1
|
Roy RV, Means N, Rao G, Asfa S, Madka V, Dey A, Zhang Y, Choudhury M, Fung KM, Dhanasekaran DN, Friedman JE, Crawford HC, Rao CV, Bhattacharya R, Mukherjee P. Pancreatic Ubap2 deletion regulates glucose tolerance, inflammation, and protection from cerulein-induced pancreatitis. Cancer Lett 2023; 578:216455. [PMID: 37865160 PMCID: PMC10897936 DOI: 10.1016/j.canlet.2023.216455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.
Collapse
Affiliation(s)
- Ram Vinod Roy
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicolas Means
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sima Asfa
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anindya Dey
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yushan Zhang
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Monalisa Choudhury
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Danny N Dhanasekaran
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Howard C Crawford
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health System, Detroit, MI, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Romero N, Tishchenko A, Verhamme R, Wuerzberger-Davis SM, Van Waesberghe C, Nauwynck HJ, Miyamoto S, Favoreel HW. Several Alphaherpesviruses Interact Similarly with the NF-κB Pathway and Suppress NF-κB-Dependent Gene Expression. Microbiol Spectr 2023; 11:e0142123. [PMID: 37466427 PMCID: PMC10434116 DOI: 10.1128/spectrum.01421-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023] Open
Abstract
Alphaherpesvirus infection is associated with attenuation of different aspects of the host innate immune response that is elicited to confine primary infections at the mucosal epithelia. Here, we report that infection of epithelial cells with several alphaherpesviruses of different species, including herpes simplex virus 1 and 2 (HSV-1 and HSV-2), feline alphaherpesvirus 1 (FHV-1), and bovine alphaherpesvirus 1 (BoHV-1) results in the inactivation of the responses driven by the nuclear factor kappa B (NF-κB) pathway, considered a pillar of the innate immune response. The mode to interact with and circumvent NF-κB-driven responses in infected epithelial cells is seemingly conserved in human, feline, and porcine alphaherpesviruses, consisting of a persistent activation of the NF-κB cascade but a potent repression of NF-κB-dependent transcription activity, which relies on replication of viral genomes. However, BoHV-1 apparently deviates from the other investigated members of the taxon in this respect, as BoHV-1-infected epithelial cells do not display the persistent NF-κB activation observed for the other alphaherpesviruses. In conclusion, this study suggests that inhibition of NF-κB transcription activity is a strategy used by several alphaherpesviruses to prevent NF-κB-driven responses in infected epithelial cells. IMPORTANCE The current study provides a side-by-side comparison of the interaction of different alphaherpesviruses with NF-κB, a key and central player in the (proinflammatory) innate host response, in infected nontransformed epithelial cell lines. We report that all studied viruses prevent expression of the hallmark NF-κB-dependent gene IκB, often but not always via similar strategies, pointing to suppression of NF-κB-dependent host gene expression in infected epithelial cells as a common and therefore likely important aspect of alphaherpesviruses.
Collapse
Affiliation(s)
- Nicolás Romero
- Department of Translational Physiology, Infectiology and Public Health–Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander Tishchenko
- Department of Translational Physiology, Infectiology and Public Health–Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ruth Verhamme
- Department of Translational Physiology, Infectiology and Public Health–Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Shelly M. Wuerzberger-Davis
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cliff Van Waesberghe
- Department of Translational Physiology, Infectiology and Public Health–Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hans J. Nauwynck
- Department of Translational Physiology, Infectiology and Public Health–Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Herman W. Favoreel
- Department of Translational Physiology, Infectiology and Public Health–Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
van Muilekom DR, Collet B, Rebl H, Zlatina K, Sarais F, Goldammer T, Rebl A. Lost and Found: The Family of NF-κB Inhibitors Is Larger than Assumed in Salmonid Fish. Int J Mol Sci 2023; 24:10229. [PMID: 37373375 DOI: 10.3390/ijms241210229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
NF-κB signalling is largely controlled by the family of 'inhibitors of NF-κB' (IκB). The relevant databases indicate that the genome of rainbow trout contains multiple gene copies coding for iκbα (nfkbia), iκbε (nfkbie), iκbδ (nkfbid), iκbζ (nfkbiz), and bcl3, but it lacks iκbβ (nfkbib) and iκbη (ankrd42). Strikingly, three nfkbia paralogs are apparently present in salmonid fish, two of which share a high sequence identity, while the third putative nfkbia gene is significantly less like its two paralogs. This particular nfkbia gene product, iκbα, clusters with the human IκBβ in a phylogenetic analysis, while the other two iκbα proteins from trout associate with their human IκBα counterpart. The transcript concentrations were significantly higher for the structurally more closely related nfkbia paralogs than for the structurally less similar paralog, suggesting that iκbβ probably has not been lost from the salmonid genomes but has been incorrectly designated as iκbα. In the present study, two gene variants coding for iκbα (nfkbia) and iκbε (nfkbie) were prominently expressed in the immune tissues and, particularly, in a cell fraction enriched with granulocytes, monocytes/macrophages, and dendritic cells from the head kidney of rainbow trout. Stimulation of salmonid CHSE-214 cells with zymosan significantly upregulated the iκbα-encoding gene while elevating the copy numbers of the inflammatory markers interleukin-1-beta and interleukin-8. Overexpression of iκbα and iκbε in CHSE-214 cells dose-dependently quenched both the basal and stimulated activity of an NF-κB promoter suggesting their involvement in immune-regulatory processes. This study provides the first functional data on iκbε-versus the well-researched iκbα factor-in a non-mammalian model species.
Collapse
Affiliation(s)
- Doret R van Muilekom
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Bertrand Collet
- VIM, UVSQ, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Kristina Zlatina
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Fabio Sarais
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
4
|
Tran THM, Puja AM, Kim H, Kim YJ. Nanoemulsions prepared from mountain ginseng-mediated gold nanoparticles and silydianin increase the anti-inflammatory effects by regulating NF-κB and MAPK signaling pathways. BIOMATERIALS ADVANCES 2022; 137:212814. [PMID: 35929253 DOI: 10.1016/j.bioadv.2022.212814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
In order to increase the bioavailability of mountain ginseng (MG), gold nanoparticles (MG-AuNPs) were biologically synthesized from MG extract, and an oil-in-water (O/W) nanoemulsion (SMG-AuNEs) was prepared from MG-AuNPs and a phytochemical silydianin. The physical stability of SMG-AuNEs were monitored and optimized in terms of particle size, pH value, zeta potential, and polydispersity index. The chemicostructural properties of the prepared MG-AuNPs and SMG-AuNEs were characterized using various spectrometric and microscopic analyses, such as EDX spectroscopy, FT-IR spectroscopy, and TEM. The effect of both nanomaterial samples on the anti-inflammatory activity and their underlying mechanism was compared in LPS-stimulated RAW 264.7 cells. SMG-AuNEs did not show toxic effects against RAW 264.7 macrophages, HaCaT keratinocytes, and normal dermal fibroblasts. SMG-AuNEs exhibited significantly higher inhibition of pro-inflammatory genes and proteins, including IL-1β, IL-6, and TNF-α, compared with those of MG-AuNPs and silydianin. Western blotting analysis revealed that the MAPK and NF-κB signalings were highly inhibited by SMG-AuNEs treatment. Hence, this study shows that nano-emulsification of gold nanoparticles prepared from MG is a useful method for augmenting the anti-inflammatory potential of MG. This study may serve as a foundation for using MG as a functional ingredient in anti-inflammatory agents. Our results may implicate the use of nanoemulsions to develop new anti-inflammatory products using MG.
Collapse
Affiliation(s)
- Thi Hoa My Tran
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea
| | - Aditi Mitra Puja
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea
| | - Hoon Kim
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea.
| | - Yeon-Ju Kim
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea.
| |
Collapse
|
5
|
Yang W, Li J, Zhang M, Yu H, Zhuang Y, Zhao L, Ren L, Gong J, Bi H, Zeng L, Xue Y, Yang J, Zhao Y, Wang S, Gao S, Fu Z, Li D, Zhang J, Wang T, Shan M, Tang B, Li X. Elevated expression of the rhythm gene NFIL3 promotes the progression of TNBC by activating NF-κB signaling through suppression of NFKBIA transcription. J Exp Clin Cancer Res 2022; 41:67. [PMID: 35180863 PMCID: PMC8855542 DOI: 10.1186/s13046-022-02260-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background Epidemiological studies have confirmed that abnormal circadian rhythms are associated with tumorigenesis in breast cancer. However, few studies have investigated the pathological roles of rhythm genes in breast cancer progression. In this study, we aimed to evaluate the aberrant expression of 32 rhythm genes in breast cancer and detect the pathological roles and molecular mechanisms of the altered rhythm gene in regulating the progression of triple negative breast cancer (TNBC). Methods The aberrant expression of rhythm genes in breast cancer was screened by searching the GEPIA database and validated by using qRT-PCR and immunohistochemistry staining. Bioinformatics analysis combined with luciferase reporter experiment and chromatinimmunopercitation (ChIP) were used to investigate the molecular mechanism about aberrant expression of identified rhythm gene in breast cancer. The pathological roles of identified rhythm gene in TNBC progression was evaluated by colony formation assay, wound healing experiment, transwell assay, subcutaneous tumor formation and the mouse tail vein injection model through gain-of-function and loss-of-function strategies respectively. mRNA array, bioinformatics analysis, luciferase reporter experiment, ChIP and immunoflurescence assay were employed to investigate the key molecules and signaling pathways by which the identified rhythm gene regulating TNBC progression. Results We identified that nuclear factor interleukin 3 regulated (NFIL3) expression is significantly altered in TNBC compared with both normal breast tissues and other subtypes of breast cancer. We found that NFIL3 inhibits its own transcription, and thus, downregulated NFIL3 mRNA indicates high expression of NFIL3 protein in breast cancer. We demonstrated that NFIL3 promotes the proliferation and metastasis of TNBC cells in vitro and in vivo, and higher expression of NFIL3 is associated with poor prognosis of patients with TNBC. We further demonstrated that NFIL3 enhances the activity of NF-κB signaling. Mechanistically, we revealed that NFIL3 directly suppresses the transcription of NFKBIA, which blocks the activation of NF-κB and inhibits the progression of TNBC cells in vitro and in vivo. Moreover, we showed that enhancing NF-κB activity by repressing NFKBIA largely mimics the oncogenic effect of NFIL3 in TNBC, and anti-inflammatory strategies targeting NF-κB activity block the oncogenic roles of NFIL3 in TNBC. Conclusion NFIL3 promotes the progression of TNBC by suppressing NFKBIA transcription and then enhancing NF-κB signaling-mediated cancer-associated inflammation. This study may provide a new target for TNBC prevention and therapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02260-1.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jing Li
- Department of Pathology, Harbin Medical University, Harbin, China.,Electronic Microscope Center of Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Haichuan Yu
- School of Medical Laboratory, Xinxiang Medical University, Xinxiang, China
| | - Yuan Zhuang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lingyu Zhao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jinan Gong
- Clinicopathological Diagnosis Center, Qiqihar Medical University, Qiqihar, China
| | - Hongjie Bi
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lixuan Zeng
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yang Xue
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jinjin Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yan Zhao
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Zitong Fu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Dongze Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jinxing Zhang
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Ming Shan
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China.
