1
|
Liu S, Vivona ES, Kurre P. Why hematopoietic stem cells fail in Fanconi anemia: Mechanisms and models. Bioessays 2025; 47:e2400191. [PMID: 39460396 DOI: 10.1002/bies.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Fanconi anemia (FA) is generally classified as a DNA repair disorder, conferring a genetic predisposition to cancer and prominent bone marrow failure (BMF) in early childhood. Corroborative human and murine studies point to a fetal origin of hematopoietic stem cell (HSC) attrition under replicative stress. Along with intriguing recent insights into non-canonical roles and domain-specific functions of FA proteins, these studies have raised the possibility of a DNA repair-independent BMF etiology. However, deeper mechanistic insight is critical as current curative options of allogeneic stem cell transplantation and emerging gene therapy have limited eligibility, carry significant side effects, and involve complex procedures restricted to resource-rich environments. To develop rational and broadly accessible therapies for FA patients, the field will need more faithful disease models that overcome the scarcity of patient samples, leverage technological advances, and adopt investigational clinical trial designs tailored for rare diseases.
Collapse
Affiliation(s)
- Suying Liu
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - E S Vivona
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
2
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Sharma P, Sharma N, Sharma D. A Narrative Review on Fanconi Anemia: Genetic and Diagnostic Considerations. Glob Med Genet 2022; 9:237-241. [PMID: 36071913 PMCID: PMC9444348 DOI: 10.1055/s-0042-1751303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive disorder, both genetically and phenotypically. It is characterized by chromosomal instability, progressive bone marrow failure, susceptibility to cancer, and various other congenital abnormalities. It involves all the three cell lines of blood. So far, biallelic mutations in 21 genes and one x-linked gene have been detected and found to be associated with FA phenotype. Signs and symptoms start setting in by the age of 4 to 7 years, mainly hematological symptoms. This includes pancytopenia, that is, a reduction in the number of white blood cells (WBCs), red blood cells (RBCs), and platelets. Therefore, the main criteria for diagnosis of FA include skeletal malformations, pancytopenia, hyperpigmentation, short stature, urogenital abnormalities, central nervous system, auditory, renal, ocular, and familial occurrence. Patients showing signs and symptoms of FA should be thoroughly evaluated. A complete blood count will reveal a reduced number of RBC, WBC, and platelets, that is, pancytopenia. Chromosomal breakage study/stress cytogenetics should be done in patients with severe pancytopenia. Momentousness timely diagnosis of current disease, prenatal diagnosis, and genetic counseling should be emphasized.
Collapse
Affiliation(s)
- Preksha Sharma
- Department of Anatomy, SMS Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| | - Neha Sharma
- Department of Pharmacology, SMS Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| | - Dhruva Sharma
- Department of Cardiothoracic and Vascular Surgery, SMS Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| |
Collapse
|
4
|
Kulanuwat S, Jungtrakoon P, Tangjittipokin W, Yenchitsomanus PT, Plengvidhya N. Fanconi anemia complementation group C protection against oxidative stress‑induced β‑cell apoptosis. Mol Med Rep 2018; 18:2485-2491. [PMID: 29901137 DOI: 10.3892/mmr.2018.9163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/25/2018] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus (DM) and other glucose metabolism abnormalities are commonly observed in individuals with Fanconi anemia (FA). FA causes an impaired response to DNA damage due to genetic defects in a cluster of genes encoded proteins involved in DNA repair. However, the mechanism by which FA is associated with DM has not been clearly elucidated. Fanconi anemia complementation group C (FANCC) is a component of FA nuclear clusters. Evidence suggests that cytoplasmic FANCC has a role in protection against oxidative stress‑induced apoptosis. As oxidative stress‑mediated β‑cell dysfunction is one of the contributors to DM pathogenesis, the present study aimed to investigate the role of FANCC in pancreatic β‑cell response to oxidative stress. Small interfering RNA‑mediated FANCC suppression caused a loss of protection against oxidative stress‑induced apoptosis, and that overexpression of FANCC reduced this effect in the human 1.1B4 β‑cell line. These findings were confirmed by Annexin V‑FITC/PI staining, caspase 3/7 activity assay, and expression levels of anti‑apoptotic and pro‑apoptotic genes. Insulin and glucokinase mRNA expression were also decreased in FANCC‑depleted 1.1B4 cells. The present study demonstrated the role of FANCC in protection against oxidative stress‑induced β‑cell apoptosis and established another mechanism that associates FANCC deficiency with β‑cell dysfunction. The finding that FANCC overexpression reduced β‑cell apoptosis advances the potential for an alternative approach to the treatment of DM caused by FANCC defects.
