1
|
Bashkirov PV, Kuzmin PI, Chekashkina K, Arrasate P, Vera Lillo J, Shnyrova AV, Frolov VA. Reconstitution and real-time quantification of membrane remodeling by single proteins and protein complexes. Nat Protoc 2020; 15:2443-2469. [PMID: 32591769 PMCID: PMC10839814 DOI: 10.1038/s41596-020-0337-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023]
Abstract
Cellular membrane processes, from signal transduction to membrane fusion and fission, depend on acute membrane deformations produced by small and short-lived protein complexes working in conditions far from equilibrium. Real-time monitoring and quantitative assessment of such deformations are challenging; hence, mechanistic analyses of the protein action are commonly based on ensemble averaging, which masks important mechanistic details of the action. In this protocol, we describe how to reconstruct and quantify membrane remodeling by individual proteins and small protein complexes in vitro, using an ultra-short (80- to 400-nm) lipid nanotube (usNT) template. We use the luminal conductance of the usNT as the real-time reporter of the protein interaction(s) with the usNT. We explain how to make and calibrate the usNT template to achieve subnanometer precision in the geometrical assessment of the molecular footprints on the nanotube membrane. We next demonstrate how membrane deformations driven by purified proteins implicated in cellular membrane remodeling can be analyzed at a single-molecule level. The preparation of one usNT takes ~1 h, and the shortest procedure yielding the basic geometrical parameters of a small protein complex takes 10 h.
Collapse
Affiliation(s)
- Pavel V Bashkirov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia.
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudnyy, Russia.
| | - Peter I Kuzmin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia Chekashkina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia
| | - Pedro Arrasate
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Javier Vera Lillo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Anna V Shnyrova
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain.
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Bashkirov PV, Chekashkina KV, Shnyrova AV, Frolov VA. Electrophysiological Methods for Detection of Membrane Leakage and Hemifission by Dynamin 1. Methods Mol Biol 2020; 2159:141-162. [PMID: 32529369 DOI: 10.1007/978-1-0716-0676-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane fusion and fission are indispensable parts of intracellular membrane recycling and transport. Electrophysiological techniques have been instrumental in discovering and studying fusion and fission pores, the key intermediates shared by both processes. In cells, electrical admittance measurements are used to assess in real time the dynamics of the pore conductance, reflecting the nanoscale transformations of the pore, simultaneously with membrane leakage. Here, we described how this technique is adapted to in vitro mechanistic analyses of membrane fission by dynamin 1 (Dyn1), the protein orchestrating membrane fission in endocytosis. We reconstitute the fission reaction using purified Dyn1 and biomimetic lipid membrane nanotubes of defined geometry. We provide a comprehensive protocol describing simultaneous measurements of the ionic conductance through the nanotube lumen and across the nanotube wall, enabling spatiotemporal correlation between the nanotube constriction by Dyn1, leading to fission and membrane leakage. We present examples of "leaky" and "tight" fission reactions, specify the resolution limits of our method, and discuss how our results support the hemi-fission conjecture.
Collapse
Affiliation(s)
- Pavel V Bashkirov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia V Chekashkina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Shnyrova
- Department of Biochemistry and Molecular Biology, Biophysics Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
| | - Vadim A Frolov
- Department of Biochemistry and Molecular Biology, Biophysics Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Varga KT, Jiang Z, Gong LW. Methods for cell-attached capacitance measurements in mouse adrenal chromaffin cell. J Vis Exp 2014:e52024. [PMID: 25408421 DOI: 10.3791/52024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuronal transmission is an integral part of cellular communication within the brain. Depolarization of the presynaptic membrane leads to vesicle fusion known as exocytosis that mediates synaptic transmission. Subsequent retrieval of synaptic vesicles is necessary to generate new neurotransmitter-filled vesicles in a process identified as endocytosis. During exocytosis, fusing vesicle membranes will result in an increase in surface area and subsequent endocytosis results in a decrease in the surface area. Here, our lab demonstrates a basic introduction to cell-attached capacitance recordings of single endocytic events in the mouse adrenal chromaffin cell. This type of electrical recording is useful for high-resolution recordings of exocytosis and endocytosis at the single vesicle level. While this technique can detect both vesicle exocytosis and endocytosis, the focus of our lab is vesicle endocytosis. Moreover, this technique allows us to analyze the kinetics of single endocytic events. Here the methods for mouse adrenal gland tissue dissection, chromaffin cell culture, basic cell-attached techniques, and subsequent examples of individual traces measuring singular endocytic event are described.
Collapse
Affiliation(s)
- Kelly T Varga
- Department of Biological Sciences, University of Illinois at Chicago
| | - Zhongjiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago;
| |
Collapse
|
4
|
Flores JA, Balseiro-Gomez S, Cabeza JM, Acosta J, Ramirez-Ponce P, Ales E. A new role for myosin II in vesicle fission. PLoS One 2014; 9:e100757. [PMID: 24959909 PMCID: PMC4069105 DOI: 10.1371/journal.pone.0100757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis.
Collapse
Affiliation(s)
- Juan A. Flores
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Santiago Balseiro-Gomez
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jose M. Cabeza
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jorge Acosta
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Pilar Ramirez-Ponce
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Eva Ales
- Dpto. Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
Bulk endocytosis at neuronal synapses. SCIENCE CHINA-LIFE SCIENCES 2014; 57:378-83. [DOI: 10.1007/s11427-014-4636-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/24/2014] [Indexed: 12/16/2022]
|
6
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Actin polymerization does not provide direct mechanical forces for vesicle fission during clathrin-mediated endocytosis. J Neurosci 2013; 33:15793-8. [PMID: 24089486 DOI: 10.1523/jneurosci.2171-13.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Actin polymerization is important for vesicle fission during clathrin-mediated endocytosis (CME), and it has been proposed that actin polymerization may promote vesicle fission during CME by providing direct mechanical forces. However, there is no direct evidence in support of this hypothesis. In the present study, the role of actin polymerization in vesicle fission was tested by analyzing the kinetics of the endocytic tubular membrane neck (the fission-pore) with cell-attached capacitance measurements to detect CME of single vesicles in a millisecond time resolution in mouse chromaffin cells. Inhibition in dynamin GTPase activity increased the fission-pore conductance (Gp), supporting the mechanical role of dynamin GTPase in vesicle fission. However, disruptions in actin polymerization did not alter the fission-pore conductance Gp, thus arguing against the force-generating role of actin polymerization in vesicle fission during CME. Similar to disruptions of actin polymerization, cholesterol depletion results in an increase in the fission-pore duration, indicating a role for cholesterol-dependent membrane reorganization in vesicle fission. Further experiments suggested that actin polymerization and cholesterol might function in vesicle fission during CME in the same pathway. Our results thus support a model in which actin polymerization promotes vesicle fission during CME by inducing cholesterol-dependent membrane reorganization.
Collapse
|
8
|
Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 2013; 76:301-31. [PMID: 24274740 DOI: 10.1146/annurev-physiol-021113-170305] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892; ,
| | | | | | | |
Collapse
|
9
|
Balletta A, Lorenz D, Rummel A, Gerhard R, Bigalke H, Wegner F. Human mast cell line-1 (HMC-1) cells exhibit a membrane capacitance increase when dialysed with high free-Ca(2+) and GTPγS containing intracellular solution. Eur J Pharmacol 2013; 720:227-36. [PMID: 24406507 DOI: 10.1016/j.ejphar.2013.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 10/04/2013] [Accepted: 10/16/2013] [Indexed: 01/17/2023]
Abstract
An increase in cytosolic free calcium concentration [Ca(2+)]i initiates the exocytotic activity in various types of secretory cells. The guanosine 5'-O-[3-thio]triphosphate (GTPγS), a non-hydrolysable analogue of GTP (guanosine 5'-triphosphate), is an effective secretagogue for different cell types of different species, like mast cells, neutrophils or eosinophils. Consequently, the internal administration of GTPγS causes degranulation of mouse and rat mast cells. Regarding rat mast cells, it is proved that Ca(2+) can cooperate with GTP or GTPγS in accelerating and increasing amplitude of the secretory response. All the previous studies with respect to capacitance recordings and mast cells were performed using mouse or rat mast cells, usually derived from peritoneum or the rat basophilic leukaemia cell line RBL. In this study, we applied the capacitance measurement technique to the human mast cell line-1 (HMC-1) cells, an immature cell line established from a patient with mast cell leukaemia. Patch-clamp dialysis experiments revealed that high intracellular free Ca(2+) and GTPγS concentrations are both required for considerable capacitance increases in HMC-1 cells. During degranulation of HMC-1 cells, the total membrane capacitance (Cm) increase appeared continuously and, in some cases, as a discrete capacitance change, developing in a stepwise manner. Then, we tested the effect of latrunculin B upon HMC-1 cell capacitance increase as well as of some classic mast cell stimulators like PMA, A23187 and IL-1β in hexosaminidase release. Finally, we could conclude that the HMC-1 cell line represents a suitable model for the study of human mast cell degranulation.