| | - Bo Tang
- Department of Pathology, Harbin Medical University, Harbin, China. .,Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Stefanowicz-Hajduk J, Gucwa M, Moniuszko-Szajwaj B, Stochmal A, Kawiak A, Ochocka JR. Bersaldegenin-1,3,5-orthoacetate induces caspase-independent cell death, DNA damage and cell cycle arrest in human cervical cancer HeLa cells. PHARMACEUTICAL BIOLOGY 2021; 59:54-65. [PMID: 33403918 PMCID: PMC7801116 DOI: 10.1080/13880209.2020.1866025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 05/23/2023]
Abstract
CONTEXT Bufadienolide compounds occur in many plants and animal species and have strong cardiac and anti-inflammatory properties. The compounds have been recently investigated for cytotoxic and antitumor activity. OBJECTIVE The cytotoxic effect of bersaldegenin-1,3,5-orthoacetate - a bufadienolide steroid occuring in plants from Kalanchoe genus (Crassulaceae), was evaluated with cervical cancer HeLa cells in vitro. MATERIALS AND METHODS The cytotoxic activity of the compound (at 0.1-20.0 μg/mL) on the cells was determined by Real-Time Cell Analysis (RTCA) system for 24 h. The estimation of cell cycle arrest, reactive oxygen species (ROS) production, reduction of mitochondrial membrane potential (MMP), and caspases-3/7/9 activity in the HeLa cells treated with the compound was done by flow cytometry and luminometric technique. DNA damage in the cells was estimated by immunofluorescence staining and the comet assay with etoposide as a positive control. RESULTS The compound had strong effect on the cells (IC50 = 0.55 μg/mL) by the suppression of HeLa cells proliferation in G2/M phase of cell cycle and induction of cell death through double-stranded DNA damage and reactive oxygen species overproduction. Furthermore, we did not observe an increase in the activity of caspase-3/7/9 in the treated cells as well as a decrease in cellular mitochondrial membrane potential. Gene expression analysis revealed the overexpression of NF-Kappa-B inhibitors genes (>2-fold higher than control) in the treated cells. CONCLUSIONS Bersaldegenin-1,3,5-orthoacetate induces cell cycle arrest and caspase-independent cell death through double-stranded DNA damage. These results are an important step in further studies on cell death signalling pathways induced by bufadienolides.
Collapse
Affiliation(s)
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| | - Anna Kawiak
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - J. Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
7
|
Xu Y, Zhang S, Liao X, Li M, Chen S, Li X, Wu X, Yang M, Tang M, Hu Y, Li Z, Yu R, Huang M, Song L, Li J. Circular RNA circIKBKB promotes breast cancer bone metastasis through sustaining NF-κB/bone remodeling factors signaling. Mol Cancer 2021; 20:98. [PMID: 34325714 PMCID: PMC8320207 DOI: 10.1186/s12943-021-01394-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/17/2021] [Indexed: 12/28/2022] Open
Abstract
Background Breast cancer (BC) has a marked tendency to spread to the bone, resulting in significant skeletal complications and mortality. Recently, circular RNAs (circRNAs) have been reported to contribute to cancer initiation and progression. However, the function and mechanism of circRNAs in BC bone metastasis (BC-BM) remain largely unknown. Methods Bone-metastatic circRNAs were screened using circRNAs deep sequencing and validated using in situ hybridization in BC tissues with or without bone metastasis. The role of circIKBKB in inducing bone pre-metastatic niche formation and bone metastasis was determined using osteoclastogenesis, immunofluorescence and bone resorption pit assays. The mechanism underlying circIKBKB-mediated activation of NF-κB/bone remodeling factors signaling and EIF4A3-induced circIKBKB were investigated using RNA pull-down, luciferase reporter, chromatin isolation by RNA purification and enzyme-linked immunosorbent assays. Results We identified that a novel circRNA, circIKBKB, was upregulated significantly in bone-metastatic BC tissues. Overexpressing circIKBKB enhanced the capability of BC cells to induce formation of bone pre-metastatic niche dramatically by promoting osteoclastogenesis in vivo and in vitro. Mechanically, circIKBKB activated NF-κB pathway via promoting IKKβ-mediated IκBα phosphorylation, inhibiting IκBα feedback loop and facilitating NF-κB to the promoters of multiple bone remodeling factors. Moreover, EIF4A3, acted acting as a pre-mRNA splicing factor, promoted cyclization of circIKBKB by directly binding to the circIKBKB flanking region. Importantly, treatment with inhibitor eIF4A3-IN-2 reduced circIKBKB expression and inhibited breast cancer bone metastasis effectively. Conclusion We revealed a plausible mechanism for circIKBKB-mediated NF-κB hyperactivation in bone-metastatic BC, which might represent a potential strategy to treat breast cancer bone metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01394-8.
Collapse
Affiliation(s)
- Yingru Xu
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuxia Zhang
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyi Liao
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Man Li
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Suwen Chen
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xincheng Li
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xingui Wu
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Meisongzhu Yang
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Miaoling Tang
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yameng Hu
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ziwen Li
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ruyuan Yu
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Mudan Huang
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Libing Song
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510080, China
| | - Jun Li
- Program of Cancer Research, Key Laboratory of Protein Modification and Degradation and Guangzhou Institute of Oncology, Affiliated Guangzhou Women and Children's Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510623, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Zheng W, Yan X, Huo R, Zhao X, Sun Y, Xu T. IRF11 enhances the inhibitory effect of IκBα on NF-κB activation in miiuy croaker. FISH & SHELLFISH IMMUNOLOGY 2020; 107:156-162. [PMID: 32961292 DOI: 10.1016/j.fsi.2020.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
NF-κB is a typical transcription factor that regulates expression of various genes involved in inflammatory and immune responses. Therefore, it is essential that NF-κB signaling tightly regulated to maintain immune balance. Compared with those of mammals, the regulatory mechanisms of NF-κB signaling is rarely reported in teleost fish. IκBα is a prominent negative feedback regulator in the NF-κB signaling system. In this study, we determined that IRF11 enhances the inhibitory effect of IκBα on NF-κB activation in teleost fish. Overexpression of IRF11 can inhibit IκBα degradation, whereas its knockdown has the opposite effect of IκBα. Our study further indicates that IκBα was regulated via ubiquitin-proteasome degradation pathway, IRF11 inhibits IκBα in ubiquitin-proteasome degradation. This study provides a novel evidence on the regulation of innate immune signaling pathways in teleost fish and thus provides new insights into the regulatory mechanisms in mammals.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ruixuan Huo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xueyan Zhao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
9
|
Lisiero DN, Cheng Z, Tejera MM, Neldner BT, Warrick JW, Wuerzberger-Davis SM, Hoffmann A, Suresh M, Miyamoto S. IκBα Nuclear Export Enables 4-1BB-Induced cRel Activation and IL-2 Production to Promote CD8 T Cell Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:1540-1553. [PMID: 32817348 DOI: 10.4049/jimmunol.2000039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Optimal CD8 T cell immunity is orchestrated by signaling events initiated by TCR recognition of peptide Ag in concert with signals from molecules such as CD28 and 4-1BB. The molecular mechanisms underlying the temporal and spatial signaling dynamics in CD8 T cells remain incompletely understood. In this study, we show that stimulation of naive CD8 T cells with agonistic CD3 and CD28 Abs, mimicking TCR and costimulatory signals, coordinately induces 4-1BB and cRel to enable elevated cytosolic cRel:IκBα complex formation and subsequent 4-1BB-induced IκBα degradation, sustained cRel activation, heightened IL-2 production and T cell expansion. NfkbiaNES/NES CD8 T cells harboring a mutated IκBα nuclear export sequence abnormally accumulate inactive cRel:IκBα complexes in the nucleus following stimulation with agonistic anti-CD3 and anti-CD28 Abs, rendering them resistant to 4-1BB induced signaling and a disrupted chain of events necessary for efficient T cell expansion. Consequently, CD8 T cells in NfkbiaNES/NES mice poorly expand during viral infection, and this can be overcome by exogenous IL-2 administration. Consistent with cell-based data, adoptive transfer experiments demonstrated that the antiviral CD8 T cell defect in NfkbiaNES/NES mice was cell intrinsic. Thus, these results reveal that IκBα, via its unique nuclear export function, enables, rather than inhibits 4-1BB-induced cRel activation and IL-2 production to facilitate optimal CD8 T cell immunity.
Collapse
Affiliation(s)
- Dominique N Lisiero
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705
| | - Zhang Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90025
| | - Melba M Tejera
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - Brandon T Neldner
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - Jay W Warrick
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705; and
| | - Shelly M Wuerzberger-Davis
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90025
| | - M Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706;
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705; .,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, Madison, WI 53705
| |
Collapse
|
10
|
Romero N, Van Waesberghe C, Favoreel HW. Pseudorabies Virus Infection of Epithelial Cells Leads to Persistent but Aberrant Activation of the NF-κB Pathway, Inhibiting Hallmark NF-κB-Induced Proinflammatory Gene Expression. J Virol 2020; 94:e00196-20. [PMID: 32132236 PMCID: PMC7199412 DOI: 10.1128/jvi.00196-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/27/2020] [Indexed: 02/03/2023] Open
Abstract
The nuclear factor kappa B (NF-κB) is a potent transcription factor, activation of which typically results in robust proinflammatory signaling and triggering of fast negative feedback modulators to avoid excessive inflammatory responses. Here, we report that infection of epithelial cells, including primary porcine respiratory epithelial cells, with the porcine alphaherpesvirus pseudorabies virus (PRV) results in the gradual and persistent activation of NF-κB, illustrated by proteasome-dependent degradation of the inhibitory NF-κB regulator IκB and nuclear translocation and phosphorylation of the NF-κB subunit p65. PRV-induced persistent activation of NF-κB does not result in expression of negative feedback loop genes, like the gene for IκBα or A20, and does not trigger expression of prototypical proinflammatory genes, like the gene for tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). In addition, PRV infection inhibits TNF-α-induced canonical NF-κB activation. Hence, PRV infection triggers persistent NF-κB activation in an unorthodox way and dramatically modulates the NF-κB signaling axis, preventing typical proinflammatory gene expression and the responsiveness of cells to canonical NF-κB signaling, which may aid the virus in modulating early proinflammatory responses in the infected host.IMPORTANCE The NF-κB transcription factor is activated via different key inflammatory pathways and typically results in the fast expression of several proinflammatory genes as well as negative feedback loop genes to prevent excessive inflammation. In the current report, we describe that infection of cells with the porcine alphaherpesvirus pseudorabies virus (PRV) triggers a gradual and persistent aberrant activation of NF-κB, which does not result in expression of hallmark proinflammatory or negative feedback loop genes. In addition, although PRV-induced NF-κB activation shares some mechanistic features with canonical NF-κB activation, it also shows remarkable differences; e.g., it is largely independent of the canonical IκB kinase (IKK) and even renders infected cells resistant to canonical NF-κB activation by the inflammatory cytokine TNF-α. Aberrant PRV-induced NF-κB activation may therefore paradoxically serve as a viral immune evasion strategy and may represent an important tool to unravel currently unknown mechanisms and consequences of NF-κB activation.
