1
|
de Groot N, van der Wiel M, Le NG, de Groot NG, Bruijnesteijn J, Bontrop RE. Unraveling the architecture of major histocompatibility complex class II haplotypes in rhesus macaques. Genome Res 2024; 34:1811-1824. [PMID: 39443153 DOI: 10.1101/gr.278968.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 10/25/2024]
Abstract
The regions in the genome that encode components of the immune system are often featured by polymorphism, copy number variation, and segmental duplications. There is a need to thoroughly characterize these complex regions to gain insight into the impact of genomic diversity on health and disease. Here we resolve the organization of complete major histocompatibility complex (MHC) class II regions in rhesus macaques by using a long-read sequencing strategy (Oxford Nanopore Technologies) in concert with adaptive sampling. In particular, the expansion and contraction of the primate DRB-region appear to be a dynamic process that involves the rearrangement of different cassettes of paralogous genes. These chromosomal recombination events are propagated by a conserved pseudogene, DRB6, which features the integration of two retroviral elements. In contrast, the DRA locus appears to be protected from rearrangements, which may be owing to the presence of an adjacently located truncated gene segment, DRB9 With our sequencing strategy, the annotation, evolutionary conservation, and potential function of pseudogenes can be reassessed, an aspect that was neglected by most genome studies in primates. Furthermore, our approach facilitates the characterization and refinement of an animal model essential to study human biology and disease.
Collapse
Affiliation(s)
- Nanine de Groot
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Marit van der Wiel
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Ngoc Giang Le
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
| | - Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands;
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, BPRC, 2288 GJ Rijswijk, the Netherlands
- Department of Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
2
|
Eisenblätter R, Seifert F, Schürmann P, Beckhaus T, Hanel P, Jentschke M, Böhmer G, Strauß HG, Hirchenhain C, Schmidmayr M, Müller F, Hein A, Stuebs F, Koch M, Ruebner M, Beckmann MW, Fasching PA, Luyten A, Häfner N, Hillemanns P, Dörk T, Ramachandran D. Validation and functional follow-up of cervical cancer risk variants at the HLA locus. HLA 2024; 104:e15597. [PMID: 39101335 DOI: 10.1111/tan.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
Cervical cancer is the fourth most common cancer in females. Genome-wide association studies (GWASs) have proposed cervical cancer susceptibility variants at the HLA locus on chromosome 6p21. To corroborate these findings and investigate their functional impact in cervical tissues and cell lines, we genotyped nine variants from cervical cancer GWASs (rs17190106, rs535777, rs1056429, rs2763979, rs143954678, rs113937848, rs3117027, rs3130214, and rs9477610) in a German hospital-based series of 1122 invasive cervical cancers, 1408 dysplasias, and 1196 healthy controls. rs17190106, rs1056429 and rs143954678/rs113937848 associated with cervical malignancies overall, while rs17190106 and rs535777 associated specifically with invasive cancer (OR = 0.69, 95% CI = 0.55-0.86, p = 0.001) or adenocarcinomas (OR = 1.63, 95%CI = 1.17-2.27, p = 0.004), respectively. We tested these and one previously genotyped GWAS variant, rs9272117, for potential eQTL effects on 36 gene transcripts at the HLA locus in 280 cervical epithelial tissues. The strongest eQTL pairs were rs9272117 and HLA-DRB6 (p = 1.9x10E-5), rs1056429 and HLA-DRB5 (p = 2.5x10E-4), and rs535777 and HLA-DRB1 (p = 2.7x10E-4). We also identified transcripts that were specifically upregulated (DDX39B, HCP5, HLA-B, LTB, NFKBIL1) or downregulated (HLA-C, HLA-DPB2) in HPV+ or HPV16+ samples. In comparison, treating cervical epithelial cells with proinflammatory cytokine γ-IFN led to a dose-dependent induction of HCP5, HLA-B, HLA-C, HLA-DQB1, HLA-DRB1, HLA-DRB6, and repression of HSPA1L. Taken together, these results identify relevant genes from both the MHC class I and II regions that are inflammation-responsive in cervical epithelium and associate with HPV (HCP5, HLA-B, HLA-C) and/or with genomic cervical cancer risk variants (HLA-DRB1, HLA-DRB6). They may thus constitute important contributors to the immune escape of precancerous cells after HPV-infection.
