1
|
Athanasiou Y, Voskarides K, Chatzikyriakidou A, Ignatiou A, Demosthenous P, Elia A, Zavros M, Georgiou I, Pierides A, Deltas C. Molecular and Clinical Investigation of Cystinuria in the Greek-Cypriot Population. Genet Test Mol Biomarkers 2015; 19:641-5. [PMID: 26540609 DOI: 10.1089/gtmb.2015.0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND AIMS Cystinuria represents 3% of nephrolithiasis in humans. Two genes have been identified as the main genetic causes of cystinuria, SLC3A1 and SLC7A9, with an autosomal recessive mode of inheritance. In the present study, we studied for the first time, genetically and clinically, all the cystinuric families identified so far in the Greek-Cypriot population. METHODS Discovery of mutations was performed through polymerase chain reaction (PCR)-single analysis and DNA resequencing. New families were investigated through PCR-RFLPs. Clinical data were collected through the hospital patients' records and analytical follow-up of the families. RESULTS AND DISCUSSION We found a total of five mutations in 28 Greek-Cypriot cystinuric patients belonging in 12 families. The most frequent mutation among the 28 Greek-Cypriot patients is the SLC3A1-p.T216M, which is also the second most frequent mutation in Europe, representing a genetic founder effect. Sixteen of the 28 patients are homozygous for this mutation. Even though a consanguinity loop was obvious in only one family, other patients were from families in small villages where endogamy was practiced for many centuries. Timely clinical and genetic diagnosis, accompanied by early treatment, is significant for the good health of most of our patients. Only ∼14% of them developed chronic renal failure, and only one reached end-stage renal disease (ESRD). CONCLUSION Five SLC3A1 and SLC7A9 mutations appear to be responsible for the genetic basis of cystinuria in the Greek-Cypriot patients; having such a limited number of causative mutations will simplify diagnostics for this population.
Collapse
Affiliation(s)
| | - Konstantinos Voskarides
- 2 Department of Biological Sciences and Molecular Medicine Research Center, University of Cyprus , Nicosia, Cyprus
| | - Anthi Chatzikyriakidou
- 3 Laboratory of General Biology and Genetics, Medical School, Aristotle University of Thessaloniki , Greece
| | - Anastasia Ignatiou
- 2 Department of Biological Sciences and Molecular Medicine Research Center, University of Cyprus , Nicosia, Cyprus
| | - Panayiota Demosthenous
- 2 Department of Biological Sciences and Molecular Medicine Research Center, University of Cyprus , Nicosia, Cyprus
| | - Avraam Elia
- 4 Department of Pediatric/Pediatric Nephrology, Archbishop Makarios III Hospital , Nicosia, Cyprus
| | - Michalis Zavros
- 1 Department of Nephrology, Nicosia General Hospital , Nicosia, Cyprus
| | - Ioannis Georgiou
- 5 Laboratory of Medical Genetics, Medical School, Ioannina University , Greece
| | - Alkis Pierides
- 6 Department of Nephrology, Hippocrateon Hospital , Nicosia, Cyprus
| | - Constantinos Deltas
- 2 Department of Biological Sciences and Molecular Medicine Research Center, University of Cyprus , Nicosia, Cyprus
| |
Collapse
|
2
|
|
3
|
