1
|
Ma Y, Hossen MM, Huang JJ, Yin Z, Du J, Ye Z, Zeng M, Huang Z. Growth arrest and DNA damage-inducible 45: a new player on inflammatory diseases. Front Immunol 2025; 16:1513069. [PMID: 40083548 PMCID: PMC11903704 DOI: 10.3389/fimmu.2025.1513069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Growth arrest and DNA damage-inducible 45 (GADD45) proteins are critical stress sensors rapidly induced in response to genotoxic/physiological stress and regulate many cellular functions. Even though the primary function of the proteins is to block the cell cycle, inhibit cell proliferation, promote cell apoptosis, and repair DNA damage to cope with the damage caused by internal and external stress on the body, evidence has shown that GADD45 also has the function to modulate innate and adaptive immunity and plays a broader role in inflammatory and autoimmune diseases. In this review, we focus on the immunomodulatory role of GADD45 in inflammatory and autoimmune diseases. First, we describe the regulatory factors that affect the expression of GADD45. Then, we introduce its immunoregulatory roles on immune cells and the critical signaling pathways mediated by GADD45. Finally, we discuss its immunomodulatory effects in various inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Yanmei Ma
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Md Munnaf Hossen
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jennifer Jin Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Zhihua Yin
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhizhong Ye
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Miaoyu Zeng
- Rheumatology Research Institute, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
2
|
Palomer X, Salvador JM, Griñán-Ferré C, Barroso E, Pallàs M, Vázquez-Carrera M. GADD45A: With or without you. Med Res Rev 2024; 44:1375-1403. [PMID: 38264852 DOI: 10.1002/med.22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The growth arrest and DNA damage inducible (GADD)45 family includes three small and ubiquitously distributed proteins (GADD45A, GADD45B, and GADD45G) that regulate numerous cellular processes associated with stress signaling and injury response. Here, we provide a comprehensive review of the current literature investigating GADD45A, the first discovered member of the family. We first depict how its levels are regulated by a myriad of genotoxic and non-genotoxic stressors, and through the combined action of intricate transcriptional, posttranscriptional, and even, posttranslational mechanisms. GADD45A is a recognized tumor suppressor and, for this reason, we next summarize its role in cancer, as well as the different mechanisms by which it regulates cell cycle, DNA repair, and apoptosis. Beyond these most well-known actions, GADD45A may also influence catabolic and anabolic pathways in the liver, adipose tissue and skeletal muscle, among others. Not surprisingly, GADD45A may trigger AMP-activated protein kinase activity, a master regulator of metabolism, and is known to act as a transcriptional coregulator of numerous nuclear receptors. GADD45A has also been reported to display a cytoprotective role by regulating inflammation, fibrosis and oxidative stress in several organs and tissues, and is regarded an important contributor for the development of heart failure. Overall data point to that GADD45A may play an important role in metabolic, neurodegenerative and cardiovascular diseases, and also autoimmune-related disorders. Thus, the potential mechanisms by which dysregulation of GADD45A activity may contribute to the progression of these diseases are also reviewed below.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jesús M Salvador
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona (NeuroUB), Barcelona, Spain
- Spanish Biomedical Research Center in Neurodegenerative Diseases (CIBERNED)-Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
3
|
Wang J, Li M, Nan N, Ma A, Ao M, Yu J, Wang X, Han K, Yun DJ, Liu B, Li N, Xu ZY. OsGADD45a1: a multifaceted regulator of rice architecture, grain yield, and blast resistance. PLANT CELL REPORTS 2024; 43:88. [PMID: 38461436 DOI: 10.1007/s00299-024-03191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
KEY MESSAGE The homolog gene of the Growth Arrest and DNA Damage-inducible 45 (GADD45) in rice functions in the regulation of plant architecture, grain yield, and blast resistance. The Growth Arrest and DNA Damage-inducible 45 (GADD45) family proteins, well-established stress sensors and tumor suppressors in mammals, serve as pivotal regulators of genotoxic stress responses and tumorigenesis. In contrast, the homolog and role of GADD45 in plants have remained unclear. Herein, using forward genetics, we identified an activation tagging mutant AC13 exhibited dwarf characteristics resulting from the loss-of-function of the rice GADD45α homolog, denoted as OsGADD45a1. osgadd45a1 mutants displayed reduced plant height, shortened panicle length, and decreased grain yield compared to the wild-type Kitaake. Conversely, no obvious differences in plant height, panicle length, or grain yield were observed between wild-type and OsGADD45a1 overexpression plants. OsGADD45a1 displayed relatively high expression in germinated seeds and panicles, with localization in both the nucleus and cytoplasm. RNA-sequencing analysis suggested a potential role for OsGADD45a1 in the regulation of photosynthesis, and binding partner identification indicates OsGADD45a1 interacts with OsRML1 to regulate rice growth. Intriguingly, our study unveiled a novel role for OsGADD45a1 in rice blast resistance, as osgadd45a1 mutant showed enhanced resistance to Magnaporthe oryzae, and the expression of OsGADD45a1 was diminished upon blast fungus treatment. The involvement of OsGADD45a1 in rice blast fungus resistance presents a groundbreaking finding. In summary, our results shed light on the multifaceted role of OsGADD45a1 in rice, encompassing biotic stress response and the modulation of several agricultural traits, including plant height, panicle length, and grain yield.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Mengting Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Nan Nan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Min Ao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaohang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Kangshun Han
- Rice Institute, Tonghua Academy of Agricultural Science, Tonghua, 135007, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 132-798, South Korea
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
4
|
Celastrol suppresses colorectal cancer via covalent targeting peroxiredoxin 1. Signal Transduct Target Ther 2023; 8:51. [PMID: 36732502 PMCID: PMC9895061 DOI: 10.1038/s41392-022-01231-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 02/04/2023] Open
Abstract
As a terpenoids natural product isolated from the plant Thunder God Vine, Celastrol is widely studied for its pharmacological activities, including anti-tumor activities. The clinical application of Celastrol is strictly limited due to its severe side effects, whereas previously revealed targets and mechanism of Celastrol seldom reduce its in vivo toxicity via structural optimization. Target identification has a far-reaching influence on the development of innovative drugs, and omics data has been widely used for unbiased target prediction. However, it is difficult to enrich target of specific phenotype from thousands of genes or proteins, especially for natural products with broad promising activities. Here, we developed a text-mining-based web-server tool to enrich targets from omics data of inquired compounds. Then peroxiredoxin 1 (PRDX1) was identified as the ROS-manipulating target protein of Celastrol in colorectal cancer. Our solved high-resolution crystal structure revealed the unique covalent binding mode of Celastrol with PRDX1. New derivative compound 19-048 with improved potency against PRDX1 and selectivity towards PRDX2~PRDX6 were synthesized based on crystal structure analysis. Both Celastrol and 19-048 effectively suppressed the proliferation of colorectal cancer cells. The anti-tumor efficacy of Celastrol and 19-048 was significantly diminished on xenograft nude mice bearing PRDX1 knock-down colorectal cancer cells. Several downstream genes of p53 signaling pathway were dramatically up-regulated with Celastrol or 19-048 treatment. Our findings reveal that the side effects of Celastrol could be reduced via structural modification, and PRDX1 inhibition is promising for the treatment of colorectal cancer.
Collapse
|
5
|
Sultan FA, Sawaya BE. Gadd45 in Neuronal Development, Function, and Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:117-148. [PMID: 35505167 DOI: 10.1007/978-3-030-94804-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Psychiatry, Rush University, Chicago, IL, USA.
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Chandramouly G. Gadd45 in DNA Demethylation and DNA Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:55-67. [PMID: 35505162 DOI: 10.1007/978-3-030-94804-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growth arrest and DNA damage 45 (Gadd45) family genes, Gadd45A, Gadd45B, and GADD45 G are implicated as stress sensors that are rapidly induced upon genotoxic/physiological stress. They are involved in regulation of various cellular functions such as DNA repair, senescence, and cell cycle control. Gadd45 family of genes serve as tumor suppressors in response to different stimuli and defects in Gadd45 pathway can give rise to oncogenesis. More recently, Gadd45 has been shown to promote gene activation by demethylation and this function is important for transcriptional regulation and differentiation during development. Gadd45 serves as an adaptor for DNA repair factors to promote removal of 5-methylcytosine from DNA at gene specific loci. Therefore, Gadd45 serves as a powerful link between DNA repair and epigenetic gene regulation.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
GADD45A induces neuropathic pain by activating P53 apoptosis pathway in mice. Genes Genomics 2022; 44:1051-1060. [PMID: 35167054 DOI: 10.1007/s13258-022-01226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/25/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Neuropathic pain is a common condition with current heights of varying etiology. The therapeutic drugs are also poorly work and often limited by side effects such as dizziness. OBJECTIVE This study aimed to explore the function mechanism of GADD45A in neuropathic pain. METHODS The DEGs in neuropathic pain mouse model chip were screened by bioinformatics analysis. The expression of GADD45A in SNL model was determined by RT-qPCR and Immunofluorescence assay. The protein expression of p53-apoptosis pathway proteins was determined by western blotting. RESULTS Combination analysis of bioinformatics methods revealed that the expression of GADD45A was upregulated in SNL. The results of RT-qPCR assay and Immunofluorescence assay revealed that GADD45A was overexpressed in all of time points SNL model. Furthermore, knockdown of GADD45A in SNL remarkably antagonized the malignance phenotype compared with the Ad-GFP treated SNL. In addition, knockdown of GADD45A downregulated the expression of p53 and reduced the apoptosis of spinal cord nerve cells. CONCLUSIONS Our study suggests that GADD45A may be a biomarker in the neuropathic pain of mice.