Collapse
Affiliation(s)
- Rieke Eisenblätter
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Finja Seifert
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Peter Schürmann
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Theresa Beckhaus
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Patricia Hanel
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Matthias Jentschke
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | | | - Hans-Georg Strauß
- Department of Gynaecology, University Clinics, Martin-Luther University, Halle-Wittenberg, Germany
| | - Christine Hirchenhain
- Department of Gynaecology, Clinics Carl Gustav Carus, University of Dresden, Dresden, Germany
| | - Monika Schmidmayr
- Department of Gynaecology, Technische Universität München, Munich, Germany
| | - Florian Müller
- Martin-Luther Hospital, Charite University, Berlin, Germany
| | - Alexander Hein
- Department of Gynaecology and Obstetrics, Klinikum Esslingen, Esslingen am Neckar, Germany
| | - Frederik Stuebs
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander, University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Koch
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander, University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander, University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander, University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter A Fasching
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander, University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Institute of Human Genetics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Luyten
- Dysplasia Unit, Department of Gynecology and Obstetrics, Mare Klinikum, Kronshagen, Germany
- Department of Gynaecology, Wolfsburg Hospital, Wolfsburg, Germany
| | - Norman Häfner
- Department of Gynaecology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Peter Hillemanns
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Thilo Dörk
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| | - Dhanya Ramachandran
- Department of Gynaecology, Comprehensive Cancer Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Arnab SP, Amin MR, DeGiorgio M. Uncovering Footprints of Natural Selection Through Spectral Analysis of Genomic Summary Statistics. Mol Biol Evol 2023; 40:msad157. [PMID: 37433019 PMCID: PMC10365025 DOI: 10.1093/molbev/msad157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
Natural selection leaves a spatial pattern along the genome, with a haplotype distribution distortion near the selected locus that fades with distance. Evaluating the spatial signal of a population-genetic summary statistic across the genome allows for patterns of natural selection to be distinguished from neutrality. Considering the genomic spatial distribution of multiple summary statistics is expected to aid in uncovering subtle signatures of selection. In recent years, numerous methods have been devised that consider genomic spatial distributions across summary statistics, utilizing both classical machine learning and deep learning architectures. However, better predictions may be attainable by improving the way in which features are extracted from these summary statistics. We apply wavelet transform, multitaper spectral analysis, and S-transform to summary statistic arrays to achieve this goal. Each analysis method converts one-dimensional summary statistic arrays to two-dimensional images of spectral analysis, allowing simultaneous temporal and spectral assessment. We feed these images into convolutional neural networks and consider combining models using ensemble stacking. Our modeling framework achieves high accuracy and power across a diverse set of evolutionary settings, including population size changes and test sets of varying sweep strength, softness, and timing. A scan of central European whole-genome sequences recapitulated well-established sweep candidates and predicted novel cancer-associated genes as sweeps with high support. Given that this modeling framework is also robust to missing genomic segments, we believe that it will represent a welcome addition to the population-genomic toolkit for learning about adaptive processes from genomic data.
Collapse
Affiliation(s)
- Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
4
|
The research of W.E. Mayer (1953-2012): a spectrum of immune systems. Immunogenetics 2012; 64:849-54. [PMID: 23053060 DOI: 10.1007/s00251-012-0654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
Abstract
Over a period of some 20 years, Werner Eugen Mayer played a significant role in establishing a framework for molecular studies of Mhc genes in multiple vertebrates. His work largely concerned gene isolation, sequencing, and related bioinformatic analyses both for the Mhc and for immune system genes of about 200 species, ranging from apes, monkeys, rodents, and marsupials, through to birds, bony fishes, and lampreys. In addition to his exploration of diverse Mhc genes, Werner is remembered for playing a critical role in the development of two important insights into the evolution of immune systems. His was among the first published DNA sequence-based descriptions of trans-species evolution of Mhc alleles, including the first description of the long-lived polymorphisms shared by humans and chimpanzees. This research opened the way for using Mhc polymorphisms in demographic analyses. The second important insight in which he played a prominent role involved the characterization of immune cells and their expressed genes in the lamprey, a jawless vertebrate. His findings helped to indicate the considerable degree to which extant immune mechanisms were co-opted in the creation of the adaptive immune system of jawed vertebrates.
Collapse
|
5
|
Sin YW, Dugdale HL, Newman C, Macdonald DW, Burke T. Evolution of MHC class I genes in the European badger (Meles meles). Ecol Evol 2012; 2:1644-62. [PMID: 22957169 PMCID: PMC3434948 DOI: 10.1002/ece3.285] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 02/01/2023] Open
Abstract
The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian MHC class I genes tend to cluster by species. Concerted evolution has the potential to homogenize different loci, whereas birth-and-death evolution can lead to the loss of orthologs; both processes result in monophyletic groups within species. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. We present the first study of MHC class I genes in a species from the superfamily Musteloidea. The European badger (Meles meles) exhibits moderate variation in MHC class I sequences when compared to other carnivores. We identified seven putatively functional sequences and nine pseudogenes from genomic (gDNA) and complementary (cDNA) DNA, signifying at least two functional class I loci. We found evidence for separate evolutionary histories of the α1 and α2/α3 domains. In the α1 domain, several sequences from different species were more closely related to each other than to sequences from the same species, resembling orthology or trans-species polymorphism. Balancing selection and probable recombination maintain genetic diversity in the α1 domain, evidenced by the detection of positive selection and a recombination event. By comparison, two recombination breakpoints indicate that the α2/α3 domains have most likely undergone concerted evolution, where recombination has homogenized the α2/α3 domains between genes, leading to species-specific clusters of sequences. Our findings highlight the importance of analyzing MHC domains separately.