SATSU H, HYUN JS, SHIN HS, SHIMIZU M. Cycloheximide Treatment Induces the Uptake of Neutral and Dibasic Amino Acids via the Activation of System b0,+ in Human Intestinal Caco-2 Cells. J Nutr Sci Vitaminol (Tokyo) 2009; 55:44-51. [DOI: 10.3177/jnsv.55.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Skopková Z, Hrabincová E, Stástná S, Kozák L, Adam T. Molecular Genetic Analysis of SLC3A1 and SLC7A9 Genes in Czech and Slovak Cystinuric Patients. Ann Hum Genet 2005; 69:501-7. [PMID: 16138908 DOI: 10.1111/j.1529-8817.2005.00185.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cystinuria is a frequently inherited metabolic disorder in the Czech population (frequency 1/5,600) caused by a defect in the renal transport of cystine and dibasic amino acids (arginine, lysine and ornithine). The disease is characterized by increased urinary excretion of the amino acids and often leads to recurrent nephrolithiasis. Cystinuria is classified into two subtypes (type I and type non-I). Type I is caused predominantly by mutations in the SLC3A1 gene (2p16.3), encoding heavy subunit (rBAT) of the heterodimeric transporter. Cystinuria non-I type is caused by mutations in the SLC7A9 gene (19q13.1). In this study, we present results of molecular genetic analysis of the SLC3A1 and the SLC7A9 genes in 24 unrelated cystinuria families. Individual exons of the SLC3A1 and SLC7A9 genes were analyzed by direct sequencing. We found ten different mutations in the SLC3A1 gene including six novel ones: three missense mutations (G140R), D179Y and R365P), one splice site mutation (1137-2A>G), one deletion (1515_1516delAA), and one nonsense mutation (Q119X). The most frequent mutation, M467T; was detected in 36% of all type I classified alleles. In the SLC7A9 gene we found six mutations including three new ones: one missense mutation (G319R), one insertion (611_612insA) and one deletion (205_206delTG). One patient was compound heterozygote for one SLC3A1 and one SLC7A9 mutation. Our results confirm that cystinuria is a heterogeneous disorder at the molecular level, and contribute to the understanding of the distribution and frequency of mutations causing cystinuria in the Caucasian population.
Collapse
Affiliation(s)
- Zuzana Skopková
- Laboratory of Inhented Metabolic Disorders, Department of Clinical Chemistry, Palacký University and Hospital, Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
5
|
Tohda M, Watanabe H. Molecular cloning and characterization of a novel sequence, vof-16, with enhanced expression in permanent ischemic rat brain. Biol Pharm Bull 2005; 27:1228-35. [PMID: 15305027 DOI: 10.1248/bpb.27.1228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We reported previously that chronic hypoperfusion induced by permanent occlusion of the bilateral common carotid arteries (2VO) in rats caused progressive cognitive deficits and neuronal damage in the hippocampus and the white matter. These changes are similar to those observed in human dementia. Reverse transcription-polymerase chain reaction (RT-PCR) differential display was carried out to identify mRNAs encoding the intrinsic factors involved in permanent ischemia from the 2VO rat brain. Over 20 clones which showed different expression levels in 2VO and sham-operated rats were isolated. One of these, named vof-16, was markedly enhanced the expression by 2VO. The whole sequence of vof-16 mRNA was 2098 nt. The distribution of vof-16 transcripts was examined by RT-PCR and in situ hybridization. The results revealed that vof-16 was abundant in the hippocampus, the tenia tecta, the piriform cortex and the area around the aorta. The expression levels of vof-16 in 2VO and sham-operated rat hippocampus were determined by a quantitative PCR method. The expression was abundant in the hippocampus of rats with cognitive impairment induced by 2VO. In contrast, the expression levels of vof-16 were lower in the 2VO rats with no impairment and in sham-operated rats. These results suggest that the expression levels of vof-16 may be related to the cognitive impairment induced by chronic ischemia after 2VO.
Collapse
Affiliation(s)
- Michihisa Tohda
- Department of Pharmacology, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan.