Collapse
Affiliation(s)
- Nicolás Romero
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Cliff Van Waesberghe
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Herman W Favoreel
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Zhao X, Yan X, Huo R, Xu T. IRF3 enhances NF-κB activation by targeting IκBα for degradation in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103632. [PMID: 31987876 DOI: 10.1016/j.dci.2020.103632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Tightly regulation of NF-κB signaling is essential to innate and adaptive immune responses, but its regulatory mechanism remains unclear in various organisms, especially teleost fish. In this study, we reported that IRF3 attenuates the inhibitory effect of IκBα on NF-κB activation in teleost fish. Overexpression of IRF3 can promote IκBα degradation, whereas its knockdown can relieve degradation of IκBα. IRF3 promoted the degradation of IκBα protein, but this effect could be inhibited by MG132 treatment. IRF3 is crucial for the polyubiquitination and proteasomal degradation of IκBα. Our findings indicate that IRF3 regulates NF-κB pathway by targeting IκBα for ubiquitination and degradation. This study provides novel evidence on the regulation of innate immune signaling pathways in teleost fish and thus provides new insights into the regulatory mechanisms in mammals.
Collapse
Affiliation(s)
- Xueyan Zhao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China
| | - Ruixuan Huo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China.
| |
Collapse
|
12
|
Effects of Mycoplasmas on the Host Cell Signaling Pathways. Pathogens 2020; 9:pathogens9040308. [PMID: 32331465 PMCID: PMC7238135 DOI: 10.3390/pathogens9040308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
Mycoplasmas are the smallest free-living organisms. Reduced sizes of their genomes put constraints on the ability of these bacteria to live autonomously and make them highly dependent on the nutrients produced by host cells. Importantly, at the organism level, mycoplasmal infections may cause pathological changes to the host, including cancer and severe immunological reactions. At the molecular level, mycoplasmas often activate the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) inflammatory response and concomitantly inhibit the p53-mediated response, which normally triggers the cell cycle and apoptosis. Thus, mycoplasmal infections may be considered as cancer-associated factors. At the same time, mycoplasmas through their membrane lipoproteins (LAMPs) along with lipoprotein derivatives (lipopeptide MALP-2, macrophage-activating lipopeptide-2) are able to modulate anti-inflammatory responses via nuclear translocation and activation of Nrf2 (the nuclear factor-E2-related anti-inflammatory transcription factor 2). Thus, interactions between mycoplasmas and host cells are multifaceted and depend on the cellular context. In this review, we summarize the current information on the role of mycoplasmas in affecting the host’s intracellular signaling mediated by the interactions between transcriptional factors p53, Nrf2, and NF-κB. A better understanding of the mechanisms underlying pathologic processes associated with reprogramming eukaryotic cells that arise during the mycoplasma-host cell interaction should facilitate the development of new therapeutic approaches to treat oncogenic and inflammatory processes.
Collapse
|
13
|
Marruecos L, Bertran J, Guillén Y, González J, Batlle R, López-Arribillaga E, Garrido M, Ruiz-Herguido C, Lisiero D, González-Farré M, Arce-Gallego S, Iglesias M, Nebreda AR, Miyamoto S, Bigas A, Espinosa L. IκBα deficiency imposes a fetal phenotype to intestinal stem cells. EMBO Rep 2020; 21:e49708. [PMID: 32270911 DOI: 10.15252/embr.201949708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
The intestinal epithelium is a paradigm of adult tissue in constant regeneration that is supported by intestinal stem cells (ISCs). The mechanisms regulating ISC homeostasis after injury are poorly understood. We previously demonstrated that IκBα, the main regulator of NF-κB, exerts alternative nuclear functions as cytokine sensor in a subset of PRC2-regulated genes. Here, we show that nuclear IκBα is present in the ISC compartment. Mice deficient for IκBα show altered intestinal cell differentiation with persistence of a fetal-like ISC phenotype, associated with aberrant PRC2 activity at specific loci. Moreover, IκBα-deficient intestinal cells produce morphologically aberrant organoids carrying a PRC2-dependent fetal-like transcriptional signature. DSS treatment, which induces acute damage in the colonic epithelium of mice, results in a temporary loss of nuclear P-IκBα and its subsequent accumulation in early CD44-positive regenerating areas. Importantly, IκBα-deficient mice show higher resistance to damage, likely due to the persistent fetal-like ISC phenotype. These results highlight intestinal IκBα as a chromatin sensor of inflammation in the ISC compartment.
Collapse
Affiliation(s)
- Laura Marruecos
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Joan Bertran
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain.,Faculty of Science and Technology, Bioinformatics and Medical Statistics Group, University of Vic-Central University of Catalonia, Vic, Spain
| | - Yolanda Guillén
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Jéssica González
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Raquel Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Erika López-Arribillaga
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Marta Garrido
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Cristina Ruiz-Herguido
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Dominique Lisiero
- The McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA.,Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Mónica González-Farré
- Department of Pathology, CIBERONC, University Autonomous of Barcelona, Hospital del Mar, Barcelona, Spain
| | - Sara Arce-Gallego
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Mar Iglesias
- Department of Pathology, CIBERONC, University Autonomous of Barcelona, Hospital del Mar, Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Shigeki Miyamoto
- The McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA.,Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Anna Bigas
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| | - Lluís Espinosa
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
14
|
Schloop AE, Bandodkar PU, Reeves GT. Formation, interpretation, and regulation of the Drosophila Dorsal/NF-κB gradient. Curr Top Dev Biol 2019; 137:143-191. [PMID: 32143742 DOI: 10.1016/bs.ctdb.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morphogen gradient of the transcription factor Dorsal in the early Drosophila embryo has become one of the most widely studied tissue patterning systems. Dorsal is a Drosophila homolog of mammalian NF-κB and patterns the dorsal-ventral axis of the blastoderm embryo into several tissue types by spatially regulating upwards of 100 zygotic genes. Recent studies using fluorescence microscopy and live imaging have quantified the Dorsal gradient and its target genes, which has paved the way for mechanistic modeling of the gradient. In this review, we describe the mechanisms behind the initiation of the Dorsal gradient and its regulation of target genes. The main focus of the review is a discussion of quantitative and computational studies of the Dl gradient system, including regulation of the Dl gradient. We conclude with a discussion of potential future directions.
Collapse
Affiliation(s)
- Allison E Schloop
- Genetics Program, North Carolina State University, Raleigh, NC, United States
| | - Prasad U Bandodkar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Gregory T Reeves
- Genetics Program, North Carolina State University, Raleigh, NC, United States; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
15
|
Antioxidant and Anti-Inflammatory Properties of Anthocyanins Extracted from Oryza sativa L. in Primary Dermal Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2089817. [PMID: 31467631 PMCID: PMC6701313 DOI: 10.1155/2019/2089817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/07/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Flavonoids are naturally active substances that form a large class of phenolic compounds abundant in certain foods. Black rice (Oryza sativa L.) contains high levels of anthocyanin polyphenols, which have beneficial effects on health owing to their antioxidant properties. The breakdown of collagenous networks with aging or skin deterioration results in the impairment of wound healing in the skin. Accordingly, reviving stagnant collagen synthesis can help maintain dermal homeostasis during wound healing. This study presents an assessment of the cellular activity of anthocyanins (ANT) extracted from Oryza sativa L., providing information necessary for the development of new products that support natural healing processes. The relative composition of ANT from Oryza sativa L. was determined by high-performance liquid chromatography/diode array detection. ANT promoted the migration of rat dermal fibroblasts (RDFs) and demonstrated antioxidant properties. ANT increased the mRNA expression of collagen type I alpha 2 (COL1A2) and upregulated type I collagen protein levels in H2O2-stimulated RDFs without cytotoxicity. Compared with the untreated group, treatment of RDFs with ANT in the presence of H2O2 led to the activation of signaling pathways, including the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Akt, whereas it significantly (p < 0.001) inhibited the phosphorylation of IκBα and suppressed the activation of the nuclear factor-kappa B (NF-κB) subunits, p50 and p65, which are transcription factors responsible for inflammation. Taken together, our findings suggest that ANT from Oryza sativa L. have anti-inflammatory properties and antiaging potential by modulating type I collagen gene expression and suppressing H2O2-induced NF-κB activation in skin fibroblasts.
Collapse
|
16
|
Adelaja A, Hoffmann A. Signaling Crosstalk Mechanisms That May Fine-Tune Pathogen-Responsive NFκB. Front Immunol 2019; 10:433. [PMID: 31312197 PMCID: PMC6614373 DOI: 10.3389/fimmu.2019.00433] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/19/2019] [Indexed: 01/14/2023] Open
Abstract
Precise control of inflammatory gene expression is critical for effective host defense without excessive tissue damage. The principal regulator of inflammatory gene expression is nuclear factor kappa B (NFκB), a transcription factor. Nuclear NFκB activity is controlled by IκB proteins, whose stimulus-responsive degradation and re-synthesis provide for transient or dynamic regulation. The IκB-NFκB signaling module receives input signals from a variety of pathogen sensors, such as toll-like receptors (TLRs). The molecular components and mechanisms of NFκB signaling are well-understood and have been reviewed elsewhere in detail. Here we review the molecular mechanisms that mediate cross-regulation of TLR-IκB-NFκB signal transduction by signaling pathways that do not activate NFκB themselves, such as interferon signaling pathways. We distinguish between potential regulatory crosstalk mechanisms that (i) occur proximal to TLRs and thus may have stimulus-specific effects, (ii) affect the core IκB-NFκB signaling module to modulate NFκB activation in response to several stimuli. We review some well-documented examples of molecular crosstalk mechanisms and indicate other potential mechanisms whose physiological roles require further study.
Collapse
Affiliation(s)
- Adewunmi Adelaja
- UCLA-Caltech Medical Scientist Training Program, Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Overexpression of PIMREG promotes breast cancer aggressiveness via constitutive activation of NF-κB signaling. EBioMedicine 2019; 43:188-200. [PMID: 30979686 PMCID: PMC6557765 DOI: 10.1016/j.ebiom.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 01/31/2023] Open
Abstract
Background It is well-established that activation of nuclear factor-kappa B (NF-κB) signaling plays important roles in cancer development and progression. However, the underlying mechanism by which the NF-κB pathway is constitutively activated in cancer remains largely unclear. The present study aimed to investigate the effect of PICALM interacting mitotic regulator (PIMREG) on sustaining NF-κB activation in breast cancer. Methods The underlying mechanisms in which PIMREG-mediated NF-κB constitutive activation were determined via immunoprecipitation, EMSA and luciferase reporter assays. The expression of PIMREG was examined by quantitative PCR and western blotting analyses and immunohistochemical assay. The effect of PIMREG on aggressiveness of breast cancer cell was measured using MTT, soft agar clonogenic assay, wound healing and transwell matrix penetration assays in vitro and a Xenografted tumor model in vivo. Findings PIMREG competitively interacted with the REL homology domain (RHD) of NF-κB with IκBα, and sustained NF-κB activation by promotion of nuclear accumulation and transcriptional activity of NF-κB via disrupting the NF-κB/IκBα negative feedback loop. PIMREG overexpression significantly enhanced NF-κB transactivity and promoted the breast cancer aggressiveness. The expression of PIMREG was markedly upregulated in breast cancer and positively correlated with clinical characteristics of patients with breast cancer, including the clinical stage, tumor-node-metastasis classification and poorer survival. Interpretation PIMREG promotes breast cancer aggressiveness via disrupting the NF-κB/IκBα negative feedback loop, which suggests that PIMREG might be a valuable prognostic factor and potential target for diagnosis and therapy of metastatic breast cancer. Fund The science foundation of China, Guangdong Province, Guangzhou Education System, and the Science and Technology Program of Guangzhou.