Collapse
Affiliation(s)
- Yung Wa Sin
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan CentreTubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire OX13 5QL, United Kingdom
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, South Yorkshire, S10 2TN, United Kingdom
| | - Hannah L Dugdale
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, South Yorkshire, S10 2TN, United Kingdom
- Behavioural Ecology and Self-Organization, University of GroningenP.O. Box 11103, 9700 CC Groningen, The Netherlands
- Theoretical Biology, University of GroningenP.O. Box 11103, 9700 CC Groningen, The Netherlands
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan CentreTubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire OX13 5QL, United Kingdom
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan CentreTubney House, Abingdon Road, Tubney, Abingdon, Oxfordshire OX13 5QL, United Kingdom
| | - Terry Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of SheffieldWestern Bank, Sheffield, South Yorkshire, S10 2TN, United Kingdom
| |
Collapse
|
6
|
Abstract
The HLA region shows diversity concerning the number and content of DRB genes present per haplotype. Similar observations are made for the equivalent regions in other primate species. To elucidate the evolutionary history of the various HLA-DRB genes, a large panel of intron sequences obtained from humans, chimpanzees, rhesus macaques, and common marmosets has been subjected to phylogenetic analyses. Special attention was paid to the presence and absence of particular transposable elements and/or to their segments. The sharing of different parts of the same long interspersed nuclear element-2 (LINE2, L2) and various Alu insertions by the species studied demonstrates that one precursor gene must have been duplicated several times before the Old World monkey (OWM) and hominid (HOM) divergence. At least four ancestral DRB gene families appear to have been present before the radiation of OWM and HOM, and one of these even predates the speciation of Old and New World primates. Two of these families represent the pseudogenes DRB6/DRB2 and DRB7, which have been locked in the genomes of various primate species over long evolutionary time spans. Furthermore, all phylogenies of different intron segments show consistently that, apart from the pseudogenes, only DRB5 genes are shared by OWM and HOM, and they demonstrate the common history of certain DRB genes/lineages of humans and chimpanzees. In contrast, the evolutionary history of some other DRB loci is difficult to decipher, thus illustrating the complex history of the evolution of DRB genes due to a combination of mutations and recombination-like events. The selected approach allowed us to shed light on the ancestral DRB gene pool in primates and on the evolutionary relationship of the various HLA-DRB genes.
Collapse
Affiliation(s)
- Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
7
|
Sin YW, Dugdale HL, Newman C, Macdonald DW, Burke T. MHC class II genes in the European badger (Meles meles): characterization, patterns of variation, and transcription analysis. Immunogenetics 2011; 64:313-27. [DOI: 10.1007/s00251-011-0578-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
|
8
|
Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs. Immunogenetics 2010; 62:741-51. [DOI: 10.1007/s00251-010-0476-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
|
9
|
The chimpanzee Mhc-DRB region revisited: gene content, polymorphism, pseudogenes, and transcripts. Mol Immunol 2009; 47:381-9. [PMID: 19800692 DOI: 10.1016/j.molimm.2009.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 11/23/2022]
Abstract
In humans, great apes, and different monkey species, the major histocompatibility complex (MHC) class II DRB region is known to display considerable copy number variation. The microsatellite D6S2878 has been shown to be a valuable marker for haplotyping the DR region in humans and macaque species. The present report illustrates that chimpanzee haplotypes also can be discriminated with this marker. The analyses resulted in the description of nine different region configurations, of which seven are present within the West African chimpanzee population studied. The region configurations vary in gene content from two up to five DRB genes. Subsequent cDNA sequencing increased the number of known full-length Patr-DRB sequences from 3 to 32, and shows that one to three Patr-DRB genes per haplotype apparently produce functional transcripts. This is more or less comparable to humans and rhesus macaques. Moreover, microsatellite analysis in concert with full-length DRB gene sequencing showed that the Patr-DRB*W9 and -DRB3*01/02 lineages most likely arose from a common ancestral lineage: hence, the Patr-DRB*W9 lineage was renamed to Patr-DRB3*07. Overall, the data demonstrate that the D6S2878 microsatellite marker allows fast and accurate haplotyping of the Patr-DRB region. In addition, the limited amount of allelic variation observed at the various Patr-DRB genes is in agreement with the fact that chimpanzees experienced a selective sweep that may have been caused by an ancient retroviral infection.
Collapse
|
10
|
Doxiadis GGM, de Groot N, Dauber EM, van Eede PH, Fae I, Faner R, Fischer G, Grubic Z, Lardy NM, Mayr W, Palou E, Swelsen W, Stingl K, Doxiadis IIN, Bontrop RE. High resolution definition of HLA-DRB haplotypes by a simplified microsatellite typing technique. ACTA ACUST UNITED AC 2009; 74:486-93. [PMID: 19778321 DOI: 10.1111/j.1399-0039.2009.01369.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In humans, the region configurations DR1, DR8, DR51, DR52 and DR53 are known to display copy number as well as allelic variation, rendering high resolution typing of HLA-DRB haplotypes cumbersome. Advantage was taken of microsatellite D6S2878, present in all DRB genes/pseudogenes with an intact exon 2-intron 2 segment. This DRB-STR is highly polymorphic in composition and length. Recently, it was proven that all exon 2 sequences could be linked to a certain DRB-STR that segregates with the respective DRB allele. Because haplotypes show differential copy numbers and compositions of exon 2-positive DRB genes/pseudogenes, unique DRB-STR patterns could be described that appear to be specific for a particular DRB haplotype. The aim of this workshop project was to approve and to qualify this simple typing protocol in a larger panel covering different European populations. All participants succeeded in correctly defining the DRB-STR amplicons varying from 135 to 222 base pair (bp) lengths. The panel of 101 samples covered 50 DRB alleles distributed over 37 different haplotypes as defined by exon 2 sequence-based typing. These haplotypes could be refined into 105 haplotypes by DRB-STR typing. Thus, discrimination of exon 2-identical DRB alleles was feasible, as well as the exact description of three different crossing-over events that resulted in the generation of hybrid DR region configurations. This typing procedure appears to be a quick and highly robust technique that can easily be performed by different laboratories, even without experience in microsatellite typing; thus, it is suitable for a variety of researchers in diverse research areas.
