1
|
Mycroft-West CJ, Abdelkarim S, Duyvesteyn HME, Gandhi NS, Skidmore MA, Owens RJ, Wu L. Structural and mechanistic characterization of bifunctional heparan sulfate N-deacetylase-N-sulfotransferase 1. Nat Commun 2024; 15:1326. [PMID: 38351061 PMCID: PMC10864358 DOI: 10.1038/s41467-024-45419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Heparan sulfate (HS) polysaccharides are major constituents of the extracellular matrix, which are involved in myriad structural and signaling processes. Mature HS polysaccharides contain complex, non-templated patterns of sulfation and epimerization, which mediate interactions with diverse protein partners. Complex HS modifications form around initial clusters of glucosamine-N-sulfate (GlcNS) on nascent polysaccharide chains, but the mechanistic basis underpinning incorporation of GlcNS itself into HS remains unclear. Here, we determine cryo-electron microscopy structures of human N-deacetylase-N-sulfotransferase (NDST)1, the bifunctional enzyme primarily responsible for initial GlcNS modification of HS. Our structures reveal the architecture of both NDST1 deacetylase and sulfotransferase catalytic domains, alongside a non-catalytic N-terminal domain. The two catalytic domains of NDST1 adopt a distinct back-to-back topology that limits direct cooperativity. Binding analyses, aided by activity-modulating nanobodies, suggest that anchoring of the substrate at the sulfotransferase domain initiates the NDST1 catalytic cycle, providing a plausible mechanism for cooperativity despite spatial domain separation. Our data shed light on key determinants of NDST1 activity, and describe tools to probe NDST1 function in vitro and in vivo.
Collapse
Affiliation(s)
| | - Sahar Abdelkarim
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK
| | - Neha S Gandhi
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- School of Chemistry and Physics, Queensland University of Technology, QLD 4000, Brisbane, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Mark A Skidmore
- Centre for Glycoscience Research and Training, Keele University, ST5 5BG, Newcastle-Under-Lyme, UK
| | - Raymond J Owens
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK
| | - Liang Wu
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK.
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK.
| |
Collapse
|
2
|
Xi X, Hu L, Huang H, Wang Y, Xu R, Du G, Chen J, Kang Z. Improvement of the stability and catalytic efficiency of heparan sulfate N-sulfotransferase for preparing N-sulfated heparosan. J Ind Microbiol Biotechnol 2023; 50:kuad012. [PMID: 37327079 PMCID: PMC10291996 DOI: 10.1093/jimb/kuad012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 06/18/2023]
Abstract
The chemo-enzymatic and enzymatic synthesis of heparan sulfate and heparin are considered as an attractive alternative to the extraction of heparin from animal tissues. Sulfation of the hydroxyl group at position 2 of the deacetylated glucosamine is a prerequisite for subsequent enzymatic modifications. In this study, multiple strategies, including truncation mutagenesis based on B-factor values, site-directed mutagenesis guided by multiple sequence alignment, and structural analysis were performed to improve the stability and activity of human N-sulfotransferase. Eventually, a combined variant Mut02 (MBP-hNST-NΔ599-602/S637P/S741P/E839P/L842P/K779N/R782V) was successfully constructed, whose half-life at 37°C and catalytic activity were increased by 105-fold and 1.35-fold, respectively. After efficient overexpression using the Escherichia coli expression system, the variant Mut02 was applied to N-sulfation of the chemically deacetylated heparosan. The N-sulfation content reached around 82.87% which was nearly 1.88-fold higher than that of the wild-type. The variant Mut02 with high stability and catalytic efficiency has great potential for heparin biomanufacturing.
Collapse
Affiliation(s)
- Xintong Xi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Hao Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Igreja C, Sommer RJ. The Role of Sulfation in Nematode Development and Phenotypic Plasticity. Front Mol Biosci 2022; 9:838148. [PMID: 35223994 PMCID: PMC8869759 DOI: 10.3389/fmolb.2022.838148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfation is poorly understood in most invertebrates and a potential role of sulfation in the regulation of developmental and physiological processes of these organisms remains unclear. Also, animal model system approaches did not identify many sulfation-associated mechanisms, whereas phosphorylation and ubiquitination are regularly found in unbiased genetic and pharmacological studies. However, recent work in the two nematodes Caenorhabditis elegans and Pristionchus pacificus found a role of sulfatases and sulfotransferases in the regulation of development and phenotypic plasticity. Here, we summarize the current knowledge about the role of sulfation in nematodes and highlight future research opportunities made possible by the advanced experimental toolkit available in these organisms.
Collapse
Affiliation(s)
- Catia Igreja
- *Correspondence: Catia Igreja, ; Ralf J. Sommer,
| | | |
Collapse
|
4
|
Sterner E, Li L, Paul P, Beaudet JM, Liu J, Linhardt RJ, Dordick JS. Assays for determining heparan sulfate and heparin O-sulfotransferase activity and specificity. Anal Bioanal Chem 2014; 406:525-36. [PMID: 24271188 PMCID: PMC3901155 DOI: 10.1007/s00216-013-7470-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 01/05/2023]
Abstract
O-sulfotransferases (OSTs) are critical enzymes in the cellular biosynthesis of the biologically and pharmacologically important heparan sulfate and heparin. Recently, these enzymes have been cloned and expressed in bacteria for application in the chemoenzymatic synthesis of glycosaminoglycan-based drugs. OST activity assays have largely relied on the use of radioisotopic methods using [(35)S] 3'-phosphoadenosine-5'-phosphosulfate and scintillation counting. Herein, we examine alternative assays that are more compatible with a biomanufacturing environment. A high throughput microtiter-based approach is reported that relies on a coupled bienzymic colorimetric assay for heparan sulfate and heparin OSTs acting on polysaccharide substrates using arylsulfotransferase-IV and p-nitrophenylsulfate as a sacrificial sulfogroup donor. A second liquid chromatography-mass spectrometric assay, for heparan sulfate and heparin OSTs acting on structurally defined oligosaccharide substrates, is also reported that provides additional information on the number and positions of the transferred sulfo groups within the product. Together, these assays allow quantitative and mechanistic information to be obtained on OSTs that act on heparan sulfate and heparin precursors.
Collapse
Affiliation(s)
- Eric Sterner
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Priscilla Paul
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Julie M. Beaudet
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Material Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
5
|
Raman K, Nguyen TKN, Kuberan B. Is N-sulfation just a gateway modification during heparan sulfate biosynthesis? FEBS Lett 2011; 585:3420-3. [PMID: 21983289 DOI: 10.1016/j.febslet.2011.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/14/2011] [Accepted: 09/26/2011] [Indexed: 11/25/2022]
Abstract
Several biologically important growth factor-heparan sulfate (HS) interactions are regulated by HS sulfation patterns. However, the biogenesis of these combinatorial sulfation patterns is largely unknown. N-Deacetylase/N-sulfotrasferase (NDST) converts N-acetyl-d-glucosamine residues to N-sulfo-d-glucosamine residues. This enzyme is suggested to be a gateway enzyme because N-sulfation dictates the final HS sulfation pattern. It is known that O-sulfation blocks C5-epimerase, which acts immediately after NDST action. However, it is still unknown whether O-sulfation inhibits NDST action in a similar manner. In this article we radically change conventional assumptions regarding HS biosynthesis by providing in vitro evidence that N-sulfation is not necessarily just a gateway modification during HS biosynthesis.
Collapse
Affiliation(s)
- Karthik Raman
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
6
|
Ringvall M, Kjellén L. Mice deficient in heparan sulfate N-deacetylase/N-sulfotransferase 1. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:35-58. [PMID: 20807640 DOI: 10.1016/s1877-1173(10)93003-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ndsts (N-deacetylase/N-sulfotransferases) are enzymes responsible for N-sulfation during heparan sulfate (HS) and heparin biosynthesis. In this review, basic features of the Ndst1 enzyme are covered and a brief description of HS biosynthesis and its regulation is presented. Effects of Ndst1 deficiency on embryonic development are described. These include immature lungs, craniofacial dysplasia and eye developmental defects, branching defect during lacrimal gland development, delayed mineralization of the skeleton, and reduced pericyte recruitment during vascular development. A brief account of the effects of Ndst1 deficiency in selective cell types in adult mice is also given.
Collapse
Affiliation(s)
- Maria Ringvall
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
7
|
Glycosaminoglycan metabolism before molecular biology: reminiscences of our early work. Glycoconj J 2009; 27:201-9. [PMID: 19728084 DOI: 10.1007/s10719-009-9254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/24/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
Abstract
This article concerns personal reminiscences of research on proteoglycans accomplished by Jeremiah Silbert and his co-investigators over a 25-30 year period beginning in 1961. Radiolabeled substrates were prepared and incubated with subcellular particles from mast cells and cartilage to determine pathways and organization of heparin and chondroitin glycosaminoglycan formation together with sulfation. Microsomal/Golgi fractions were examined for localization and organization of synthesis. Cell surface heparan sulfate and chondroitin were examined for preliminary information regarding potential function, and techniques were developed to alter sulfation processes.