Collapse
Affiliation(s)
- Andrea Balletta
- Department of Toxicology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany; Department of Neurology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany.
| | - Dorothea Lorenz
- Department of Cellular Imaging and Electron Microscopy, Leibniz Institute of Molecular Pharmacology, Robert Rössle Str. 10, 13125 Berlin, Germany.
| | - Andreas Rummel
- Department of Toxicology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany.
| | - Ralf Gerhard
- Department of Toxicology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany.
| | - Hans Bigalke
- Department of Toxicology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany.
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
10
|
Cabeza JM, Acosta J, Alés E. Mechanisms of granule membrane recapture following exocytosis in intact mast cells. J Biol Chem 2013; 288:20293-305. [PMID: 23709219 DOI: 10.1074/jbc.m113.459065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified "large-capacitance flickers" that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent "compound cavicapture," most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event.
Collapse
Affiliation(s)
- Jose M Cabeza
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | | | | |
Collapse
|
11
|
Kabaso D, Jorgačevski J, Calejo AI, Flašker A, Guček A, Kreft M, Zorec R. Comparison of unitary exocytic events in pituitary lactotrophs and in astrocytes: modeling the discrete open fusion-pore states. Front Cell Neurosci 2013; 7:33. [PMID: 23576951 PMCID: PMC3616249 DOI: 10.3389/fncel.2013.00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/14/2013] [Indexed: 11/13/2022] Open
Abstract
In regulated exocytosis the merger between the vesicle and the plasma membranes leads to the formation of an aqueous channel (a fusion-pore), through which vesicular secretions exit into the extracellular space. A fusion pore was thought to be a short-lived intermediate preceding full-fusion of the vesicle and the plasma membranes (full-fusion exocytosis). However, transient exocytic events were also observed, where the fusion-pore opens and closes, repetitively. Here we asked whether there are different discrete states of the open fusion-pore. Unitary exocytic events were recorded by the high-resolution cell-attached patch-clamp method in pituitary lactotrophs and brain astrocytes. We monitored reversible unitary exocytic events, characterized by an on-step, which is followed by an off-step in membrane capacitance (Cm), a parameter linearly related to the membrane area. The results revealed three categories of reversible exocytic events (transient fusion-pore openings), which do not end with the complete integration of the vesicle membrane into the plasma membrane. These were categorized according to the observed differences in the amplitude and sign of the change in the real (Re) parts of the admittance signals: in case I events (Re ≈ 0) fusion pores are relatively wide; in case II (Re > 0) and case III (Re < 0) events fusion pores are relatively narrow. We show that case III events are more likely to occur for small vesicles, whereas, case II events are more likely to occur for larger vesicles. Case III events were considerably more frequent in astrocytes than in lactotrophs.
Collapse
Affiliation(s)
- Doron Kabaso
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana Ljubljana, Slovenia ; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The role of Ca²⁺ in synaptic vesicle endocytosis remains uncertain due to the diversity in various preparations where several forms of endocytosis may contribute variably in different conditions. Although recent studies have demonstrated that Ca²⁺ is important for clathrin-mediated endocytosis (CME), the mechanistic role of Ca²⁺ in CME remains to be elucidated. By monitoring CME of single vesicles in mouse chromaffin cells with cell-attached capacitance measurements that offer millisecond time resolution, we demonstrate that the dynamics of vesicle fission during CME is Ca²⁺ dependent but becomes Ca²⁺ independent in synaptotagmin 1 (Syt1) knock-out cells. Our results thus suggest that Syt1 is necessary for the Ca²⁺ dependence of CME.
Collapse
|
13
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lariccia V, Fine M, Magi S, Lin MJ, Yaradanakul A, Llaguno MC, Hilgemann DW. Massive calcium-activated endocytosis without involvement of classical endocytic proteins. ACTA ACUST UNITED AC 2011; 137:111-32. [PMID: 21187336 PMCID: PMC3010057 DOI: 10.1085/jgp.201010468] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe rapid massive endocytosis (MEND) of >50% of the plasmalemma in baby hamster kidney (BHK) and HEK293 cells in response to large Ca transients. Constitutively expressed Na/Ca exchangers (NCX1) are used to generate Ca transients, whereas capacitance recording and a membrane tracer dye, FM 4–64, are used to monitor endocytosis. With high cytoplasmic adenosine triphosphate (ATP; >5 mM), Ca influx causes exocytosis followed by MEND. Without ATP, Ca transients cause only exocytosis. MEND can then be initiated by pipette perfusion of ATP, and multiple results indicate that ATP acts via phosphatidylinositol-bis 4,5-phosphate (PIP2) synthesis: PIP2 substitutes for ATP to induce MEND. ATP-activated MEND is blocked by an inositol 5-phosphatase and by guanosine 5′-[γ-thio]triphosphate (GTPγS). Block by GTPγS is overcome by the phospholipase C inhibitor, U73122, and PIP2 induces MEND in the presence of GTPγS. MEND can occur in the absence of ATP and PIP2 when cytoplasmic free Ca is clamped to 10 µM or more by Ca-buffered solutions. ATP-independent MEND occurs within seconds during Ca transients when cytoplasmic solutions contain polyamines (e.g., spermidine) or the membrane is enriched in cholesterol. Although PIP2 and cholesterol can induce MEND minutes after Ca transients have subsided, polyamines must be present during Ca transients. MEND can reverse over minutes in an ATP-dependent fashion. It is blocked by brief β-methylcyclodextrin treatments, and tests for involvement of clathrin, dynamins, calcineurin, and actin cytoskeleton were negative. Therefore, we turned to the roles of lipids. Bacterial sphingomyelinases (SMases) cause similar MEND responses within seconds, suggesting that ceramide may be important. However, Ca-activated MEND is not blocked by reagents that inhibit SMases. MEND is abolished by the alkylating phospholipase A2 inhibitor, bromoenol lactone, whereas exocytosis remains robust, and Ca influx causes MEND in cardiac myocytes without preceding exocytosis. Thus, exocytosis is not prerequisite for MEND. From these results and two companion studies, we suggest that Ca promotes the formation of membrane domains that spontaneously vesiculate to the cytoplasmic side.
Collapse
Affiliation(s)
- Vincenzo Lariccia
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Cabeza JM, Acosta J, Alés E. Dynamics and regulation of endocytotic fission pores: role of calcium and dynamin. Traffic 2010; 11:1579-90. [PMID: 20840456 DOI: 10.1111/j.1600-0854.2010.01120.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although endocytosis involves the fission pore, a transient structure that produces the scission between vesicle and plasma membranes, the dimensions and dynamics of fission pores remain unclear. Here we report that the pore resistance changes proceed in three distinct phases: an initial phase where the resistance increases at 31.7 ± 2.9 GΩ/second, a slower linear phase with an overall slope of 11.7 ± 1.9 GΩ/second and a final increase in resistance more steeply (1189 ± 136 GΩ/second). The kinetics of these changes was calcium dependent. These sequential stages of the fission pore may be interpreted in terms of pore geometry as changes, first in pore diameter and then in pore length, according to which, before fission, the pore diameter consistently decreased to a value near 4 nm, whereas the pore length ranged between 20 and 300 nm. Dynamin, a mechanochemical GTPase, plays an important role in accelerating the fission event, preferentially in endocytotic vesicles of regular size, by increasing the rates of pore closure during the first and second phases of the fission pore, but hardly affected larger and longer-lived endocytotic events. These results suggest that fission pores are dynamic structures that form thin and long membrane necks regulated by intracellular calcium. Between calcium mediators, dynamin functions as a catalyst to increase the speed of single vesicle endocytosis.