Collapse
Affiliation(s)
- G G M Doxiadis
- Department of Comparative Genetics & Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Impact of endogenous intronic retroviruses on major histocompatibility complex class II diversity and stability. J Virol 2008; 82:6667-77. [PMID: 18448532 DOI: 10.1128/jvi.00097-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major histocompatibility complex (MHC) represents a multigene family that is known to display allelic and gene copy number variations. Primate species such as humans, chimpanzees (Pan troglodytes), and rhesus macaques (Macaca mulatta) show DRB region configuration polymorphism at the population level, meaning that the number and content of DRB loci may vary per haplotype. Introns of primate DRB alleles differ significantly in length due to insertions of transposable elements as long endogenous retrovirus (ERV) and human ERV (HERV) sequences in the DRB2, DRB6, and DRB7 pseudogenes. Although the integration of intronic HERVs resulted sooner or later in the inactivation of the targeted genes, the fixation of these endogenous retroviral segments over long time spans seems to have provided evolutionary advantage. Intronic HERVs may have integrated in a sense or an antisense manner. On the one hand, antisense-oriented retroelements such as HERV-K14I, observed in intron 2 of the DRB7 genes in humans and chimpanzees, seem to promote stability, as configurations/alleles containing these hits have experienced strong conservative selection during primate evolution. On the other hand, the HERVK3I present in intron 1 of all DRB2 and/or DRB6 alleles tested so far integrated in a sense orientation. The data suggest that multigenic regions in particular may benefit from sense introgressions by HERVs, as these elements seem to promote and maintain the generation of diversity, whereas these types of integrations may be lethal in monogenic systems, since they are known to influence transcript regulation negatively.
Collapse
|
12
|
Doxiadis GGM, de Groot N, Claas FHJ, Doxiadis IIN, van Rood JJ, Bontrop RE. A highly divergent microsatellite facilitating fast and accurate DRB haplotyping in humans and rhesus macaques. Proc Natl Acad Sci U S A 2007; 104:8907-12. [PMID: 17502594 PMCID: PMC1868589 DOI: 10.1073/pnas.0702964104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DRB region of the MHC in primate species is known to display abundant region configuration polymorphism with regard to the number and content of genes present per haplotype. Furthermore, depending on the species studied, the different DRB genes themselves may display varying degrees of allelic polymorphism. Because of this combination of diversity (differential gene number) and polymorphism (allelic variation), molecular typing methods for the primate DRB region are cumbersome. All intact DRB genes present in humans and rhesus macaques appear to possess, however, a complex and highly divergent microsatellite. Microsatellite analysis of a sizeable panel of outbred rhesus macaques, covering most of the known Mamu-DRB haplotypes, resulted in the definition of unique genotyping patterns that appear to be specific for a given haplotype. Subsequent examination of a representative panel of human cells illustrated that this approach also facilitates high-resolution HLA-DRB typing in an easy, quick, and reproducible fashion. The genetic composition of this complex microsatellite is shown to be in concordance with the phylogenetic relationships of various HLA-DRB and Mamu-DRB exon 2 gene/lineage sequences. Moreover, its length variability segregates with allelic variation of the respective gene. This simple protocol may find application in a variety of research avenues such as transplantation biology, disease association studies, molecular ecology, paternity testing, and forensic medicine.
Collapse
Affiliation(s)
- Gaby G. M. Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands; and
- To whom correspondence may be addressed. E-mail: or
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands; and
| | - Frans H. J. Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, E3-Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Ilias I. N. Doxiadis
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, E3-Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Jon J. van Rood
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, E3-Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- To whom correspondence may be addressed. E-mail: or
| | - Ronald E. Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands; and
| |
Collapse
|
13
|
Doxiadis GGM, van der Wiel MKH, Brok HPM, de Groot NG, Otting N, ’t Hart BA, van Rood JJ, Bontrop RE. Reactivation by exon shuffling of a conserved HLA-DR3-like pseudogene segment in a New World primate species. Proc Natl Acad Sci U S A 2006; 103:5864-8. [PMID: 16581907 PMCID: PMC1421335 DOI: 10.1073/pnas.0600643103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The common marmoset (Callithrix jacchus), a New World monkey species with a limited MHC class II repertoire, is highly susceptible to certain bacterial infections. Genomic analysis of exon 2 sequences documented the existence of only one DRB region configuration harboring three loci. Two of these loci display moderate levels of allelic polymorphism, whereas the -DRB*W12 gene appears to be monomorphic. This study shows that only the Caja-DRB*W16 and -DRB*W12 loci produce functional transcripts. The Caja-DRB1*03 locus is occupied by a pseudogene, given that most of the transcripts, if detected at all, show imperfections and are present at low levels. Moreover, two hybrid transcripts were identified that feature the evolutionarily conserved peptide-binding motif characteristic for the Caja-DRB1*03 gene. Thus, the severely reduced MHC class II repertoire in common marmosets has been expanded by reactivation of a pseudogene segment as a result of exon shuffling.