| | | |
Collapse
|
6
|
Peter GJ, Davies A, Watt PW, Birrell J, Taylor PM. Interactions between the thiol-group reagent N-ethylmaleimide and neutral and basic amino acid transporter-related amino acid transport. Biochem J 1999; 343 Pt 1:169-76. [PMID: 10493926 PMCID: PMC1220538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The neutral and basic amino acid transport protein (NBAT) expressed in renal and jejunal brush-border membranes is involved in amino acid and cystine absorption. NBAT mutations result in Type 1 cystinuria. A C-terminal myc-tagged NBAT (NBATmyc) retains the amino acid transport and protein-protein interaction properties of NBAT when expressed in Xenopus oocytes. Neutral amino acid (Ala, Phe)-cationic amino acid (Arg) heteroexchanges related to NBATmyc expression in oocytes are inactivated by treatment with the thiol-group reagent N-ethylmaleimide (NEM), although significant Arg-Arg and Ala-Ala homoexchanges persist. Inactivation of heteroexchange activity by NEM is accompanied by loss of >85% of alanine and cystine uptake, with smaller (<50%) inhibition of arginine and phenylalanine uptake. NEM-sensitive cystine uptake and arginine-alanine heteroexchange (system b(0,+) activity) are not expressed by an NBAT truncation mutant (NBATmyc-Sph1) lacking the 13 C-terminal amino acid residues, but the mutant expresses NEM-resistant transport activity (system y(+)L-like) equivalent to that of full-length NBATmyc. The deleted region of NBATmyc-Sph1 contains two cysteine residues (671/683) which may be the targets of NEM action. The synthetic amino acid 2-trifluoromethylhistidine (TFMH) stimulated alanine efflux at pH 7.5 and arginine at pH 5.5, but not vice versa, establishing the existence of distinct pathways for cationic and neutral amino acid homoexchange (TFMH is zwitterionic at pH 7.5 and cationic at pH 5.5). We suggest that NBAT expresses a combination of system b(0,+) and y(+)L-like activities, possibly by interacting with different light-chain subunits endogenous to oocytes (as does the homologous 4F2hc protein). The C-terminus of NBAT may also have an additional, direct role in the mechanism of System b(0,+) transport (the major transport activity that is defective in Type 1 cystinuria).
Collapse
Affiliation(s)
- G J Peter
- Department of Anatomy and Physiology, University of Dundee, Dundee DD1 4HN, Scotland, U.K
| | | | | | | | | |
Collapse
|
7
|
Palacín M, Estévez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 1998; 78:969-1054. [PMID: 9790568 DOI: 10.1152/physrev.1998.78.4.969] [Citation(s) in RCA: 593] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular biology entered the field of mammalian amino acid transporters in 1990-1991 with the cloning of the first GABA and cationic amino acid transporters. Since then, cDNA have been isolated for more than 20 mammalian amino acid transporters. All of them belong to four protein families. Here we describe the tissue expression, transport characteristics, structure-function relationship, and the putative physiological roles of these transporters. Wherever possible, the ascription of these transporters to known amino acid transport systems is suggested. Significant contributions have been made to the molecular biology of amino acid transport in mammals in the last 3 years, such as the construction of knockouts for the CAT-1 cationic amino acid transporter and the EAAT2 and EAAT3 glutamate transporters, as well as a growing number of studies aimed to elucidate the structure-function relationship of the amino acid transporter. In addition, the first gene (rBAT) responsible for an inherited disease of amino acid transport (cystinuria) has been identified. Identifying the molecular structure of amino acid transport systems of high physiological relevance (e.g., system A, L, N, and x(c)- and of the genes responsible for other aminoacidurias as well as revealing the key molecular mechanisms of the amino acid transporters are the main challenges of the future in this field.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
8
|
Pras E, Golomb E, Drake C, Aksentijevich I, Katz G, Kastner DL. A splicing mutation (891+4A-->G) in SLC3A1 leads to exon 4 skipping and causes cystinuria in a Moslem Arab family. Hum Mutat 1998; Suppl 1:S28-30. [PMID: 9452031 DOI: 10.1002/humu.1380110110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- E Pras
- Department of Medicine C and the Genetic Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Gitomer WL, Reed BY, Ruml LA, Pak CY. 335-base deletion in the mRNA coding for a dibasic amino acid transporter-like protein (SLC3A1) isolated from a patient with cystinuria. Hum Mutat 1998; Suppl 1:S69-71. [PMID: 9452045 DOI: 10.1002/humu.1380110124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- W L Gitomer
- Center for General Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center at Dallas, 75235-8885, USA
| | | | | | | |
Collapse
|
10
|
Segawa H, Miyamoto K, Ogura Y, Haga H, Morita K, Katai K, Tatsumi S, Nii T, Taketani Y, Takeda E. Cloning, functional expression and dietary regulation of the mouse neutral and basic amino acid transporter (NBAT). Biochem J 1997; 328 ( Pt 2):657-64. [PMID: 9371728 PMCID: PMC1218968 DOI: 10.1042/bj3280657] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Na+-independent dibasic and neutral amino acid transporter NBAT is among the least hydrophobic of mammalian amino acid transporters. The transporter contains one to four transmembrane domains and induces amino acid transport activity via a b0,+-like system when expressed in Xenopus oocytes. However, the physiological role of NBAT remains unclear. Complementary DNA clones encoding mouse NBAT have now been isolated. The expression of mouse NBAT in Xenopus oocytes also induced an obligatory amino acid exchange activity similar to that of the b0,+-like system. The amount of NBAT mRNA in mouse kidney increased during postnatal development, consistent with the increase in renal cystine and dibasic transport activity. Dietary aspartate induced a marked increase in cystine transport via the b0,+ system in mouse ileum. A high-aspartate diet also increased the amount of NBAT mRNA in mouse ileum. In the ileum of mice fed on the aspartate diet, the extent of cystine transport was further increased by preloading brush border membrane vesicles with lysine. Hybrid depletion of NBAT mRNA from ileal polyadenylated RNA revealed that the increase in cystine transport activity induced by the high-aspartate diet, as measured in Xenopus oocytes, was attributable to NBAT. These results demonstrate that mouse NBAT has an important role in cystine transport.