Collapse
Affiliation(s)
- Sirikul Kulanuwat
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prapaporn Jungtrakoon
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watip Tangjittipokin
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nattachet Plengvidhya
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
5
|
Huang F, Ben Aissa M, Magron A, Huard CC, Godin C, Lévesque G, Carreau M. The Fanconi anemia group C protein interacts with uncoordinated 5A and delays apoptosis. PLoS One 2014; 9:e92811. [PMID: 24676280 PMCID: PMC3968024 DOI: 10.1371/journal.pone.0092811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
The Fanconi anemia group C protein (FANCC) is one of the several proteins that comprise the Fanconi anemia (FA) network involved in genomic surveillance. FANCC is mainly cytoplasmic and has many functions, including apoptosis suppression through caspase-mediated proteolytic processing. Here, we examined the role of FANCC proteolytic fragments by identifying their binding partners. We performed a yeast two-hybrid screen with caspase-mediated FANCC cleavage products and identified the dependence receptor uncoordinated-5A (UNC5A) protein. Here, we show that FANCC physically interacts with UNC5A, a pro-apoptotic dependence receptor. FANCC interaction occurs through the UNC5A intracellular domain, specifically via its death domain. FANCC modulates cell sensitivity to UNC5A-mediated apoptosis; we observed reduced UNC5A-mediated apoptosis in the presence of FANCC and increased apoptosis in FANCC-depleted cells. Our results show that FANCC interferes with UNC5A's functions in apoptosis and suggest that FANCC may participate in developmental processes through association with the dependence receptor UNC5A.
Collapse
Affiliation(s)
- FengFei Huang
- Department of Pediatrics, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Manel Ben Aissa
- Department of Pediatrics, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Audrey Magron
- Department of Pediatrics, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Caroline C. Huard
- Department of Pediatrics, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Chantal Godin
- Department of Psychiatry and Neurosciences, Université Laval, Cité Universitaire, Québec, Canada
| | - Georges Lévesque
- Department of Psychiatry and Neurosciences, Université Laval, Cité Universitaire, Québec, Canada
| | - Madeleine Carreau
- Department of Pediatrics, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
6
|
Abstract
The inherited bone marrow failure (BMF) syndromes are a rare and diverse group of genetic disorders that ultimately result in the loss of blood production. The molecular defects underlying many of these conditions have been elucidated, and great progress has been made toward understanding the normal function of these gene products. This review will focus on perhaps the most well-known and genetically heterogeneous BMF syndrome: Fanconi anemia. More specifically, this account will review the current state of our knowledge on why the bone marrow fails in this illness and what this might tell us about the maintenance of bone marrow function and hematopoiesis.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | |
Collapse
|
7
|
Fanconi anemia proteins interact with CtBP1 and modulate the expression of the Wnt antagonist Dickkopf-1. Blood 2013; 121:1729-39. [PMID: 23303816 DOI: 10.1182/blood-2012-02-408997] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by congenital abnormalities, bone marrow failure, and increased susceptibility to cancer. Of the fifteen FA proteins, Fanconi anemia group C (FANCC) is one of eight FA core complex components of the FA pathway. Unlike other FA core complex proteins, FANCC is mainly localized in the cytoplasm, where it is thought to function in apoptosis, redox regulation, cytokine signaling, and other processes. Previously, we showed that regulation of FANCC involved proteolytic processing during apoptosis. To elucidate the biological significance of this proteolytic modification, we searched for molecular interacting partners of proteolytic FANCC fragments. Among the candidates obtained, the transcriptional corepressor protein C-terminal binding protein-1 (CtBP1) interacted directly with FANCC and other FA core complex proteins. Although not required for stability of the FA core complex or ubiquitin ligase activity, CtBP1 is essential for proliferation, cell survival, and maintenance of chromosomal integrity. Expression profiling of CtBP1-depleted and FA-depleted cells revealed that several genes were commonly up- and down-regulated, including the Wnt antagonist Dickkopf-1 (DKK1). These findings suggest that FA and Wnt signaling via CtBP1 could share common effectors.
Collapse
|
8
|
Guthrie OW. Dynamic compartmentalization of DNA repair proteins within spiral ganglion neurons in response to noise stress. Int J Neurosci 2012; 122:757-66. [PMID: 22900489 DOI: 10.3109/00207454.2012.721828] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACT In response to stress, spiral ganglion neurons may remodel intracellular pools of DNA repair proteins. This hypothesis was addressed by determining the intracellular location of three classic DNA excision repair proteins (XPA, CSA, and XPC) within the neurons under normal conditions, one day after noise stress (105 dB/4 hr) and following DNA repair adjuvant therapy with carboxy alkyl esters (CAEs; 160 mg/kg/28 days). Under normal conditions, three intracellular compartments were enriched with at least one repair protein. These intracellular compartments were designated nuclear, cytoplasmic, and perinuclear. After the noise stress each repair protein aggregated in the cytoplasm. After CAE therapy each intracellular compartment was enriched with the three DNA repair proteins. Combining noise stress with CAE therapy resulted in the enrichment of at least two repair proteins in each intracellular compartment. The combined results suggest that in response to noise stress and/or otoprotective therapy, spiral ganglion neurons may selectively remodel compartmentalized DNA repair proteins.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Research Service-151, Loma Linda Veterans Affairs Medical Center, Loma Linda, California 92357, USA. O’
| |
Collapse
|
9
|
Fanconi anemia proteins and their interacting partners: a molecular puzzle. Anemia 2012; 2012:425814. [PMID: 22737580 PMCID: PMC3378961 DOI: 10.1155/2012/425814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/13/2012] [Indexed: 11/17/2022] Open
Abstract
In recent years, Fanconi anemia (FA) has been the subject of intense investigations, primarily in the DNA repair research field. Many discoveries have led to the notion of a canonical pathway, termed the FA pathway, where all FA proteins function sequentially in different protein complexes to repair DNA cross-link damages. Although a detailed architecture of this DNA cross-link repair pathway is emerging, the question of how a defective DNA cross-link repair process translates into the disease phenotype is unresolved. Other areas of research including oxidative metabolism, cell cycle progression, apoptosis, and transcriptional regulation have been studied in the context of FA, and some of these areas were investigated before the fervent enthusiasm in the DNA repair field. These other molecular mechanisms may also play an important role in the pathogenesis of this disease. In addition, several FA-interacting proteins have been identified with roles in these “other” nonrepair molecular functions. Thus, the goal of this paper is to revisit old ideas and to discuss protein-protein interactions related to other FA-related molecular functions to try to give the reader a wider perspective of the FA molecular puzzle.