Collapse
|
8
|
Brito DV, Kupke J, Gulmez Karaca K, Oliveira AM. Regulation of neuronal plasticity by the DNA repair associated Gadd45 proteins. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100031. [PMID: 36685757 PMCID: PMC9846468 DOI: 10.1016/j.crneur.2022.100031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
Neurons respond rapidly to extracellular stimuli by activating signaling pathways that modulate the function of already synthetized proteins. Alternatively, signal transduction to the cell nucleus induces de novo synthesis of proteins required for long-lasting adaptations. These complementary strategies are necessary for neuronal plasticity processes that underlie, among other functions, the formation of memories. Nonetheless, it is still not fully understood how the coupling between different stimuli and the activity of constitutively and/or de novo expressed proteins gate neuronal plasticity. Here, we discuss the molecular functions of the Growth Arrest and DNA Damage 45 (Gadd45) family of proteins in neuronal adaptation. We highlight recent findings that indicate that Gadd45 family members regulate this function through multiple cellular processes (e.g., DNA demethylation, gene expression, RNA stability, MAPK signaling). We then summarize the regulation of Gadd45 expression in neurons and put forward the hypothesis that the constitutive and neuronal activity-induced pools of Gadd45 proteins have distinct and complementary roles in modulating neuronal plasticity. Therefore, we propose that Gadd45 proteins are essential for brain function and their dysfunction might underlie pathophysiological conditions such as neuropsychiatric disorders.
Collapse
Affiliation(s)
- David V.C. Brito
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Janina Kupke
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Kubra Gulmez Karaca
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Kapittelweg 29, 6525, EN Nijmegen, the Netherlands
| | - Ana M.M. Oliveira
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Corresponding author. Institute of Neurobiology, Interdisciplinary Center for Neurosciences (IZN) Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Schmitz I. Gadd45 Proteins in Immunity 2.0. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:69-86. [DOI: 10.1007/978-3-030-94804-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov 2021; 7:271. [PMID: 34601500 PMCID: PMC8487429 DOI: 10.1038/s41420-021-00667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Many self-renewal-promoting factors of embryonic stem cells (ESCs) have been implicated in carcinogenesis, while little known about the genes that direct ESCs exit from pluripotency and regulate tumor development. Here, we show that the transcripts of Gadd45 family genes, including Gadd45a, Gadd45b, and Gadd45g, are gradually increased upon mouse ESC differentiation. Upregulation of Gadd45 members decreases cell proliferation and induces endodermal and trophectodermal lineages. In contrast, knockdown of Gadd45 genes can delay mouse ESC differentiation. Mechanistic studies reveal that Gadd45g activates MAPK signaling by increasing expression levels of the positive modulators of this pathway, such as Csf1r, Igf2, and Fgfr3. Therefore, inhibition of MAPK signaling with a MEK specific inhibitor is capable of eliminating the differentiation phenotype caused by Gadd45g upregulation. Meanwhile, GADD45G functions as a suppressor in human breast cancers. Enforced expression of GADD45G significantly inhibits tumor formation and breast cancer metastasis in mice through limitation of the propagation and invasion of breast cancer cells. These results not only expand our understanding of the regulatory network of ESCs, but also help people better treatment of cancers by manipulating the prodifferentiation candidates.
Collapse
|
11
|
Fang Y, Xu XY, Tao L, Shen Y, Li J. Effects of microRNA-731 on inflammation and apoptosis by targeting CiGadd45aa in grass carp. FISH & SHELLFISH IMMUNOLOGY 2020; 97:493-499. [PMID: 31838144 DOI: 10.1016/j.fsi.2019.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Ctenopharyngodon idellagrowth arrest and DNA damage-inducible 45aa (CiGadd45aa) is a member of the Gadd45 family of immune-related proteins in grass carp. There is increasing evidence that microRNAs (miRNAs) are involved in the regulation of inflammatory responses and apoptosis. However, little is known about the regulatory effects of miRNAs on CiGadd45aa expression in grass carp. In the present study, CiGadd45aa was identified as a target gene of miR-731 based on miRNA expression profiling and dual-luciferase reporter assay. Our study revealed that miR-731 targets CiGadd45aa and regulates the expression of proinflammatory factors, thereby regulating immune response in grass carp. In addition, CiGadd45aa and miR-731 were both found induced apoptosis. Hence, our findings provide a theoretical basis for exploring the molecular mechanism by which miR-731 regulates inflammation and apoptosis in grass carp.
Collapse
Affiliation(s)
- Yuan Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China
| | - Xiao-Yan Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lizhu Tao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, China
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
12
|
Bollinger AL, Bollinger T, Rupp J, Shima K, Gross N, Padayachy L, Chicheportiche R, Puga Yung GL, Seebach JD. Annexin V expression on CD4 + T cells with regulatory function. Immunology 2019; 159:205-220. [PMID: 31642515 DOI: 10.1111/imm.13140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T (Treg) cells induce immunologic tolerance by suppressing effector functions of conventional lymphocytes in the periphery. On the other hand, immune silencing is mediated by recognition of phosphatidylserine (PS) on apoptotic cells by phagocytes. Here we describe expression of the PS-binding protein Annexin V (ANXA5) in CD4+ CD25hi Treg cells at the mRNA and protein levels. CD4+ ANXA5+ T cells constitute about 0·1%-0·6% of peripheral blood CD3+ T cells, exhibit co-expression of several Treg markers, such as Forkhead box P3, programmed cell death protein-1, cytotoxic T-lymphocyte antigen-4 and CD38. In vitro, ANXA5+ Treg cells showed enhanced adhesion to PS+ endothelial cells. Stimulated by anti-CD3 and PS+ syngeneic antigen-presenting cells CD4+ ANXA5+ T cells expanded in the absence of exogenous interleukin-2. CD4+ ANXA5+ T cells suppressed CD4+ ANXA5- T-cell proliferation and mammalian target of rapamycin phosphorylation, partially dependent on cell contact. CD4+ ANXA5+ T-cell-mediated suppression was allo-specific and accompanied by an increased production of anti-inflammatory mediators. In vivo, using a model of delayed type hypersensitivity, murine CD4+ ANXA5+ T cells inhibited T helper type 1 responses. In conclusion, we report for the first time expression of ANXA5 on a subset of Treg cells that might bridge classical regulatory Treg function with immune silencing.
Collapse
Affiliation(s)
- Anna-Lena Bollinger
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Thomas Bollinger
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Natalie Gross
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Laura Padayachy
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Rachel Chicheportiche
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Gisella L Puga Yung
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Jörg Dieter Seebach
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
13
|
Fang Y, Xu XY, Zhang M, Bai Y, Zhang XS, Shen Y, Li J. Cloning, functional analysis, and microRNA-induced negative regulation of growth arrest and DNA damage-inducible 45 γ (Gadd45g) in grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103400. [PMID: 31129273 DOI: 10.1016/j.dci.2019.103400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
Growth arrest and DNA damage-inducible 45 gamma (Gadd45g) is a member of Gadd45 gene family of immunological proteins in mammals. Herein, we identified and characterised Gadd45g from grass carp. The cDNA spans over 1189 bp, with an open reading frame of 480 bp encoding a 159 amino acid protein. CiGadd45g mRNAs were expressed in all tissues investigated, with abundant expression in liver, kidney, heart, brain, blood and skin. Following infection with Aeromonas hydrophila, CiGadd45g expression was upregulated in these immune-related tissues (gill, liver, spleen, intestine, kidney and head kidney). Immune-related cytokines (p38 and JNK) and proinflammatory cytokines (IL-8, IFN-1 and TNF-α) were activated by CiGadd45g. CiGadd45g and downstream genes were regulated by microRNA miR-429b. These results indicate that CiGadd45g plays an important immune role in the response to A. hydrophila infection in grass carp.
Collapse
Affiliation(s)
- Yuan Fang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xiao-Yan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Wuxi, 214081, China
| | - Meng Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yulin Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xue-Shu Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Wuxi, 214081, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Wuxi, 214081, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
14
|
Han N, Yuan F, Xian P, Liu N, Liu J, Zhang H, Zhang H, Yao K, Yuan G. GADD45a Mediated Cell Cycle Inhibition Is Regulated By P53 In Bladder Cancer. Onco Targets Ther 2019; 12:7591-7599. [PMID: 31571910 PMCID: PMC6754676 DOI: 10.2147/ott.s222223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/04/2019] [Indexed: 11/23/2022] Open
Abstract
Background Bladder cancer (BC) is one of the most prevalent malignancies of the genitourinary system, yet the underlying mechanism of BC progression still remains unclear. Growth arrest and DNA damage-inducible 45 alpha (GADD45a) is a repressive gene implicated in cell cycle regulation, as well as in human cancers development. However, its role in BC remains to be determined. Methods First, quantitative real-time polymerase chain reaction (PCR) and Western blot assays were used to detect GADD45a expression in BC tissues and adjacent non-tumor tissues, as well as in bladder cancer cell lines, respectively. Then, cell counting kit-8 (CCK-8) assays, colony formation assays, and flow cytometry assays were used to measure the ability of cell growth, proliferation and cell cycle distribution. Lentiviral infection technology was used to increase gene expression, while siRNA interfering technology was used to knockdown gene expression. Finally, nude mice were used to construct tumor-burdened models in vivo by injecting tumor cells subcutaneously. Results PCR results showed that the level of GADD45a mRNA and protein levels were lower in BC tissues than in adjacent normal tissues. After increasing GADD45a expression, both the ability of growth and proliferation of BC cells were seriously impaired. Additionally, the upregulation of GADD45a expression resulted in BC cell cycle in G2/M and S phases in a p53-regulated pathway. Conclusion GADD45a-mediated cell cycle inhibition is regulated by p53 in bladder cancer cells.