Collapse
Affiliation(s)
- H Segawa
- Department of Clinical Nutrition, School of Medicine, Tokushima University, Kuramoto-Cho 3, Tokushima 770, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Endsley JK, Phillips JA, Hruska KA, Denneberg T, Carlson J, George AL. Genomic organization of a human cystine transporter gene (SLC3A1) and identification of novel mutations causing cystinuria. Kidney Int 1997; 51:1893-9. [PMID: 9186880 DOI: 10.1038/ki.1997.258] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cystinuria is a common inherited aminoaciduria that leads to recurrent cystine nephrolithiasis. Mutations in a gene encoding a renal amino acid transporter (SLC3A1) have been identified in patients with cystinuria establishing one molecular cause for the disease. To facilitate systematic screening of this gene for mutations, we have delineated the complete genomic organization of the SLC3A1 coding region using polymerase chain reaction strategies. The complete coding region of the gene is contained within a single yeast artificial chromosome clone and consists of 10 exons and 9 introns. Oligonucleotide primers capable of amplifying selected exons have been made and used in mutational analysis of DNA from 24 cystinuria probands. We illustrate the usefulness of this approach by identifying two novel SLC3A1 mutations. One novel mutation causes replacement of a highly conserved arginine residue (arginine-452) with tryptophan in the cytoplasmic loop between the putative third and fourth membrane spanning segments. A second previously unreported mutation results in replacement of a highly conserved tyrosine (tyrosine-461) residue with histidine in the same region of the protein. In addition, we detected three previously reported SLC3A1 mutations, R270X, 1500 +1/G to T, and M467T, the latter being present in approximately 20% of cystinuria chromosomes examined. Our findings provide a foundation for the development of more accessible diagnostic screening assays for detecting SLC3A1 mutations using patient genomic DNA, and also contribute to the emerging spectrum of cystinuria genotypes.
Collapse
Affiliation(s)
- J K Endsley
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
12
|
Bisceglia L, Calonge MJ, Totaro A, Feliubadaló L, Melchionda S, García J, Testar X, Gallucci M, Ponzone A, Zelante L, Zorzano A, Estivill X, Gasparini P, Nunes V, Palacín M. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1. Am J Hum Genet 1997; 60:611-6. [PMID: 9042921 PMCID: PMC1712527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225).