Collapse
Affiliation(s)
- Gaby G. M. Doxiadis
- Departments of Comparative Genetics and Refinement
- To whom correspondence may be addressed at:
Biomedical Primate Research Centre, Lange Kleiweg 139, 2288 GJ, Rijswijk, The Netherlands. E-mail:
| | | | | | | | - Nel Otting
- Departments of Comparative Genetics and Refinement
| | - Bert A. ’t Hart
- Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands; and
| | - Jon J. van Rood
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, E3-Q, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- To whom correspondence may be addressed. E-mail:
| | | |
Collapse
|
14
|
de Groot N, Doxiadis GG, De Groot NG, Otting N, Heijmans C, Rouweler AJM, Bontrop RE. Genetic makeup of the DR region in rhesus macaques: gene content, transcripts, and pseudogenes. THE JOURNAL OF IMMUNOLOGY 2004; 172:6152-7. [PMID: 15128802 DOI: 10.4049/jimmunol.172.10.6152] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the human population, five major HLA-DRB haplotypes have been identified, whereas the situation in rhesus macaques (Macaca mulatta) is radically different. At least 30 Mamu-DRB region configurations, displaying polymorphism with regard to number and combination of DRB loci present per haplotype, have been characterized. Until now, Mamu-DRB region genes have been studied mainly by genomic sequencing of polymorphic exon 2 segments. However, relatively little is known about the expression status of these genes. To understand which exon 2 segments may represent functional genes, full-length cDNA analyses of -DRA and -DRB were initiated. In the course of the study, 11 cDRA alleles were identified, representing four distinct gene products. Amino acid replacements are confined to the leader peptide and cytoplasmatic tail, whereas residues of the alpha1 domain involved in peptide binding, are conserved between humans, chimpanzees, and rhesus macaques. Furthermore, from the 11 Mamu-DRB region configurations present in this panel, 28 cDRB alleles were isolated, constituting 12 distinct cDRA/cDRB configurations. Evidence is presented that a single configuration expresses maximally up to three -DRB genes. For some exon 2 DRB sequences, the corresponding transcripts could not be detected, rendering such alleles as probable pseudogenes. The full-length cDRA and cDRB sequences are necessary to construct Mhc class II tetramers, as well as transfectant cell lines. As the rhesus macaque is an important animal model in AIDS vaccine studies, the information provided in this communication is essential to define restriction elements and to monitor immune responses in SIV/simian human immunodeficiency virus-infected rhesus macaques.
Collapse
Affiliation(s)
- Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
15
|
Cho K, Adamson LK, Greenhalgh DG. Induction of murine AIDS virus-related sequences after burn injury. J Surg Res 2002; 104:53-62. [PMID: 11971678 DOI: 10.1006/jsre.2002.6410] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the molecular signaling events leading to systemic inflammatory response syndrome (SIRS) and multiple organ failure (MOF), changes in gene expression profiles after burn injury were investigated by differential display. C57BLKS/J mice were subjected to 18% total body surface area (TBSA) full-thickness burn and various tissues were harvested at multiple time points after injury. Initial differential display revealed that retroviral transcripts similar to the envelope sequence of murine AIDS (MAIDS) virus were rapidly and transiently up-regulated after injury. Subsequent RT-PCR and DNA sequencing analyses confirmed the transient up-regulation of retroviral sequences similar to those of the MAIDS virus. In addition, the presence and induction of the subgenomic envelope transcripts of these MAIDS virus-related sequences, including a novel double spliced message, were identified after burn injury. These data suggest that the transcriptional efficiency of the integrated retroviral DNA and reactivation of defective MAIDS virus-related sequences may be affected by pathophysiological signals, such as burn injury. The elevated expression of these MAIDS virus-related retroviral sequences may affect the transcriptional activities of the flanking genes at the integration sites and may be a cause of altered local and systemic immune responses to burn-related stress.
Collapse
Affiliation(s)
- Kiho Cho
- Burn Surgery, Shriners Hospitals for Children Northern California, Sacramento, California 95817, USA
| | | | | |
Collapse
|
16
|
Doxiadis GG, Otting N, de Groot NG, Noort R, Bontrop RE. Unprecedented polymorphism of Mhc-DRB region configurations in rhesus macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3193-9. [PMID: 10706710 DOI: 10.4049/jimmunol.164.6.3193] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rhesus macaque is an important model in preclinical transplantation research and for the study of chronic and infectious diseases, and so extensive knowledge of its MHC (MhcMamu) is needed. Nucleotide sequencing of exon 2 allowed the detection of 68 Mamu-DRB alleles. Although most alleles belong to loci/lineages that have human equivalents, identical Mhc-DRB alleles are not shared between humans and rhesus macaques. The number of -DRB genes present per haplotype can vary from two to seven in the rhesus macaque, whereas it ranges from one to four in humans. Within a panel of 210 rhesus macaques, 24 Mamu-DRB region configurations can be distinguished differing in the number and composition of loci. None of the Mamu-DRB region configurations has been described for any other species, and only one of them displays major allelic variation giving rise to a total of 33 Mamu-DRB haplotypes. In the human population, only five HLA-DRB region configurations were defined, which in contrast to the rhesus macaque exhibit extensive allelic polymorphism. In comparison with humans, the unprecedented polymorphism of the Mamu-DRB region configurations may reflect an alternative strategy of this primate species to cope with pathogens. Because of the Mamu-DRB diversity, nonhuman primate colonies used for immunological research should be thoroughly typed to facilitate proper interpretation of results. This approach will minimize as well the number of animals necessary to conduct experiments.