Collapse
Affiliation(s)
- José María Cabeza
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Av. Sánchez Pizjuán 4, 41009 Sevilla, Spain
| | | | | |
Collapse
|
16
|
Plattner H. Membrane Trafficking in Protozoa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:79-184. [DOI: 10.1016/s1937-6448(10)80003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Kosterin P, Obaid A, Salzberg B. Long-lasting intrinsic optical changes observed in the neurointermediate lobe of the mouse pituitary reflect volume changes in cells of the pars intermedia. Neuroendocrinology 2010; 92:158-67. [PMID: 20551618 PMCID: PMC3214829 DOI: 10.1159/000314619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 03/30/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Complex intrinsic optical changes (light scattering) are readily observed in the neurointermediate lobe of the mouse pituitary gland following electrical stimulation of the infundibular stalk. Our laboratory has previously identified three distinct phases within the light scattering signal: two rapid responses to action potential stimulation and a long duration recovery. The rapid light scattering signals, restricted to the neurohypophysial portion (posterior pituitary) of the neurointermediate lobe, consist of an E-wave and an S-wave that reflect excitation and secretion, respectively. The E-wave has the approximate shape of the action potential and includes voltage- and current-related components and is independent of Ca(2+) entry. The S-wave is related to Ca(2+) entry and exocytosis. The slow recovery phase of the light scattering signal, which we designated the R-wave, is less well characterized. METHODS Using high temporal resolution light scattering measurements, we monitored intrinsic optical changes in the neurointermediate lobe of the mouse pituitary gland. Pharmacological interventions during the measurements were employed. RESULTS The data presented here provide optical and pharmacological evidence suggesting that the R-wave, which comprises signals from the posterior pituitary as well as from the pars intermedia, mirrors volume changes in pars intermedia cells following a train of stimuli applied to the infundibular stalk. These volume changes were blocked by the GABA-receptor antagonists bicuculline and picrotoxin, and were mimicked by direct application of GABA in the absence of electrical stimulation. CONCLUSIONS These results emphasize the importance of central GABAergic projections into the neurointermediate lobe, and the potential role of GABA in effecting hormone release from the pars intermedia.
Collapse
Affiliation(s)
- P. Kosterin
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pa., USA
| | - A.L. Obaid
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pa., USA
| | - B.M. Salzberg
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pa., USA
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pa., USA
- *Brian M. Salzberg, Department of Neuroscience, University of Pennsylvania School of Medicine, 234 Stemmler Hall, Philadelphia, PA 19104-6074 (USA), Tel. +1 215 898 2441, Fax +1 215 746 2758, E-Mail
| |
Collapse
|
18
|
Thiel G, Kreft M, Zorec R. Rhythmic Kinetics of Single Fusion and Fission in a Plant Cell Protoplast. Ann N Y Acad Sci 2009; 1152:1-6. [DOI: 10.1111/j.1749-6632.2008.03996.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Bashkirov PV, Akimov SA, Evseev AI, Schmid SL, Zimmerberg J, Frolov VA. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 2008; 135:1276-86. [PMID: 19084269 PMCID: PMC2768395 DOI: 10.1016/j.cell.2008.11.028] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 09/02/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
The GTPase dynamin is critically involved in membrane fission during endocytosis. How does dynamin use the energy of GTP hydrolysis for membrane remodeling? By monitoring the ionic permeability through lipid nanotubes (NT), we found that dynamin was capable of squeezing NT to extremely small radii, depending on the NT lipid composition. However, long dynamin scaffolds did not produce fission: instead, fission followed GTPase-dependent cycles of assembly and disassembly of short dynamin scaffolds and involved a stochastic process dependent on the curvature stress imposed by dynamin. Fission happened spontaneously upon NT release from the scaffold, without leakage. Our calculations revealed that local narrowing of NT could induce cooperative lipid tilting, leading to self-merger of the inner monolayer of NT (hemifission), consistent with the absence of leakage. We propose that dynamin transmits GTP's energy to periodic assembling of a limited curvature scaffold that brings lipids to an unstable intermediate.
Collapse
Affiliation(s)
- Pavel V. Bashkirov
- Program on Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD 20892-1855, USA
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergey A. Akimov
- Program on Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD 20892-1855, USA
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey I. Evseev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sandra L. Schmid
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Joshua Zimmerberg
- Program on Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD 20892-1855, USA
| | - Vadim A. Frolov
- Program on Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD 20892-1855, USA
| |
Collapse
|
20
|
Selective saturation of slow endocytosis at a giant glutamatergic central synapse lacking dynamin 1. Proc Natl Acad Sci U S A 2008; 105:17555-60. [PMID: 18987309 DOI: 10.1073/pnas.0809621105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exocytosis of synaptic vesicles is rapidly followed by compensatory plasma membrane endocytosis. The efficiency of endocytosis varies with experimental conditions, but the molecular basis for this control remains poorly understood. Here, the function of dynamin 1, the neuron-specific member of a family of GTPases implicated in vesicle fission, was investigated with high temporal resolution via membrane capacitance measurements at the calyx of Held, a giant glutamatergic synapse. Endocytosis at dynamin 1 KO calyces was the same as in wild type after weak stimuli, consistent with the nearly normal ultrastructure of mutant synapses. However, following stronger stimuli, the speed of slow endocytosis, but not of other forms of endocytosis, failed to scale with the increased endocytic load. Thus, high level expression of dynamin 1 is essential to allow the slow, clathrin-mediated endocytosis, which accounts for the bulk of the endocytic response, to operate efficiently over a wide range of activity.
Collapse
|
21
|
Shnyrova AV, Ayllon J, Mikhalyov II, Villar E, Zimmerberg J, Frolov VA. Vesicle formation by self-assembly of membrane-bound matrix proteins into a fluidlike budding domain. ACTA ACUST UNITED AC 2007; 179:627-33. [PMID: 18025300 PMCID: PMC2080896 DOI: 10.1083/jcb.200705062] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The shape of enveloped viruses depends critically on an internal protein matrix, yet it remains unclear how the matrix proteins control the geometry of the envelope membrane. We found that matrix proteins purified from Newcastle disease virus adsorb on a phospholipid bilayer and condense into fluidlike domains that cause membrane deformation and budding of spherical vesicles, as seen by fluorescent and electron microscopy. Measurements of the electrical admittance of the membrane resolved the gradual growth and rapid closure of a bud followed by its separation to form a free vesicle. The vesicle size distribution, confined by intrinsic curvature of budding domains, but broadened by their merger, matched the virus size distribution. Thus, matrix proteins implement domain-driven mechanism of budding, which suffices to control the shape of these proteolipid vesicles.
Collapse
Affiliation(s)
- Anna V Shnyrova
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
22
|
Wu W, Wu LG. Rapid bulk endocytosis and its kinetics of fission pore closure at a central synapse. Proc Natl Acad Sci U S A 2007; 104:10234-9. [PMID: 17551019 PMCID: PMC1891249 DOI: 10.1073/pnas.0611512104] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upon exocytosis, fused vesicles must be retrieved for recycling. One route of retrieval is to generate endosome-like structures, from which small vesicles bud off. Endosome-like structures are widely thought to be generated slowly ( approximately 1 min) from the plasma membrane, a process called bulk endocytosis. Although the concept of bulk endocytosis seems established, the kinetic evidence showing the instant of the bulk membrane fission at synapses is still missing. The present work provides this missing piece of evidence at a calyx-type synapse. We used the capacitance measurement technique, which offers a high time resolution ( approximately 1 ms) to resolve the fission process. The instant of bulk membrane fission was reflected as a brief downward capacitance shift (DCS) of approximately 20-500 fF (mean = 123 fF) with 10-90% decay time of approximately 30-500 ms. At least 8.6-11.0% of exocytosed vesicles were retrieved by DCSs. During a DCS, the decrease in the fission pore conductance was detected, from which we found that the fission pore diameter decreased at approximately 39 nm/s. This provided the measurement of the rate of fission during bulk endocytosis at synapses. The DCS frequency peaked (approximately equal to 0.021 Hz) in <10 s after stimulation and decayed with a half time <20 s, indicating that the time course of bulk endocytosis is much faster than previously estimated with low time-resolution techniques. Our results also suggest that bulk endocytosis was composed of two kinetically different steps: the DCS that reflected the fission process and the time between stimulation and the DCS, during which membrane invagination led to the fission pore formation.