Collapse
Affiliation(s)
- L Bisceglia
- Servizio di Genetica Medica, IRCCS-Ospedale CSS San Giovanni Rotondo
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ahmed A, Yao PC, Brant AM, Peter GJ, Harper AA. Electrogenic L-Histidine Transport in Neutral and Basic Amino Acid Transporter (NBAT)-expressing Xenopus laevis Oocytes. J Biol Chem 1997. [DOI: 10.1074/jbc.272.1.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
14
|
Recent Advances in the Biochemical and Molecular Biological Basis of Cystinuria. J Urol 1996. [DOI: 10.1097/00005392-199612000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
|
16
|
Peter GJ, Davidson IG, Ahmed A, McIlroy L, Forrester AR, Taylor PM. Multiple components of arginine and phenylalanine transport induced in neutral and basic amino acid transporter-cRNA-injected Xenopus oocytes. Biochem J 1996; 318 ( Pt 3):915-22. [PMID: 8836138 PMCID: PMC1217705 DOI: 10.1042/bj3180915] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The induced uptakes of L-[3H]phenylalanine and L-[3H]arginine in oocytes injected with clonal NBAT (neutral and basic amino acid transporter) cRNA show differential inactivation by pretreatment with N-ethylmaleimide (NEM), revealing at least two distinct transport processes. NEM-resistant arginine transport is inhibited by leucine and phenylalanine but not by alanine or valine; mutual competitive inhibition of NEM-resistant uptake of arginine and phenylalanine indicates that the two amino acids share a single transporter. NEM-sensitive arginine transport is inhibited by leucine, phenylalanine, alanine and valine. At least two NEM-sensitive transporters may be expressed because we have been unable to confirm mutual competitive inhibition between arginine and phenylalanine transport. The NEM-resistant transport mechanism appears to involve distinct but overlapping binding sites for cationic and zwitterionic substrates. NBAT is known to form oligomeric protein complexes in cell membranes, and its functional roles when expressed in Xenopus oocytes may include interaction with oocyte proteins, leading to increased native amino acid transport activities; these resemble NBAT-expressed activities in terms of NEM-sensitivity and apparent substrate range (including an unusual inhibition by beta-phenylalanine.
Collapse
Affiliation(s)
- G J Peter
- Department of Anatomy and Physiology, University of Dundee, Scotland, U.K
| | | | | | | | | | | |
Collapse
|
17
|
Tate SS. Evidence suggesting that the minimal functional unit of a renal cystine transporter is a heterodimer and its implications in cystinuria. Amino Acids 1996; 11:209-24. [PMID: 24178688 DOI: 10.1007/bf00813861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/1996] [Accepted: 03/15/1996] [Indexed: 11/26/2022]
Abstract
Cystinuria, one of the most common genetic disorders, is characterized by excessive excretion of cystine and basic amino acids in urine. The low solubility of cystine results in formation of kidney stones which can eventually lead to renal failure. Three types of cystinurias have been described. All involve defects in a high-affinity transport system for cystine in the brush border membranes of kidney and intestinal epithelial cells. The molecular properties of proteins involved in epithelial cystine transport are incompletely understood. A protein (NBAT, neutral and basic amino acid transporter), initially cloned by us from rat kidney and shown to be localized in the renal and intestinal brush border membranes, has been implicated in this transport, and mutations in human NBAT gene have been found in several cystinurics, making it a prime candidate for a cystinuria gene. However, mutations in NBAT were found only in Type I cystinurics and not in Types II and III suggesting that defects in other, as yet uncharacterized, genes may also be involved. NBAT has an unusual (for an amino acid transporter) membrane topology. We proposed that the protein contains four membrane-spanning domains, a model disputed by other investigators. We subsequently obtained experimental data consistent with a four membrane-spanning domain model. Furthermore, recently we showed that kidney and intestinal NBAT (85kDa) is associated with another brush border membrane protein (about 50kDa) and have proposed that the heterodimer represents the minimal functional unit of the high-affinity cystine transporter in these membranes. These findings raise the tantalizing possibilities that defects in the NBAT-associated protein might account for cystinurias in individuals with normal NBAT gene (such as the Types II and III cystinurics).