Collapse
|
18
|
Sadeghi Y, Tabatabaei Irani P, Rafiee L, Tajadini M, Haghjooy Javanmard S. Evaluation of rs1957106 Polymorphism of NF-κBI in Glioblastoma Multiforme in Isfahan, Iran. Adv Biomed Res 2019; 8:9. [PMID: 30820430 PMCID: PMC6385670 DOI: 10.4103/abr.abr_227_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The kB family of nuclear factor (NF-κB) is a series of transcription factors that plays a key role in regulation of immunity, cell growth, and apoptosis and is considered as the main downstream component of epidermal growth factor receptor for which there are evidence of excessive activity in most cases of glioblastoma multiform (GBM). Thus, the current information has gained evidence on NF-κBIA tumor suppressor role in GMB. SNP rs1957106 was diagnosed as a new polymorphism which affected the expression of NF-κBI and causes activation of NF-κB in GBM patients. MATERIALS AND METHODS This study was conducted on 100 cases of GBM including 47 paraffin-embedded brain tissue samples and 53 blood samples from another 53 GBM patients and 150 controls. The NF-κBI rs1957106 SNP was identified by the NCBI, and genotyping was performed by high-resolution melt (HRM) assay. Melt curves from HRM which suspected to single-nucleotide polymorphism (SNP) were selected and subjected to direct sequencing. RESULTS The distribution of allele A of NF-κβ gene in patients with GBM with 31% was not significantly different from healthy participants (27.3%) (P = 0.375). Furthermore, the distribution of AG and GG genotypes in comparison with AA genotypes did not show a significant correlation with GBM incidence (P > 0.05). CONCLUSION Findings of the present study provide evidence that the rs1957106 SNP in NF-κBIA is found more in GBM patients, but it was not statistically significant. As there are conflicting studies showing significant higher rate of this SNP in GBM, further study is suggested.
Collapse
Affiliation(s)
- Yasaman Sadeghi
- From the Department of General Medicine, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouya Tabatabaei Irani
- From the Department of General Medicine, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Rafiee
- Department of Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamadhasan Tajadini
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Toledo Nunes P, Vedder LC, Deak T, Savage LM. A Pivotal Role for Thiamine Deficiency in the Expression of Neuroinflammation Markers in Models of Alcohol-Related Brain Damage. Alcohol Clin Exp Res 2019; 43:425-438. [PMID: 30589435 DOI: 10.1111/acer.13946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) is associated with neurotoxic effects of heavy alcohol use and nutritional deficiency, in particular thiamine deficiency (TD), both of which induce inflammatory responses in brain. Although neuroinflammation is a critical factor in the induction of ARBD, few studies have addressed the specific contribution(s) of ethanol (EtOH) versus TD. METHODS Adult rats were randomly divided into 6 conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH for 6 months; CET with injections of thiamine (CET + T); severe pyrithiamine-induced TD (PTD); moderate PTD; moderate PTD during CET; and pair-fed controls. After the treatments, the rats were split into 3 recovery phase time points: the last day of treatment (time point 1), acute recovery (time point 2: 24 hours posttreatment), and delayed recovery (time point 3: 3 weeks posttreatment). At these time points, vulnerable brain regions (thalamus, hippocampus, frontal cortex) were collected and changes in neuroimmune markers were assessed using a combination of reverse transcription polymerase chain reaction and protein analysis. RESULTS CET led to minor fluctuations in neuroimmune genes, regardless of the structure being examined. In contrast, PTD treatment led to a profound increase in neuroimmune genes and proteins within the thalamus. Cytokine changes in the thalamus ranged in magnitude from moderate (3-fold and 4-fold increase in interleukin-1β [IL-1β] and IκBα) to severe (8-fold and 26-fold increase in tumor necrosis factor-α and IL-6, respectively). Though a similar pattern was observed in the hippocampus and frontal cortex, overall fold increases were moderate relative to the thalamus. Importantly, neuroimmune gene induction varied significantly as a function of severity of TD, and most genes displayed a gradual recovery across time. CONCLUSIONS These data suggest an overt brain inflammatory response by TD and a subtle change by CET alone. Also, the prominent role of TD in the immune-related signaling pathways leads to unique regional and temporal profiles of induction of neuroimmune genes.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lindsey C Vedder
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Terrence Deak
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lisa M Savage
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| |
Collapse
|
20
|
Zhu J, Wu G, Ke Z, Cao L, Tang M, Li Z, Li Q, Zhou J, Tan Z, Song L, Li J. Targeting TRIM3 deletion-induced tumor-associated lymphangiogenesis prohibits lymphatic metastasis in esophageal squamous cell carcinoma. Oncogene 2018; 38:2736-2749. [DOI: 10.1038/s41388-018-0621-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/23/2018] [Indexed: 01/06/2023]
|
21
|
Ye RD, Pan Z, Kravchenko VV, Browning DD, Prossnitz ER. Gene transcription through activation of G-protein-coupled chemoattractant receptors. Gene Expr 2018; 5:205-15. [PMID: 8723387 PMCID: PMC6138026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Receptors for leukocyte chemoattractants, including chemokines, are traditionally considered to be responsible for the activation of special leukocyte functions such as chemotaxis, degranulation, and the release of superoxide anions. Recently, these G-protein-coupled serpentine receptors have been found to transduce signals leading to gene transcription and translation in leukocytes. Transcription factors, such as NF kappa B and AP-1, are activated upon stimulation of the cells with several chemoattractants at physiologically relevant concentrations. Activation of transcription factors through these receptors involves G-protein coupling and the activation of protein kinases. The underlying signaling pathways appear to be different from those utilized by TNF-alpha, a better characterized cytokine that induces the transcription of immediate-early genes. Chemoattractants stimulate the expression of several inflammatory cytokines and chemokines, which in turn may activate their respective receptors and initiate an autocrine regulatory mechanism for persistent cytokine and chemokine gene expression.
Collapse
Affiliation(s)
- R D Ye
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
22
|
Borchsenius SN, Daks A, Fedorova O, Chernova O, Barlev NA. Effects of mycoplasma infection on the host organism response via p53/NF‐κB signaling. J Cell Physiol 2018; 234:171-180. [DOI: 10.1002/jcp.26781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Alexandra Daks
- Institute of Cytology RAS, Laboratory of Gene Expression Regulation Saint‐Petersburg Russia
| | - Olga Fedorova
- Institute of Cytology RAS, Laboratory of Gene Expression Regulation Saint‐Petersburg Russia
| | - Olga Chernova
- Kazan Scientific Center Kazan Institute of Biochemistry and Biophysics, Laboratory “Omics Technology”, Russian Academy of Sciences Kazan Russia
| | - Nickolai A. Barlev
- Institute of Cytology RAS, Laboratory of Gene Expression Regulation Saint‐Petersburg Russia
| |
Collapse
|
23
|
Prabakaran T, Bodda C, Krapp C, Zhang BC, Christensen MH, Sun C, Reinert L, Cai Y, Jensen SB, Skouboe MK, Nyengaard JR, Thompson CB, Lebbink RJ, Sen GC, van Loo G, Nielsen R, Komatsu M, Nejsum LN, Jakobsen MR, Gyrd-Hansen M, Paludan SR. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J 2018; 37:embj.201797858. [PMID: 29496741 DOI: 10.15252/embj.201797858] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/18/2022] Open
Abstract
Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy-associated vesicles. Thus, DNA sensing induces the cGAS-STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.
Collapse
Affiliation(s)
- Thaneas Prabakaran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Chiranjeevi Bodda
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark.,Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Christian Krapp
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Bao-Cun Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Maria H Christensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Chenglong Sun
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Line Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Yujia Cai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Søren B Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Morten K Skouboe
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Jens R Nyengaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert Jan Lebbink
- Medical Microbiology, University Medical Center, Utrecht, The Netherlands
| | - Ganes C Sen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Geert van Loo
- Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Mads Gyrd-Hansen
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark .,Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Dávila-Grana Á, Diego-González L, González-Fernández Á, Simón-Vázquez R. Synergistic Effect of Metal Oxide Nanoparticles on Cell Viability and Activation of MAP Kinases and NFκB. Int J Mol Sci 2018; 19:ijms19010246. [PMID: 29342925 PMCID: PMC5796194 DOI: 10.3390/ijms19010246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been an increase in the production of several types of nanoparticles (Nps) for different purposes. Several studies have been performed to analyse the toxicity induced by some of these individual Nps, but data are scarce on the potential hazards or beneficial effects induced by a range of nanomaterials in the same environment. The purpose of the study described here was to evaluate the toxicological effects induced by in vitro exposure of human cells to ZnO Nps in combination with different concentrations of other metal oxide Nps (Al2O3, CeO2, TiO2 and Y2O3). The results indicate that the presence of these Nps has synergistic or antagonistic effects on the cell death induced by ZnO Nps, with a quite marked beneficial effect observed when high concentrations of Nps were tested. Moreover, analysis by Western blot of the main components of the intracellular activation routes (MAPKs and NFκB) again showed that the presence of other Nps can affect cell activation. In conclusion, the presence of several Nps in the same environment modifies the functional activity of one individual Np. Further studies are required in order to elucidate the effects induced by combinations of nanomaterials.