Collapse
Affiliation(s)
- Wei Wu
- Synaptic Transmission Unit, National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, MD 20892
| | - Ling-Gang Wu
- Synaptic Transmission Unit, National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Building 35, Room 2B-1012, Bethesda, MD 20892
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Plattner H, Hentschel J. Sub-second cellular dynamics: time-resolved electron microscopy and functional correlation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:133-76. [PMID: 17178466 DOI: 10.1016/s0074-7696(06)55003-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Subcellular processes, from molecular events to organellar responses and cell movement, cover a broad scale in time and space. Clearly the extremes, such as ion channel activation are accessible only by electrophysiology, whereas numerous routine methods exist for relatively slow processes. However, many other processes, from a millisecond time scale on, can be "caught" only by methods providing appropriate time resolution. Fast freezing (cryofixation) is the method of choice in that case. In combination with follow-up methodologies appropriate for electron microscopic (EM) analysis, with all its variations, such technologies can also provide high spatial resolution. Such analyses may include, for example, freeze-fracturing for analyzing restructuring of membrane components, scanning EM and other standard EM techniques, as well as analytical EM analyses. The latter encompass energy-dispersive x-ray microanalysis and electron spectroscopic imaging, all applicable, for instance, to the second messenger, calcium. Most importantly, when conducted in parallel, such analyses can provide a structural background to the functional analyses, such as cyclic nucleotide formation or protein de- or rephosphorylation during cell stimulation. In sum, we discuss many examples of how it is practically possible to achieve strict function-structure correlations in the sub-second time range. We complement this review by discussing alternative methods currently available to analyze fast cellular phenomena occurring in the sub-second time range.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
24
|
MacDonald PE, Eliasson L, Rorsman P. Calcium increases endocytotic vesicle size and accelerates membrane fission in insulin-secreting INS-1 cells. J Cell Sci 2005; 118:5911-20. [PMID: 16317049 DOI: 10.1242/jcs.02685] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In many cells, endocytotic membrane retrieval is accelerated by Ca2+. The effect of Ca2+ on single endocytotic vesicles and fission pore kinetics was examined by measuring capacitance and conductance changes in small membrane patches of insulin-secreting INS-1 cells. In intact cells, elevation of Ca2+ by glucose stimulation induced a 1.8-fold increase in membrane internalisation. This surprisingly resulted from an increased unitary capacitance of endocytotic vesicles whereas the frequency of endocytosis was unaltered. This effect of glucose was prevented by inhibition of L- or R-type Ca2+ channels. Extracellular (pipette) Ca2+ was found to regulate endocytotic vesicle capacitance in a bimodal manner. Vesicle capacitance was increased at intermediate Ca2+ (2.6 mM), but not at high Ca2+ (10 mM). Similar results were obtained upon direct application of 100 nM and 0.5 mM Ca2+ to the intracellular surface of inside-out excised membrane patches, and in these experiments the increase in vesicle capacitance was prevented by the calcineurin inhibitor deltamethrin. Endocytotic fission pore kinetics were accelerated by Ca2+ in both the intact cells and isolated membrane patches; however, the effect in this case was neither bimodal nor deltamethrin sensitive. Membrane retrieval can therefore be upregulated by a Ca2+-dependent increase in endocytotic vesicle size and acceleration of membrane fission in insulin-secreting INS-1 cells.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Division of Diabetes, Metabolism and Endocrinology, Lund University, 221 84 Lund, Sweden.
| | | | | |
Collapse
|
25
|
Frolov VA, Lizunov VA, Dunina-Barkovskaya AY, Samsonov AV, Zimmerberg J. Shape bistability of a membrane neck: a toggle switch to control vesicle content release. Proc Natl Acad Sci U S A 2003; 100:8698-703. [PMID: 12857952 PMCID: PMC166375 DOI: 10.1073/pnas.1432962100] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Indexed: 11/18/2022] Open
Abstract
Shape dynamics and permeability of a membrane neck connecting a vesicle and plasma membrane are considered. The neck is modeled by a lipid membrane tubule extended between two parallel axisymmetric rings. Within a range of lengths, defined by system geometry and mechanical properties of the membrane, the tubule has two stable shapes: catenoidal microtubule and cylindrical nanotubule. The permeabilities of these two shapes, measured as ionic conductivity of the tubule interior, differ by up to four orders of magnitude. Near the critical length the transitions between the shapes occur within less than a millisecond. Theoretical estimates show that the shape switching is controlled by a single parameter, the tubule length. Thus the tubule connection can operate as a conductivity microswitch, toggling the release of vesicle content in such cellular processes as "kiss-and-run" exocytosis. In support of this notion, bistable behavior of membrane connections between vesicles and the cell plasma membrane in macrophages is demonstrated.
Collapse
Affiliation(s)
- Vadim A Frolov
- A. N. Frumkin Institute of Electrochemistry, Russian Academy of Science, Moscow 117071, Russia.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Regulated exocytosis of secretory granules or dense-core granules has been examined in many well-characterized cell types including neurons, neuroendocrine, endocrine, exocrine, and hemopoietic cells and also in other less well-studied cell types. Secretory granule exocytosis occurs through mechanisms with many aspects in common with synaptic vesicle exocytosis and most likely uses the same basic protein components. Despite the widespread expression and conservation of a core exocytotic machinery, many variations occur in the control of secretory granule exocytosis that are related to the specialized physiological role of particular cell types. In this review we describe the wide range of cell types in which regulated secretory granule exocytosis occurs and assess the evidence for the expression of the conserved fusion machinery in these cells. The signals that trigger and regulate exocytosis are reviewed. Aspects of the control of exocytosis that are specific for secretory granules compared with synaptic vesicles or for particular cell types are described and compared to define the range of accessory control mechanisms that exert their effects on the core exocytotic machinery.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, University of Liverpool, United Kingdom.
| | | |
Collapse
|
27
|
Barclay JW, Craig TJ, Fisher RJ, Ciufo LF, Evans GJO, Morgan A, Burgoyne RD. Phosphorylation of Munc18 by protein kinase C regulates the kinetics of exocytosis. J Biol Chem 2003; 278:10538-45. [PMID: 12519779 DOI: 10.1074/jbc.m211114200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation by protein kinase C (PKC) has been implicated in the control of neurotransmitter release and various forms of synaptic plasticity. The PKC substrates responsible for phosphorylation-dependent changes in regulated exocytosis in vivo have not been identified. Munc18a is essential for neurotransmitter release by exocytosis and can be phosphorylated by PKC in vitro on Ser-306 and Ser-313. We demonstrate that it is phosphorylated on Ser-313 in response to phorbol ester treatment in adrenal chromaffin cells. Mutation of both phosphorylation sites to glutamate reduces its affinity for syntaxin and so acts as a phosphomimetic mutation. Unlike phorbol ester treatment, expression of Munc18 with this phosphomimetic mutation in PKC phosphorylation sites did not affect the number of exocytotic events. The mutant did, however, produce changes in single vesicle release kinetics, assayed by amperometry, which were identical to those caused by phorbol ester treatment. Furthermore, the effects of phorbol ester treatment on release kinetics were occluded in cells expressing phosphomimetic Munc18. These results suggest that the dynamics of vesicle release events during exocytosis are controlled by PKC directly through phosphorylation of Munc18 on Ser-313. Phosphorylation of Munc18 by PKC may provide a mechanism for the control of exocytosis and thereby synaptic plasticity.
Collapse
Affiliation(s)
- Jeff W Barclay
- Physiological Laboratory, University of Liverpool, Crown Street, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Klyachko VA, Jackson MB. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 2002; 418:89-92. [PMID: 12097912 DOI: 10.1038/nature00852] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The vesicles that package neurotransmitters fall into two distinct classes, large dense-core vesicles (LDCVs) and small synaptic vesicles, the coexistence of which is widespread in nerve terminals. High resolution capacitance recording reveals unitary steps proportional to vesicle size. Measurements of capacitance steps during LDCV and secretory granule fusion in endocrine and immune cells have provided important insights into exocytosis; however, extending these measurements to small synaptic vesicles has proven difficult. Here we report single vesicle capacitance steps in posterior pituitary nerve terminals. These nerve terminals contain neuropeptide-laden LDCVs, as well as microvesicles. Microvesicles are similar to synaptic vesicles in size, morphology and molecular composition, but their contents are unknown. Capacitance steps of two characteristic sizes, corresponding with microvesicles and LDCVs, were detected in patches of nerve terminal membrane. Both types of vesicles fuse in response to depolarization-induced Ca(2+) entry. Both undergo a reversible fusion process commonly referred to as 'kiss-and-run', but only rarely. Fusion pores seen during microvesicle kiss-and-run have a conductance of 19 pS, 11 times smaller than LDCV fusion pores. Thus, LDCVs and microvesicles use structurally different intermediates during exocytosis.