Collapse
Affiliation(s)
- Na Han
- Health Examination and Oncology Screening Center, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Fang Yuan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Department of Urology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Peng Xian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Department of Urology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Nan Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Department of Urology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Jianmin Liu
- Department of Otolaryngology Head and Neck Surgery, People's Hospital of Deyang, Deyang 618000, People's Republic of China
| | - Haiyan Zhang
- Health Examination and Oncology Screening Center, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Huayong Zhang
- Department of Thyroid and Breast Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, People's Republic of China
| | - Kai Yao
- Department of Urology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Gangjun Yuan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.,Department of Urology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| |
Collapse
|
15
|
GADD45γ Activated Early in the Course of Herpes Simplex Virus 1 Infection Suppresses the Activation of a Network of Innate Immunity Genes. J Virol 2019; 93:JVI.02201-18. [PMID: 30700604 DOI: 10.1128/jvi.02201-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
The stress response genes encoding GADD45γ, and to a lesser extent GADD45β, are activated early in infection with herpes simplex virus 1 (HSV-1). Cells that had been depleted of GADD45γ by transfection of short hairpin RNA (shRNA) or in which the gene had been knocked out (ΔGADD45γ) yielded significantly less virus than untreated infected cells. Consistent with lower virus yields, the ΔGADD45γ cells (either uninfected or infected with HSV-1) exhibited significantly higher levels of transcripts of a cluster of innate immunity genes, including those encoding IFI16, IFIT1, MDA5, and RIG-I. Members of this cluster of genes were reported by this laboratory to be activated concurrently with significantly reduced virus yields in cells depleted of LGP2 or HDAC4. We conclude that innate immunity to HSV-1 is normally repressed in unstressed cells and repression appears to be determined by two mechanisms. The first, illustrated here, is through activation by HSV-1 infection of the gene encoding GADD45γ. The second mechanism requires constitutively active expression of LGP2 and HDAC4.IMPORTANCE Previous studies from our laboratory reported that knockout of some innate immunity genes was associated with increases in the expression of overlapping networks of genes and significant loss of the ability to support the replication of HSV-1; knockout of other genes was associated with decreases in the expression of overlapping networks of genes and had no effect on virus replication. In this report, we document that depletion of GADD45γ reduced virus yields concurrently with significant upregulation of the expression of a cluster of innate immunity genes comprising IFI16, IFIT1, MDA5, and RIG-I. This report differs from the preceding study in an important respect; i.e., the preceding study found no evidence to support the hypothesis that HSV-1 maintained adequate levels of LGP2 or HDAC4 to block upregulation of the cluster of innate immunity genes. We show that HSV-1 causes upregulation of the GADD45γ gene to prevent the upregulation of innate immunity genes.
Collapse
|
16
|
Growth arrest and DNA-damage-inducible 45 beta (GADD45β) deletion suppresses testosterone-induced prostate hyperplasia in mice. Life Sci 2018; 211:74-80. [DOI: 10.1016/j.lfs.2018.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022]
|
17
|
Fang Y, Xu XY, Shen Y, Li J. Molecular cloning and functional analysis of Growth arrest and DNA damage-inducible 45 aa and ab (Gadd45aa and Gadd45 ab) in Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2018; 77:187-193. [PMID: 29605506 DOI: 10.1016/j.fsi.2018.03.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The Gadd45aa and Gadd45 ab genes are members of the Gadd45 family, which are critically involved in immunological and apoptosis functions. In this study, we isolated and characterized Gadd45aa and Gadd45 ab cDNA from grass carp (Ctenopharyngodon idella) (designated CiGadd45aa and CiGadd45 ab). The CiGadd45aa and CiGadd45 ab fragments spanned 1272 bp/1248 bp, which contained 474 bp/480 bp open reading frames encoding 157/159 amino acid proteins. BLAST analysis revealed that CiGadd45aa and CiGadd45 ab shared high similarity with known Gadd45a sequences. qRT-PCR analysis showed widespread and abundant expression of CiGadd45aa in gill, intestine, kidney, brain, blood, skin and fin, but low in liver, spleen, head kidney, heart, and muscle. CiGadd45 ab was expressed highly in liver, spleen and blood but at low levels in gill, intestine, kidney, head kidney, heart, brain, skin, muscle, and fin. Following challenge of grass carp with Aeromonas hydrophila, CiGadd45aa and CiGadd45 ab expression was upregulated. In immune-relevant tissues and MAPK family genes (p38, JNK and ERK) were upregulated by CiGadd45aa and CiGadd45 ab overexpression and partly downregulated by interfered in the CIK grass carp kidney cell line. In addition, transcription of the cytokine-encoding il-8 gene was upregulated/downregulated by CiGadd45aa and CiGadd45 ab overexpression and interference. These results suggest that CiGadd45aa and CiGadd45 ab play roles in innate immune responses against A. hydrophila in grass carp.
Collapse
Affiliation(s)
- Yuan Fang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China
| | - Xiao-Yan Xu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Wuxi, 214081, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
18
|
Gadd45b deficiency promotes premature senescence and skin aging. Oncotarget 2017; 7:26935-48. [PMID: 27105496 PMCID: PMC5053623 DOI: 10.18632/oncotarget.8854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
The GADD45 family of proteins functions as stress sensors in response to various physiological and environmental stressors. Here we show that primary mouse embryo fibroblasts (MEFs) from Gadd45b null mice proliferate slowly, accumulate increased levels of DNA damage, and senesce prematurely. The impaired proliferation and increased senescence in Gadd45b null MEFs is partially reversed by culturing at physiological oxygen levels, indicating that Gadd45b deficiency leads to decreased ability to cope with oxidative stress. Interestingly, Gadd45b null MEFs arrest at the G2/M phase of cell cycle, in contrast to other senescent MEFs, which arrest at G1. FACS analysis of phospho-histone H3 staining showed that Gadd45b null MEFs are arrested in G2 phase rather than M phase. H2O2 and UV irradiation, known to increase oxidative stress, also triggered increased senescence in Gadd45b null MEFs compared to wild type MEFs. In vivo evidence for increased senescence in Gadd45b null mice includes the observation that embryos from Gadd45b null mice exhibit increased senescence staining compared to wild type embryos. Furthermore, it is shown that Gadd45b deficiency promotes senescence and aging phenotypes in mouse skin. Together, these results highlight a novel role for Gadd45b in stress-induced senescence and in tissue aging.
Collapse
|
19
|
Li X, Shenashen MA, Wang X, Ito A, Taniguchi A, Ei-Safty SA. Hierarchically porous, and Cu- and Zn-containing γ-AlOOH mesostrands as adjuvants for cancer immunotherapy. Sci Rep 2017; 7:16749. [PMID: 29196724 PMCID: PMC5711866 DOI: 10.1038/s41598-017-12446-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023] Open
Abstract
Alum is the only licensed adjuvant by Food and Drug Administration of USA used in many human vaccines and has excellent safety record in clinical applications. However, alum hardly induces T helper 1 (Th1) immune responses that are required for anti-tumor immunity. In the present study, we fabricated hierarchical copper- and zinc- buds dressing γ-AlOOH mesostrands (Cu- and Zn-AMSs) with randomly wrinkled morphology, mesoscale void- or cave-like pockets, high-exposed surface coverage sites, and positive charge streams in saline. We confirmed that Cu- and Zn-AMSs promoted intracellular uptake of model cancer antigen (ovalbumin, OVA) by THP-1-differentiated macrophage-like cells in vitro. Moreover, Cu- and Zn-AMSs enhanced maturation and cytokine release of bone marrow dendritic cells in vitro. In vivo study demonstrated that Cu- and Zn-AMSs markedly induced anti-tumor-immunity and enhanced CD4+ and CD8+ T cell populations in splenocytes of mice. These findings demonstrated that hierarchical copper- and zinc- buds dressing γ-AlOOH mesostrands, which are oriented in randomly wrinkled matrice, are suitable platforms as novel adjuvants for cancer immunotherapy.
Collapse
Affiliation(s)
- Xia Li
- Green Recycling Process Group, Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tuskuba, Ibaraki, 305-0047, Japan.
| | - Mohamed A Shenashen
- Green Recycling Process Group, Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tuskuba, Ibaraki, 305-0047, Japan
| | - Xiupeng Wang
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Atsuo Ito
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Akiyoshi Taniguchi
- Cellular Functional Nanomaterials Group, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Sherif A Ei-Safty
- Green Recycling Process Group, Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tuskuba, Ibaraki, 305-0047, Japan. .,Faculty of Engineering and Advanced Manufacturing, University of Sunderland, St Peter's Campus, St Peter's Way, Sunderland, SR6 0DD, UK.
| |
Collapse
|
20
|
Discoidin domain receptor inhibition reduces neuropathology and attenuates inflammation in neurodegeneration models. J Neuroimmunol 2017; 311:1-9. [PMID: 28863860 DOI: 10.1016/j.jneuroim.2017.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/23/2017] [Accepted: 07/12/2017] [Indexed: 01/04/2023]
Abstract
The role of cell surface tyrosine kinase collagen-activated receptors known as discoidin domain receptors (DDRs) is unknown in neurodegenerative diseases. We detect up-regulation in DDRs level in post-mortem Alzheimer and Parkinson brains. Lentiviral shRNA knockdown of DDR1 and DDR2 reduces the levels of α-synuclein, tau, and β-amyloid and prevents cell loss in vivo and in vitro. DDR1 and DDR2 knockdown alters brain immunity and significantly reduces the level of triggering receptor expressed on myeloid cells (TREM)-2 and microglia. These studies suggest that DDR1 and DDR2 inhibition is a potential target to clear neurotoxic proteins and reduce inflammation in neurodegeneration.