Collapse
Affiliation(s)
- G G Doxiadis
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | |
Collapse
|
17
|
Yin H, Medstrand P, Kristofferson A, Dietrich U, Aman P, Blomberg J. Characterization of human MMTV-like (HML) elements similar to a sequence that was highly expressed in a human breast cancer: further definition of the HML-6 group. Virology 1999; 256:22-35. [PMID: 10087223 DOI: 10.1006/viro.1998.9587] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we found a retroviral sequence, HML-6.2BC1, to be expressed at high levels in a multifocal ductal breast cancer from a 41-year-old woman who also developed ovarian carcinoma. The sequence of a human genomic clone (HML-6.28) selected by high-stringency hybridization with HML-6.2BC1 is reported here. It was 99% identical to HML-6.2BC1 and gave the same restriction fragments as total DNA. HML-6.28 is a 4.7-kb provirus with a 5'LTR, truncated in RT. Data from two similar genomic clones and sequences found in GenBank are also reported. Overlaps between them gave a rather complete picture of the HML-6.2BC1-like human endogenous retroviral elements. Work with somatic cell hybrids and FISH localized HML-6.28 to chromosome 6, band p21, close to the MHC region. The causal role of HML-6.28 in breast cancer remains unclear. Nevertheless, the ca. 20 Myr old HML-6 sequences enabled the definition of common and unique features of type A, B, and D (ABD) retroviruses. In Gag, HML-6 has no intervening sequences between matrix and capsid proteins, unlike extant exogenous ABD viruses, possibly an ancestral feature. Alignment of the dUTPase showed it to be present in all ABD viruses, but gave a phylogenetic tree different from trees made from other ABD genes, indicating a distinct phylogeny of dUTPase. A conserved 24-mer sequence in the amino terminus of some ABD envelope genes suggested a conserved function.
Collapse
Affiliation(s)
- H Yin
- Department of Medical Sciences, Uppsala University, Dag Hammarskjölds väg 17, Uppsala, 751 85, Sweden.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
We present the genomic organisation of the extended class II region of the human MHC. This initial sequence, which is nearing completion, spans about 1.2 Mbp and is at present a composite of more than one haplotype. The sequencing of single haplotypes is planned for the future. The current sequence encompasses all of the known class II genes at the DP, DO, DM, DQ and DR loci as well as the transporter associated with antigen processing (TAP)/low molecular weight protein (LMP) antigen processing genes and the Tapasin locus, at the extended centromeric end.
Collapse
Affiliation(s)
- S Beck
- Sanger Centre, Cambridge, UK.
| | | |
Collapse
|
19
|
Abstract
Human endogenous retroviruses (HERVs) have recently been suggested as mediators of normal biological processes such as cellular differentiation and regulation of gene expression. Moreover, a direct role for HERVs in pathogenesis and the development of disease is now better appreciated. Elucidation of the mechanisms regulating HERV biology should provide information about fundamental cellular activities and the pathogenesis of multifactorial diseases such as cancer and autoimmune disease. The importance of understanding the roles of HERVs is underscored by the recently obtained insight that activation of endogenous retroviruses poses potential risks following xenotransplantation and in gene therapy using retroviral vectors. Furthermore, HERV-encoded superantigens have recently been implicated as causes of autoimmune disease. This review discusses the established and possible biological roles of HERVs, and proposes hypotheses concerning their involvement as mediators of fundamental cellular responses. We propose that the evolutionary persistence of endogenous retroviruses in the genomes of eukaryotic cells reflects their indispensability in important normal functions in specialized cellular environments. HERVs can also be potentially hazardous through their involvement in the development of disease. In addition, the creation of new retroviruses can occur through recombination, between different HERVs and between HERVs and exogenous retroviruses.
Collapse
Affiliation(s)
- E Larsson
- Department of Genetics and Pathology, University of Uppsala, University Hospital, Sweden
| | | |
Collapse
|
20
|
Horton R, Niblett D, Milne S, Palmer S, Tubby B, Trowsdale J, Beck S. Large-scale sequence comparisons reveal unusually high levels of variation in the HLA-DQB1 locus in the class II region of the human MHC. J Mol Biol 1998; 282:71-97. [PMID: 9733642 DOI: 10.1006/jmbi.1998.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparison of genomic sequences flanking the HLA-DQB1 locus in the human MHC class II region reveals local sequence variation of up to 10%, which is the highest level of sequence variation found in the human genome so far. The variation is haplotype-specific and extends far beyond the transcriptional unit of the DQB1 gene, suggesting hitch-hiking along with functionally selected alleles as the most likely mechanism. All major insertions/deletions (indels) were found to be of retroviral origin and in the immediate upstream region of DQB1. Possible cis-acting effects of these indels on the transcriptional regulation of DQB1 are discussed.
Collapse
Affiliation(s)
- R Horton
- The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Lindeskog M, Medstrand P, Cunningham AA, Blomberg J. Coamplification and dispersion of adjacent human endogenous retroviral HERV-H and HERV-E elements; presence of spliced hybrid transcripts in normal leukocytes. Virology 1998; 244:219-29. [PMID: 9581793 DOI: 10.1006/viro.1998.9106] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In an RT-PCR study of HERV-H spliced subgenomic transcripts, we found transcripts with HERV-H leader and protease-encoding sequences spliced to HERV-E integrase-encoding sequences in lymphocytes from healthy blood donors. In other cell types, including two T-cell leukemia cell lines, these transcripts were absent. The PCR fragments of the hybrid transcripts contained two open reading frames (ORFs). One was a hybrid HERV-H protease/HERV-E integrase ORF and the other was the HERV-E envelope surface glycoprotein ORF. Alternative splice products were also identified. The genomic DNA origin of the hybrid transcripts was shown to be a HERV-H element with a large 3'-end deletion, adjacent to a HERV-E element lacking the 5'-LTR. This hybrid structure was shown to be amplified and dispersed to six different human chromosomes. Thus, a relatively large part of full-length HERV-E elements (15-20%) is potentially under the transcriptional control of HERV-H LTRs. The HERV-H/HERV-E junction was present in multiple copies also in the chimpanzee and gorilla, but not in the orangutan or old world monkeys.