Collapse
Affiliation(s)
- Vitaly A Klyachko
- Department of Physiology and Biophysics Graduate Program, University of Wisconsin-Madison, 1300 University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
29
|
Lollike K, Lindau M, Calafat J, Borregaard N. Compound exocytosis of granules in human neutrophils. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.6.973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Karsten Lollike
- The Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Manfred Lindau
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York; and
| | - Jero Calafat
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam
| | - Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
30
|
Graham ME, O'Callaghan DW, McMahon HT, Burgoyne RD. Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc Natl Acad Sci U S A 2002; 99:7124-9. [PMID: 11997474 PMCID: PMC124539 DOI: 10.1073/pnas.102645099] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence suggests that the kinetics of release from single secretory vesicles can be regulated and that quantal size can be modified during fast kiss-and-run fusion. Multiple pathways for vesicle retrieval have been identified involving clathrin and dynamin. It has been unclear whether dynamin could participate in a fast kiss-and-run process to reclose a transient fusion pore and thereby limit vesicle release. We have disrupted dynamin function in adrenal chromaffin cells by expression of the amphiphysin Src-homology domain 3 (SH3) or by application of guanosine 5'-[gamma-thio]triphosphate (GTP gamma S), and have monitored single vesicle release events, evoked by digitonin and Ca(2+), by using carbon-fiber amperometry. Under both conditions, there was an increase in mean quantal size accompanying an increase in the half-width of amperometric spikes and a slowing of the fall time. These data suggest the existence of a dynamin-dependent process that can terminate vesicle release under basal conditions. Protein kinase C activation changed release kinetics and decreased quantal size by shortening the release period. The effects of phorbol ester treatment were not prevented by expression of the amphiphysin SH3 domain or by GTP gamma S suggesting the existence of alternative dynamin-independent process underlying fast kiss-and-run exocytosis.
Collapse
Affiliation(s)
- Margaret E Graham
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | | | | | |
Collapse
|
31
|
Graham ME, Washbourne P, Wilson MC, Burgoyne RD. SNAP-25 with mutations in the zero layer supports normal membrane fusion kinetics. J Cell Sci 2001; 114:4397-405. [PMID: 11792805 DOI: 10.1242/jcs.114.24.4397] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Considerable data support the idea that intracellular membrane fusion involves a conserved machinery containing the SNARE proteins. SNAREs assembled in vitro form a stable 4-helix bundle and it has been suggested that formation of this complex provides the driving force for bilayer fusion. We have tested this possibility in assays of exocytosis in cells expressing a botulinum neurotoxin E (BoNT/E)-resistant mutant of SNAP-25 in which additional disruptive mutations have been introduced. Single or double mutations of glutamine to glutamate or to arginine in the central zero layer residues of SNAP-25 did not impair the extent, time course or Ca2+-dependency of exocytosis in PC12 cells. Using adrenal chromaffin cells, we found that exocytosis could be reconstituted in cells transfected to express BoNT/E. A double Q→E mutation did not prevent reconstitution and the kinetics of single granule release events were indistinguishable from control cells. This shows a high level of tolerance of changes in the zero layer indicating that the conservation of these residues is not due to an essential requirement in vesicle docking or fusion and suggests that formation of a fully stable SNARE complex may not be required to drive membrane fusion.
Collapse
Affiliation(s)
- M E Graham
- The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | | | | | | |
Collapse
|
32
|
Huttner WB, Zimmerberg J. Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol 2001; 13:478-84. [PMID: 11454455 DOI: 10.1016/s0955-0674(00)00239-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent studies have highlighted the importance of monolayer and bilayer curvature for the budding and fission of biological membranes. Other lines of research, addressing the structure of planar biological membranes, have revealed the existence of cholesterol-based membrane microdomains. Here, we comment on the significance of microdomains for curved membranes, with special emphasis on budding and fission.
Collapse
Affiliation(s)
- W B Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307, Dresden, Germany
| | | |
Collapse
|
33
|
Kilic G, Angleson JK, Cochilla AJ, Nussinovitch I, Betz WJ. Sustained stimulation of exocytosis triggers continuous membrane retrieval in rat pituitary somatotrophs. J Physiol 2001; 532:771-83. [PMID: 11313445 PMCID: PMC2278588 DOI: 10.1111/j.1469-7793.2001.0771e.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We studied the relationship between exocytosis and endocytosis in rat pituitary somatotrophs using patch-clamp capacitance, FM1-43 fluorescence imaging and amperometry. Stimulation of exocytosis through voltage-dependent Ca2+ channels by depolarizations (1-5 s) increased the capacitance by 4.3 +/- 0.9 % and the fluorescence by 6.6 +/- 1.1 % (10 cells). The correlation between the capacitance and fluorescence changes indicated that the cell membrane and granule membrane added via exocytosis were stained with the membrane-bound fluorescent dye FM1-43 in a quantitatively similar manner. Intracellular dialysis (0.5-4.5 min) with elevated Ca2+ (1.5-100 microM) evoked continuous exocytosis that was detected with a carbon fibre electrode from dopamine-loaded cells (10 cells) or as an increase in FM1-43 fluorescence (56 +/- 10 %; 21 cells). Interestingly during Ca2+ dialysis the capacitance did not significantly change (2 +/- 1 %; 31 cells), indicating that endocytosis efficiently retrieved increased cell membrane. Sustained endocytosis was not blocked when the intracellular GTP (300 microM) was replaced with GTP[gamma]S. Replacing intracellular Ca2+ (100 microM) with Ba2+ (300 microM) or Sr2+ (200 microM), or reducing the pH of the intracellular solution from 7.2 to 6.2 did not block sustained endocytosis. Our results suggest that pituitary somatotrophs have the ability to undergo continuous exocytosis and membrane retrieval that persist in whole-cell recordings.
Collapse
Affiliation(s)
- G Kilic
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
34
|
Nemoto T, Kimura R, Ito K, Tachikawa A, Miyashita Y, Iino M, Kasai H. Sequential-replenishment mechanism of exocytosis in pancreatic acini. Nat Cell Biol 2001; 3:253-8. [PMID: 11231574 DOI: 10.1038/35060042] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we report exocytosis of zymogen granules, as examined by multiphoton excitation imaging in intact pancreatic acini. Cholecystokinin induces Ca 2+ oscillations that trigger exocytosis when the cytosolic Ca 2+ concentration exceeds 1 microM. Zymogen granules fused with the plasma membrane maintain their Omega-shaped profile for an average of 220 s and serve as targets for sequential fusion of granules that are located within deeper layers of the cell. This secondary exocytosis occurs as rapidly as the primary exocytosis and accounts for most exocytotic events. Granule-granule fusion does not seem to precede primary exocytosis, indicating that secondary fusion events may require a plasma-membrane factor. This sequential-replenishment mechanism of exocytosis allows the cell to take advantage of a large supply of fusion-ready granules without needing to transport them to the plasma membrane.
Collapse
Affiliation(s)
- T Nemoto
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Synaptic efficacy critically depends on the presynaptic intracellular calcium concentration ([Ca2+]i). We measured the calcium sensitivity of glutamate release in a rat auditory brainstem synapse by laser photolysis of caged calcium. A rise in [Ca2+]i to 1 micromolar readily evoked release. An increase to >30 micromolar depleted the releasable vesicle pool in <0.5 millisecond. A comparison with action potential-evoked release suggested that a brief increase of [Ca2+]i to approximately 10 micromolar would be sufficient to reproduce the physiological release pattern. Thus, the calcium sensitivity of release at this synapse is high, and the distinction between phasic and delayed release is less pronounced than previously thought.