Collapse
|
8
|
Lindahl U, Li JP. Interactions between heparan sulfate and proteins-design and functional implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:105-59. [PMID: 19584012 DOI: 10.1016/s1937-6448(09)76003-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparan sulfate (HS) proteoglycans at cell surfaces and in the extracellular matrix of most animal tissues are essential in development and homeostasis, and variously implicated in disease processes. Functions of HS polysaccharide chains depend on ionic interactions with a variety of proteins including growth factors and their receptors. Negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The level of specificity of HS-protein interactions is assessed through binding experiments in vitro using saccharides of defined composition, signaling assays in cell culture, and targeted disruption of genes for biosynthetic enzymes followed by phenotype analysis. While some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without any apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis.
Collapse
Affiliation(s)
- Ulf Lindahl
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | | |
Collapse
|
9
|
Carlsson P, Presto J, Spillmann D, Lindahl U, Kjellén L. Heparin/heparan sulfate biosynthesis: processive formation of N-sulfated domains. J Biol Chem 2008; 283:20008-14. [PMID: 18487608 DOI: 10.1074/jbc.m801652200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) proteoglycans influence embryonic development as well as adult physiology through interactions with various proteins, including growth factors/morphogens and their receptors. The interactions depend on HS structure, which is largely determined during biosynthesis by Golgi enzymes. A key step is the initial generation of N-sulfated domains, primary sites for further polymer modification and ultimately for functional interactions with protein ligands. Such domains, generated through action of a bifunctional GlcNAc N-deacetylase/N-sulfotransferase (NDST) on a [GlcUA-GlcNAc](n) substrate, are of variable size due to regulatory mechanisms that remain poorly understood. We have studied the action of recombinant NDSTs on the [GlcUA-GlcNAc](n) precursor in the presence and absence of the sulfate donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). In the absence of PAPS, NDST catalyzes limited and seemingly random N-deacetylation of GlcNAc residues. By contrast, access to PAPS shifts the NDST toward generation of extended N-sulfated domains that are formed through coupled N-deacetylation/N-sulfation in an apparent processive mode. Variations in N-substitution pattern could be obtained by varying PAPS concentration or by experimentally segregating the N-deacetylation and N-sulfation steps. We speculate that similar mechanisms may apply also to the regulation of HS biosynthesis in the living cell.
Collapse
Affiliation(s)
- Pernilla Carlsson
- Department of Medical Biochemistry and Microbiology at Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
10
|
Sparks SE, Ciccone C, Lalor M, Orvisky E, Klootwijk R, Savelkoul PJ, Dalakas MC, Krasnewich DM, Gahl WA, Huizing M. Use of a cell-free system to determine UDP-N-acetylglucosamine 2-epimerase and N-acetylmannosamine kinase activities in human hereditary inclusion body myopathy. Glycobiology 2005; 15:1102-10. [PMID: 15987957 DOI: 10.1093/glycob/cwi100] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hereditary inclusion body myopathy (HIBM) is an autosomal recessive neuromuscular disorder associated with mutations in uridine diphosphate (UDP)-N-acetylglucosamine (GlcNAc) 2-epimerase (GNE)/N-acetylmannosamine (ManNAc) kinase (MNK), the bifunctional and rate-limiting enzyme of sialic acid biosynthesis. We developed individual GNE and MNK enzymatic assays and determined reduced activities in cultured fibroblasts of patients, with HIBM harboring missense mutations in either or both the GNE and MNK enzymatic domains. To assess the effects of individual mutations on enzyme activity, normal and mutated GNE/MNK enzymatic domains were synthesized in a cell-free in vitro transcription-translation system and subjected to the GNE and MNK enzymatic assays. This cell-free system was validated for both GNE and MNK activities, and it revealed that mutations in one enzymatic domain (in GNE, G135V, V216A, and R246W; in MNK, A631V, M712T) affected not only that domain's enzyme activity, but also the activity of the other domain. Moreover, studies of the residual enzyme activity associated with specific mutations revealed a discrepancy between the fibroblasts and the cell-free systems. Fibroblasts exhibited higher residual activities of both GNE and MNK than the cell-free system. These findings add complexity to the tightly regulated system of sialic acid biosynthesis. This cell-free approach can be applied to other glycosylation pathway enzymes that are difficult to evaluate in whole cells because their substrate specificities overlap with those of ancillary enzymes.
Collapse
Affiliation(s)
- Susan E Sparks
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Saribaş AS, Mobasseri A, Pristatsky P, Chen X, Barthelson R, Hakes D, Wang J. Production of N-sulfated polysaccharides using yeast-expressed N-deacetylase/N-sulfotransferase-1 (NDST-1). Glycobiology 2004; 14:1217-28. [PMID: 15253930 DOI: 10.1093/glycob/cwh129] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heparan sulfate/heparin N-deacetylase/N-sulfotransferase-1 (NDST-1) is a critical enzyme involved in heparan sulfate/heparin biosynthesis. This dual-function enzyme modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan. N-sulfation is an absolute requirement for the subsequent epimerization and O-sulfation steps in heparan sulfate/heparin biosynthesis. We have expressed rat liver (r) NDST-1 in Saccharomyces cerevisiae as a soluble protein. The yeast-expressed enzyme has both N-deacetylase and N-sulfotransferase activities. N-acetyl heparosan, isolated from Escherichia coli K5 polysaccharide, de-N-sulfated heparin (DNSH) and completely desulfated N-acetylated heparan sulfate (CDSNAcHS) are all good substrates for the rNDST-1. However, N-desulfated, N-acetylated heparin (NDSNAcH) is a poor substrate. The rNDST-1 was partially purified on heparin Sepharose CL-6B. Purified rNDST-1 requires Mn(2+) for its enzymatic activity, can utilize PAPS regenerated in vitro by the PAPS cycle (PAP plus para-nitrophenylsulfate in the presence of arylsulfotransferase IV), and with the addition of exogenous PAPS is capable of producing 60-65% N-sulfated heparosan from E. coli K5 polysaccharide or Pasteurella multocida polysaccharide.
Collapse
Affiliation(s)
- A Sami Saribaş
- Neose Technologies, Inc., 102 Witmer Road, Horsham, PA 19044, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Wei G, Bai X, Esko JD. Temperature-sensitive glycosaminoglycan biosynthesis in a Chinese hamster ovary cell mutant containing a point mutation in glucuronyltransferase I. J Biol Chem 2003; 279:5693-8. [PMID: 14623881 DOI: 10.1074/jbc.m311621200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In previous studies, we reported the isolation and characterization of a Chinese hamster ovary cell mutant (pgsG) defective in glucuronyltransferase I (GlcATI). This enzyme adds the terminal GlcA residue in the core protein-linkage tetrasaccharide (GlcAbeta1,3Galbeta1,3Galbeta1, 4Xylbeta-O-) on which glycosaminoglycan assembly occurs (Bai, X. M., Wei, G., Sinha, A., and Esko, J. D. (1999) J. Biol. Chem. 274, 13017-13024; Wei, G., Bai, X. M., Sarkar, A. K., and Esko, J. D. (1999) J. Biol. Chem. 274, 7857-7864). Here we show that incorporation of 35SO4 into glycosaminoglycans in the mutant is temperature-sensitive, with greater synthesis occurring at 33 degrees C compared with 37 degrees C. Wild-type cells show the opposite thermal dependence. Rabbit antiserum to hamster GlcATI failed to detect cross-reactive material in pgsG cells by immunofluorescence and Western blotting. Furthermore, expression of chimeric proteins composed of mutant GlcATI fused to IgG binding domain of protein A or to green fluorescent protein did not yield the proteins at the expected mass. The green fluorescent protein-tagged version appeared as a truncated protein, and immunofluorescence showed large perinuclear bodies at 30 degrees C. At 37 degrees C, the fusion protein was not readily detectable. Sequencing cDNAs from mutant and wild-type cells revealed a single base transition (G331A) in the open reading frame in pgsG cells, which resulted in a Val-111-->Met substitution. These data suggest that pgsG cells contain a labile form of GlcATI that causes conditional expression of glycosaminoglycans dependent on temperature.