Collapse
Affiliation(s)
- Ángela Dávila-Grana
- Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), Universidade de Vigo, Campus Universitario de Vigo, 36310 Pontevedra, Spain.
| | - Lara Diego-González
- Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), Universidade de Vigo, Campus Universitario de Vigo, 36310 Pontevedra, Spain.
| | - África González-Fernández
- Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), Universidade de Vigo, Campus Universitario de Vigo, 36310 Pontevedra, Spain.
| | - Rosana Simón-Vázquez
- Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), Universidade de Vigo, Campus Universitario de Vigo, 36310 Pontevedra, Spain.
| |
Collapse
|
25
|
Vu KT, Zhang F, Hulleman JD. Conditional, Genetically Encoded, Small Molecule-Regulated Inhibition of NFκB Signaling in RPE Cells. Invest Ophthalmol Vis Sci 2017; 58:4126-4137. [PMID: 28829844 PMCID: PMC5566385 DOI: 10.1167/iovs.17-22133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose Nuclear factor κB (NFκB) is a ubiquitously expressed, proinflammatory transcription factor that controls the expression of genes involved in cell survival, angiogenesis, complement activation, and inflammation. Studies have implicated NFκB-dependent cytokines or complement-related factors as being detrimentally involved in retinal diseases, thus making inhibition of NFκB signaling a potential therapeutic target. We sought to develop a conditional and reversible method that could regulate pathogenic NFκB signaling by the addition of a small molecule. Methods We developed a genetically based, trimethoprim (TMP)-regulated approach that conditionally inhibits NFκB signaling by fusing a destabilized dihydrofolate reductase (DHFR) domain to an inhibitor of NFκB, IκBα, in ARPE-19 cells. We then challenged ARPE-19 cells with a number of stimuli that have been demonstrated to trigger NFκB signaling, including LPS, TNFα, IL-1α, and A2E. Western blotting, electrophoretic mobility shift assay, quantitative PCR, ELISA, and NFκB reporter assays were used to evaluate the effectiveness of this DHFR-IκBα approach. Results This destabilized domain approach, coupled with doxycycline-inducibility, allowed for accurate control over the abundance of DHFR-IκBα. Stabilization of DHFR-IκBα with TMP prevented IL-1α-, A2E-, LPS-, and TNFα-induced NFκB-mediated upregulation and release of the proinflammatory cytokines IL-1β and IL-6 from ARPE-19 cells (by as much as 93%). This strategy is dosable, completely reversible, and can be cycled “on” or “off” within the same cell population repeatedly to confer protection at desired time points. Conclusions These studies lay the groundwork for the use of destabilized domains in retinal pigment epithelium (RPE) cells in vivo and in this context, demonstrate their utility for preventing inflammatory signaling.
Collapse
Affiliation(s)
- Khiem T Vu
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Fang Zhang
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - John D Hulleman
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
26
|
Petersheim D, Massaad MJ, Lee S, Scarselli A, Cancrini C, Moriya K, Sasahara Y, Lankester AC, Dorsey M, Di Giovanni D, Bezrodnik L, Ohnishi H, Nishikomori R, Tanita K, Kanegane H, Morio T, Gelfand EW, Jain A, Secord E, Picard C, Casanova JL, Albert MH, Torgerson TR, Geha RS. Mechanisms of genotype-phenotype correlation in autosomal dominant anhidrotic ectodermal dysplasia with immune deficiency. J Allergy Clin Immunol 2017. [PMID: 28629746 DOI: 10.1016/j.jaci.2017.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Autosomal dominant anhidrotic ectodermal dysplasia with immune deficiency (AD EDA-ID) is caused by heterozygous point mutations at or close to serine 32 and serine 36 or N-terminal truncations in IκBα that impair its phosphorylation and degradation and thus activation of the canonical nuclear factor κ light chain enhancer of activated B cells (NF-κB) pathway. The outcome of hematopoietic stem cell transplantation is poor in patients with AD EDA-ID despite achievement of chimerism. Mice heterozygous for the serine 32I mutation in IκBα have impaired noncanonical NF-κB activity and defective lymphorganogenesis. OBJECTIVE We sought to establish genotype-phenotype correlation in patients with AD EDA-ID. METHODS A disease severity scoring system was devised. Stability of IκBα mutants was examined in transfected cells. Immunologic, biochemical, and gene expression analyses were performed to evaluate canonical and noncanonical NF-κB signaling in skin-derived fibroblasts. RESULTS Disease severity was greater in patients with IκBα point mutations than in those with truncation mutations. IκBα point mutants were expressed at significantly higher levels in transfectants compared with truncation mutants. Canonical NF-κB-dependent IL-6 secretion and upregulation of the NF-κB subunit 2/p100 and RELB proto-oncogene, NF-κB subunit (RelB) components of the noncanonical NF-κB pathway were diminished significantly more in patients with point mutations compared with those with truncations. Noncanonical NF-κB-driven generation of the transcriptionally active p100 cleavage product p52 and upregulation of CCL20, intercellular adhesion molecule 1 (ICAM1), and vascular cell adhesion molecule 1 (VCAM1), which are important for lymphorganogenesis, were diminished significantly more in LPS plus α-lymphotoxin β receptor-stimulated fibroblasts from patients with point mutations compared with those with truncations. CONCLUSIONS IκBα point mutants accumulate at higher levels compared with truncation mutants and are associated with more severe disease and greater impairment of canonical and noncanonical NF-κB activity in patients with AD EDA-ID.
Collapse
Affiliation(s)
- Daniel Petersheim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Saetbyul Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Alessia Scarselli
- Division of Immunology and Infectious Diseases, Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, and University of Rome Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Division of Immunology and Infectious Diseases, Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, and University of Rome Tor Vergata, Rome, Italy
| | | | - Yoji Sasahara
- Department of Pediatrics, Tohoku University, Tohoku, Japan
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Morna Dorsey
- Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| | - Daniela Di Giovanni
- Immunology Service, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Immunology Service, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | | | | | - Kay Tanita
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Erwin W Gelfand
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Ashish Jain
- Merck Research Laboratories Boston, Boston, Mass
| | - Elizabeth Secord
- Division of Allergy, Asthma, and Immunology, Children's Hospital of Michigan, Detroit, Mich
| | - Capucine Picard
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital, Paris Descartes University, Paris, France
| | - Jean-Laurent Casanova
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital, Paris Descartes University, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Michael H Albert
- Department of Pediatric Hematology and Oncology, Dr von Hauner University Children's Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
27
|
Wang W, Mani AM, Wu ZH. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. JOURNAL OF CANCER METASTASIS AND TREATMENT 2017; 3:45-59. [PMID: 28626800 PMCID: PMC5472228 DOI: 10.20517/2394-4722.2017.03] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA damage is a vital challenge to cell homeostasis. Cellular responses to DNA damage (DDR) play essential roles in maintaining genomic stability and survival, whose failure could lead to detrimental consequences such as cancer development and aging. Nuclear factor-kappa B (NF-κB) is a family of transcription factors that plays critical roles in cellular stress response. Along with p53, NF-κB modulates transactivation of a large number of genes which participate in various cellular processes involved in DDR. Here the authors summarize the recent progress in understanding DNA damage response and NF-κB signaling pathways. This study particularly focuses on DNA damage-induced NF-κB signaling cascade and its physiological and pathological significance in B cell development and cancer therapeutic resistance. The authors also discuss promising strategies for selectively targeting this genotoxic NF-κB signaling aiming to antagonize acquired resistance and resensitize refractory cancer cells to cytotoxic treatments.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arul M. Mani
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
28
|
Veronicastrum axillare Alleviates Ethanol-Induced Injury on Gastric Epithelial Cells via Downregulation of the NF-kB Signaling Pathway. Gastroenterol Res Pract 2017; 2017:7395032. [PMID: 28182096 PMCID: PMC5274683 DOI: 10.1155/2017/7395032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 11/24/2022] Open
Abstract
We used human gastric epithelial cells (GES-1) line in an ethanol-induced cell damage model to study the protective effect of Veronicastrum axillare and its modulation to NF-κB signal pathway. The goal was to probe the molecular mechanism of V. axillare decoction in the prevention of gastric ulcer and therefore provide guidance in the clinical application of V. axillare on treating injuries from chronic nephritis, pleural effusion, gastric ulcer, and other ailments. The effects of V. axillare-loaded serums on cell viability were detected by MTT assays. Enzyme-linked immunosorbent assay (ELISA) and Real-Time PCR methods were used to analyze the protein and mRNA expression of TNF-α, NF-κB, IκBα, and IKKβ. The results showed that V. axillare-loaded serum partially reversed the damaging effects of ethanol and NF-κB activator (phorbol-12-myristate-13-acetate: PMA) and increased cell viability. The protein and mRNA expressions of TNF-α, NF-κB, IκBα, and IKKβ were significantly upregulated by ethanol and PMA while they were downregulated by V. axillare-loaded serum. In summary, V. axillare-loaded serum has significantly protective effect on GES-1 against ethanol-induced injury. The protective effect was likely linked to downregulation of TNF-α based NF-κB signal pathway.
Collapse
|
29
|
Durand JK, Baldwin AS. Targeting IKK and NF-κB for Therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 107:77-115. [PMID: 28215229 DOI: 10.1016/bs.apcsb.2016.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to regulating immune responses, the NF-κB family of transcription factors also promotes cellular proliferation and survival. NF-κB and its activating kinase, IKK, have become appealing therapeutic targets because of their critical roles in the progression of many diseases including chronic inflammation and cancer. Here, we discuss the conditions that lead to pathway activation, the effects of constitutive activation, and some of the strategies used to inhibit NF-κB signaling.
Collapse
Affiliation(s)
- J K Durand
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
30
|
Gudkov AV, Komarova EA. p53 and the Carcinogenicity of Chronic Inflammation. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026161. [PMID: 27549311 DOI: 10.1101/cshperspect.a026161] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is a major cancer predisposition factor. Constitutive activation of the inflammation-driving NF-κB pathway commonly observed in cancer or developed in normal tissues because of persistent infections or endogenous tissue irritating factors, including products of secretion by senescent cells accumulating with age, markedly represses p53 functions. In its turn, p53 acts as a suppressor of inflammation helping to keep it within safe limits. The antagonistic relationship between p53 and NF-κB is controlled by multiple mechanisms and reflects cardinal differences in organismal responses to intrinsic and extrinsic cell stresses driven by these two transcription factors, respectively. This provides an opportunity for developing drugs to treat diseases associated with inappropriate activity of either p53 or NF-κB through targeting the opposing pathway. Several drug candidates of this kind are currently in clinical testing. These include anticancer small molecules capable of simultaneous suppression of p53 and activation of NF-κB and NF-κB-activating biologics that counteract p53-mediated pathologies associated with systemic genotoxic stresses such as acute radiation syndrome and side effects of cancer treatment.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Elena A Komarova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
31
|
Ton VK, Vunjak-Novakovic G, Topkara VK. Transcriptional patterns of reverse remodeling with left ventricular assist devices: a consistent signature. Expert Rev Med Devices 2016; 13:1029-1034. [PMID: 27685648 DOI: 10.1080/17434440.2016.1243053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Left ventricular assist device (LVAD) therapy has revolutionized the treatment of patients with advanced heart failure. Although originally intended for bridge-to-transplantation and destination therapy indications, a small subset of patients supported with LVADs exhibit complete myocardial recovery leading to device explanation. However, genetic and molecular determinants of partial and/or complete myocardial recovery remain largely unknown. Areas covered: We summarize current knowledge on alterations in heart failure transcriptome in response to LVAD support, as well as discuss common gene signatures potentially responsible for the reverse remodeling phenotype in the failing human heart. Expert commentary: Reverse remodeling after LVAD is likely a continuum between fully and partially recovered myocardium. Multicenter cardiac tissue repositories linked with detailed phenotype information may facilitate identification of genetic signals responsible for myocardial recovery in LVAD supported patients in the foreseeable future.