Collapse
|
21
|
When mRNA translation meets decay. Biochem Soc Trans 2017; 45:339-351. [DOI: 10.1042/bst20160243] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/19/2016] [Accepted: 01/11/2017] [Indexed: 12/26/2022]
Abstract
Messenger RNA (mRNA) translation and mRNA degradation are important determinants of protein output, and they are interconnected. Previously, it was thought that translation of an mRNA, as a rule, prevents its degradation. mRNA surveillance mechanisms, which degrade mRNAs as a consequence of their translation, were considered to be exceptions to this rule. Recently, however, it has become clear that many mRNAs are degraded co-translationally, and it has emerged that codon choice, by influencing the rate of ribosome elongation, affects the rate of mRNA decay. In this review, we discuss the links between translation and mRNA stability, with an emphasis on emerging data suggesting that codon optimality may regulate mRNA degradation.
Collapse
|
22
|
HCV-induced regulatory alterations of IL-1β, IL-6, TNF-α, and IFN-ϒ operative, leading liver en-route to non-alcoholic steatohepatitis. Inflamm Res 2017; 66:477-486. [PMID: 28285394 DOI: 10.1007/s00011-017-1029-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
Over the course of time, Hepatitis C has become a universal health menace. Its deleterious effects on human liver encompass a lot of physiological, genetic as well as epigenetic alterations. Fatty liver (Hepatic steatosis) is an inflammation having multifactorial ancestries; one of them is HCV (steatohepatitis). HCV boosts several cellular pathways involving up-regulation of a number of cytokines. Current study reviews the regulation of some selective key cytokines during HCV infection, to help generate an improved understanding of their role. These cytokines, IL-1β, IL-6, TNF-α, and IFN-ϒ, are inflammatory markers of the body. These particular markers along with others help hepatocytes against viral infestation. However, recently, their association has been found in degradation of liver on the trail heading to non-alcoholic steatohepatitis (NASH). Consequently, the disturbance in their equilibrium has been repeatedly reported during HCV infection. Quite a number of findings are affirming their up-regulation. Although these cell markers are stimulated by hepatocytes as their standard protection mechanism, but modern studies have testified the paradoxical nature of this defense line. Nevertheless, direct molecular or epigenetic research is needed to question the actual molecular progressions and directions commanding liver to steatosis, cirrhosis, or eventually HCC (Hepatocellular Carcinoma).
Collapse
|
23
|
Cohen AL, Ray A, Van Brocklin M, Burnett DM, Bowen RC, Dyess DL, Butler TW, Dumlao T, Khong HT. A phase I trial of azacitidine and nanoparticle albumin bound paclitaxel in patients with advanced or metastatic solid tumors. Oncotarget 2016; 8:52413-52419. [PMID: 28881739 PMCID: PMC5581038 DOI: 10.18632/oncotarget.14183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/18/2016] [Indexed: 02/04/2023] Open
Abstract
Background Secreted protein acidic and rich in cysteine (SPARC), an albumin-binding protein, is downregulated by hypermethylation in many cancers. Hypomethylating agents such as azacitidine can upregulate SPARC in tumors, which may enhance the accumulation of albumin-bound drugs at tumor site. The objectives of this phase I trial was to determine the safety and maximum tolerated dose and to assess any clinical activity of the combination of azacytidine and weekly nanoparticle-albumin-bound (nab®) paclitaxel. Methods Patients received escalating azacytidine doses daily for 5 days, followed by nab-paclitaxel at the standard 100mg/m2 weekly dose for 3 weeks in 4-week cycles. Dose-limiting toxicities (DLTs) were monitored during the first cycle. Serum was obtained at baseline, during and after treatment for correlative study. Results All sixteen total patients enrolled were evaluable for toxicity, while 13 patients were evaluable for response. Two of five patients treated with 100mg/m2 of azacytidine had DLT of prolonged grade 4 neutropenia. Therefore, the MTD of azacitidine in this regimen is 75 mg/m2. Three additional patients were treated with no grade 4 toxicity in cycle 1. Clinical activity included 1 complete response (CR) in refractory DLBCL, 2 CR in ovarian cancer, 4 partial responses (PR) in ovarian and endometrial cancer, 4 stable diseases (SD) in lung, sarcoma and pancreatic cancer, 1 unconfirmed PR in breast cancer, and 1 progression of disease in CLL/SLL. Conclusions Priming with azacitidine 75 mg/m2 daily for 5 days, followed by weekly nab-paclitaxel 100 mg/m2 weekly was well tolerated and results in dramatic responses pre-treated cancer patients.
Collapse
Affiliation(s)
- Adam L Cohen
- Department of Medicine, Division of Oncology, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Abhijit Ray
- Division of Oncology, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Matthew Van Brocklin
- Department of Surgery, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - David M Burnett
- Department of Surgery, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Randy C Bowen
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Donna L Dyess
- University of South Alabama, Mitchell Cancer Institute, Mobile, AL, USA
| | - Thomas W Butler
- University of South Alabama, Mitchell Cancer Institute, Mobile, AL, USA
| | | | - Hung T Khong
- Department of Medicine, Division of Oncology, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Ray A, Williams MA, Meek SM, Bowen RC, Grossmann KF, Andtbacka RH, Bowles TL, Hyngstrom JR, Leachman SA, Grossman D, Bowen GM, Holmen SL, VanBrocklin MW, Suneja G, Khong HT. A phase I study of intratumoral ipilimumab and interleukin-2 in patients with advanced melanoma. Oncotarget 2016; 7:64390-64399. [PMID: 27391442 PMCID: PMC5325451 DOI: 10.18632/oncotarget.10453] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/25/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Intratumoral interleukin-2 (IL-2) is effective but does not generate systemic immunity. Intravenous ipilimumab produces durable clinical response in a minority of patients, with potentially severe toxicities. Circulating anti-tumor T cells activated by ipilimumab may differ greatly from tumor-infiltrating lymphocytes activated by intratumoral ipilimumab in phenotypes and functionality. The objective of this study was to primarily assess the safety of intratumoral ipilimumab/IL-2 combination and to obtain data on clinical efficacy. RESULTS There was no dose limiting toxicity. While local response of injected lesions was observed in 67% patients (95% CI, 40%-93%), an abscopal response was seen in 89% (95% CI, 68%-100%). The overall response rate and clinical benefit rate by immune-related response criteria (irRC) was 40% (95% CI, 10%-70%) and 50% (95% CI, 19%-81%), respectively. Enhanced systemic immune response was observed in most patients and correlated with clinical responses. EXPERIMENTAL DESIGN Twelve patients with unresectable stages III/IV melanoma were enrolled. A standard 3+3 design was employed to assess highest tolerable intratumoral dose of ipilimumab and IL-2 based on toxicity during the first three weeks. Escalated doses of ipilimumab was injected into only one lesion weekly for eight weeks in cohorts of three patients. A fixed dose of IL-2 was injected three times a week into the same lesion for two weeks, followed by two times a week for six weeks. CONCLUSIONS Intratumoral injection with the combination of ipilimumab/IL-2 is well tolerated and generates responses in both injected and non-injected lesions in the majority of patients.