Collapse
Affiliation(s)
- Ge Wei
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093-0687, USA
| | | | | |
Collapse
|
13
|
Hwang HY, Olson SK, Brown JR, Esko JD, Horvitz HR. The Caenorhabditis elegans genes sqv-2 and sqv-6, which are required for vulval morphogenesis, encode glycosaminoglycan galactosyltransferase II and xylosyltransferase. J Biol Chem 2003; 278:11735-8. [PMID: 12584198 DOI: 10.1074/jbc.c200518200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mutants defective in any of eight Caenorhabditis elegans sqv (squashed vulva) genes, the vulval extracellular space fails to expand during vulval morphogenesis. Strong sqv mutations result in maternal-effect lethality, caused in part by the failure of the progeny of homozygous mutants to initiate cytokinesis and associated with the failure to form an extracellular space between the egg and the eggshell. Recent studies have implicated glycosaminoglycans in these processes. Here we report the cloning and characterization of sqv-2 and sqv-6. sqv-6 encodes a protein similar to human xylosyltransferases. Transfection of sqv-6 restored xylosyltransferase activity to and rescued the glycosaminoglycan biosynthesis defect of a xylosyltransferase mutant hamster cell line. sqv-2 encodes a protein similar to human galactosyltransferase II. A recombinant SQV-2 fusion protein had galactosyltransferase II activity with substrate specificity similar to that of human galactosyltransferase II. We conclude that C. elegans SQV-6 and SQV-2 likely act in concert with other SQV proteins to catalyze the stepwise formation of the proteoglycan core protein linkage tetrasaccharide GlcAbeta1,3Galbeta1, 3Galbeta1,4Xylbeta-O-(Ser), which is common to the two major types of glycosaminoglycans in vertebrates, chondroitin and heparan sulfate. Our results strongly support a model in which C. elegans vulval morphogenesis and zygotic cytokinesis depend on the expression of glycosaminoglycans.
Collapse
Affiliation(s)
- Ho-Yon Hwang
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Virtually every cell type in metazoan organisms produces heparan sulfate. These complex polysaccharides provide docking sites for numerous protein ligands and receptors involved in diverse biological processes, including growth control, signal transduction, cell adhesion, hemostasis, and lipid metabolism. The binding sites consist of relatively small tracts of variably sulfated glucosamine and uronic acid residues in specific arrangements. Their formation occurs in a tissue-specific fashion, generated by the action of a large family of enzymes involved in nucleotide sugar metabolism, polymer formation (glycosyltransferases), and chain processing (sulfotransferases and an epimerase). New insights into the specificity and organization of the biosynthetic apparatus have emerged from genetic studies of cultured cells, nematodes, fruit flies, zebrafish, rodents, and humans. This review covers recent developments in the field and provides a resource for investigators interested in the incredible diversity and specificity of this process.
Collapse
Affiliation(s)
- Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, California, 92093-0687, USA.
| | | |
Collapse
|
15
|
Abstract
Structural diversity of the sugar chains attached to proteins and lipids that arises from the variety of combinations of different monosaccharides, different types of linkages, branch formation and secondary modifications, such as sulfation, possesses a large amount of biological information. A number of proteoglycans, glycoproteins, and glycolipids contain sulfated carbohydrates. Their sulfate groups provide a negative charge and play a role in a specific molecular recognition process. The sulfation of oligosaccharides is catalyzed by the Golgi-associated sulfotransferases. Recent success in molecular cloning of these sulfotransferases has brought a breakthrough in the understanding of biological function of sulfated oligosaccharides in a variety of contexts. Investigations on the relationship of sulfated oligosaccharides to human diseases including hereditary deficiency, cancer, inflammation, and infection may provide hints for curing disastrous diseases.
Collapse
Affiliation(s)
- Koichi Honke
- Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
16
|
Abstract
The sulfonation of endogenous molecules is a pervasive biological phenomenon that is not always easily understood, and although it is increasingly recognized as a function of fundamental importance, there remain areas in which significant cognizance is still lacking or at most minimal. This is particularly true in the field of endocrinology, in which the sulfoconjugation of hormones is a widespread occurrence that is only partially, if at all, appreciated. In the realm of steroid/sterol sulfoconjugation, the discovery of a novel gene that utilizes an alternative exon 1 to encode for two sulfotransferase isoforms, one of which sulfonates cholesterol and the other pregnenolone, has been an important advance. This is significant because cholesterol sulfate plays a crucial role in physiological systems such as keratinocyte differentiation and development of the skin barrier, and pregnenolone sulfate is now acknowledged as an important neurosteroid. The sulfonation of thyroglobulin and thyroid hormones has been extensively investigated and, although this transformation is better understood, there remain areas of incomplete comprehension. The sulfonation of catecholamines is a prevalent modification that has been extensively studied but, unfortunately, remains poorly understood. The sulfonation of pituitary glycoprotein hormones, especially LH and TSH, does not affect binding to their cognate receptors; however, sulfonation does play an important role in their plasma clearance, which indirectly has a significant effect on biological activity. On the other hand, the sulfonation of distinct neuroendocrine peptides does have a profound influence on receptor binding and, thus, a direct effect on biological activity. The sulfonation of specific extracellular structures plays an essential role in the binding and signaling of a large family of extracellular growth factors. In summary, sulfonation is a ubiquitous posttranslational modification of hormones and extracellular components that can lead to dramatic structural changes in affected molecules, the biological significance of which is now beginning to be appreciated.
Collapse
Affiliation(s)
- Charles A Strott
- Section on Steroid Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA.
| |
Collapse
|
17
|
Allen BL, Filla MS, Rapraeger AC. Role of heparan sulfate as a tissue-specific regulator of FGF-4 and FGF receptor recognition. J Cell Biol 2001; 155:845-58. [PMID: 11724824 PMCID: PMC2150861 DOI: 10.1083/jcb.200106075] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2001] [Revised: 09/27/2001] [Accepted: 10/01/2001] [Indexed: 01/22/2023] Open
Abstract
FGF signaling uses receptor tyrosine kinases that form high-affinity complexes with FGFs and heparan sulfate (HS) proteoglycans at the cell surface. It is hypothesized that assembly of these complexes requires simultaneous recognition of distinct sulfation patterns within the HS chain by FGF and the FGF receptor (FR), suggesting that tissue-specific HS synthesis may regulate FGF signaling. To address this, FGF-2 and FGF-4, and extracellular domain constructs of FR1-IIIc (FR1c) and FR2-IIIc (FR2c), were used to probe for tissue-specific HS in embryonic day 18 mouse embryos. Whereas FGF-2 binds HS ubiquitously, FGF-4 exhibits a restricted pattern, failing to bind HS in the heart and blood vessels and failing to activate signaling in mouse aortic endothelial cells. This suggests that FGF-4 seeks a specific HS sulfation pattern, distinct from that of FGF-2, which is not expressed in most vascular tissues. Additionally, whereas FR2c binds all FGF-4-HS complexes, FR1c fails to bind FGF-4-HS in most tissues, as well as in Raji-S1 cells expressing syndecan-1. Proliferation assays using BaF3 cells expressing either FR1c or FR2c support these results. This suggests that FGF and FR recognition of specific HS sulfation patterns is critical for the activation of FGF signaling, and that synthesis of these patterns is regulated during embryonic development.
Collapse
Affiliation(s)
- B L Allen
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
18
|
Aikawa J, Grobe K, Tsujimoto M, Esko JD. Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J Biol Chem 2001; 276:5876-82. [PMID: 11087757 DOI: 10.1074/jbc.m009606200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the cloning and partial characterization of the fourth member of the vertebrate heparan sulfate/heparin: GlcNAc N-deacetylase/GlcN N-sulfotransferase family, which we designate NDST4. Full-length cDNA clones containing the entire coding region of 872 amino acids were obtained from human and mouse cDNA libraries. The deduced amino acid sequence of NDST4 showed high sequence identity to NDST1, NDST2, and NDST3 in both species. NDST4 maps to human chromosome 4q25-26, very close to NDST3, located at 4q26-27. These observations, taken together with phylogenetic data, suggest that the four NDSTs evolved from a common ancestral gene, which diverged to give rise to two subtypes, NDST3/4 and NDST1/2. Reverse transcription-polymerase chain reaction analysis of various mouse tissues revealed a restricted pattern of NDST4 mRNA expression when compared with NDST1 and NDST2, which are abundantly and ubiquitously expressed. Comparison of the enzymatic properties of the four murine NDSTs revealed striking differences in N-deacetylation and N-sulfation activities; NDST4 had weak deacetylase activity but high sulfotransferase, whereas NDST3 had the opposite properties. Molecular modeling of the sulfotransferase domains of the murine and human NDSTs showed varying surface charge distributions within the substrate binding cleft, suggesting that the differences in activity may reflect preferences for different substrates. An iterative model of heparan sulfate biosynthesis is suggested in which some NDST isozymes initiate the N-deacetylation and N-sulfation of the chains, whereas others bind to previously modified segments to fill in or extend the section of modified residues.