Collapse
Affiliation(s)
- Van-Khue Ton
- a Division of Cardiology, Department of Medicine , Columbia University Medical Center , New York , NY , USA.,b Division of Cardiovascular Medicine, Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | | | - Veli K Topkara
- a Division of Cardiology, Department of Medicine , Columbia University Medical Center , New York , NY , USA
| |
Collapse
|
32
|
Muroi M, Muroi Y, Ito N, Rice N, Suzuki T. Effects of protease inhibitors on LPS-mediated activation of a mouse macrophage cell line (J774). ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199500200504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pretreatment (1 h) of a mouse macrophage-like cell line, J774, with the protease inhibitor, phenylalanine-chloromethyl ketone (PCK) or its structural analogue, tosylphenylalanine chloromethyl ketone (TPCK) was found to cause substantial inhibition of LPS-triggered activation of NF-κB. Pretreatment of cells with other types of protease inhibitors or their various structural analogues had no effect. PCK or TPCK appeared to exert its inhibitory effect by: (i) partially preventing LPS-triggered degradation of IκBα protein; (ii) preventing LPS-triggered nuclear translocation of NF-κB proteins (p50, RelA and Rel); and (iii) inhibiting the DNA-binding activities of NF-κB proteins. Pretreatment of cells with PCK or TPCK also resulted in the total or partial inhibition of LPS activatable (AP-1 or CREB) or constitutively-existing (Oct-1) transcription factors, but not of another constitutively-expressed transcription factor (SP-1). Pretreatment of J774 cells with PCK was found to substantially suppress LPS-induced expression of mRNAs specific for cytokine genes (TNFα, IL-1α and β, and IL-6), inducible nitric oxide synthase (iNOS) gene and IκBα gene, but not NF-κB1 p105 gene or β-actin gene. Furthermore, PCK pretreatment inhibited, in a dose-dependent manner, LPS-triggered production of nitric oxide production and tumoricidal activity.
Collapse
Affiliation(s)
- M. Muroi
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, Laboratory of Molecular Virology and Carcinogenesis, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland, USA
| | - Y. Muroi
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, Laboratory of Molecular Virology and Carcinogenesis, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland, USA
| | - N. Ito
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, Laboratory of Molecular Virology and Carcinogenesis, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland, USA
| | - N.R. Rice
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, Laboratory of Molecular Virology and Carcinogenesis, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland, USA
| | - T. Suzuki
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, Laboratory of Molecular Virology and Carcinogenesis, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland, USA
| |
Collapse
|
33
|
Suppressing Syndecan-1 Shedding Ameliorates Intestinal Epithelial Inflammation through Inhibiting NF-κB Pathway and TNF-α. Gastroenterol Res Pract 2016; 2016:6421351. [PMID: 27579035 PMCID: PMC4992761 DOI: 10.1155/2016/6421351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/10/2016] [Indexed: 11/17/2022] Open
Abstract
Syndecan-1 (SDC1), with a long variable ectodomain carrying heparan sulfate chains, participates in many steps of inflammatory responses. But reports about the efforts of SDC1's unshedding ectodomain on intestinal epithelial inflammation and the precise underlying mechanism are limited. In our study, unshedding SDC1 from intestinal epithelial cell models was established by transfecting with unshedding SDC1 plasmid into the cell, respectively. And the role of unshedding SDC1 in intestinal inflammation was further investigated. We found that components of NF-κB pathway, including P65 and IκBα, and secretion of TNF-α were upregulated upon LPS stimulation in intestinal epithelial cells. SDC1, especially through its unshed ectodomain, significantly lessened the upregulation extent. It also functioned in inhibiting migration of neutrophils by downregulating secretion of CXCL-1. Taken together, we conclude that suppressing SDC1 shedding from intestinal epithelial cells relieves severity of intestinal inflammation by inactivating NF-κB pathway and downregulating TNF-α expression. These results indicate that the ectodomain of SDC1 might be the optional therapy for intestinal inflammation.
Collapse
|
34
|
Wang H, Zhu Y, Xu X, Wang X, Hou Q, Xu Q, Sun Z, Mi Y, Hu C. Ctenopharyngodon idella NF-κB subunit p65 modulates the transcription of IκBα in CIK cells. FISH & SHELLFISH IMMUNOLOGY 2016; 54:564-572. [PMID: 27142933 DOI: 10.1016/j.fsi.2016.04.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/20/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
NF-κB is an important transcription factor for regulating the multiple inflammatory and immune related gene transcription. It can bind with the nuclear factor κB site within the promoter of target genes to regulate their transcriptions. p65, the all-important subunit of NF-κB, is ubiquitously expressed in cells. In the present study, we cloned and identified the p65 subunit from grass carp (Ctenopharyngodon idella) (named Cip65) by homologous cloning and RACE technique. The full length of Cip65 cDNA is 2481 bp along with 9 bp 5' UTR, 639 bp 3' UTR and the largest open reading frame (1833 bp) encoding a polypeptide of 610 amino acids with a well conserved Rel-homology domain (RHD) in N-terminal and a putative transcription activation domain (TAD) in C-terminal. Cip65 gathers with other teleost p65 proteins to form a fish-specific clade clearly distinct from those of mammalian and amphibian counterparts on the phylogenetic tree. In CIK (C. idellus kidney) cells, the expression of Cip65 was significantly up-regulated under the stimulation with Poly I:C. As one member of the NF-κB inhibitor protein (IκB) family, IκBα can dominate the activity of NF-κB by interacting with it. To study the molecular mechanisms of negative feedback loop of NF-κB signaling in fish, we cloned grass carp IκBα (CiIκBα) promoter sequence. CiIκBα promoter is 414 bp in length containing two RelA binding sites and a putative atypical TATA-box. Meanwhile, Cip65 and its mutant proteins including C-terminus deletion mutant of Cip65 (Cip65-ΔC) and N-terminus deletion mutant of Cip65 (Cip65-ΔN) were expressed in Escherichia coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind resin. In vitro, Cip65 rather than Cip65-ΔC and Cip65-ΔN showed high affinity with CiIκBα promoter sequence by gel mobility shift assays. In vivo, the cotransfection of pcDNA3.1-Cip65 (or pcDNA3.1-Cip65-ΔC, pcDNA3.1-Cip65-ΔN respectively) with pGL3-CiIκBα and pRL-TK renilla luciferase plasmid into CIK cells showed that pcDNA3.1-Cip65 rather than pcDNA3.1-Cip65-ΔC and pcDNA3.1-Cip65-ΔN, can increase the luciferase activity. Taken together, these results suggested that Cip65 can regulate the expression of CiIκBα and works as a negative feedback loop in NF-κB pathway.
Collapse
Affiliation(s)
- Haizhou Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Youlin Zhu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiangqin Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qunhao Hou
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qun Xu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhicheng Sun
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yichuan Mi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
35
|
Jiang GY, Zhang XP, Zhang Y, Xu HT, Wang L, Li QC, Wang EH. Coiled-coil domain-containing protein 8 inhibits the invasiveness and migration of non-small cell lung cancer cells. Hum Pathol 2016; 56:64-73. [PMID: 27342910 DOI: 10.1016/j.humpath.2016.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/03/2016] [Accepted: 06/11/2016] [Indexed: 01/08/2023]
Abstract
Lung cancer has always been the leading cause of death among patients with malignant tumors, and the majority of these patients die because of cancer cell invasion and metastasis. Previous studies have implicated coiled-coil domain-containing protein 8 (CCDC8) as a tumor suppressor in several types of cancer, such as breast and prostate cancers. However, the expression levels or functions of CCDC8 in lung cancer have not been elucidated. Here, we used immunohistochemical staining to measure CCDC8 expression in 147 samples from tumors and 30 samples from the adjacent normal lung tissues of patients with non-small cell lung cancer. CCDC8 was shown to be located predominantly in the cytoplasm and partially on the cell membrane, and its expression level was significantly lower in lung cancer samples than that in the adjacent normal lung tissues (P=.001). CCDC8 expression was closely related to tumor differentiation (P=.039), tumor-node-metastasis stage (P=.009), lymph node metastasis (P=.038), and prognosis (P=.043) of lung cancer. Transfection of A549 cells with CCDC8 significantly reduced cell invasion and migration (P<.05), whereas the invasiveness and migration capacity in CCDC8-knockdown A549 cells were significantly increased in comparison with the control cells (P<.05). Furthermore, we demonstrated that CCDC8 can downregulate the expression of Snail and upregulate the expression of E-cadherin by inhibiting p-P38 and p-IκBα. Collectively, CCDC8 may suppress the invasion and metastasis of lung cancer cells, and it may represent a promising therapeutic target for non-small cell lung cancer.
Collapse
Affiliation(s)
- Gui-Yang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Xiu-Peng Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Hong-Tao Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Liang Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Qing-Chang Li
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China.
| | - En-Hua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| |
Collapse
|
36
|
Oh S, Oh HW, Lee HR, Yoon SY, Oh SR, Ko YE, Yoo N, Jeong J, Kim JW. Ingenane-type diterpene compounds from Euphorbia kansui modulate IFN-γ production through NF-κB activation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2635-2640. [PMID: 26282882 DOI: 10.1002/jsfa.7380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/31/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Euphorbia kansui, a traditional medical herb, has been shown to have anti-tumour and anti-viral activities. Previously, we have reported that E. kansui increases interferon-gamma (IFN-γ) production in natural killer (NK) cells. However, it is not clear how E. kansui regulates IFN-γ secretion by NK cells. RESULTS In this study, E. kansui was separated into six individual compounds from the same chloroform fraction so that the activity of each compound could be compared. E. kansui compounds induced IFN-γ secretion through the phosphorylation of protein kinase D and IκB kinase pathways. Furthermore, E. kansui compounds activated the translocation of p65, a sub-unit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), to the nucleus and induced NF-κB at the transcriptional level. CONCLUSION These findings suggest that E. kansui enhances IFN-γ secretion through the NF-κB pathway in NK cells. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sehyun Oh
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyun Woo Oh
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ha-Reum Lee
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sun Young Yoon
- ENZYCHEM Lifesciences, 103-6, KAIST-ICC F741, Munjidong, Daejeon, 305-732, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Researach Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Young-Eun Ko
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Nina Yoo
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 305-806, Republic of Korea
| | - Jinseon Jeong
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 305-806, Republic of Korea
| | - Jae Wha Kim
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
37
|
Saito K, Mori S, Date F, Hong G. Epigallocatechin gallate stimulates the neuroreactive salivary secretomotor system in autoimmune sialadenitis of MRL-Fas(lpr) mice via activation of cAMP-dependent protein kinase A and inactivation of nuclear factor κB. Autoimmunity 2016; 48:379-88. [PMID: 25847253 DOI: 10.3109/08916934.2015.1030617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The water channel aquaporin 5 (AQP5) plays a crucial role in regulating salivary flow rates. Xerostomia is often observed in patients with Sjögren's syndrome, and this is attributed to reduced AQP5 expression in the salivary glands. Recently, anti-type 3 muscarinic cholinergic receptors (M3R) autoantibodies and nuclear factor κB (NF-κB) have been found to be negative regulators of AQP5 expression in the salivary gland. Anti-M3R autoantibodies desensitize M3R to salivary secretagogues in Sjögren's syndrome, while activated NF-κB translocates to nuclei and binds to the AQP5 gene promoter, resulting in the suppression of AQP5 expression. We previously documented that epigallocatechin gallate (EGCG), which is a robust antioxidant contained in green tea, ameliorates oxidative stress-induced tissue damage to the salivary glands of MRL/MpJ-lpr/lpr (MRL-Fas(lpr)) mice, which are widely used as a model of Sjögren's syndrome. Reactive oxygen species (ROS) can activate NF-κB and inactivate protein kinase A (PKA), which is a key driver of AQP5 expression. In this study, we examined the effects of administering EGCG to MRL-Fas(lpr) mice with autoimmune sialadenitis on the levels of AQP5, activated NF-κB p65 subunit, activated PKA, activated c-Jun N-terminal kinase (JNK) (an activator of NF-κB), inhibitor κB (IκB) and histone deacetylase 1 (HDAC1) (an inhibitor of NF-κB). In EGCG-treated mice, intense aster-like immunostaining for AQP5 was observed on the apical plasma membranes (APMs) of submandibular gland acinar cells. Likewise, PKA, IκB and HDAC1 were highly expressed in salivary gland tissues, whereas the expression of JNK and NF-κB p65 was negligible. Rank correlation and partial correlation analyses revealed that treatment with EGCG upregulated AQP5 expression on the APM of acinar cells through activation of PKA and inactivation of NF-κB, while IκB and HDAC1 played a pivotal role in the induction of AQP5 expression by PKA. Our study indicates that EGCG may have therapeutic potential for Sjögren's syndrome patients.