Collapse
Affiliation(s)
- J H Bollmann
- Max-Planck-Institute for Medical Research, Department of Cell Physiology, Jahnstrasse 29, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
36
|
Kits KS, Mansvelder HD. Regulation of exocytosis in neuroendocrine cells: spatial organization of channels and vesicles, stimulus-secretion coupling, calcium buffers and modulation. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:78-94. [PMID: 10967354 DOI: 10.1016/s0165-0173(00)00023-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuroendocrine cells display a similar calcium dependence of release as synapses but a strongly different organization of channels and vesicles. Biophysical and biochemical properties of large dense core vesicle release in neuroendocrine cells suggest that vesicles and channels are dissociated by a distance of 100-300 nm. This distinctive organization relates to the sensitivity of the release process to mobile calcium buffers, the resulting relationship between calcium influx and release and the modulatory mechanisms regulating the efficiency of excitation-release coupling. At distances of 100-300 nm, calcium buffers determine the calcium concentration close to the vesicle. Notably, the concentration and diffusion rate of mobile buffers affect the efficacy of release, but local saturation of buffers, possibly enhanced by diffusion barriers, may limit their effects. Buffer conditions may result in a linear relationship between calcium influx and exocytosis, in spite of the third or fourth power relation between intracellular calcium concentration and release. Modulation of excitation-secretion coupling not only concerns the calcium channels, but also the secretory process. Transmitter regulation mediated by cAMP and PKA, as well as use-dependent regulation involving calcium, primarily stimulates filling of the releasable pool. In addition, direct effects of cAMP on the probability of release have been reported. One mechanism to achieve increased release probability is to decrease the distance between channels and vesicles. GTP may stimulate release independently from calcium. Thus, while in most cases primary inputs triggering these pathways await identification, it is evident that large dense core vesicle release is a highly controlled and flexible process.
Collapse
Affiliation(s)
- K S Kits
- Department of Neurophysiology, Research Institute for Neurosciences, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | | |
Collapse
|
37
|
Smith RM, Baibakov B, Ikebuchi Y, White BH, Lambert NA, Kaczmarek LK, Vogel SS. Exocytotic insertion of calcium channels constrains compensatory endocytosis to sites of exocytosis. J Cell Biol 2000; 148:755-67. [PMID: 10684256 PMCID: PMC2169375 DOI: 10.1083/jcb.148.4.755] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1999] [Accepted: 01/20/2000] [Indexed: 12/15/2022] Open
Abstract
Proteins inserted into the cell surface by exocytosis are thought to be retrieved by compensatory endocytosis, suggesting that retrieval requires granule proteins. In sea urchin eggs, calcium influx through P-type calcium channels is required for retrieval, and the large size of sea urchin secretory granules permits the direct observation of retrieval. Here we demonstrate that retrieval is limited to sites of prior exocytosis. We tested whether channel distribution can account for the localization of retrieval at exocytotic sites. We find that P-channels reside on secretory granules before fertilization, and are translocated to the egg surface by exocytosis. Our study provides strong evidence that the transitory insertion of P-type calcium channels in the surface membrane plays an obligatory role in the mechanism coupling exocytosis and compensatory endocytosis.
Collapse
Affiliation(s)
| | | | | | | | - Nevin A. Lambert
- Medical College of Georgia, Augusta, Georgia 30912-2630
- Veterans Affairs Medical Center, Augusta, Georgia 30912-2630
| | | | | |
Collapse
|
38
|
Lollike K, Lindau M. Membrane capacitance techniques to monitor granule exocytosis in neutrophils. J Immunol Methods 1999; 232:111-20. [PMID: 10618513 DOI: 10.1016/s0022-1759(99)00169-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell membranes behave like electrical capacitors and changes in cell capacitance therefore reflect changes in the cell area. Monitoring capacitance can thus be used to study dynamic cellular phenomenon involving rapid changes in cell surface, such as exo- and/or endocytosis. In this review focus is on the use of capacitance techniques to study exocytosis in human neutrophils. We compare the whole-cell and the cell-attached capacitance techniques, and we review the complete literature dealing with capacitance measurements in human neutrophils.
Collapse
Affiliation(s)
- K Lollike
- The Granulocyte Research Laboratory, Department of Hematology, Rigshospitalet, L-9322, The Finsen Centre, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | | |
Collapse
|
39
|
Roberts RL, Barbieri MA, Pryse KM, Chua M, Morisaki JH, Stahl PD. Endosome fusion in living cells overexpressing GFP-rab5. J Cell Sci 1999; 112 ( Pt 21):3667-75. [PMID: 10523503 DOI: 10.1242/jcs.112.21.3667] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CHO and BHK cells which overexpress either wild-type rab5 or rab5:Q79L, a constitutively active rab5 mutant, develop enlarged cytoplasmic vesicles that exhibit many characteristics of early endosomes including immunoreactivity for rab5 and transferrin receptor. Time-lapse video microscopy shows the enlarged endosomes arise primarily by fusion of smaller vesicles. These fusion events occur mostly by a ‘bridge’ fusion mechanism in which the initial opening between vesicles does not expand; instead, membrane flows slowly and continuously from the smaller to the larger endosome in the fusing pair, through a narrow, barely perceptible membranous ‘bridge’ between them. The unique aspect of rab5 mediated ‘bridge’ fusion is the persistence of a tight constriction at the site where vesicles merge and we hypothesize that this constriction results from the relatively slow disassembly of a putative docking/fusion complex. To determine the relation of rab5 to the fusion ‘bridge’, we used confocal fluorescence microscopy to monitor endosome fusion in cells overexpressing GFP-rab5 fusion proteins. Vesicle docking in these cells is accompanied by recruitment of the GFP-rab5 into a brightly fluorescent spot in the ‘bridge’ region between fusing vesicles that persists throughout the entire length of the fusion event and which often persist for minutes following endosome fusion. Other endosomal membrane markers, including FM4-64, are not concentrated in fusion ‘bridges’. These results support the idea that the GFP-rab5 spots represent the localized accumulation of GFP-rab5 between fusing endosomes and not simply overlap of adjacent membranes. The idea that the GFP-rab5 spots do not represent membrane overlap is further supported by experiments using photobleaching techniques and confocal imaging which show that GFP-rab5 localized in spots between fusion couplets is resistant to diffusion while GFP-rab5 on endosomal membranes away from these spots rapidly diffuses with a rate constant of about 1.0 (+/-0.3) x10(-)(9)cm(2)/second.
Collapse
Affiliation(s)
- R L Roberts
- Department of Cell Biology and Physiology and Biochemistry and Molecular Biophysics, Washington University, School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The surge of Ca(2+) that triggers vesicle fusion is shaped by the distribution of Ca(2+) channels and the physical relationship between those channels and the exocytotic apparatus. Although channels and the release apparatus are thought to be tightly associated at fast synapses, the arrangement at neuroendocrine cells is less clear. The distribution of Ca(2+) influx near release sites is difficult to determine because of spatial and temporal limitations on Ca(2+) imaging techniques. We now present spatially resolved images of Ca(2+) influx into rat neuroendocrine terminals on a millisecond time scale. Images of voltage-dependent Ca(2+) influx into neurohypophysial terminals were captured after excitation of Ca(2+)-sensitive dyes with pulses of laser light lasting a fraction of a microsecond. Submembranous Ca(2+) increases were detected during the first millisecond of an evoked Ca(2+) tail current. Steep gradients of Ca(2+) were evident, with concentrations near the membrane reaching above 1 microM during a 30 msec depolarization. Ca(2+) influx appeared evenly distributed, even when diffusion was restricted with an exogenous Ca(2+) chelator. During longer depolarizations, mean and peak Ca(2+) concentrations reached an asymptote in parallel, suggesting that Ca(2+) binding proteins near the membrane rapidly buffer Ca(2+) and do not become saturated during prolonged influx. These data support the hypothesis that exocytosis is activated in these terminals by the summation of influx through multiple, randomly spaced Ca(2+) channels.