Collapse
Affiliation(s)
- J Aikawa
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093-0687, USA
| | | | | | | |
Collapse
|
19
|
Hallak LK, Spillmann D, Collins PL, Peeples ME. Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol 2000; 74:10508-13. [PMID: 11044095 PMCID: PMC110925 DOI: 10.1128/jvi.74.22.10508-10513.2000] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosaminoglycans (GAGs) on the surface of cultured cells are important in the first step of efficient respiratory syncytial virus (RSV) infection. We evaluated the importance of sulfation, the major biosynthetic modification of GAGs, using an improved recombinant green fluorescent protein-expressing RSV (rgRSV) to assay infection. Pretreatment of HEp-2 cells with 50 mM sodium chlorate, a selective inhibitor of sulfation, for 48 h prior to inoculation reduced the efficiency of rgRSV infection to 40%. Infection of a CHO mutant cell line deficient in N-sulfation was three times less efficient than infection of the parental CHO cell line, indicating that N-sulfation is important. In contrast, infection of a cell line deficient in 2-O-sulfation was as efficient as infection of the parental cell line, indicating that 2-O-sulfation is not required for RSV infection. Incubating RSV with the purified soluble heparin, the prototype GAG, before inoculation had previously been shown to neutralize its infectivity. Here we tested chemically modified heparin chains that lack their N-, C6-O-, or C2-O-sulfate groups. Only heparin chains lacking the N-sulfate group lost the ability to neutralize infection, confirming that N-sulfation, but not C6-O- or C2-O-sulfation, is important for RSV infection. Analysis of heparin fragments identified the 10-saccharide chain as the minimum size that can neutralize RSV infectivity. Taken together, these results show that, while sulfate modification is important for the ability of GAGs to mediate RSV infection, only certain sulfate groups are required. This specificity indicates that the role of cell surface GAGs in RSV infection is not based on a simple charge interaction between the virus and sulfate groups but instead involves a specific GAG structural configuration that includes N-sulfate and a minimum of 10 saccharide subunits. These elements, in addition to iduronic acid demonstrated previously (L. K. Hallak, P. L. Collins, W. Knudson, and M. E. Peeples, Virology 271:264-275, 2000), partially define cell surface molecules important for RSV infection of cultured cells.
Collapse
Affiliation(s)
- L K Hallak
- Department of Immunology/Microbiology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
20
|
Bame KJ, Venkatesan I, Stelling HD, Tumova S. The spacing of S-domains on HS glycosaminoglycans determines whether the chain is a substrate for intracellular heparanases. Glycobiology 2000; 10:715-26. [PMID: 10910975 DOI: 10.1093/glycob/10.7.715] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heparanases are mammalian endoglucuronidases that degrade heparan sulfate (HS) glycosaminoglycans to short 5-6 kDa pieces. In the Golgi, HS glycosaminoglycans are modified by a series of interdependent reactions which result in chains that have regions rich in N- and O-sulfate groups and iduronate residues (S-domains), separated by regions that are nearly devoid of sulfate. Structural analysis of the short HS chains produced by Chinese hamster ovary (CHO) cell heparanases indicate that the enzymes recognize differences in sulfate content between S-domains and unmodified sequences, and cleave the chain at junctions between these regions. To look more closely at whether the spacing of S-domains on the gly- cosaminoglycan influences its ability to be cleaved by heparanases, we examined the susceptibility of the HS chains synthesized by the proteoglycan synthesis mutant, pgsE-606. PGS:E-606 cells are deficient in the modification enzyme N-deacetylase/N-sulfotransferase I, and synthesize HS chains that have fewer N- and O-sulfate groups and iduronate residues compared to wild-type (Bame et al., (1991), J. Biol. Chem., 266, 10287). HS glycosaminoglycans were isolated from wild-type and pgsE-606 cells and separated into populations based on sulfate content. Compared to wild-type HS, which has 14 S-domains, pgsE-606 cells synthesize three HS species, 606-1, 606-2, and 606-3, with 1, 4, and 8 S-domains, respectively. The spacing of the S-domains on the pgsE-606 HS chains is similar to the spacing the modified sequences on wild-type HS, indicating that each mutant glycosaminoglycan is composed of wild-type-like sequences and sequences devoid of S-domains. When incubated with partially purified CHO heparanases, only the portion of the mutant HS chains that had S-domains were degraded. Structural analysis of the heparanase-products confirmed that both the number and the arrangement of S-domains on the HS glycosaminoglycan are important for heparanase susceptibility. The structure of the different pgsE-606 HS chains also suggests mechanisms for the placement of S-domains when the gly- cosaminoglycan is synthesized.
Collapse
Affiliation(s)
- K J Bame
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 64110, USA
| | | | | | | |
Collapse
|
21
|
Abstract
This overview attempts to cover, from a personal viewpoint, the development of the 'heparin' field during the last four decades. In particular, it emphasizes the metamorphosis of heparan sulfate (HS), from a disturbing contaminant in heparin production to the present-day key player in cell and developmental biology. Our understanding of the structural properties of the polysaccharides has been greatly promoted by studies of their biosynthesis. We now have a fairly detailed view of the various enzymatic reactions, that convert the initial [4GlcAbeta1-4GlcNAcalpha1-]n polymer into sulfated products with highly variable proportions of GlcA/IdoA and of N-acetyl, N-sulfate and O-sulfate substituents. It is also recognized that the variously substituted domains of the polysaccharide serve to interact, in more or less specific fashion, with a multitude of proteins, and that these interactions are essential to the biological functions of the proteins. Molecular genetics has unravelled the gene structures for almost all of the enzymes required to synthesize a heparin or HS chain, and has shown that several of these proteins exhibit genetic polymorphism. While differences in substrate specificity between enzyme isoforms may help to explain the structural variability of, in particular, HS chains, we still only partly understand the key features of heparin/HS biosynthesis and its regulation.
Collapse
Affiliation(s)
- U Lindahl
- Department of Medical Biochemistry and Microbiology, University of Uppsala, The Biomedical Center, Sweden.
| |
Collapse
|
22
|
Habuchi O. Diversity and functions of glycosaminoglycan sulfotransferases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1474:115-27. [PMID: 10742590 DOI: 10.1016/s0304-4165(00)00016-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sulfate residues attached to the specific position of the component sugar residues of glycosaminoglycans play important roles in the formation of functional domain structures. The introduction of a sulfate group is catalyzed by various sulfotransferases with strict substrate specificities. A rapid development achieved in the cloning of various glycosaminoglycan sulfotransferases has allowed us to study the biological functions of glycosaminoglycan sulfotransferases and their products, sulfated glycosaminoglycans.
Collapse
Affiliation(s)
- O Habuchi
- Department of Life Science, Aichi University of Education, Kariya, Aichi, Japan.
| |
Collapse
|
23
|
Abstract
Proteoglycans are widely expressed in animal cells. Interactions between negatively charged glycosaminoglycan chains and molecules such as growth factors are essential for differentiation of cells during development and maintenance of tissue organisation. We propose that glycosaminoglycan chains play a role in targeting of proteoglycans to their proper cellular or extracellular location. The variability seen in glycosaminoglycan chain structure from cell type to cell type, which is acquired by use of particular Ser-Gly sites in the protein core, might therefore be important for post-synthesis sorting. This links regulation of glycosaminoglycan synthesis to the post-Golgi fate of proteoglycans.
Collapse
Affiliation(s)
- K Prydz
- Department of Biochemistry and Institute for Nutrition Research, University of Oslo, Norway.
| | | |
Collapse
|
24
|
Kakuta Y, Sueyoshi T, Negishi M, Pedersen LC. Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/ N-sulfotransferase 1. J Biol Chem 1999; 274:10673-6. [PMID: 10196134 DOI: 10.1074/jbc.274.16.10673] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate N-deacetylase/N-sulfotransferase (HSNST) catalyzes the first and obligatory step in the biosynthesis of heparan sulfates and heparin. The crystal structure of the sulfotransferase domain (NST1) of human HSNST-1 has been determined at 2.3-A resolution in a binary complex with 3'-phosphoadenosine 5'-phosphate (PAP). NST1 is approximately spherical with an open cleft, and consists of a single alpha/beta fold with a central five-stranded parallel beta-sheet and a three-stranded anti-parallel beta-sheet bearing an interstrand disulfide bond. The structural regions alpha1, alpha6, beta1, beta7, 5'-phosphosulfate binding loop (between beta1 and alpha1), and a random coil (between beta8 and alpha13) constitute the PAP binding site of NST1. The alpha6 and random coil (between beta2 and alpha2), which form an open cleft near the 5'-phosphate of the PAP molecule, may provide interactions for substrate binding. The conserved residue Lys-614 is in position to form a hydrogen bond with the bridge oxygen of the 5'-phosphate.