Collapse
Affiliation(s)
- Abhijit Ray
- Division of Oncology, Huntsman Cancer Institute-University of Utah, Salt Lake City, UT, USA
| | | | - Stephanie M. Meek
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Randy C. Bowen
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kenneth F. Grossmann
- Division of Oncology, Huntsman Cancer Institute-University of Utah, Salt Lake City, UT, USA
| | - Robert H.I. Andtbacka
- Section of Surgical Oncology, Division of General Surgery Huntsman Cancer Institute-University of Utah, Salt Lake City, UT, USA
| | - Tawnya L. Bowles
- Department of General Surgery, Intermountain Medical Center, Murray, UT, USA
| | - John R. Hyngstrom
- Section of Surgical Oncology, Division of General Surgery Huntsman Cancer Institute-University of Utah, Salt Lake City, UT, USA
- Department of General Surgery, Intermountain Medical Center, Murray, UT, USA
| | - Sancy A. Leachman
- Department of Dermatology, Oregon Health & Science University-Knight Cancer Institute, Portland, OR, USA
| | - Douglas Grossman
- Division of Oncology, Huntsman Cancer Institute-University of Utah, Salt Lake City, UT, USA
| | - Glen M. Bowen
- Division of Oncology, Huntsman Cancer Institute-University of Utah, Salt Lake City, UT, USA
| | - Sheri L. Holmen
- Division of Oncology, Huntsman Cancer Institute-University of Utah, Salt Lake City, UT, USA
| | - Matthew W. VanBrocklin
- Division of Oncology, Huntsman Cancer Institute-University of Utah, Salt Lake City, UT, USA
| | - Gita Suneja
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, USA
| | - Hung T. Khong
- Division of Oncology, Huntsman Cancer Institute-University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Wang X, Li X, Yoshiyuki K, Watanabe Y, Sogo Y, Ohno T, Tsuji NM, Ito A. Comprehensive Mechanism Analysis of Mesoporous-Silica-Nanoparticle-Induced Cancer Immunotherapy. Adv Healthc Mater 2016; 5:1169-76. [PMID: 26987867 DOI: 10.1002/adhm.201501013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/26/2016] [Indexed: 01/01/2023]
Abstract
A plain mesoporous silica nanoparticle without any immunomodulatory molecules significantly enhances anticancer immunity in vivo. Comprehensive mechanism of mesoporous-silica-nanoparticle-induced cancer immunotherapy is analyzed in this paper. The mesoporous silica nanoparticle promotes both Th1 and Th2 immune responses, as it accelerates lymphocytes proliferation, stimulates IFN-γ, IL-2, IL-4, and IL-10 cytokine secretion by lymphocytes ex vivo, and increases IgG, IgG1, IgG2a, IgM, and IgA antibody titers in mice serum compared with those of alum and adjuvant-free groups. Moreover, the mesoporous silica nanoparticle enhances effector memory CD4(+) and CD8(+) T cell populations in three most important immune organs (bone marrow, lymph node, and spleen) of mice compared with those of alum and adjuvant-free groups three months after adjuvant injection. The present study paves the way for the application of mesoporous silica nanoparticle as immunoadjuvant for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiupeng Wang
- Health Research Institute; Department of Life Science and Biotechnology; National Institute of Advanced Industrial Science and Technology (AIST); Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Xia Li
- Health Research Institute; Department of Life Science and Biotechnology; National Institute of Advanced Industrial Science and Technology (AIST); Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Kazuko Yoshiyuki
- Health Research Institute; Department of Life Science and Biotechnology; National Institute of Advanced Industrial Science and Technology (AIST); Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Yohei Watanabe
- Biomedical Research Institute; Department of Life Science and Biotechnology; National Institute of Advanced Industrial Science and Technology (AIST); Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Yu Sogo
- Health Research Institute; Department of Life Science and Biotechnology; National Institute of Advanced Industrial Science and Technology (AIST); Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Tadao Ohno
- School of Life Dentistry at Tokyo; The Nippon Dental University; Fujimi Chiyoda-ku Tokyo 102-0071 Japan
| | - Noriko M. Tsuji
- Biomedical Research Institute; Department of Life Science and Biotechnology; National Institute of Advanced Industrial Science and Technology (AIST); Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| | - Atsuo Ito
- Health Research Institute; Department of Life Science and Biotechnology; National Institute of Advanced Industrial Science and Technology (AIST); Central 6, 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
| |
Collapse
|
26
|
Böhm MRR, Schallenberg M, Brockhaus K, Melkonyan H, Thanos S. The pro-inflammatory role of high-mobility group box 1 protein (HMGB-1) in photoreceptors and retinal explants exposed to elevated pressure. J Transl Med 2016; 96:409-27. [PMID: 26779828 DOI: 10.1038/labinvest.2015.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/04/2023] Open
Abstract
To determine the role of high-mobility group box 1 protein (HMGB-1) in cellular and tissue models of elevated pressure-induced neurodegeneration, regeneration, and inflammation. Mouse retinal photoreceptor-derived cells (661W) and retinal explants were incubated either under elevated pressure or in the presence of recombinant HMGB-1 (rHMGB-1) to investigate the mechanisms of response of photoreceptors. Immunohistochemistry, western blotting, and the quantitative real-time PCR were used to examine the expression levels of immunological factors (eg, HMGB-1, receptor for advanced glycation end products (RAGE)), Toll-like receptors 2 and 4 (TLR-2, TLR-4), apoptosis-related factors (eg, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad)) as well as cytokine expression (eg, tumor necrosis factor alpha (TNF-α), interleukin (IL)-4, IL-6, and vascular endothelial growth factor (VEGF)). The data revealed increased the expression of HMGB-1 and its receptors RAGE, TLR-2, and TLR-4, and TNF-α as well as pro-apoptotic factors (eg, Bad) as well as apoptosis in 661W cells exposed to elevated pressure. Co-cultivation of 661W cells with rHMGB-1 increased the expression levels of pro-apoptotic Bad and cleaved Caspase-3 resulting in apoptosis. Cytokine array studies revealed an increased release of TNF-α, IL-4, IL-6, and VEGF after incubation of 661W cells with rHMGB-1. Upregulation of HMGB-1, TLR-2, and RAGE as well as anti-apoptotic Bcl-2 expression levels was found in the retinal explants exposed to rHMGB-1 or elevated pressure. The results suggest that HMGB-1 promotes an inflammatory response and mediates apoptosis in the pathology of photoreceptors and retinal homeostasis. HMGB-1 may have a key role in ongoing damage of retinal cells under conditions of elevated intraocular pressure.
Collapse
Affiliation(s)
- Michael R R Böhm
- Institute of Experimental Ophthalmology, School of Medicine, Westfalian-Wilhelms-University of Münster, Münster, Germany.,Department of Ophthalmology, St Franziskus Hospital Münster, Münster, Germany
| | - Maurice Schallenberg
- Institute of Experimental Ophthalmology, School of Medicine, Westfalian-Wilhelms-University of Münster, Münster, Germany.,Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Katrin Brockhaus
- Institute of Experimental Ophthalmology, School of Medicine, Westfalian-Wilhelms-University of Münster, Münster, Germany
| | - Harutyun Melkonyan
- Institute of Experimental Ophthalmology, School of Medicine, Westfalian-Wilhelms-University of Münster, Münster, Germany
| | - Solon Thanos
- Institute of Experimental Ophthalmology, School of Medicine, Westfalian-Wilhelms-University of Münster, Münster, Germany.,Cluster of Excellence 'Cells in Motion, CiM', Münster, Germany
| |
Collapse
|
27
|
Windley SP, Wilhelm D. Signaling Pathways Involved in Mammalian Sex Determination and Gonad Development. Sex Dev 2016; 9:297-315. [PMID: 26905731 DOI: 10.1159/000444065] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
The development of any organ system requires a complex interplay of cellular signals to initiate the differentiation and development of the heterogeneous cell and tissue types required to carry out the organs' functions. In this way, an extracellular stimulus is transmitted to an intracellular target through an array of interacting protein intermediaries, ultimately enabling the target cell to elicit a response. Surprisingly, only a small number of signaling pathways are implicated throughout embryogenesis and are used over and over again. Gonadogenesis is a unique process in that 2 morphologically distinct organs, the testes and ovaries, arise from a common precursor, the bipotential genital ridge. Accordingly, most of the signaling pathways observed throughout embryogenesis also have been shown to be important for mammalian sex determination and gonad development. Here, we review the mechanisms of signal transduction within these pathways and the importance of these pathways throughout mammalian gonad development, mainly concentrating on data obtained in mouse but including other species where appropriate.
Collapse
Affiliation(s)
- Simon P Windley
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Vic., Australia
| | | |
Collapse
|
28
|
Kikot P, Polat A, Achilli E, Fernandez Lahore M, Grasselli M. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine. J Mol Recognit 2015; 27:659-68. [PMID: 25277090 DOI: 10.1002/jmr.2389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 11/10/2022]
Abstract
Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13.
Collapse
Affiliation(s)
- Pamela Kikot
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Roque Sáenz Peña 352, B1876BXD, Bernal, Argentina
| | | | | | | | | |
Collapse
|
29
|
Bolick DT, Kolling GL, Moore JH, de Oliveira LA, Tung K, Philipson C, Viladomiu M, Hontecillas R, Bassaganya-Riera J, Guerrant RL. Zinc deficiency alters host response and pathogen virulence in a mouse model of enteroaggregative Escherichia coli-induced diarrhea. Gut Microbes 2014; 5:618-27. [PMID: 25483331 PMCID: PMC4615194 DOI: 10.4161/19490976.2014.969642] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is increasingly recognized as a major cause of diarrheal disease globally. In the current study, we investigated the impact of zinc deficiency on the host and pathogenesis of EAEC. Several outcomes of EAEC infection were investigated including weight loss, EAEC shedding and tissue burden, leukocyte recruitment, intestinal cytokine expression, and virulence expression of the pathogen in vivo. Mice fed a protein source defined zinc deficient diet (dZD) had an 80% reduction of serum zinc and a 50% reduction of zinc in luminal contents of the bowel compared to mice fed a protein source defined control diet (dC). When challenged with EAEC, dZD mice had significantly greater weight loss, stool shedding, mucus production, and, most notably, diarrhea compared to dC mice. Zinc deficient mice had reduced infiltration of leukocytes into the ileum in response to infection suggesting an impaired immune response. Interestingly, expression of several EAEC virulence factors were increased in luminal contents of dZD mice. These data show a dual effect of dietary zinc in benefitting the host while impairing virulence of the pathogen. The study demonstrates the critical importance of zinc and may help elucidate the benefits of zinc supplementation in cases of childhood diarrhea and malnutrition.