Collapse
Affiliation(s)
- Keiichi Saito
- a Liaison Centre for Innovative Dentistry, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | | | | | | |
Collapse
|
38
|
Fagerlund R, Behar M, Fortmann KT, Lin YE, Vargas JD, Hoffmann A. Anatomy of a negative feedback loop: the case of IκBα. J R Soc Interface 2016; 12:0262. [PMID: 26311312 DOI: 10.1098/rsif.2015.0262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The magnitude, duration and oscillation of cellular signalling pathway responses are often limited by negative feedback loops, defined as an 'activator-induced inhibitor' regulatory motif. Within the NFκB signalling pathway, a key negative feedback regulator is IκBα. We show here that, contrary to current understanding, NFκB-inducible expression is not sufficient for providing effective negative feedback. We then employ computational simulations of NFκB signalling to identify IκBα molecular properties that are critical for proper negative feedback control and test the resulting predictions in biochemical and single-cell live-imaging studies. We identified nuclear import and nuclear export of IκBα and the IκBα-NFκB complex, as well as the free IκBα half-life, as key determinants of post-induction repression of NFκB and the potential for subsequent reactivation. Our work emphasizes that negative feedback is an emergent systems property determined by multiple molecular and biophysical properties in addition to the required 'activator-induced inhibitor' relationship.
Collapse
Affiliation(s)
- Riku Fagerlund
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marcelo Behar
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen T Fortmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Y Eason Lin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Jesse D Vargas
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Analysis of the activation routes induced by different metal oxide nanoparticles on human lung epithelial cells. Future Sci OA 2016; 2:FSO118. [PMID: 28031965 PMCID: PMC5137956 DOI: 10.4155/fso.16.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/08/2016] [Indexed: 11/17/2022] Open
Abstract
Nanoparticles (Nps) can induce toxicity in the lung by accidental or intentional exposure. The main objective of the study reported here was to characterize the effect that four metal oxide Nps (CeO2, TiO2, Al2O3 and ZnO) had at the cellular level on a human lung epithelial cell line. This goal was achieved by studying the capacity of the Nps to activate the main mitogen-activated protein kinases (MAPKs) and the nuclear factor NFκB. Only ZnO Nps were able to activate all of the MAPKs and the release of Zn2+ ions was the main cause of activation. ZnO and Al2O3 Nps activated the NFκB pathway and induced the release of inflammatory cytokines. CeO2 and TiO2 Nps were found to have safer profiles.
The graphical abstract was obtained using Servier Medical Art. Lay abstract: When cells are exposed to a stimulus, they can activate different signaling pathways and these lead to different responses such as proliferation, differentiation, migration or inflammation. The objective of the work described here was to characterize the effects of several metal oxide nanoparticles at the cellular level by studying their capacity to activate the main mitogen-activated protein kinases (MAPKs) and the expression of the transcription factor NFκB on a human lung epithelial cell line. These signaling proteins play a relevant role in the vast majority of the cellular events that are triggered in eukaryotic cells after any stimulus.
Collapse
|
40
|
Lian H, Zheng H. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer's disease. J Neurochem 2016; 136:475-91. [PMID: 26546579 PMCID: PMC4720533 DOI: 10.1111/jnc.13424] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Astrocytes are the most abundant cells in the central nervous system. They play critical roles in neuronal homeostasis through their physical properties and neuron-glia signaling pathways. Astrocytes become reactive in response to neuronal injury and this process, referred to as reactive astrogliosis, is a common feature accompanying neurodegenerative conditions, particularly Alzheimer's disease. Reactive astrogliosis represents a continuum of pathobiological processes and is associated with morphological, functional, and gene expression changes of varying degrees. There has been a substantial growth of knowledge regarding the signaling pathways regulating glial biology and pathophysiology in recent years. Here, we attempt to provide an unbiased review of some of the well-known players, namely calcium, proteoglycan, transforming growth factor β, NFκB, and complement, in mediating neuron-glia interaction under physiological conditions as well as in Alzheimer's disease. This review discusses the role of astrocytic NFκB and calcium as well as astroglial secreted factors, including proteoglycans, TGFβ, and complement in mediating neuronal function and AD pathogenesis through direct interaction with neurons and through cooperation with microglia.
Collapse
Affiliation(s)
- Hong Lian
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Neuroscience, Xiamen University College of Medicine, Xiamen, Fujian 361102, China
| |
Collapse
|
41
|
Geng P, Ou J, Li J, Liao Y, Wang N, Sa R, Xiang L, Liang H. Genetic Association Between NFKBIA -881A>G Polymorphism and Cancer Susceptibility. Medicine (Baltimore) 2015; 94:e1024. [PMID: 26252270 PMCID: PMC4616602 DOI: 10.1097/md.0000000000001024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Several epidemiological studies have focused on the role of nuclear factor-kappa-B inhibitor-alpha (NFKBIA) -881 A>G polymorphism in cancer susceptibility. However, the published data have led to contentious results. This study was designed to examine the association between -881 A>G polymorphism and cancer risk.Comprehensive search of PubMed, Web of science and Embase, identified a total of 5 case-control studies. To assess the association, comparison among all subjects plus subgroup analysis by ethnicity was performed and odds ratio (OR) along with 95% confidence interval (CI) was calculated with the fixed-effect model or the random-effects model dependent on the heterogeneity.The pooling data consisting of 1965 cancer cases and 2717 cancer-free controls demonstrated no significant association with overall cancer risk. However, the subgroup of Asian populations showed statistical evidence for an increase in risk of cancer (GG vs. AA, OR, 2.14; 95% CI, 1.03-4.46; GG + GA vs. AA, OR, 1.22; 95% CI, 1.01-1.47; GG vs. GA + AA, OR, 2.09; 95% CI, 1.01-4.34).This investigation on the association of -881 A>G polymorphism and cancer susceptibility reveals that -881 A>G polymorphism may act as a candidate for cancer development in Asian populations.
Collapse
Affiliation(s)
- Peiliang Geng
- From the Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Arslan S, Korkmaz Ö, Özbilüm N, Berkan Ö. Association between NF-κBI and NF-κBIA polymorphisms and coronary artery disease. Biomed Rep 2015; 3:736-740. [PMID: 26405555 DOI: 10.3892/br.2015.499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of fatalities worldwide. Nuclear factor (NF)-κB is a transcription factor that controls cell proliferation, differentiation and immunity. To the best of our knowledge, the present study is the first investigation of the association between CAD and NF-κB1 -94 W/D/NF-κBIA 3'-untranslated region (3'-UTR) A→G polymorphisms. The study population comprised 226 CAD patients and 201 controls. There was no significant difference in NF-κB1A 3'-UTR A→G in the allele and genotype frequencies between case and control populations. The D allele frequency of NF-κB1 -94 in the case group was significantly higher compared to the control group (P=0.028, odds ratio=1.37). The genotype frequency of NF-κB1 -94 DD in the case group was significantly higher compared to the controls (P=0.028). Linkage analysis showed a close linkage among these 2 genes (P<0.001 for case and control), and AD and GD haplotypes were associated with CAD (P<0.001; P=0.015, respectively). NF-κB1 -94 DD genotype can be a significant risk factor for the development of CAD.
Collapse
Affiliation(s)
- Serdal Arslan
- Department of Medical Biology, Cumhuriyet University, 58140 Sivas, Turkey
| | - Özge Korkmaz
- Department of Cardiovascular Surgery, Faculty of Medicine, Cumhuriyet University, 58140 Sivas, Turkey
| | - Nil Özbilüm
- Department of Molecular Biology and Genetics, Faculty of Science, Cumhuriyet University, 58140 Sivas, Turkey
| | - Öcal Berkan
- Department of Cardiovascular Surgery, Faculty of Medicine, Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
43
|
Widel M, Lalik A, Krzywon A, Poleszczuk J, Fujarewicz K, Rzeszowska-Wolny J. The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status. Mutat Res 2015; 778:61-70. [PMID: 26099456 DOI: 10.1016/j.mrfmmm.2015.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/15/2015] [Accepted: 06/07/2015] [Indexed: 01/18/2023]
Abstract
Radiation-induced bystander effect, appearing as different biological changes in cells that are not directly exposed to ionizing radiation but are under the influence of molecular signals secreted by irradiated neighbors, have recently attracted considerable interest due to their possible implication for radiotherapy. However, various cells present diverse radiosensitivity and bystander responses that depend, inter alia, on genetic status including TP53, the gene controlling the cell cycle, DNA repair and apoptosis. Here we compared the ionizing radiation and bystander responses of human colorectal carcinoma HCT116 cells with wild type or knockout TP53 using a transwell co-culture system. The viability of exposed to X-rays (0-8 Gy) and bystander cells of both lines showed a roughly comparable decline with increasing dose. The frequency of micronuclei was also comparable at lower doses but at higher increased considerably, especially in bystander TP53-/- cells. Moreover, the TP53-/- cells showed a significantly elevated frequency of apoptosis, while TP53+/+ counterparts expressed high level of senescence. The cross-matched experiments where irradiated cells of one line were co-cultured with non-irradiated cells of opposite line show that both cell lines were also able to induce bystander effects in their counterparts, however different endpoints revealed with different strength. Potential mediators of bystander effects, IL-6 and IL-8, were also generated differently in both lines. The knockout cells secreted IL-6 at lower doses whereas wild type cells only at higher doses. Secretion of IL-8 by TP53-/- control cells was many times lower than that by TP53+/+ but increased significantly after irradiation. Transcription of the NFκBIA was induced in irradiated TP53+/+ mainly, but in bystanders a higher level was observed in TP53-/- cells, suggesting that TP53 is required for induction of NFκB pathway after irradiation but another mechanism of activation must operate in bystander cells.