Collapse
Affiliation(s)
- Y Kakuta
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
25
|
Wei G, Bai X, Sarkar AK, Esko JD. Formation of HNK-1 determinants and the glycosaminoglycan tetrasaccharide linkage region by UDP-GlcUA:Galactose beta1, 3-glucuronosyltransferases. J Biol Chem 1999; 274:7857-64. [PMID: 10075678 DOI: 10.1074/jbc.274.12.7857] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
While expression-cloning enzymes involved in heparan sulfate biosynthesis, we isolated a cDNA that encodes a protein 65% identical to the UDP-GlcUA:glycoprotein beta1, 3-glucuronosyltransferase (GlcUAT-P) involved in forming HNK-1 carbohydrate epitopes (3OSO3GlcUAbeta1,3Gal-) on glycoproteins. The cDNA contains an open reading frame coding for a protein of 335 amino acids with a predicted type II transmembrane protein orientation. Cotransfection of the cDNA with HNK-1 3-O-sulfotransferase produced HNK-1 carbohydrate epitopes in Chinese hamster ovary (CHO) cells and COS-7 cells. In vitro, a soluble recombinant form of the enzyme transferred GlcUA in beta-linkage to Galbeta1,3/4GlcNAcbeta-O-naphthalenemethanol, which resembles the core oligosaccharide on which the HNK-1 epitope is assembled. However, the enzyme greatly preferred Galbeta1, 3Galbeta-O-naphthalenemethanol, a disaccharide component found in the linkage region tetrasaccharide in chondroitin sulfate and heparan sulfate. During the course of this study, a human cDNA clone was described that was thought to encode UDP-GlcUA:Galbeta1,3Gal-R glucuronosyltransferase (GlcUAT-I), involved in the formation of the linkage region of glycosaminoglycans (Kitagawa, H., Tone, Y., Tamura, J., Neumann, K. W., Ogawa, T., Oka, S., Kawasaki, T., and Sugahara, K. (1998) J. Biol. Chem. 273, 6615-6618). The deduced amino acid sequences of the CHO and human cDNAs are 95% identical, suggesting that they are in fact homologues of the same gene. Transfection of a CHO cell mutant defective in GlcUAT-I with the hamster cDNA restored glycosaminoglycan assembly in vivo, confirming its identity. Interestingly, transfection of the mutant with GlcUAT-P also restored glycosaminoglycan synthesis. Thus, both GlcUAT-P and GlcUAT-I have overlapping substrate specificities. However, the expression of the two genes was entirely different, with GlcUAT-I expressed in all tissues tested and GlcUAT-P expressed only in brain. These findings suggest that, in neural tissues, GlcUAT-P may participate in both HNK-1 and glycosaminoglycan production.
Collapse
Affiliation(s)
- G Wei
- Division of Cellular and Molecular Medicine, Glycobiology Research and Training Program, University of California at San Diego, La Jolla, California 92093-0687, USA
| | | | | | | |
Collapse
|
26
|
Aikawa J, Esko JD. Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/ N-sulfotransferase family. J Biol Chem 1999; 274:2690-5. [PMID: 9915799 DOI: 10.1074/jbc.274.5.2690] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Deacetylation and N-sulfation of N-acetylglucosamine residues in heparan sulfate and heparin initiate a series of chemical modifications that ultimately lead to oligosaccharide sequences with specific ligand binding properties. These reactions are catalyzed by GlcNAc N-deacetylase/N-sulfotransferase (NDST), a monomeric enzyme with two catalytic activities. Two genes encoding NDST isozymes have been described, one from rat liver (NDST1) and another from murine mastocytoma (NDST2). Both isozymes are expressed in tissues in varying amounts, but their relative contribution to heparan sulfate formation in any one tissue is unknown. We now report the identification of a third member of the NDST family, designated NDST3. A full-length cDNA clone (3.2 kilobase pairs) encoding a 873-amino acid protein was obtained from a human fetal/infant brain cDNA library. Human NDST3 (hNDST3) has a nucleotide sequence homologous but not identical to hNDST1 and NDST2. The deduced amino acid sequence shows 70% and 65% amino acid identity to that of hNDST1 and NDST2, respectively. A soluble chimera of hNDST3 and protein A exhibited both N-deacetylase and N-sulfotransferase activity, confirming its enzymatic identity. Northern blot analysis of human fetal brain poly(A)+ RNA showed a single transcript of 6.4 kilobase pairs. Reverse transcription polymerase chain reaction analysis revealed more restricted tissue expression of hNDST3 than hNDST1 and NDST2, and high levels in brain, liver, and kidney. Analysis of Chinese hamster ovary cells revealed expression of NDST1 and NDST2, but not NDST3. In a Chinese hamster ovary cell mutant exhibiting reduced N-sulfotransferase activity and reduced sulfation of heparan sulfate (Bame, K. J., and Esko, J. D. (1989) J. Biol. Chem. 264, 8059-8065), expression of NDST1 was greatly reduced, but NDST2 was expressed normally, suggesting that both enzymes are involved in heparan sulfate assembly. The discovery of multiple NDST isozymes suggests that the assembly of heparan sulfate is much complicated than previously appreciated.
Collapse
Affiliation(s)
- J Aikawa
- Division of Cellular and Molecular Medicine, Glycobiology Program, University of California, San Diego, La Jolla, California 92093-0687, USA
| | | |
Collapse
|
27
|
Wei Z, Swiedler SJ. Functional analysis of conserved cysteines in heparan sulfate N-deacetylase-N-sulfotransferases. J Biol Chem 1999; 274:1966-70. [PMID: 9890952 DOI: 10.1074/jbc.274.4.1966] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Deacetylase-N-sulfotransferases (NDANST) catalyze the two initial modifications of the polysaccharide precursor in the biosynthesis of heparin and heparan sulfate. These modifications are the gating steps in establishing growth factor protein-binding domains of these glycosaminoglycans. We have undertaken a structure-activity analysis of the 841-amino acid Golgi-luminal portion of the rat liver NDANST to localize the two enzymatic functions. Each activity can be assayed in vitro independently of the other when provided with the appropriate substrate, and N-ethylmaleimide treatment selectively inactivates the deacetylase activity. In this study, dithiothreitol treatment of the rat liver NDANST was shown to inactivate the sulfotransferase function, while stimulating deacetylase activity 2-3-fold over the native protein. Site-directed mutagenesis of the eight cysteine (Cys) residues in the rat liver NDANST that are conserved in the mouse mastocytoma protein produced three important findings regarding the localization of each enzymatic function: 1) derivatization of Cys486 with N-ethylmaleimide resulted in total inactivation of the deacetylase activity based on steric hindrance of the active site (this residue was shown not to be involved in enzymatic catalysis), 2) substitution of either Cys159 or Cys486 with alanine resulted in enhanced activity of the deacetylase to the level obtained by dithiothreitol treatment, and 3) alanine substitution of Cys818 or Cys828 completely inactivated the sulfotransferase activity, while substitution of Cys586 or Cys601 resulted in a 90% loss in activity. These findings suggest that the two enzymatic domains within the NDANST localize to different portions of the protein, with two disulfide pairs toward the COOH-terminal half of the protein necessary for the sulfotransferase activity, and Cys residues within the NH2-terminal half influencing or located near the active site of the deacetylase functionality.
Collapse
Affiliation(s)
- Z Wei
- Glycomed, Inc., Alameda, California 94501, USA
| | | |
Collapse
|
28
|
Berninsone P, Hirschberg CB. Heparan sulfate/heparin N-deacetylase/N-sulfotransferase. The N-sulfotransferase activity domain is at the carboxyl half of the holoenzyme. J Biol Chem 1998; 273:25556-9. [PMID: 9748218 DOI: 10.1074/jbc.273.40.25556] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosaminoglycan N-acetylglucosaminyl N-deacetylases/N-sulfotransferases are structurally related enzymes that play an important role in the biosynthesis of heparan sulfate and heparin. They are dual catalytic, single membrane-spanning polypeptides of approximately 850-880 amino acids that catalyze the N-deacetylation of N-acetylglucosamine of glycosaminoglycans followed by N-sulfation of the same sugar. On the basis of homologies of these proteins with other N-acetylglucosaminyl N-deacetylases involved in the biosynthesis of chitin and putative deacetylases from bacteria, we have constructed two soluble chimeras between protein A and the amino- and carboxyl-terminal halves of the above mastocytoma holoenzyme. The carboxyl-terminal chimera half (amino acids 479-880) was able to catalyze the N-sulfation of glucosamine of heparan sulfate with a similar affinity for its two substrates, adenosine 3'-phosphate 5'-phosphosulfate and heparan sulfate, as the holoenzyme. However, the reaction only occurred at 30 degreesC and not at 37 degreesC, both temperatures at which the holoenzyme was active. The Vmax of the chimera was 10-20-fold slower than that of the holoenzyme. Soluble chimeras between protein A and amino acids 43-521 and 43-680 of the holoenzyme were unable to catalyze the N-deacetylation of the bacterial N-acetylglucosaminyl-glucuronic acid polymer K5 under conditions where the holoenzyme was active. The recent appearance in genome data banks of homologs to the N-sulfotransferase domain and now the direct demonstration that this domain catalyzes this reaction raises the possibility that both N-deacetylation and N-sulfation activities of the holoenzyme might have emerged as gene fusions during evolution.