Collapse
Affiliation(s)
- M Lindeskog
- Department of Medical Microbiology, Lund University, Sweden.
| | | | | | | |
Collapse
|
22
|
Abstract
Molecular genetic studies of the human major histocompatibility complex (MHC) have led to the identification of more than 200 genes. Besides the large number of genes in the MHC, densely clustered areas of retroelements have been identified. These include short and long interspersed elements (SINEs and LINEs), and human endogenous retroviruses (HERVs). The presence of retroelements in the MHC provides a clear example of how these elements affect the genome plasticity of the host. Comparative analyses of these retroelements have proven highly useful in evolutionary studies of the MHC. Recently, HERV-encoded superantigens have been implicated as candidate autoimmune genes in type I diabetes and multiple sclerosis. In addition, genetic analyses have revealed that autoimmune diseases show strong associations with MHC class II genes. The intriguing correlations between retroviral encoded antigens, MHC class II genes and the development of autoimmune disease merit intense future investigations of retroelements, in particular those endogenous retroviruses located in the MHC class II region proper.
Collapse
Affiliation(s)
- G Andersson
- Department of Cell Research, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Sweden.
| | | | | | | |
Collapse
|
23
|
Svensson AC, Andersson G. Presence of retroelements reveal the evolutionary history of the human DR haplotypes. Hereditas 1998; 127:113-24. [PMID: 9420477 DOI: 10.1111/j.1601-5223.1997.00113.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Comparison of intron sequences has been a successful tool for drawing major conclusions about the evolutionary relationship of DRB genes. This complex family of genes is discussed in this review as well as a proposed model for the evolution of HLA-DR haplotypes. The model is based both on phylogenetic analysis of intron sequences as well as presence of ERV9 LTR elements located at identical position in intron 5 of a number of DRB genes. According to this model, two main evolutionary branches of DR haplotypes exist. The DR53 haplotype represents one branch, and the second branch contains the DR51, DR52, DR1, and DR8 haplotypes. After the divergence of the DR53 haplotype, an ERV9 LTR element was inserted in a primordial gene. Consequently, all DRB1 genes as well as the DRB3 gene within haplotypes of the second branch, contain this LTR element. In addition, conserved regulatory sequence motifs are found present within these LTR elements that might regulate DRB gene expression. Novel haplotypes are generated by recombinations and the maintenance of the DR haplotype variation as well as the frequent genetic rearrangements observed might be evolutionary advantageous.
Collapse
Affiliation(s)
- A C Svensson
- Department of Cell Research, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Sweden
| | | |
Collapse
|
24
|
Rasmussen HB, Clausen J. Possible involvement of endogenous retroviruses in the development of autoimmune disorders, especially multiple sclerosis. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 1997; 169:32-7. [PMID: 9174638 DOI: 10.1111/j.1600-0404.1997.tb08147.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endogenous retroviruses are normal elements in vertebrate genomes. Many aspects concerning these genomic elements are still uncertain. In mice some endogenous retroviral sequences seem to be involved in the regulation of immune responses and there is even evidence that a retroviral element is responsible for the development of an autoimmune disease in a mouse strain. Whether endogenous retroviruses also contribute to the development of autoimmune diseases in humans is not known, but it is an interesting possibility. Below we briefly review endogenous retroviruses as potential etiological factors in autoimmunity and we discuss a possible association between MS and endogenous retroviruses on the basis of results from our laboratory.
Collapse
Affiliation(s)
- H B Rasmussen
- Department of Life Sciences and Chemistry, Roskilde University, Denmark
| | | |
Collapse
|
25
|
Abstract
Endogenous retroviruses (ERVs) are estimated to comprise up to 1% of human DNA. While the genome of many ERVs is interrupted by termination codons, deletions or frame shift mutations, some ERVs are transcriptionally active and recent studies reveal protein expression or particle formation by human ERVs. ERVs have been implicated as aetiological agents of autoimmune disease, because of their structural and sequence similarities to exogenous retroviruses associated with immune dysregulation and their tissue-specific or differentiation-dependent expression. In fact, retrovirus-like particles distinct from those of known exogenous retroviruses and immune responses to ERV proteins have been observed in autoimmune disease. Quantitatively or structurally aberrant expression of normally cryptic ERVs, induced by environmental or endogenous factors, could initiate autoimmunity through direct or indirect mechanisms. ERVs may lead to immune dysregulation as insertional mutagens or cis-regulatory elements of cellular genes involved in immune function. ERVs may also encode elements like tax in human T-lymphotrophic virus type I (HTLV-I) or tat in human immunodeficiency virus-I (HIV-I) that are capable of transactivating cellular genes. More directly, human ERV gene products themselves may be immunologically active, by analogy with the superantigen activity in the long terminal repeat (LTR) of mouse mammary tumour viruses (MMTV) and the non-specific immunosuppressive activity in mammalian type C retrovirus env protein. Alternatively, increased expression of an ERV protein, or expression of a novel ERV protein not expressed in the thymus during acquisition of immune tolerance, may lead to its perception as a neoantigen. Paraneoplastic syndromes raise the possibility that novel ERV-encoded epitopes expressed by a tumour elicit immunity to cross-reactive epitopes in normal tissues. Recombination events between different but related ERVs, to whose products the host is immunologically tolerant, may also generate new antigenic determinants. Frequently reported humoral immunity to exogenous retrovirus proteins in autoimmune disease could be elicited by cross-reactive ERV proteins. A review of the evidence implicating ERVs in immune dysfunction leads to the conclusion that direct molecular studies are likely to establish a pathogenic role for ERVs in autoimmune disease.