Collapse
|
41
|
Ca(2+)-dependent activator protein for secretion is critical for the fusion of dense-core vesicles with the membrane in calf adrenal chromaffin cells. J Neurosci 1999. [PMID: 10460244 DOI: 10.1523/jneurosci.19-17-07375.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium-dependent activator protein for secretion (CAPS) is a neural/endocrine cell-specific protein that has been shown to function at the Ca(2+)-dependent triggering step of dense-core vesicle (DCV) exocytosis in permeabilized PC12 cells. To evaluate the function of CAPS under physiological conditions, we introduced affinity-purified anti-CAPS IgGs into calf adrenal chromaffin (AC) cells via a patch pipette and tested the kinetics of catecholamine secretion using both amperometric and membrane capacitance techniques. The antibodies reacted with a single major approximately 145 kDa protein in AC cells based on immunoblot analysis. AC cells stimulated with sequential trains of action potentials at 7 Hz resulted in successive secretory episodes of equivalent magnitude. When either of two different anti-CAPS IgGs or their Fab fragments were present, a rapid and progressive inhibition of catecholamine release ensued to a maximum of >80%. The effect was specific because preabsorption of IgGs with the respective antigens ablated the inhibitory effect, and the IgGs had no effect on Ca currents. CAPS immunoneutralization not only reduced the number of amperometric spikes but markedly altered the kinetic characteristics of the residual events. The remaining spikes were much smaller (by 85%) and broader (by approximately 3.5-fold) than those in control cells, suggesting that CAPS plays a role in determining release of vesicle contents via the fusion pore. Anti-CAPS IgGs also slowed the rate of the initial exocytotic capacitance burst, representing the docked-and-primed vesicle pool, by approximately 90% but had no effect on the kinetics of rapid endocytosis. These results suggest that CAPS is a key component regulating the fusion of DCVs to the plasma membrane, and possibly fusion pore dilation, in catecholamine secretion from AC cells.
Collapse
|
42
|
Elhamdani A, Martin TF, Kowalchyk JA, Artalejo CR. Ca(2+)-dependent activator protein for secretion is critical for the fusion of dense-core vesicles with the membrane in calf adrenal chromaffin cells. J Neurosci 1999; 19:7375-83. [PMID: 10460244 PMCID: PMC6782493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
Calcium-dependent activator protein for secretion (CAPS) is a neural/endocrine cell-specific protein that has been shown to function at the Ca(2+)-dependent triggering step of dense-core vesicle (DCV) exocytosis in permeabilized PC12 cells. To evaluate the function of CAPS under physiological conditions, we introduced affinity-purified anti-CAPS IgGs into calf adrenal chromaffin (AC) cells via a patch pipette and tested the kinetics of catecholamine secretion using both amperometric and membrane capacitance techniques. The antibodies reacted with a single major approximately 145 kDa protein in AC cells based on immunoblot analysis. AC cells stimulated with sequential trains of action potentials at 7 Hz resulted in successive secretory episodes of equivalent magnitude. When either of two different anti-CAPS IgGs or their Fab fragments were present, a rapid and progressive inhibition of catecholamine release ensued to a maximum of >80%. The effect was specific because preabsorption of IgGs with the respective antigens ablated the inhibitory effect, and the IgGs had no effect on Ca currents. CAPS immunoneutralization not only reduced the number of amperometric spikes but markedly altered the kinetic characteristics of the residual events. The remaining spikes were much smaller (by 85%) and broader (by approximately 3.5-fold) than those in control cells, suggesting that CAPS plays a role in determining release of vesicle contents via the fusion pore. Anti-CAPS IgGs also slowed the rate of the initial exocytotic capacitance burst, representing the docked-and-primed vesicle pool, by approximately 90% but had no effect on the kinetics of rapid endocytosis. These results suggest that CAPS is a key component regulating the fusion of DCVs to the plasma membrane, and possibly fusion pore dilation, in catecholamine secretion from AC cells.
Collapse
Affiliation(s)
- A Elhamdani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
43
|
Fisher TE, Fernandez JM. Pulsed laser imaging of Ca(2+) influx in a neuroendocrine terminal. J Neurosci 1999; 19:7450-7. [PMID: 10460251 PMCID: PMC6782522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
The surge of Ca(2+) that triggers vesicle fusion is shaped by the distribution of Ca(2+) channels and the physical relationship between those channels and the exocytotic apparatus. Although channels and the release apparatus are thought to be tightly associated at fast synapses, the arrangement at neuroendocrine cells is less clear. The distribution of Ca(2+) influx near release sites is difficult to determine because of spatial and temporal limitations on Ca(2+) imaging techniques. We now present spatially resolved images of Ca(2+) influx into rat neuroendocrine terminals on a millisecond time scale. Images of voltage-dependent Ca(2+) influx into neurohypophysial terminals were captured after excitation of Ca(2+)-sensitive dyes with pulses of laser light lasting a fraction of a microsecond. Submembranous Ca(2+) increases were detected during the first millisecond of an evoked Ca(2+) tail current. Steep gradients of Ca(2+) were evident, with concentrations near the membrane reaching above 1 microM during a 30 msec depolarization. Ca(2+) influx appeared evenly distributed, even when diffusion was restricted with an exogenous Ca(2+) chelator. During longer depolarizations, mean and peak Ca(2+) concentrations reached an asymptote in parallel, suggesting that Ca(2+) binding proteins near the membrane rapidly buffer Ca(2+) and do not become saturated during prolonged influx. These data support the hypothesis that exocytosis is activated in these terminals by the summation of influx through multiple, randomly spaced Ca(2+) channels.
Collapse
Affiliation(s)
- T E Fisher
- Department of Physiology and Biophysics, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
44
|
Rahamimoff R, Butkevich A, Duridanova D, Ahdut R, Harari E, Kachalsky SG. Multitude of ion channels in the regulation of transmitter release. Philos Trans R Soc Lond B Biol Sci 1999; 354:281-8. [PMID: 10212476 PMCID: PMC1692499 DOI: 10.1098/rstb.1999.0379] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The presynaptic nerve terminal is of key importance in communication in the nervous system. Its primary role is to release transmitter quanta on the arrival of an appropriate stimulus. The structural basis of these transmitter quanta are the synaptic vesicles that fuse with the surface membrane of the nerve terminal, to release their content of neurotransmitter molecules and other vesicular components. We subdivide the control of quantal release into two major classes: the processes that take place before the fusion of the synaptic vesicle with the surface membrane (the pre-fusion control) and the processes that occur after the fusion of the vesicle (the post-fusion control). The pre-fusion control is the main determinant of transmitter release. It is achieved by a wide variety of cellular components, among them the ion channels. There are reports of several hundred different ion channel molecules at the surface membrane of the nerve terminal, that for convenience can be grouped into eight major categories. They are the voltage-dependent calcium channels, the potassium channels, the calcium-gated potassium channels, the sodium channels, the chloride channels, the non-selective channels, the ligand gated channels and the stretch-activated channels. There are several categories of intracellular channels in the mitochondria, endoplasmic reticulum and the synaptic vesicles. We speculate that the vesicle channels may be of an importance in the post-fusion control of transmitter release.
Collapse
Affiliation(s)
- R Rahamimoff
- Department of Physiology, Hebrew University Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The ins and outs of the synaptic vesicle cycle are being examined in increasing detail with diverse investigative tools in a variety of cell types, particularly those with large granules. The cycle begins with the opening of a fusion pore that connects the vesicle lumen to the extracellular fluid. Sensitive electrophysiological techniques reveal the often-stuttering behavior of single pores in non-neuronal cells, through which small molecules trickle until the fusion pore expands and the remaining contents erupt from the vesicle. The granule membranes are then retrieved by multiple processes that appear to act in parallel and that are distinguished from each other kinetically and ultrastructurally. Following endocytosis, synaptic vesicles are then shuttled back into the vesicle pool, where they briefly mix with other vesicles, become immobilized, and remain gelled with their neighbors, even while moving en masse again to the presynaptic membrane as a prelude for another round of exocytosis.
Collapse
Affiliation(s)
- W J Betz
- Department of Physiology and Biophysics, University of Colorado Medical School, Denver 80262, USA
| | | |
Collapse
|
46
|
Abstract
Synaptic vesicle recycling is a critical feature of neuronal communication as it ensures a constant supply of releasable transmitter at the nerve terminal. Physiological studies predict that vesicle recycling is rapid and recent studies with fluorescent dyes have confirmed that the entire process may occur in less than a minute. Two competing hypotheses have been proposed for the first step in the process comprising endocytosis of vesicular membrane. The coated vesicle model proposes that vesicular membrane components merge with the plasma membrane and are subsequently recovered and possibly sorted in coated pits. These pinch off as coated vesicles that either fuse with a sorting endosome from which new vesicles emerge or uncoat to become synaptic vesicles directly. The alternative "kiss-and-run" model proposes that "empty" vesicles are retrieved intact from the plasma membrane after secretion occurs via a fusion pore; they are then immediately refilled with transmitter and re-enter the secretion-competent pool. This article summarizes the data for both models and focusses on new information that supports the kiss-and-run model. In particular, the phenomenon of rapid endocytosis, which may represent the key endocytotic step in recycling, is discussed. Rapid endocytosis has time-constants in the order of a few seconds, thus is temporally consistent with the rate of vesicle recycling. Moreover, rapid endocytosis appears to be clathrin-independent, thus does not involve the coated vesicle pathway. We present a model that accommodates both types of endocytosis, which appear to coexist in many secretory tissues including neurons. Rapid endocytosis may reflect the principal mechanism operative under normal physiological rates of stimulation while coated vesicles may come into play at higher rates of stimulation. These two processes may feed into different populations of vesicles corresponding to distinct pools defined by studies of the kinetics of transmitter release.