Collapse
Affiliation(s)
- P Berninsone
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
29
|
Affiliation(s)
- U Lindahl
- Department of Medical Biochemistry and Microbiology, University of Uppsala, S-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
30
|
Toma L, Berninsone P, Hirschberg CB. The putative heparin-specific N-acetylglucosaminyl N-Deacetylase/N-sulfotransferase also occurs in non-heparin-producing cells. J Biol Chem 1998; 273:22458-65. [PMID: 9712870 DOI: 10.1074/jbc.273.35.22458] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Deacetylation and N-sulfation of N-acetylglucosamine of heparin and heparan sulfate are hypothesized to be mediated by different tissue-specific N-acetylglucosaminyl N-deacetylases/N-sulfotransferases, which in turn lead to the higher L-iduronic acid and sulfate content of heparin versus heparan sulfate. Furthermore, the putative heparin-specific N-acetylglucosaminyl N-deacetylase/N-sulfotransferase has been reported to require auxiliary proteins for its N-acetylglucosaminyl N-deacetylase activity in vivo based on its requirement of polycations in vitro. We have now found that cells derived from embryonic bovine trachea, a tissue that does not synthesize heparin, has a N-acetylglucosaminyl N-deacetylase/N-sulfotransferase, which has 95% amino acid sequence identity to the above enzyme postulated to be involved in the biosynthesis of heparin. Both enzymes also have very similar affinity for their substrates. The trachea enzyme does not require additional effectors for its N-acetylglucosaminyl N-deacetylase activity in vitro even though its biochemical characteristics are virtually the same as the enzyme previously isolated from cells of a heparin-producing mastocytoma tumor. The trachea enzyme, which is encoded by an abundant 4.6-kilobase mRNA, like mastocytoma cells, has 70% amino acid sequence identity with the corresponding enzyme from rat liver postulated to participate in the biosynthesis of heparan sulfate. Heparan sulfate synthesized by trachea cells has a higher content of sulfated iduronic acid than from other tissues. Together, the above results strongly suggest that the above enzymes from mastocytoma, liver, and trachea, per se, are not solely responsible for the selective tissue-specific synthesis of heparin or heparan sulfate; more likely cellular factors, additional enzymes, and availability of substrates in the Golgi lumen also play important roles in the differential synthesis of the above proteoglycans.
Collapse
Affiliation(s)
- L Toma
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
31
|
Sueyoshi T, Kakuta Y, Pedersen LC, Wall FE, Pedersen LG, Negishi M. A role of Lys614 in the sulfotransferase activity of human heparan sulfate N-deacetylase/N-sulfotransferase. FEBS Lett 1998; 433:211-4. [PMID: 9744796 DOI: 10.1016/s0014-5793(98)00913-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An active sulfotransferase (ST, residues 558-882) domain of the human heparan sulfate N-deacetylase/N-sulfotransferase (hHSNST) has been identified by aligning the amino acid sequence of hHSNST to that of mouse estrogen sulfotransferase (EST). The bacterially expressed ST domain transfers the 5'-sulfuryl group of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) to only deacetylated heparin with an efficiency similar to that previously reported for the purified rat HSNST. Moreover, the K(m,PAPS) (2.1 microM) of the ST domain is also similar to that of the rat enzyme. Lys48 is a key residue in mEST catalysis. The residue corresponding to Lys48 is conserved in all known heparan sulfate sulfotransferases (Lys614 in the ST domain of hHSNST). Mutation of Lys614 to Ala abolishes N-sulfotransferase activity, indicating an important catalytic role of Lys614 in the ST domain. Crystals of the ST domain have been grown (orthorhombic space group P2(1)2(1)2) with diffraction to 2.5 A resolution.
Collapse
Affiliation(s)
- T Sueyoshi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
32
|
Fernández CJ, Warren G. In vitro synthesis of sulfated glycosaminoglycans coupled to inter-compartmental Golgi transport. J Biol Chem 1998; 273:19030-9. [PMID: 9668084 DOI: 10.1074/jbc.273.30.19030] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used isolated rat liver Golgi membranes to reconstitute the synthesis of sulfated glycosaminoglycans (GAGs) onto the membrane-permeable, external acceptor xyloside. Biosynthetic labeling of GAGs with [35S]sulfate in vitro is shown to have an absolute requirement for ATP and cytosolic proteins and is inhibited by dismantling the Golgi apparatus with okadaic acid or under mitotic conditions suggesting that inter-compartmental transport between Golgi cisternae is a prerequisite for the successful completion of the initiation, polymerization, and sulfation of GAGs. Accordingly, we show that in vitro synthesis of 35S-GAGs utilizes the same machinery employed in Golgi transport events in terms of vesicle budding (ADP-ribosylation factor and coatomer), docking (Rabs), targeting (SNAREs), and fusion (N-ethylmaleimide-sensitive factor). This provides compelling evidence that GAGs synthesis is linked to Golgi membrane traffic and suggests that it can be used as a complementation-independent method to study membrane transport in Golgi preparations from any source. We have applied this system to show that intra-Golgi traffic requires the function of the Golgi target-SNARE, syntaxin 5.
Collapse
Affiliation(s)
- C J Fernández
- Imperial Cancer Research Fund, Cell Biology Laboratory, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
33
|
Kusche-Gullberg M, Eriksson I, Pikas DS, Kjellén L. Identification and expression in mouse of two heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase genes. J Biol Chem 1998; 273:11902-7. [PMID: 9565617 DOI: 10.1074/jbc.273.19.11902] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of heparan sulfate/heparin is a complex process that requires the coordinate action of a number of different enzymes. In close connection with polymerization of the polysaccharide chain, the modification reactions are initiated by N-deacetylation followed by N-sulfation of N-acetylglucosamine units. These two reactions are carried out by a single protein. Proteins with such dual activities were first purified and cloned from rat liver and mouse mastocytoma. The mouse mastocytoma enzyme is encoded by an approximately 4-kilobase (kb) mRNA, whereas the rat liver transcript contains approximately 8 kb. In the present study, the primary structure of the enzyme encoded by the mouse 8-kb transcript is described. It is demonstrated that both the 4-and 8-kb transcripts have a wide tissue distribution and that they are encoded by separate genes. Characterization of the gene encoding the 4-kb transcript demonstrates that it spans a region of about 8 kb and that it contains at least 14 exons. The similarity of this gene and the previously characterized human gene for the 8-kb transcript is discussed.
Collapse
Affiliation(s)
- M Kusche-Gullberg
- Department of Medical Biochemistry and Microbiology, University of Uppsala, S 751 23 Uppsala, Sweden.
| | | | | | | |
Collapse
|
34
|
Shworak NW, Liu J, Fritze LM, Schwartz JJ, Zhang L, Logeart D, Rosenberg RD. Molecular cloning and expression of mouse and human cDNAs encoding heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J Biol Chem 1997; 272:28008-19. [PMID: 9346953 DOI: 10.1074/jbc.272.44.28008] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cellular rate of anticoagulant heparan sulfate proteoglycan (HSPGact) generation is determined by the level of a kinetically limiting microsomal activity, HSact conversion activity, which is predominantly composed of the long sought heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST) (Shworak, N. W., Fritze, L. M. S., Liu, J., Butler, L. D., and Rosenberg, R. D. (1996) J. Biol. Chem. 271, 27063-27071; Liu, J., Shworak, N. W., Fritze, L. M. S., Edelberg, J. M., and Rosenberg, R. D. (1996) J. Biol. Chem. 271, 27072-27082). Mouse 3-OST cDNAs were isolated by proteolyzing the purified enzyme with Lys-C, sequencing the resultant peptides as well as the existing amino terminus, employing degenerate polymerase chain reaction primers corresponding to the sequences of the peptides as well as the amino terminus to amplify a fragment from LTA cDNA, and utilizing the resultant probe to obtain full-length enzyme cDNAs from a lambda Zap Express LTA cDNA library. Human 3-OST cDNAs were isolated by searching the expressed sequence tag data bank with the mouse sequence, identifying a partial-length human cDNA and utilizing the clone as a probe to isolate a full-length enzyme cDNA from a lambda TriplEx human brain cDNA library. The expression of wild-type mouse 3-OST as well as protein A-tagged mouse enzyme by transient transfection of COS-7 cells and the expression of both wild-type mouse and human 3-OST by in vitro transcription/translation demonstrate that the two cDNAs directly encode both HSact conversion and 3-OST activities. The mouse 3-OST cDNAs exhibit three different size classes because of a 5'-untranslated region of variable length, which results from the insertion of 0-1629 base pairs (bp) between residues 216 and 217; however, all cDNAs contain the same open reading frame of 933 bp. The length of the 3'-untranslated region ranges from 301 to 430 bp. The nucleic acid sequence of mouse and human 3-OST cDNAs are approximately 85% similar, encoding novel 311- and 307-amino acid proteins of 35,876 and 35,750 daltons, respectively, that are 93% similar. The encoded enzymes are predicted to be intraluminal Golgi residents, presumably interacting via their C-terminal regions with an integral membrane protein. Both 3-OST species exhibit five potential N-glycosylation sites, which account for the apparent discrepancy between the molecular masses of the encoded enzyme (approximately 34 kDa) and the previously purified enzyme (approximately 46 kDa). The two 3-OST species also exhibit approximately 50% similarity with all previously identified forms of the heparan biosynthetic enzyme N-deacetylase/N-sulfotransferase, which suggests that heparan biosynthetic enzymes share a common sulfotransferase domain.