Collapse
Affiliation(s)
- K Nakagawa
- Burnet Clinical Research Unit, Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Australia
| | | |
Collapse
|
26
|
Paz-Artal E, Corell A, Varela P, Martinez-Laso J, Gomez-Casado E, Fernandez-Soria VM, Moreno MA, Arnaiz-Villena A. Primate DRB6 gene expression and evolution: a study in Macaca mulatta and Cercopithecus aethiops. TISSUE ANTIGENS 1996; 47:222-7. [PMID: 8740772 DOI: 10.1111/j.1399-0039.1996.tb02544.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DRB6 has been found to be transcribed in human and apes. Promoter region and exon 1 come from a 5' LTR from a mammary tumour retrovirus. However, the putative protein structure would be very different to other DR molecules and it is doubtful that it may function as an antigen presenting molecule. Primate DRB6 alleles previously published together with the two new macaque sequences reported here support the existence of a strong selective pressure working on exon 2 to generate stop codons at the end of the exon (between codons 74 and 94) during at least 23 million years. The topology of dendrograms constructed with different primate DRB6 alleles supports the "trans-species" evolution proposed for MHC class I, class II and possibly C4 genes. Finally, DRB6, which is one of the oldest DRB genes, has been lost in the HLA-DRB3 (or DR52) group of haplotypes (DR3, DR5, DR6 and DR8) and a small DRB6 sequence is present at the exon 2 first hypervariable region of DRB4 (or DR53) gene, which is present in DR4, DR7 and DR9 haplotypes.
Collapse
Affiliation(s)
- E Paz-Artal
- Inmunologia, Hospital 12 de Octubre, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rasmussen HB, Heltberg A, Lisby G, Clausen J. Three allelic forms of the human endogenous retrovirus, ERV3, and their frequencies in multiple sclerosis patients and healthy individuals. Autoimmunity 1996; 23:111-7. [PMID: 8871766 DOI: 10.3109/08916939608995334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A possible association between the endogenous retrovirus, ERV3, and multiple sclerosis (MS) was examined. Samples of DNA from 74 MS patients and 159 healthy blood donors were subjected to enzymatic amplification followed by single strand conformational analysis to detect polymorphisms in the long terminal repeats of ERV3. Using this approach we detected six single base pair variations and a drop-out of a nucleotide. The linkage pattern of these base pair variations enabled us to define three allelic forms of ERV3. Polymorphisms exclusively present in the group of patients were not found and the distribution of the three allelic forms did not differ significantly between the group of controls and the MS group. Neither was there a significant difference in the distribution of the three alleles between MS patients with the progressive form and patients with relapsing/remitting MS. Our results are not in support of an association between ERV3 and MS.
Collapse
Affiliation(s)
- H B Rasmussen
- Institute of Chemistry and Life Sciences, Roskilde University, Denmark
| | | | | | | |
Collapse
|
28
|
Bontrop RE, Otting N, Slierendregt BL, Lanchbury JS. Evolution of major histocompatibility complex polymorphisms and T-cell receptor diversity in primates. Immunol Rev 1995; 143:33-62. [PMID: 7558081 DOI: 10.1111/j.1600-065x.1995.tb00669.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R E Bontrop
- Biomedical Primate Research Centre-TNO, Rijswijk, The Netherlands
| | | | | | | |
Collapse
|
29
|
Avoustin P, Ribouchon MT, Vernet C, N'Guyen B, Crouau-Roy B, Pontarotti P. Non-homologous recombination within the major histocompatibility complex creates a transcribed hybrid sequence. Mamm Genome 1994; 5:771-6. [PMID: 7894158 DOI: 10.1007/bf00292011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The P5-1 cDNA clone maps to the human MHC class I region (Vernet et al. 1993a). In this paper, we show that the P5-1 cDNA represents a chimeric transcript in which the first exon of an MHC class I gene has been spliced to an unrelated sequence. The corresponding gene P5-1 is composed of the 5' sequence of an MHC class I gene including the promoter region, the first exon, and the half of the first intron fused to an unrelated intron, followed by a large exon. Furthermore, the non-class I part of P5-1 is present within the MHC class I region in multiple copies, defining the P5 family. Another member of the P5 family is fused to a class I gene, although by a type of rearrangement different from P5-1. These two fusion events between members of HLA class I and P5 families reflect the existence of a duplication unit including two class I genes and a P5 sequence. These data shed light on the MHC class I evolution and on the creation and evolution of new genes.
Collapse
Affiliation(s)
- P Avoustin
- CNRS UPR 8291, CHU Purpan, Toulouse, France
| | | | | | | | | | | |
Collapse
|
30
|
Radley E, Alderton R, Kelly A, Trowsdale J, Beck S. Genomic organization of HLA-DMA and HLA-DMB. Comparison of the gene organization of all six class II families in the human major histocompatibility complex. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32242-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Satta Y. How the ratio of nonsynonymous to synonymous pseudogene substitutions can be less than one. Immunogenetics 1993; 38:450-4. [PMID: 8406618 DOI: 10.1007/bf00184527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Y Satta
- Max-Planck-Institut für Biologie, Abteilung Immunogenetik, Tübingen, Germany
| |
Collapse
|