Collapse
Affiliation(s)
- H C Palfrey
- Department of Pharmacological and Physiological Sciences, University of Chicago, IL 60637, USA
| | | |
Collapse
|
47
|
Nowycky MC, Seward EP, Chernevskaya NI. Excitation-secretion coupling in mammalian neurohypophysial nerve terminals. Cell Mol Neurobiol 1998; 18:65-80. [PMID: 9524730 PMCID: PMC11560203 DOI: 10.1023/a:1022575126738] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Oxytocin and vasopressin secretion from the neurohypophysis (NHP) is evoked by strongly patterned bursts of action potentials. We studied excitation-secretion coupling in single isolated terminals of rat NHP using patch clamp and capacitance detection techniques. 2. The secretory response evoked by trains of depolarizing pulses consisted of two discrete phases. Ca2+ entry during pulses early in the train did not elicit secretion. Exocytotic responses began only after a characteristic amount of total Ca2+ entry called "threshold". 3. In the postthreshold secretory phase, exocytotic events occurred during or immediately after depolarizing pulses, indicating that the final Ca(2+)-dependent step is triggered by high Ca2+ concentrations near the plasma membrane that dissipate rapidly after channel closure. Secretion was sensitive to both the concentration and species of Ca2+ chelator. BAPTA, a Ca2+ chelator with rapid Ca2+ binding kinetics, was more effective than EGTA in diminishing secretion. 4. The "threshold" amount of Ca2+ was determined by the concentration, but not species, of Ca2+ chelator. The threshold value was constant even when Ca2+ entry parameters were varied over a broad range of current amplitudes, pulse durations, and number of pulses, indicating that it did not require high Ca2+ concentrations near the plasma membrane. 5. These results suggest that the secretory response to a train of pulses consists of a Ca(2+)-dependent preparatory step that must be completed before subsequent Ca2+ entry can elicit exocytosis. 6. Exocytotic responses during single trains showed strong depression at a step subsequent to Ca2+ entry. Recovery from depression required 30-60 sec. 7. The properties of threshold secretion observed in NHP terminals are discussed in terms of current models of secretion.
Collapse
Affiliation(s)
- M C Nowycky
- Department of Neurobiology and Anatomy, Allegheny University, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
48
|
Pollard HB, Caohuy H, Minton AP, Srivastava M. Synexin (annexin VII) hypothesis for Ca2+/GTP-regulated exocytosis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 42:81-7. [PMID: 9327852 DOI: 10.1016/s1054-3589(08)60701-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- H B Pollard
- Department of Anatomy and Cell Biology, Uniformed Services Univesity School of Medicine, USUHS, Bethesda, Maryland 20814, USA
| | | | | | | |
Collapse
|
49
|
Giovannucci DR, Stuenkel EL. Regulation of secretory granule recruitment and exocytosis at rat neurohypophysial nerve endings. J Physiol 1997; 498 ( Pt 3):735-51. [PMID: 9051585 PMCID: PMC1159190 DOI: 10.1113/jphysiol.1997.sp021898] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Time-resolved cell membrane capacitance (Cm) measurements were used in combination with fura-2 microfluorometry under whole-cell patch clamp recording to investigate the kinetics and Ca2+ sensitivity of exocytotic granule fusion evoked by depolarizing stimuli at single, isolated nerve endings of the rat neurohypophysis. 2. Single step depolarizations or trains of depolarizing pulses evoked voltage-dependent, inward Ca2+ currents (ICa) and induced both Ca(2+)-dependent and Ca(2+)-independent changes in Cm. Three distinct Cm responses were observed and were differentiated by their kinetics and Ca2+ sensitivity: a non-exocytotic transient (delta Cm,t) and an exocytotic Cm 'jump' (delta Cm,J) and a slower, often latent, exocytotic Cm rise (delta Cm,s) that outlasted the depolarizing pulse stimulus. 3. The delta Cm,t was characterized by a rapid, transient component observed in 70% of nerve endings and a voltage-activation relationship that preceded that of the ICa. The amplitude and kinetics of the delta Cm,t were unaffected by ICa block by Cd2+, Ca2+ load reduction, or alterations in intracellular Ca2+ buffering. 4. In contrast to the delta Cm,t, both the delta Cm,J and delta Cm,s were Ca2+ dependent as evidenced by their sensitivity to Cd2+ block of ICa, intraterminal application of 10 mM BAPTA and reduced [Ca2+]o or replacement of Ca2+ as the charge carrier with Ba2+. 5. The delta Cm,J was proportional to depolarization-evoked Ca2+ influx with initial exocytotic rate of approximately 350 granule fusions s-1. The amplitude of the delta Cm,J rose exponentially (tau = 40 ms) and approached an asymptote (15.5 fF) with longer duration depolarizations indicating the fusion from and depletion of an immediately releasable pool (IRP) estimated at nineteen docked and primed secretory granules. 6. The delta Cm,s was induced by the application of repetitive long duration pulses and defined as the exocytosis of secretory granules from a readily releasable granule pool (RRP). The delta Cm,s response occurred only after exceeding a [Ca2+]i threshold value and rose thereafter in proportion to Ca2+ influx with a mean initial secretory rate of 36 granule fusions s-1. The mean latency for delta Cm,s activation was 850 ms following the initiation of the step depolarizations. The delta Cm,s response magnitude, reflecting the size of the RRP, was dependent on the resting [Ca2+]i and the nerve ending size, and was depletable using repetitive depolarizations of long duration. 7. Recruitment into and release from the RRP and IRP were differentially sensitive to changes in intraterminal Ca2+ buffering conditions. For example, introduction of 5 mM EGTA was shown to have no effect on the evoked IRP but significantly reduced the RRP. In comparison, diminishment of the endogenous Ca2+ buffering capacity of nerve endings by treatment with the mitochondrial Ca2+ uniporter blocker Ruthenium Red (10 microM) potentiated the RRP size but had no significant effect on the IRP size. 8. The present study indicates that the Ca(2+)-dependent recruitment of and release from functionally distinct pools of peptide-containing secretory granules in combination with the [Ca2+]i regulatory properties of neurohypophysial nerve endings may explain both the depletion of peptide release under prolonged stimulus and the potentiation of peptide release observed to occur during recurrent phasic action potential activity in this system.
Collapse
Affiliation(s)
- D R Giovannucci
- Department of Physiology, University of Michigan Medical School, Ann Arbor 48109, USA.
| | | |
Collapse
|
50
|
Ito K, Miyashita Y, Kasai H. Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells. EMBO J 1997; 16:242-51. [PMID: 9029145 PMCID: PMC1169631 DOI: 10.1093/emboj/16.2.242] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Agonists induce Ca2+ spikes, waves and oscillations initiating at a trigger zone in exocrine acinar cells via Ca2+ release from intracellular Ca2+ stores. Using a low affinity ratiometric Ca2+ indicator dye, benzothiazole coumarin (BTC), we found that high concentrations of agonists transiently increased Ca2+ concentrations to the micromolar range (>10 microM) in the trigger zone. Comparison with results obtained with a high affinity Ca2+ indicator dye, fura-2, indicated that fura-2 was in fact saturated with Ca2+ during the agonist-induced Ca2+ spikes in the trigger zone. We further revealed that the micromolar Ca2+ spikes were necessary for inducing exocytosis of zymogen granules investigated using capacitance measurements. In contrast, submicromolar Ca2+ spikes selectively gave rise to sequential activation of luminal and basal ion channels. These results suggest new functional diversity in Ca2+ spikes and a critical role for the micromolar Ca2+ spikes in exocytotic secretion from exocrine acinar cells. Our data also emphasize the value of investigating the Ca2+ signalling using low affinity Ca2+ indicators.
Collapse
Affiliation(s)
- K Ito
- Department of Physiology, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Japan
| | | | | |
Collapse
|