Collapse
Affiliation(s)
- David T Bolick
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA
| | - Glynis L Kolling
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA
| | - John H Moore
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA
| | | | - Kenneth Tung
- Department of Immunology; School of Medicine; University of Virginia; Charlottesville, VA USA
| | - Casandra Philipson
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Monica Viladomiu
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Raquel Hontecillas
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Josep Bassaganya-Riera
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Richard L Guerrant
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA,Correspondence to: Richard L Guerrant;
| |
Collapse
|
30
|
Xu Y, Zhang NZ, Tan QD, Chen J, Lu J, Xu QM, Zhu XQ. Evaluation of immuno-efficacy of a novel DNA vaccine encoding Toxoplasma gondii rhoptry protein 38 (TgROP38) against chronic toxoplasmosis in a murine model. BMC Infect Dis 2014; 14:525. [PMID: 25267356 PMCID: PMC4261603 DOI: 10.1186/1471-2334-14-525] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/25/2014] [Indexed: 12/25/2022] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite which can infect almost all mammalian animals, leading to toxoplasmosis. T. gondii rhoptry protein 38 (TgROP38) is an active rhoptry protein kinase which is involved in the inhibitory effect on host cell transcription by down-regulating the MAPK signaling track. Methods TgROP38 gene was amplified and inserted into eukaryotic vector pVAX I and formed the DNA vaccine pVAX-ROP38. Mice in the experimental group were intramuscularly immunized with pVAX-ROP38 and those injected with pVAX I, PBS or nothing were treated as controls. After three injections at two week intervals, all mouse groups were challenged intraperitoneally with 1000 tachyzoites of the virulent T. gondii RH strain (Type I, ToxoDB #10) and 10 cysts of the PRU strain (Type II, ToxoDB #1), respectively. Results Mice inoculated with pVAX-ROP38 vaccine had a higher level of IgG antibodies (P < 0.01) and T lymphoproliferative response. The high ratio of IgG2a/IgG1 and the increasing levels of IFN-γ and IL-2 (P < 0.05) indicated an activated Th1 cell-mediated immune responses. Furthermore, the CD4+ and CD8+ proportions in vaccinated mice were also increased significantly compared with that in mice of the three control groups (P < 0.01). In the model of acute infection, the average survival time of mice in the pVAX-ROP38 group (8.1 days ± 0.75) was no statistically different compared to that in the PBS, pVAX I and blank control groups which died within 7 days. However, in the model of chronic infection, the brain cyst reduction in the pVAX-ROP38 group reached 76.6%, compared to controls (P < 0.01). Conclusions The present study revealed that the pVAX-ROP38 vaccine could elicit strong humoral and cell immunity response against chronic T. gondii infection in mice, resulting in the reduction of the brain cyst formation effectively, which suggests that TgROP38 is a desirable vaccine candidate against chronic T. gondii infection. Electronic supplementary material The online version of this article (doi:10.1186/1471-2334-14-525) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P, R, China.
| |
Collapse
|
31
|
Zhang L, Yang Z, Liu Y. GADD45 proteins: roles in cellular senescence and tumor development. Exp Biol Med (Maywood) 2014; 239:773-778. [PMID: 24872428 DOI: 10.1177/1535370214531879] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growth arrest and DNA damage 45 (GADD45) family genes regulate DNA repair, cell cycle, cell survival, apoptosis, senescence, and DNA demethylation in the cells under various stress stimuli, such as oxidative stress, UV radiation, and oncogenic stress. Recent studies have provided important insights regarding how different oncogenic stresses activate GADD45 signaling pathway and lead to disparate influences on tumor initiation. In this review, we discuss the deregulation and cellular function of GADD45 proteins in the context of cancer development. We also highlight recent advances in exploring the tumor suppressive function of GADD45 proteins-triggered cellular senescence.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Zhaojuan Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| |
Collapse
|
32
|
Wang X, Li X, Onuma K, Sogo Y, Ohno T, Ito A. Zn- and Mg- containing tricalcium phosphates-based adjuvants for cancer immunotherapy. Sci Rep 2014; 3:2203. [PMID: 23857555 PMCID: PMC3712317 DOI: 10.1038/srep02203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/27/2013] [Indexed: 12/24/2022] Open
Abstract
Zn-, and Mg-containing tricalcium phosphates (TCPs) loaded with a hydrothermal extract of a human tubercle bacillus (HTB) were prepared by immersing Zn-TCP and Mg-TCP in HTB-containing supersaturated calcium phosphate solutions. The in vitro and in vivo immunogenic activities of the HTB-loaded Zn-, and Mg-TCPs (Zn-Ap-HTB and Mg-Ap-HTB, respectively) were evaluated as potential immunopotentiating adjuvants for cancer immunotherapy. The Zn-Ap-HTB and Mg-Ap-HTB adjuvants showed no obvious cytotoxicity and more effectively stimulated granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion by macrophage-like cells than unprocessed HTB or HTB-loaded TCP (T-Ap-HTB) in vitro. Zn-Ap-HTB and Mg-Ap-HTB mixed with liquid-nitrogen-treated tumor tissue markedly inhibited the in vivo development of rechallenged Lewis lung carcinoma (LLC) cells compared with T-Ap-HTB and the unprocessed HTB mixed liquid-nitrogen-treated tumor tissue. Zn-Ap-HTB and Mg-Ap-HTB contributed to eliciting potent systemic antitumor immunity in vivo.
Collapse
Affiliation(s)
- Xiupeng Wang
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Hebron ML, Lonskaya I, Olopade P, Selby ST, Pagan F, Moussa CEH. Tyrosine Kinase Inhibition Regulates Early Systemic Immune Changes and Modulates the Neuroimmune Response in α-Synucleinopathy. ACTA ACUST UNITED AC 2014; 5:259. [PMID: 25635231 PMCID: PMC4308054 DOI: 10.4172/2155-9899.1000259] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objectives Neuro-inflammation is common in α-Synucleinopathies and Tauopathies; and evidence suggests a link between the tyrosine kinase Abl and neurodegeneration. Abl upregulates α-Synuclein and promotes Tau hyper-phosphorylation (p-Tau), while Abl inhibitors facilitate autophagic clearance. Methods A model of α-Synucleinopathy harboring human mutant A53T α-Synuclein and exhibits concomitant increase in murine p-Tau was used to determine the immunological response to Abl inhibition. Results Age-dependent alterations of brain immunity, including loss of IL-10 and decreased levels of IL-2 and IL-3 were observed in old A53T mice. Brain CCL2 and CCL5 were decreased, but CX3CL1 remained constantly elevated. Young A53T mice exhibited differential systemic and central immune profiles in parallel with increased blood markers of adaptive immunity, suggesting an early systemic immune response. Tyrosine kinase inhibitors (TKIs), including nilotinib and bosutinib reduced brain and peripheral α-Synuclein and p-Tau and modulated blood immunological responses. TKIs did not affect brain IL-10, but they changed the levels of all measured blood immune markers, except CX3CL1. TKIs altered microglia morphology and reduced the number of astrocyte and dendritic cells, suggesting beneficial regulation of microglia. Conclusions These data indicate that tyrosine kinase inhibition affects neuro-inflammation via early changes of the peripheral immune profile, leading to modulation of the neuro-immune response to α-Synuclein and p-Tau.
Collapse
Affiliation(s)
- Michaeline L Hebron
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C., 20007, USA
| | - Irina Lonskaya
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C., 20007, USA
| | - Paul Olopade
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C., 20007, USA
| | - Sandra T Selby
- Department of Oncology, Lombardi Cancer Center, Georgetown University Medical Center, Washington D.C., 20007, USA
| | - Fernando Pagan
- Neurorestoration Group, Movement Disorders Program, National Parkinson Foundation Center of Excellence, Georgetown University Hospital, Washington D.C., 20007, USA ; Deparment of Neurology, Georgetown University Hospital, Washington D.C., 20007, USA
| | - Charbel E-H Moussa
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C., 20007, USA ; Neurorestoration Group, Movement Disorders Program, National Parkinson Foundation Center of Excellence, Georgetown University Hospital, Washington D.C., 20007, USA
| |
Collapse
|
34
|
Kim YA, Kim MY, Yu HY, Mishra SK, Lee JH, Choi KS, Kim JH, Xiang YK, Jung YS. Gadd45β is transcriptionally activated by p53 via p38α-mediated phosphorylation during myocardial ischemic injury. J Mol Med (Berl) 2013; 91:1303-13. [PMID: 23948959 DOI: 10.1007/s00109-013-1070-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 11/28/2022]
Abstract
UNLABELLED Growth arrest and DNA damage-inducible 45β (Gadd45β) have been shown to play a role in inducing cardiomyocyte apoptosis under ischemia/anoxia. The well-known transcription factor p53 is known to cause apoptosis in cardiomyocytes under ischemia. Based on the common role of Gadd45β and p53 in ischemia-induced apoptosis, we investigated whether p53 is involved in the mechanisms responsible for Gadd45β expression in both in vitro and in vivo models of ischemic heart injury. A chromatin immunoprecipitation assay revealed direct binding of p53 to the Gadd45β promoter region during anoxia, and this binding was confirmed by surface plasmon resonance imaging. In rat heart-derived H9c2 cells, silencing of p53 abrogated the increase of Gadd45β promoter-luciferase reporter (Gadd45β-Luc) activity and the expression of Gadd45β under anoxia and overexpression of p53 enhanced Gadd45β-Luc activity and Gadd45β expression. Gadd45β mRNA and protein expression were significantly inhibited by p53 siRNA in a rat ischemic heart model. In addition, p38α-mediated phophorylation of p53 at both Ser15 and Ser20 was shown to be essential for the expression of Gadd45β mRNA and protein during anoxia. These results reveal the p38α-p53-Gadd45β axis as a novel signaling module in the anoxia-induced apoptotic death pathway. In conclusion, this study provides molecular evidence that Gadd45β is a novel downstream target gene of p53 under ischemia/anoxia and suggests the therapeutic potential of targeting Gadd45β as a treatment of ischemic heart injury. KEY MESSAGE Gadd45β is transcriptionally induced by p53 via direct binding under ischemia/anoxia. The induction of Gadd45β expression requires the p53 phosphorylation at Ser15/Ser20. p38α mediates the p53 phosphorylation at Ser15/Ser20 and the Gadd45β expression. Ischemia/anoxia-p38α-p53-Gadd45β axis serves as a novel apoptotic signaling module.