Collapse
Affiliation(s)
- S S Tate
- Department of Biochemistry, Cornell University Medical College, 1300 York Avenue, 10021, New York, New York, USA
| |
Collapse
|
18
|
Palacín M, Mora C, Chillarón J, Calonge MJ, Estévez R, Torrents D, Testar X, Zorzano A, Nunes V, Purroy J, Estivill X, Gasparini P, Bisceglia L, Zelante L. The molecular basis of cystinuria: the role of the rBAT gene. Amino Acids 1996; 11:225-46. [PMID: 24178689 DOI: 10.1007/bf00813862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1996] [Accepted: 02/26/1996] [Indexed: 09/29/2022]
Abstract
The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of rBAT and 4F2hc induce amino acid transport activity via systems b(0,+) -like and y(+)L -like inXenopus oocytes respectively. Surprisingly, neither rBAT nor 4F2hc is very hydrophobic, and they seem to be unable to form a pore in the plasma membrane. This prompted the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transporters. The association of rBAT with a light subunit of ~40kDa has been suggested, and such an association has been demonstrated for 4F2hc.The b(0,+)-like system expressed in oocytes by rBAT cRNA transports L-cystine, L-dibasic and L-neutral amino acids with high-affinity. This transport system shows exchange of amino acids through the plasma membrane ofXenopus oocytes, suggesting a tertiary active transport mechanism. The rBAT gene is mainly expressed in the outer stripe of the outer medulla of the kidney and in the mucosa of the small intestine. The protein localizes to the microvilli of the proximal straight tubules (S3 segment) of the nephron and the mucosa of the small intestine. All this suggested the participation of rBAT in a high-affinity reabsorption system of cystine and dibasic amino acids in kidney and intestine, and indicated rBAT (named SLC3A1 in Gene Data Bank) as a good candidate gene for cystinuria. This is an inherited aminoaciduria due to defective renal and intestinal reabsorption of cystine and dibasic amino acids. The poor solubility of cystine causes the formation of renal cystine calculi. Mutational analysis of the rBAT gene of patients with cystinuria is revealing a growing number (~20) of cystinuria-specific mutations, including missense, nonsense, deletions and insertions. Mutations M467T (substitution of methionine 467 residue for threonine) and R270X (stop codon at arginine residue 270) represent approximately half of the cystinuric chromosomes where mutations have been found. Mutation M467T reduces transport activity of rBAT in oocytes. All this demonstrates that mutations in the rBAT gene cause cystinuria.Three types of cystinuria (types, I, II and III) have been described on the basis of the genetic, biochemical and clinical manifestations of the disease. Type I cystinuria has a complete recessive inheritance; type I heterozygotes are totally silent. In contrast, type II and III heterozygotes show, respectively, high or moderate hyperaminoaciduria of cystine and dibasic amino acids. Type III homozygotes show moderate, if any, alteration of intestinal absorption of cystine and dibasic amino acids; type II homozygotes clearly show defective intestinal absorption of these amino acids. To date, all the rBAT cystinuria-specific mutations we have found are associated with type I cystinuria (~70% of the chromosomes studied) but not to types II or III. This strongly suggests genetic heterogeneity for cystinuria. Genetic linkage analysis with markers of the genomic region of rBAT in chromosome 2 (G band 2p16.3) and intragenic markers of rBAT have demonstrated genetic heterogeneity for cystinuria; the rBAT gene is linked to type I cystinuria, but not to type III. Biochemical, genetic and clinical studies are needed to identify the additional cystinuria genes; a low-affinity cystine reabsortion system and the putative light subunit of rBAT are additional candidate genes for cystinuria.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645 6th floor, E-08028, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Calonge MJ, Volpini V, Bisceglia L, Rousaud F, de Sanctis L, Beccia E, Zelante L, Testar X, Zorzano A, Estivill X. Genetic heterogeneity in cystinuria: the SLC3A1 gene is linked to type I but not to type III cystinuria. Proc Natl Acad Sci U S A 1995; 92:9667-71. [PMID: 7568194 PMCID: PMC40863 DOI: 10.1073/pnas.92.21.9667] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cystinuria is an autosomal recessive amino-aciduria where three urinary phenotypes have been described (I, II, and III). An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. To assess whether mutations in SLC3A1 are involved in different cystinuria phenotypes, linkage with this gene and its nearest marker (D2S119) was analyzed in 22 families with type I and/or type III cystinuria. Linkage with heterogeneity was proved (alpha = 0.45; P < 0.008). Type I/I families showed homogeneous linkage to SLC3A1 (Zmax > 3.0 at theta = 0.00; alpha = 1), whereas types I/III and III/III were not linked. Our data suggest that type I cystinuria is due to mutations in the SLC3A1 gene, whereas another locus is responsible for type III. This result establishes genetic heterogeneity for cystinuria, classically considered as a multiallelic monogenic disease.