Collapse
Affiliation(s)
- N W Shworak
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
This review will summarize our current state of knowledge of the structure, biochemical properties and functions of syndecans, a family of transmembrane heparan sulphate proteoglycans. Syndecans bind a variety of extracellular ligands via their covalently attached heparan sulphate chains. Syndecans have been proposed to play a role in a variety of cellular functions, including cell proliferation and cell-matrix and cell-cell adhesion. Syndecan expression is highly regulated and is cell-type- and developmental-stage-specific. The main function of syndecans appears to be to modulate the ligand-dependent activation of primary signalling receptors at the cell surface. Principal functions of the syndecan core proteins are to target the heparan sulphate chains to the appropriate plasma-membrane compartment and to interact with components of the actin-based cytoskeleton. Several functions of the syndecans, including syndecan oligomerization and actin cytoskeleton association, have been localized to specific structural domains of syndecan core proteins.
Collapse
Affiliation(s)
- D J Carey
- Henry Hood, M.D., Research Program, Pennsylvania State University College of Medicine, Sigfried and Janet Weis Center for Research, Geisinger Clinic 26-13, 100 Academy Avenue, Danville, PA 17822, USA
| |
Collapse
|
36
|
Humphries DE, Sullivan BM, Aleixo MD, Stow JL. Localization of human heparan glucosaminyl N-deacetylase/N-sulphotransferase to the trans-Golgi network. Biochem J 1997; 325 ( Pt 2):351-7. [PMID: 9230113 PMCID: PMC1218567 DOI: 10.1042/bj3250351] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to determine the intracellular location of heparan N-deacetylase/N-sulphotransferase, cDNAs encoding human heparan glucosaminyl N-deacetylase/N-sulphotransferase were cloned from human umbilical vein endothelial cells. The deduced amino acid sequence was identical to that of the human heparan N-sulphotransferase cloned previously [Dixon, Loftus, Gladwin, Scambler, Wasmuth and Dixon (1995) Genomics 26, 239-244]. RNA blot analysis indicated that two heparan N-sulphotransferase transcripts of approx. 8.5 and 4 kb were produced in all tissues. Expression was most abundant in heart, liver and pancreas. A cDNA encoding a Flag-tagged human heparan N-sulphotransferase (where Flag is an epitope with the sequence DYKDDDDK) was transfected into mouse LTA cells. Immunofluorescence detection using anti-Flag monoclonal antibodies demonstrated that the enzyme was localized to the trans-Golgi network. A truncated Flag-tagged heparan N-sulphotransferase was also retained in the Golgi, indicating that, as for many other Golgi enzymes, the N-terminal region of heparan N-sulphotransferase is sufficient for retention in the Golgi apparatus.
Collapse
Affiliation(s)
- D E Humphries
- Department of Veterans Affairs Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02130, USA
| | | | | | | |
Collapse
|
37
|
Proteoglycans: a special class of glycoproteins. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0167-7306(08)60614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
|
39
|
Abstract
Treacher Collins syndrome is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. In the absence of a candidate gene, a positional cloning approach has been used to isolate the mutated gene which maps to chromosome 5q31.3-32. Flanking markers were identified and a yeast artificial chromosome and cosmid contig of the region defined by these markers was created as a prelude to the creation of a transcript map of the region. Analysis of genes isolated using this approach resulted in the identification of the mutated gene. While the function of the gene remains unknown, the identification of 20 mutations spread throughout the gene, all of which would result in the insertion of a premature termination codon into the reading frame, suggests that the mechanism underlying the disease is haploinsufficiency.
Collapse
Affiliation(s)
- M J Dixon
- School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
40
|
Kobayashi M, Habuchi H, Habuchi O, Saito M, Kimata K. Purification and characterization of heparan sulfate 2-sulfotransferase from cultured Chinese hamster ovary cells. J Biol Chem 1996; 271:7645-53. [PMID: 8631801 DOI: 10.1074/jbc.271.13.7645] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Heparan sulfate 2-sulfotransferase, which catalyzes the transfer of sulfate from adenosine 3'-phosphate 5'-phosphosulfate to position 2 of L-iduronic acid residue in heparan sulfate, was purified 51,700-fold to apparent homogeneity with a 6% yield from cultured Chinese hamster ovary cells. The isolation procedure included a combination of affinity chromatography on heparin-Sepharose CL-6B and 3',5'-ADP-agarose, which was repeated twice for each, and finally gel chromatography on Superose 12 . Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed two protein bands with molecular masses of 47 and 44 kDa. Both proteins appeared to be glycoproteins, because their molecular masses decreased after N-glycanase digestion. When completely desulfated and N-resulfated heparin and mouse Engelbreth-Holm-Swarm tumor heparan sulfate were used as acceptors, the purified enzyme transferred sulfate to position 2 of L-iduronic acid residue but did not transfer sulfate to the amino group of glucosamine residue or to position 6 of N-sulfoglucosamine residue. Heparan sulfates from pig aorta and bovine liver, however, were poor acceptors. The enzyme showed no activities toward chondroitin, chondroitin sulfate, dermatan sulfate, and keratan sulfate. The optimal pH for the enzyme activity was around 5.5. The enzyme activity was minimally affected by dithiothreitol and was stimulated strongly by protamine. The Km value for adenosine 3'-phosphate 5'-phosphosulfate was 0.20 microM.
Collapse
Affiliation(s)
- M Kobayashi
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | | | | | | | | |
Collapse
|
41
|
van den Born J, Gunnarsson K, Bakker MA, Kjellén L, Kusche-Gullberg M, Maccarana M, Berden JH, Lindahl U. Presence of N-unsubstituted glucosamine units in native heparan sulfate revealed by a monoclonal antibody. J Biol Chem 1995; 270:31303-9. [PMID: 8537400 DOI: 10.1074/jbc.270.52.31303] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Immunohistochemical application of antibodies against heparan sulfate proteoglycan core protein and heparitinase-digested heparan sulfate stubs showed the presence of heparan sulfate proteoglycan in all basement membranes of the rat kidney. However, a monoclonal antibody (JM-403) against native heparan sulfate (van den Born, J., van den Heuvel, L. P. W. J., Bakker, M. A. H., Veerkamp, J. H., Assmann, K. J. M., and Berden, J. H. M. (1992) Kidney Int. 41, 115-123) largely failed to stain tubular basement membranes, suggesting the presence of heparan sulfate chains lacking the specific JM-403 epitope. Heparan sulfate preparations from various sources differed markedly with regard to JM-403 binding, as demonstrated by liquid phase inhibition in enzyme-linked immunosorbent assay, the interaction decreasing with increasing sulfate contents of the polysaccharide. Mapping of the JM-403 epitope indicated that it was dominated by one or more N-unsubstituted glucosamine unit(s), since treatments that destroyed or altered the structure of such units in heparan sulfate preparations (cleavage at N-unsubstituted glucosamine units with HNO2 at pH 3.9 and N-acetylation with acetic anhydride, respectively), abolished antibody binding. Conversely, immunoreactivity could be induced in a (D-glucuronyl-1,4-N-acetyl-D-glucosaminyl-1,4) polysaccharide by the generation of N-unsubstituted glucosamine N-unsubstituted glucosamine in a JM-403-binding heparan sulfate (preparation HS-II from human aorta) was demonstrated by an approximately 3-fold reduction in molecular size following HNO2 (pH 3.9) treatment. Further characterization of the epitope recognized by JM-403, based on enzyme-linked immunosorbent assay inhibition tests with chemically/enzymatically modified polysaccharides, indicated that one or more N-sulfated glucosamine units are invariable present, whereas L-iduronic acid and O-sulfate residues appear to inhibit JM-403 reactivity. It is concluded that the epitope contains one or more N-unsubstituted glucosamine and D-glucuronic acid units and is located in a region of the heparan sulfate chain composed of mixed N-sulfated and N-acetylated disaccharide units.