Collapse
Affiliation(s)
- Young-Ae Kim
- College of Pharmacy, Ajou University, San 5, Wonchon-dong, Yeongtong-gu, Suwon, 443-749, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ishida K, Yuge Y, Hanaoka M, Yasukawa M, Minami Y, Ogawa M, Masumoto KH, Shigeyoshi Y, Saito M, Tsuji T. Gadd45gregulates dental epithelial cell proliferation through p38 MAPK-mediatedp21expression. Genes Cells 2013; 18:660-71. [DOI: 10.1111/gtc.12067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/15/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Kentaro Ishida
- Research Institute for Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Yohei Yuge
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Mai Hanaoka
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Masato Yasukawa
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Yoko Minami
- Department of Biological Science and Technology; Graduate School of Industrial Science and Technology; Tokyo University of Science; Chiba; 278-8510; Japan
| | - Miho Ogawa
- Organ Technologies Inc.; Tokyo; 101-0048; Japan
| | - Ko-hei Masumoto
- Department of Anatomy and Neurobiology; Kiniki University Faculty of Medicine; Osaka; 589-8511; Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology; Kiniki University Faculty of Medicine; Osaka; 589-8511; Japan
| | | | | |
Collapse
|
36
|
Rouse M, Nagarkatti M, Nagarkatti PS. The role of IL-2 in the activation and expansion of regulatory T-cells and the development of experimental autoimmune encephalomyelitis. Immunobiology 2013; 218:674-82. [PMID: 22954711 PMCID: PMC3582788 DOI: 10.1016/j.imbio.2012.08.269] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that affects ≈ 400,000 people in the US. It is a chronic, disabling disease with no cure, and the current treatment includes use of immunosuppressive drugs that often exhibit toxic side effects. Thus, there is a pressing need for alternate and more effective treatment strategies that target the components of inflammatory cells. In recent years, regulatory T-cells (Tregs) have been found to play an important role in preventing the development of autoimmunity. Thus, expansion of Tregs in vivo has the therapeutic potential against autoimmune diseases. Because Tregs constitutively express IL-2 receptors (IL-2Rs), we tested the effect of administration of IL-2 on the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). We used IL-2 both before (pre-treatment) or after (post-treatment) immunization with myelin oligodendrocyte glycoprotein (MOG35-55) peptide to induce EAE. The data demonstrated that pre-treatment with a moderate dose of IL-2 caused significant amelioration of EAE. Tissue histopathology of the central nervous system also confirmed the effectiveness of IL-2 pre-treatment by decreasing cellular infiltration in the spinal cord and preserving tissue integrity. IL-2 pretreatment expanded Treg cells while preventing the induction of Th17 during EAE development. In contrast, post-treatment with IL-2 failed to suppress EAE despite induction of Tregs. Together, these studies demonstrate that while expansion of Tregs using IL-2, prior to immunization or the onset of disease, can suppress the immune response, their role is limited after the antigen-specific response is triggered. Because IL-2 is used to treat certain types of cancers, and Tregs have applications in preventing the rejection of transplants, our studies also provide useful information on the use and limitations of Tregs in such clinical manifestations.
Collapse
Affiliation(s)
- Michael Rouse
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| |
Collapse
|
37
|
Hoffman B, Liebermann DA. Gadd45 in modulation of solid tumors and leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:21-33. [PMID: 24104471 DOI: 10.1007/978-1-4614-8289-5_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The stress response gadd45 gene family participates in cell cycle control, cell survival, apoptosis, maintenance of genomic stability, DNA repair, and active DNA demethylation, in response to environmental and physiological stress including oncogenic stress. Given these diverse functions, it is anticipated that gadd45 genes can influence the initiation and progression of malignancy and the response to different treatments. This chapter will provide an overview of how the different members of the gadd45 gene family are expressed in different tumors and leukemia, how this may impact on progression of disease, and what happens when expression is manipulated. Studies from human tumor/leukemia samples, cell lines, and animal models are included in this review. An overriding theme is that each of the gadd45 genes has both tumor suppressor and tumor promoter functions, dependent on the tissue/cell type and transforming event.
Collapse
Affiliation(s)
- Barbara Hoffman
- Temple University School of Medicine, Philadelphia, PA, USA,
| | | |
Collapse
|
38
|
Schäfer A. Gadd45 proteins: key players of repair-mediated DNA demethylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:35-50. [PMID: 24104472 DOI: 10.1007/978-1-4614-8289-5_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The three growth arrest and DNA damage 45 (Gadd45) family genes encode for stress-response proteins that are rapidly induced upon cellular stress or differentiation cues. They are well-characterized regulators of cell cycle, senescence, survival, and apoptosis. More recently, it has become clear that Gadd45 proteins promote active DNA demethylation thereby mediating gene activation. This epigenetic function of Gadd45 is important for differentiation and transcriptional regulation during development. Mechanistically, Gadd45 acts as an adapter for DNA repair factors at gene-specific loci to promote removal of 5-methylcytosine from DNA. Hence, Gadd45 is a nexus between DNA repair and epigenetic gene regulation.
Collapse
|
39
|
Sultan FA, Sweatt JD. The Role of the Gadd45 Family in the Nervous System: A Focus on Neurodevelopment, Neuronal Injury, and Cognitive Neuroepigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:81-119. [DOI: 10.1007/978-1-4614-8289-5_6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Abstract
The vertebrate immune system protects the host against invading pathogens such as viruses, bacteria and parasites. It consists of an innate branch and an adaptive branch that provide immediate and long-lasting protection, respectively. As the immune system is composed of different cell types and distributed throughout the whole body, immune cells need to communicate with each other. Intercellular communication in the immune system is mediated by cytokines, which bind to specific receptors on the cell surface and activate intracellular signalling networks. Growth arrest and DNA damage-inducible 45 (Gadd45) proteins are important components of these intracellular signalling networks. They are induced by a number of cytokines and by bacterial lipopolysaccharide. Within the innate immune system, Gadd45 proteins are crucial for the differentiation of myeloid cells as well as for the function of granulocytes and macrophages. Moreover, Gadd45β regulates autophagy, a catabolic pathway that also degrades intracellular pathogens. Regarding adaptive immunity, Gadd45 proteins are especially well characterized in T cells. For instance, Gadd45β and Gadd45γ regulate cytokine expression and Th1 differentiation, while Gadd45α inhibits p38 kinase activation downstream of the T cell receptor. Due to their many functions in the immune system, deficiency in Gadd45 proteins causes autoimmune diseases and less efficient tumour immunosurveillance.
