation. The findings are compared with the molecular dynamics simulation results found in the literature, and the comparison successfully establishes an electrostatics paradigm for biomembrane studies using DPD simulations.
Collapse
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| | - Sameer Jadhav
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| | - Rochish Thaokar
- Department of Chemical Engineering , Indian Institute of Technology Bombay , Mumbai 400 076 , India
| |
Collapse
|
49
|
Mechanistic study of transdermal delivery of macromolecules assisted by ionic liquids. J Control Release 2019; 311-312:162-169. [DOI: 10.1016/j.jconrel.2019.08.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023]
|
50
|
Abstract
To enable patient- and disease-specific diagnostic and treatment at the intracellular level in real time, it is imperative to engineer a perfect way to locally stimulate selected individual neurons, navigate and dispense a cargo of biomolecules into damaged cells or image sites with relatively high efficacy and with adequate spatial and temporal resolutions. Significant progress has been made using biotechnology; especially with the development of bioinformatics, there are endless molecular databases to identify biomolecules to target almost any disease-specific biomarker. Conversely, the technobiology approach that exploits advanced engineering to control underlying molecular mechanisms to recover biosystem's energy states at the molecular level as well as at the level of the entire network of cells (i.e., the internet of the human body) is still in its early research stage. The recently developed magnetoelectric nanoparticles (MENPs) provide a tool to enable the unique capabilities of technobiology. Using exemplary studies that could potentially lead to future pinpoint treatment and prevention of cancer, neurodegenerative diseases, and HIV, this article discusses how MENPs could become a vital enabling tool of technobiology.
Collapse
Affiliation(s)
- Sakhrat Khizroev
- Center for Personalized Nanomedicine, Florida International University, Miami, Florida 33199
| |
Collapse
|