Collapse
Affiliation(s)
- J van den Born
- Division of Nephrology, University Hospital St. Radboud, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kofoed-Enevoldsen A. Heparan sulphate in the pathogenesis of diabetic nephropathy. DIABETES/METABOLISM REVIEWS 1995; 11:137-60. [PMID: 7555565 DOI: 10.1002/dmr.5610110205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Norgard-Sumnicht K, Varki A. Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups. J Biol Chem 1995; 270:12012-24. [PMID: 7538130 DOI: 10.1074/jbc.270.20.12012] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We earlier reported calcium-dependent, heparin-like L-selectin ligands in cultured bovine endothelial cells (Norgard-Sumnicht, K. E., Varki, N. M., and Varki, A. (1993) Science 261,480-483). Here we show that these are heparan sulfate proteoglycans (HSPGs) associated either with the cultured cells or secreted into the medium and extracellular matrix. Activation of the endothelial cells with bacterial lipopolysaccharide (LPS) does not markedly alter the amount or distribution of this material. A major portion of the glycosaminoglycan (GAG) chains released from these HSPGs by alkaline beta-elimination rebinds to L-selectin in the presence of calcium, indicating that these saccharides alone can mediate the high affinity recognition. Heparin lyase digestions indicate that these GAG chains are enriched in heparan sulfate, not heparin sequences. Current understanding of the biosynthesis of heparan sulfate chains indicates that all glucosamine amino groups must be either N-acetylated or N-sulfated. However, nitrous acid deamination at pH 4.0 suggests the presence of some unsubstituted amino groups in these L-selectin-binding GAG chains from endothelial cell HSPGs. This is confirmed by chemical N-reacetylation and by reactivity with sulfo-N-hydroxysuccinimide-biotin. These unsubstituted amino groups are also found on HSPGs from human umbilical vein endothelial cells, but are not detected in those from Chinese hamster ovary cells. In both bovine and human endothelial cells, these novel groups are enriched for in the HS-GAG chains which bind to L-selectin. Despite this, studies with N-reacetylation and nitrous acid deamination do not show conclusive evidence for the direct involvement of the unsubstituted amino groups in L-selectin binding. This may be because the chemical reactions used to modify the amino groups do not go to completion. Alternatively, the unsubstituted amino groups may only be indirectly involved in generating binding, by dictating the biosynthesis of another critical group. Regardless, these studies shown that HSPGs from cultured endothelial cells which can bind to L-selectin are enriched with unsubstituted amino groups on their GAG chains. The possible biochemical mechanisms for generation of these novel groups are discussed.
Collapse
Affiliation(s)
- K Norgard-Sumnicht
- Glycobiology Program, University of California, San Diego, La Jolla 92093, USA
| | | |
Collapse
|
44
|
de Vries T, Srnka CA, Palcic MM, Swiedler SJ, van den Eijnden DH, Macher BA. Acceptor specificity of different length constructs of human recombinant alpha 1,3/4-fucosyltransferases. Replacement of the stem region and the transmembrane domain of fucosyltransferase V by protein A results in an enzyme with GDP-fucose hydrolyzing activity. J Biol Chem 1995; 270:8712-22. [PMID: 7721776 DOI: 10.1074/jbc.270.15.8712] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The acceptor specificity of recombinant full-length, membrane-bound fucosyltransferases, expressed in COS-7 cells, and soluble, protein-A chimeric forms of alpha 1,3-fucosyltransferase (Fuc-T) III, Fuc-TIV, and Fuc-TV was analyzed toward a broad panel of oligosaccharide, glycolipid, and glycoprotein substrates. Our results on the full-length enzymes confirm and extend previous studies. However, chimeric Fuc-Ts showed increased activity toward glycoproteins, whereas chimeric Fuc-TIII and Fuc-TV had a decreased activity with glycosphingolipids, compared to the full-length enzymes. Unexpectedly, chimeric Fuc-TV exhibited a GDP-fucose hydrolyzing activity. In substrates with multiple acceptor sites, the preferred site of fucosylation was identified. Fuc-TIII and Fuc-TV catalyzed fucose transfer exclusively to OH-3 of glucose in lacto-N-neotetraose and lacto-N-tetraose, respectively, as was demonstrated by 1H NMR spectroscopy. Thin layer chromatography immunostaining revealed that FucT-IV preferred the distal GlcNAc residue in nLc6Cer, whereas Fuc-TV preferred the proximal Gl-cNAc residue. Incubation of Fuc-TIV or Fuc-TV with VI3NeuAcnLc6Cer resulted in products with the sialyl-LewisX epitope as well as the VIM-2 structure. To identify polar groups on acceptors that function in enzyme binding, deoxygenated substrate analogs were tested as acceptors. All three Fuc-Ts had an absolute requirement for a hydroxyl at C-6 of galactose in addition to the accepting hydroxyl at C-3 or C-4 of GlcNAc.
Collapse
Affiliation(s)
- T de Vries
- Department of Chemistry and Biochemistry, San Francisco State University, California 94132, USA
| | | | | | | | | | | |
Collapse
|
45
|
Dixon J, Loftus SK, Gladwin AJ, Scambler PJ, Wasmuth JJ, Dixon MJ. Cloning of the human heparan sulfate-N-deacetylase/N-sulfotransferase gene from the Treacher Collins syndrome candidate region at 5q32-q33.1. Genomics 1995; 26:239-44. [PMID: 7601448 DOI: 10.1016/0888-7543(95)80206-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Treacher Collins syndrome is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. Previous studies have shown that the Treacher Collins syndrome locus is flanked by D5S519 and SPARC, and a yeast artificial chromosome contig encompassing this "critical region" has been completed. In the current investigation a cosmid containing D5S519 has been used to screen a human placental cDNA library. This has resulted in the cloning of the human heparan sulfate-N-deacetylase/N-sulfotransferase gene. Two different mRNA species that have identical protein coding sequences but that differ in the size and sequence of the 3' untranslated regions (3' UTR) have been identified. The smaller species has a 3' UTR of 1035 bp, whereas that of the larger is 4878 bp.
Collapse
Affiliation(s)
- J Dixon
- School of Biological Sciences, University of Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Habuchi H, Habuchi O, Kimata K. Purification and characterization of heparan sulfate 6-sulfotransferase from the culture medium of Chinese hamster ovary cells. J Biol Chem 1995; 270:4172-9. [PMID: 7876170 DOI: 10.1074/jbc.270.8.4172] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Heparan sulfate 6-sulfotransferase, which catalyzes the transfer of sulfate from 3'-phosphoadenylyl sulfate to position 6 of N-sulfoglucosamine in heparan sulfate, was purified 10,700-fold to apparent homogeneity with a 40% yield from the serum-free culture medium of Chinese hamster ovary cells. The isolation procedure included affinity chromatography of the first heparin-Sepharose CL-6B column (stepwise elution), 3',5'-ADP-agarose, and the second heparin-Sepharose CL-6B column (gradient elution). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed two protein bands with molecular masses of 52 and 45 kDa. Both proteins appeared to be glycoproteins, because their molecular masses decreased after N-glycanase digestion. When completely desulfated and N-resulfated heparin was used as acceptor, the purified enzyme transferred sulfate to position 6 of N-sulfoglucosamine residue but did not transfer sulfate to the amino group of glucosamine residue or to position 2 of the iduronic acid residue. Heparan sulfate was also sulfated by the purified enzyme at position 6 of N-sulfoglucosamine residue. Chondroitin and chondroitin sulfate did not serve as acceptors. The optimal pH for enzyme activity was around 6.3. The enzyme activity was inhibited by dithiothreitol and was stimulated strongly by protamine. The Km value for adenosine 3'-phosphate 5'-phosphosulfate was 0.44 microM.
Collapse
Affiliation(s)
- H Habuchi
- Institute for Molecular Science of Medicine, Aichi Medical University, Japan
| | | | | |
Collapse
|
47
|
|
48
|
|
49
|
Bame KJ, Zhang L, David G, Esko JD. Sulphated and undersulphated heparan sulphate proteoglycans in a Chinese hamster ovary cell mutant defective in N-sulphotransferase. Biochem J 1994; 303 ( Pt 1):81-7. [PMID: 7945269 PMCID: PMC1137560 DOI: 10.1042/bj3030081] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Chinese hamster ovary cell mutant, pgsE-606, synthesizes undersulphated heparan sulphate glycosaminoglycans because of a deficiency in N-sulphotransferase activity [Bame and Esko (1989) J. Biol. Chem. 264, 8059-8065]. We compared the heparan sulphate proteoglycans synthesized by mutant and wild-type cells to determine what effect the undersulphation defect had on proteoglycan structure. The majority of heparan sulphate proteoglycans synthesized by pgsE-606 were undersulphated, but the mutant also synthesized a population of proteoglycans that were sulphated to the same extent as wild-type molecules. Anion-exchange analysis of the glycosaminoglycans in each proteoglycan population showed that they were all modified in the same way. The length of the glycosaminoglycans in each proteoglycan population were similar, suggesting that N-sulphation does not affect chain polymerization. To examine whether the sulphation state of the attached heparan sulphate glycosaminoglycans was dependent on the protein core, we purified syndecan-1 from mutant and wild-type cells using antibodies against the core protein. As with the unfractionated heparan sulphate proteoglycans, pgsE-606 synthesized both undersulphated and sulphated syndecan-1. Each pool contained either undersulphated or sulphated glycosaminoglycan chains respectively. Thus the modification of all heparan sulphate chains on a core protein occurs on a proteoglycan-wide basis (i.e. to the same extent).
Collapse
Affiliation(s)
- K J Bame
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham 35294
| | | | | | | |
Collapse
|
50
|
Zhang L, Esko J. Amino acid determinants that drive heparan sulfate assembly in a proteoglycan. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32166-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|