Collapse
Affiliation(s)
- Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany,
| |
Collapse
|
41
|
Cytokine profiles in serum of patients with oral lichen planus. Cytokine 2012; 60:701-6. [DOI: 10.1016/j.cyto.2012.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 07/12/2012] [Accepted: 08/06/2012] [Indexed: 12/19/2022]
|
42
|
Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. GADD45 proteins: central players in tumorigenesis. Curr Mol Med 2012; 12:634-51. [PMID: 22515981 PMCID: PMC3797964 DOI: 10.2174/156652412800619978] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/23/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022]
Abstract
The Growth Arrest and DNA Damage-inducible 45 (GADD45) proteins have been implicated in regulation of many cellular functions including DNA repair, cell cycle control, senescence and genotoxic stress. However, the pro-apoptotic activities have also positioned GADD45 as an essential player in oncogenesis. Emerging functional evidence implies that GADD45 proteins serve as tumor suppressors in response to diverse stimuli, connecting multiple cell signaling modules. Defects in the GADD45 pathway can be related to the initiation and progression of malignancies. Moreover, induction of GADD45 expression is an essential step for mediating anti-cancer activity of multiple chemotherapeutic drugs and the absence of GADD45 might abrogate their effects in cancer cells. In this review, we present a comprehensive discussion of the functions of GADD45 proteins, linking their regulation to effectors of cell cycle arrest, DNA repair and apoptosis. The ramifications regarding their roles as essential and central players in tumor growth suppression are also examined. We also extensively review recent literature to clarify how different chemotherapeutic drugs induce GADD45 gene expression and how its up-regulation and interaction with different molecular partners may benefit cancer chemotherapy and facilitate novel drug discovery.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- International Centre for Genetic Engineering and Biotechnology, and Medical Biochemistry Division, University of Cape Town, Cape Town, South Africa
| | - Jaíra Ferreira de Vasconcellos
- Centro Infantil Boldrini, Molecular Biology Laboratory, Campinas, Brazil
- State University of Campinas, Faculty of Medical Sciences, Department of Medical Genetics, Campinas, Brazil
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | - Towia A Libermann
- BIDMC Genomics and Proteomics Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology, and Medical Biochemistry Division, University of Cape Town, Cape Town, South Africa
- BIDMC Genomics and Proteomics Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Suppression of T cell functions by hydroxamic acid-based histone deacetylase inhibitors. Arch Pharm Res 2012; 35:929-36. [DOI: 10.1007/s12272-012-0519-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/21/2011] [Accepted: 01/19/2012] [Indexed: 01/15/2023]
|
44
|
Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Tacutu R, Fraifeld VE. Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 2012; 11:51-66. [PMID: 21986581 PMCID: PMC3765067 DOI: 10.1016/j.arr.2011.09.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 12/12/2022]
Abstract
The Gadd45 proteins have been intensively studied, in view of their important role in key cellular processes. Indeed, the Gadd45 proteins stand at the crossroad of the cell fates by controlling the balance between cell (DNA) repair, eliminating (apoptosis) or preventing the expansion of potentially dangerous cells (cell cycle arrest, cellular senescence), and maintaining the stem cell pool. However, the biogerontological aspects have not thus far received sufficient attention. Here we analyzed the pathways and modes of action by which Gadd45 members are involved in aging, longevity and age-related diseases. Because of their pleiotropic action, a decreased inducibility of Gadd45 members may have far-reaching consequences including genome instability, accumulation of DNA damage, and disorders in cellular homeostasis - all of which may eventually contribute to the aging process and age-related disorders (promotion of tumorigenesis, immune disorders, insulin resistance and reduced responsiveness to stress). Most recently, the dGadd45 gene has been identified as a longevity regulator in Drosophila. Although further wide-scale research is warranted, it is becoming increasingly clear that Gadd45s are highly relevant to aging, age-related diseases (ARDs) and to the control of life span, suggesting them as potential therapeutic targets in ARDs and pro-longevity interventions.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Group of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Hanagata N, Zhuang F, Connolly S, Li J, Ogawa N, Xu M. Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ACS NANO 2011; 5:9326-38. [PMID: 22077320 DOI: 10.1021/nn202966t] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study proposes a molecular mechanism for lung epithelial A549 cell response to copper oxide nanoparticles (CuO-NPs) related to Cu ions released from CuO-NPs. Cells that survived exposure to CuO-NPs arrested the cell cycle as a result of the downregulation of proliferating cell nuclear antigen (PCNA), cell division control 2 (CDC2), cyclin B1 (CCNB1), target protein for Xklp2 (TPX2), and aurora kinase A (AURKA) and B (AURKB). Furthermore, cell death was avoided through the induced expression of nuclear receptors NR4A1 and NR4A3 and growth arrest and DNA damage-inducible 45 β and γ (GADD45B and GADD45G, respectively). The downregulation of CDC2, CCNB1, TPX2, AURKA, and AURKB, the expressions of which are involved in cell cycle arrest, was attributed to Cu ions released from CuO-NPs into medium. NR4A1 and NR4A3 expression was also induced by Cu ions released into the medium. The expression of GADD45B and GADD45G activated the p38 pathway that was involved in escape from cell death. The upregulation of GADD45B and GADD45G was not observed with Cu ions released into medium but was observed in cells exposed to CuO-NPs. However, because the expression of the genes was also induced by Cu ion concentrations higher than that released from CuO-NPs into the medium, the expression appeared to be triggered by Cu ions released from CuO-NPs taken up into cells. We infer that, for cells exposed to CuO-NPs, those able to make such a molecular response survived and those unable to do so eventually died.
Collapse
Affiliation(s)
- Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Lee WG, Kim WS, Park SG, Kim H, Hong J, Ko H, Kim YC. Immunosuppressive effects of subglutinol derivatives. ChemMedChem 2011; 7:218-22. [PMID: 22114006 DOI: 10.1002/cmdc.201100409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/28/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Won-Gil Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro(Oryong- dong), Buk-gu, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Lu C, Wu J, Wang H, Wang S, Diao N, Wang F, Gao Y, Chen J, Shao L, Weng X, Zhang Y, Zhang W. Novel biomarkers distinguishing active tuberculosis from latent infection identified by gene expression profile of peripheral blood mononuclear cells. PLoS One 2011; 6:e24290. [PMID: 21904626 PMCID: PMC3164189 DOI: 10.1371/journal.pone.0024290] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/04/2011] [Indexed: 11/20/2022] Open
Abstract
Background Humans infected with Mycobacterium tuberculosis (MTB) can delete the pathogen or otherwise become latent infection or active disease. However, the factors influencing the pathogen clearance and disease progression from latent infection are poorly understood. This study attempted to use a genome-wide transcriptome approach to identify immune factors associated with MTB infection and novel biomarkers that can distinguish active disease from latent infection. Methodology/Principal Findings Using microarray analysis, we comprehensively determined the transcriptional difference in purified protein derivative (PPD) stimulated peripheral blood mononuclear cells (PBMCs) in 12 individuals divided into three groups: TB patients (TB), latent TB infection individuals (LTBI) and healthy controls (HC) (n = 4 per group). A transcriptional profiling of 506 differentially expressed genes could correctly group study individuals into three clusters. Moreover, 55- and 229-transcript signatures for tuberculosis infection (TB<BI) and active disease (TB) were identified, respectively. The validation study by quantitative real-time PCR (qPCR) performed in 83 individuals confirmed the expression patterns of 81% of the microarray identified genes. Decision tree analysis indicated that three genes of CXCL10, ATP10A and TLR6 could differentiate TB from LTBI subjects. Additional validation was performed to assess the diagnostic ability of the three biomarkers within 36 subjects, which yielded a sensitivity of 71% and specificity of 89%. Conclusions/Significance The transcription profiles of PBMCs induced by PPD identified distinctive gene expression patterns associated with different infectious status and provided new insights into human immune responses to MTB. Furthermore, this study indicated that a combination of CXCL10, ATP10A and TLR6 could be used as novel biomarkers for the discrimination of TB from LTBI.
Collapse
Affiliation(s)
- Chanyi Lu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering(SKLGE), Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering(SKLGE), Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering(SKLGE), Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Sen Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ni Diao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Feifei Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhua Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (WZ); (YZ)
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail: (WZ); (YZ)
| |
Collapse
|
48
|
Zhang K, Wang H, Bathke AC, Harrar SW, Piepho HP, Deng Y. Gene set analysis for longitudinal gene expression data. BMC Bioinformatics 2011; 12:273. [PMID: 21722407 PMCID: PMC3142525 DOI: 10.1186/1471-2105-12-273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 07/03/2011] [Indexed: 11/13/2022] Open
Abstract
Background Gene set analysis (GSA) has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information) with accession number GSE6085.
Collapse
Affiliation(s)
- Ke Zhang
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Lin CR, Yang CH, Huang CE, Wu CH, Chen YS, Sheen-Chen SM, Huang HW, Chen KH. GADD45A protects against cell death in dorsal root ganglion neurons following peripheral nerve injury. J Neurosci Res 2011; 89:689-99. [PMID: 21337369 DOI: 10.1002/jnr.22589] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/28/2010] [Accepted: 12/03/2010] [Indexed: 11/06/2022]
Abstract
A significant loss of neurons in the dorsal root ganglia (DRG) has been reported in animal models of peripheral nerve injury. Neonatal sensory neurons are more susceptible than adult neurons to axotomy- or nerve growth factor (NGF) withdrawal-induced cell death. To develop therapies for preventing irreversible sensory cell loss, it is essential to understand the molecular mechanisms responsible for DRG cell death and survival. Here we describe how the expression of the growth arrest- and DNA damage-inducible gene 45α (GADD45A) is correlated with neuronal survival after axotomy in vivo and after NGF withdrawal in vitro. GADD45A expression is low at birth and does not change significantly after spinal nerve ligation (SNL). In contrast, GADD45A is robustly up-regulated in the adult rat DRG 24 hr after SNL, and this up-regulation persists as long as the injured fibers are prevented from regenerating. In vitro delivery of GADD45A protects neonatal rat DRG neurons from NGF withdrawal-induced cytochrome c release and cell death. In addition, in vivo knockdown of GADD45A expression in adult injured DRG by small hairpin RNA increased cell death. Our results indicate that GADD45A protects neuronal cells from SNL-induced cell death.
Collapse
Affiliation(s)
- Chung-Ren Lin
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Liebermann DA, Tront JS, Sha X, Mukherjee K, Mohamed-Hadley A, Hoffman B. Gadd45 stress sensors in malignancy and leukemia. Crit Rev Oncog 2011; 16:129-40. [PMID: 22150313 PMCID: PMC3268054 DOI: 10.1615/critrevoncog.v16.i1-2.120] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gadd45 proteins, including Gadd45a, Gadd45b, and Gadd45g, have been implicated in stress signaling in response to physiological and environmental stress, including oncogenic stress, which can result in cell cycle arrest, DNA repair, cell survival, senescence, and apoptosis. The function of Gadd45 as a stress sensor is mediated via a complex interplay of physical interactions with other cellular proteins implicated in cell cycle regulation and the response of cells to stress, notably PCNA, p21, cdc2/cyclinB1, and the p38 and JNK stress response kinases. Altered expression of Gadd45 has been observed in multiple types of solid tumors as well as in hematopoietic malignancies. Using genetically engineered mouse models and bone-marrow transplantation, evidence has been obtained indicating that Gadd45 proteins can function to either promote or suppress tumor development and leukemia; this is dependent on the molecular nature of the activated oncogene and the cell type, via engagement of different signaling pathways.
Collapse
Affiliation(s)
- Dan A Liebermann
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | | | |
Collapse
|