Collapse
Affiliation(s)
- M J Calonge
- Departament de Genètica Molecular, Hospital Duran i Reynals, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Calonge MJ, Nadal M, Calvano S, Testar X, Zelante L, Zorzano A, Estivill X, Gasparini P, Palacín M, Nunes V. Assignment of the gene responsible for cystinuria (rBAT) and of markers D2S119 and D2S177 to 2p16 by fluorescence in situ hybridization. Hum Genet 1995; 95:633-6. [PMID: 7789946 DOI: 10.1007/bf00209478] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have established rBAT (named as SLC3A1 in the Genome Data Base) as a gene responsible for cystinuria, a heritable disorder of amino acid transport. The cystinuria locus has been mapped by linkage between microsatellite markers D2S119 and D2S177. Fluorescence in situ hybridization (FISH) either with Alu-polymerase-chain-reaction (PCR)-amplified sequences of a yeast artificial chromosome (YAC) containing the rBAT gene or with rBAT-specific PCR-amplified genomic fragments, and chromosome G-banding have cytogenetically mapped rBAT to 2p16.3. In order to correlate the physical and genetic information on cystinuria, we have performed FISH with combinations of Alu-PCR-amplified sequences from YACs containing rBAT or the D2S119 and D2S177 loci. In all cases, a fused signal is obtained that demonstrates their close physical location; this allows the assignment of rBAT, cystinuria and their linked markers, D2S119 and D2S177, to 2p16.
Collapse
Affiliation(s)
- M J Calonge
- Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ahmed A, Peter GJ, Taylor PM, Harper AA, Rennie MJ. Sodium-independent currents of opposite polarity evoked by neutral and cationic amino acids in neutral and basic amino acid transporter cRNA-injected oocytes. J Biol Chem 1995; 270:8482-6. [PMID: 7721744 DOI: 10.1074/jbc.270.15.8482] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To elucidate the electrical events associated with the movement of amino acids by the neutral and basic amino acid transporter (NBAT)-encoded protein (Yan, N., Mosckovitz, R., Gerber, L.D., Mathew, S., Murty, V.V. V.S., Tate, S.S., and Udenfriend, S. (1994) Proc. Natl. Acad. Sci. USA 91, 7548-7552), we have investigated the membrane potential and current changes associated with the increased transport of amino acids across the cell membrane of NBAT cRNA-injected Xenopus laevis oocytes. Superfusion of 0.05 mM L-phenylalanine, in current-clamped NBAT-injected oocytes, caused a hyperpolarization (8.5 +/- 0.9 mV), but superfusion of L-arginine caused a depolarization (18.3 +/- 1.3 mV). In voltage-clamped (-60 mV) oocytes, superfusion of L-phenylalanine evoked a sodium- and chloride-independent, saturable (Km = 0.34 +/- 0.02 mM, Imax = 31.3 +/- 0.5 nA), outward current. This outward current was reduced in the presence of high external [K] and was barium-sensitive. Outward currents were also evoked by L-leucine, L-glutamine, L-alanine, D-phenylalanine, and L-beta-phenylalanine. Superfusion of L-arginine evoked a saturable (Km = 0.09 +/- 0.02 mM, Imax = -29.2 +/- 1.3 nA) inward current; L-lysine and D-arginine also evoked inward currents. L-Glutamate and beta-alanine failed to evoke any currents. Effluxes of L-[3H]phenylalanine and L-[3H]arginine were trans-stimulated in the presence of either amino acid. Flux-current comparisons indicated amino acid:charge movement stoichiometry of 1:1 for both neutral and cationic amino acids. These findings indicate that the amino acid transport activity(ies) expressed in NBAT cRNA-injected oocytes is electrogenic by a mechanism including the outward movement of a net positive charge (potassium ion or cationic amino acid) in exchange for uptake of a neutral amino acid.
Collapse
Affiliation(s)
- A Ahmed
- Department of Anatomy and Physiology, University of Dundee, Scotland
| | | | | | | | | |
Collapse
|