Collapse
Affiliation(s)
- Maria Widel
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland.
| | - Anna Lalik
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| | - Aleksandra Krzywon
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| | - Jan Poleszczuk
- College of Inter-faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 93 Zwirki i Wigury Street, 02-089 Warsaw, Poland; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Krzysztof Fujarewicz
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| | - Joanna Rzeszowska-Wolny
- Biosystems Group, Institute of Automatic Control, Silesian University of Technology, 16 Akademicka Street, 44-100 Gliwice, Poland
| |
Collapse
|
44
|
Lian H, Yang L, Cole A, Sun L, Chiang ACA, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL, Lu HC, Zheng H. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron 2014; 85:101-115. [PMID: 25533482 DOI: 10.1016/j.neuron.2014.11.018] [Citation(s) in RCA: 484] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 11/26/2022]
Abstract
Abnormal NFκB activation has been implicated in Alzheimer's disease (AD). However, the signaling pathways governing NFκB regulation and function in the brain are poorly understood. We identify complement protein C3 as an astroglial target of NFκB and show that C3 release acts through neuronal C3aR to disrupt dendritic morphology and network function. Exposure to Aβ activates astroglial NFκB and C3 release, consistent with the high levels of C3 expression in brain tissue from AD patients and APP transgenic mice, where C3aR antagonist treatment rescues cognitive impairment. Therefore, dysregulation of neuron-glia interaction through NFκB/C3/C3aR signaling may contribute to synaptic dysfunction in AD, and C3aR antagonists may be therapeutically beneficial.
Collapse
Affiliation(s)
- Hong Lian
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Houston, TX 77030, USA
| | - Li Yang
- Huffington Center on Aging, Houston, TX 77030, USA
| | - Allysa Cole
- Huffington Center on Aging, Houston, TX 77030, USA
| | - Lu Sun
- Huffington Center on Aging, Houston, TX 77030, USA
| | - Angie C-A Chiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephanie W Fowler
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David J Shim
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Giulio Taglialatela
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joanna L Jankowsky
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Chen Lu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine and the Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Zhao Z, Zhong X, Wu T, Yang T, Chen G, Xie X, Wei Y, Ye M, Zhou Y, Du Z. Identification of a NFKBIA polymorphism associated with lower NFKBIA protein levels and poor survival outcomes in patients with glioblastoma multiforme. Int J Mol Med 2014; 34:1233-40. [PMID: 25215581 PMCID: PMC4199416 DOI: 10.3892/ijmm.2014.1932] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/29/2014] [Indexed: 01/25/2023] Open
Abstract
The aberrant constitutive activation of nuclear factor-κB (NF-κB) has been observed in glioblastomas, while NF-κB inhibitor alpha (NFKBIA) inhibits the NF-κB signaling pathway under several physiological processes. However, the contribution of NFKBIA to glioblastomas is poorly understood. In the present study, using gene sequencing, we identified rs1957106 as a novel single nucleotide polymorphism (SNP) in NFKBIA in glioblastoma and found that it was more frequently present in glioblastoma patients. In addition, we examined the association between different genotypes of the rs1957106 SNP of NFKBIA and the gene copy number, mRNA level and protein expression of NFKBIA. The SNP rs1957106 CT and TT genotypes were found to be associated with lower NFKBIA protein levels and a poor prognosis of pateints with glioblastoma. Hence, by identifying rs1957106 as a novel SNP in NFKBIA in glioblastoma patients, we provide a new platform for further investigating the function of NFKBIA in the pathobiology of glioblastoma.
Collapse
Affiliation(s)
- Zhaohui Zhao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xingming Zhong
- Department of Neurosurgery, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Tinfeng Wu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Tianquan Yang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guilin Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xueshun Xie
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yongxin Wei
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ming Ye
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Youxin Zhou
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ziwei Du
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
46
|
Interferon-stimulated gene, 15 kDa (ISG15) in ovarian high-grade serous carcinoma: prognostic impact and link to NF-κB pathway. Int J Gynecol Pathol 2014; 33:16-22. [PMID: 24300530 DOI: 10.1097/pgp.0b013e31827b25a2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ubiquitin-like protein interferon-stimulated gene, 15 kDa (ISG15) plays an ambiguous role in the progression and response to chemotherapy of solid cancers. We aimed to investigate the prognostic impact of ISG15 and its link to the nuclear factor κB pathway in ovarian high-grade serous carcinoma. Immunohistochemistry was performed in a cohort of 128 primary ovarian high-grade serous carcinomas treated with standard surgery and adjuvant chemotherapy using tissue microarrays. In addition, 28 matched relapsed carcinomas were investigated. ISG15 protein expression was significantly increased in relapsed carcinomas as compared to primary tumors (P=0.027). In primary carcinoma, ISG15 was positively associated with total inhibitor of κB α (IκBα) (P=0.001) as well as nuclear and cytoplasmic phospho-IκBα (p-IκBα) expression (P=0.039 and P=0.002, respectively). Patients with ISG15-positive carcinomas had a significantly longer overall survival in univariate analysis (P=0.002), and in multivariate analysis [hazard ratio=0.35 (95% confidence interval, 0.14-0.84, P=0.019)]. ISG15 is a potential prognostic marker in high-grade serous carcinoma of the ovary. Its impact on survival might be explained by its tight link to the nuclear factor κB pathway, and the further evaluation of the interplay between ISGylation machinery and nuclear factor κB, particularly with regard to response to chemotherapy, would be desirable.
Collapse
|
47
|
Valenzuela-Muñoz V, Gallardo-Escárate C. Molecular cloning and expression of IRAK-4, IL-17 and I-κB genes in Haliotis rufescens challenged with Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2014; 36:503-509. [PMID: 24398261 DOI: 10.1016/j.fsi.2013.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
The candidate genes interleukin-1 receptor associated kinase 4 (IRAK-4), Interleukin 17 (IL-17) and Inhibitor of NF-κB (I-κB) were cloned and evaluated in Californian abalone (Haliotis rufescens) hemocytes in response to Vibrio anguillarum. Molecular characterization evidenced that HrI-κB has a full cDNA sequence of 3027 bp with an encoding region of 401 amino acids (aa), HrIRAK-4 comprised 1969 bp that encoded for 516 aa, and Hr-IL17 had a full sequence of 806 bp encoding for 165 aa. qPCR analysis showed the higher constitutive expression level of Hr-IL17 in hemocytes; meanwhile Hr-IκB and Hr-IRAK4 gene expression levels were higher in gills and mantle. The assessment of gene expression in hemocytes after infection with V. anguillarum evidences the immune responses of Hr-IκB, Hr-IRAK4, and Hr-IL17 and their relationships through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|
48
|
Kragh CL, Gysbers AM, Rockenstein E, Murphy K, Halliday GM, Masliah E, Jensen PH. Prodegenerative IκBα expression in oligodendroglial α-synuclein models of multiple system atrophy. Neurobiol Dis 2013; 63:171-83. [PMID: 24361600 DOI: 10.1016/j.nbd.2013.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/04/2013] [Indexed: 12/11/2022] Open
Abstract
Multiple system atrophy is a progressive, neurodegenerative disease characterized by parkinsonism, ataxia, autonomic dysfunction, and accumulation of α-synuclein in oligodendrocytes. To understand how α-synuclein aggregates impact oligodendroglial homeostasis, we investigated an oligodendroglial cell model of α-synuclein dependent degeneration and identified responses linked to the NF-κB transcription factor stress system. Coexpression of human α-synuclein and the oligodendroglial protein p25α increased the expression of IκBα mRNA and protein early during the degenerative process and this was dependent on both aggregation and Ser129 phosphorylation of α-synuclein. This response was prodegenerative because blocking IκBα expression by siRNA rescued the cells. IκBα is an inhibitor of NF-κB and acts by binding and retaining NF-κB p65 in the cytoplasm. The protection obtained by silencing IκBα was accompanied by a strong increase in nuclear p65 translocation indicating that NF-κB activation protects against α-synuclein aggregate stress. In the cellular model, two different phenotypes were observed; degenerating cells retracting their microtubules and resilient cells tolerating the coexpression of α-synuclein and p25α. The resilient cells displayed a significant higher nuclear translocation of p65 and activation of the NF-κB system relied on stress elicited by aggregated and Ser129 phosphorylated α-synuclein. To validate the relationship between oligodendroglial α-synuclein expression and IκBα, we analyzed two different lines of transgenic mice expressing human α-synuclein under the control of the oligodendrocytic MBP promotor (intermediate-expresser line 1 and high-expresser line 29). IκBα mRNA expression was increased in both lines and immunofluorescence microscopy and in situ hybridization revealed that IκBα mRNA and protein is expressed in oligodendrocytes. IκBα mRNA expression was demonstrated prior to activation of microglia and astrocytes in line 1. Human brain tissue affected by MSA displayed increased expression of IκBα and NF-κB p65 in some oligodendrocytes containing glial cytoplasmic inclusions. Our data suggest that oligodendroglial IκBα expression and NF-κB are activated early in the course of MSA and their balance contributes to the decision of cellular demise. Favoring oligodendroglial NF-κB activation may represent a therapeutic strategy for this devastating disease.
Collapse
Affiliation(s)
- Christine L Kragh
- Department of Biomedicine & Danish Research Institute of Translational Neuroscience-DANDRITE, University of Aarhus, Aarhus, Denmark
| | - Amanda M Gysbers
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Edward Rockenstein
- Department of Neurosciences and Pathology, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0624, USA
| | - Karen Murphy
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Glenda M Halliday
- Neuroscience Research Australia, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Eliezer Masliah
- Department of Neurosciences and Pathology, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0624, USA
| | - Poul Henning Jensen
- Department of Biomedicine & Danish Research Institute of Translational Neuroscience-DANDRITE, University of Aarhus, Aarhus, Denmark.
| |
Collapse
|
49
|
Islam S, Hassan F, Mu MM, Ito H, Koide N, Mori I, Yoshida T, Yokochi T. Piceatannol Prevents Lipopolysaccharide (LPS)-Induced Nitric Oxide (NO) Production and Nuclear Factor (NF)-κB Activation by Inhibiting IκB Kinase (IKK). Microbiol Immunol 2013; 48:729-36. [PMID: 15502405 DOI: 10.1111/j.1348-0421.2004.tb03598.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of piceatannol on lipopolysaccharide (LPS)-induced nitric oxide (NO) production was examined. Piceatannol significantly inhibited NO production in LPS-stimulated RAW 264.7 cells. The inhibition was due to the reduced expression of an inducible isoform of NO synthase (iNOS). The inhibitory effect of piceatannol was mediated by down-regulation of LPS-induced nuclear factor (NF)-kappaB activation, but not by its cytotoxic action. Piceatannol inhibited IkappaB kinase (IKK)-alpha and beta phosphorylation, and subsequently IkappaB-alpha phosphorylation in LPS-stimulated RAW 264.7 cells. On the other hand, piceatannol did not affect activation of mitogen-activated protein (MAP) kinases including extracellular signal regulated kinase 1/2 (Erk1/2), p38 and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Piceatannol inhibited the phosphorylation of Akt and Raf-1 molecules, which regulated the activation of IKK-alpha and beta phosphorylation. The detailed mechanism of the inhibition of LPS-induced NO production by piceatannol is discussed.
Collapse
Affiliation(s)
- Shamima Islam
- Department of Microbiology and Immunology and Research Center for Infectious Disease, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|