Collapse
|
10
|
Léveillé F, Ferrer M, Medhurst AL, Laghmani EH, Rooimans MA, Bier P, Steltenpool J, Titus TA, Postlethwait JH, Hoatlin ME, Joenje H, de Winter JP. The nuclear accumulation of the Fanconi anemia protein FANCE depends on FANCC. DNA Repair (Amst) 2006; 5:556-65. [PMID: 16513431 DOI: 10.1016/j.dnarep.2006.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 01/10/2006] [Accepted: 01/13/2006] [Indexed: 01/18/2023]
Abstract
The Fanconi anemia (FA) protein FANCE is an essential component of the nuclear FA core complex, which is required for monoubiquitination of the downstream target FANCD2, an important step in the FA pathway of DNA cross-link repair. FANCE is predominantly localized in the nucleus and acts as a molecular bridge between the FA core complex and FANCD2, through direct binding of both FANCC and FANCD2. At present, it is poorly understood how the nuclear accumulation of FANCE is regulated and therefore we investigated the nuclear localization of this FA protein. We found that FANCE has a strong tendency to localize in the nucleus, since the addition of a nuclear export signal does not interfere with the nuclear localization of FANCE. We also demonstrate that the nuclear accumulation of FANCE does not rely solely on its nuclear localization signal motifs, but also on FANCC. The other FA proteins are not involved in the nuclear accumulation of FANCE, indicating a tight relationship between FANCC and FANCE, as suggested from their direct interaction. Finally, we show that the region of FANCE interacting with FANCC appears to be different from the region involved in binding FANCD2. This strengthens the idea that FANCE recruits FANCD2 to the core complex, without interfering with the binding of FANCC.
Collapse
Affiliation(s)
- France Léveillé
- Department of Clinical Genetics and Human Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gordon SM, Alon N, Buchwald M. FANCC, FANCE, and FANCD2 form a ternary complex essential to the integrity of the Fanconi anemia DNA damage response pathway. J Biol Chem 2005; 280:36118-25. [PMID: 16127171 DOI: 10.1074/jbc.m507758200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous disorder characterized by bone marrow failure, cancer predisposition, and increased cellular sensitivity to DNA-cross-linking agents. The products of seven of the nine identified FA genes participate in a protein complex required for monoubiquitination of the FANCD2 protein. Direct interaction of the FANCE protein with both fellow FA complex component FANCC and the downstream FANCD2 protein has been observed in the yeast two-hybrid system. Here, we demonstrate the ability of FANCE to mediate the interaction between FANCC and FANCD2 in the yeast three-hybrid system and confirm the FANCE-mediated association of FANCC with FANCD2 in human cells. A yeast two-hybrid system-based screen was devised to identify randomly mutagenized FANCE proteins capable of interaction with FANCC but not with FANCD2. Exogenous expression of these mutants in an FA-E cell line and subsequent evaluation of FANCD2 monoubiquitination and DNA cross-linker sensitivity indicated a critical role for the FANCE/FANCD2 interaction in maintaining FA pathway integrity. Three-hybrid experiments also demonstrated the ability of FANCE to mediate the interaction between FA core complex components FANCC and FANCF, indicating an additional role for FANCE in complex assembly. Thus, FANCE is shown to be a key mediator of protein interactions both in the architecture of the FA protein complex and in the connection of complex components to the putative downstream targets of complex activity.
Collapse
Affiliation(s)
- Susan M Gordon
- Program in Genetics and Genomic Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.
| | | | | |
Collapse
|
12
|
Bijangi-Vishehsaraei K, Saadatzadeh MR, Werne A, McKenzie KAW, Kapur R, Ichijo H, Haneline LS. Enhanced TNF-alpha-induced apoptosis in Fanconi anemia type C-deficient cells is dependent on apoptosis signal-regulating kinase 1. Blood 2005; 106:4124-30. [PMID: 16109778 PMCID: PMC1895245 DOI: 10.1182/blood-2005-05-2096] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder characterized by progressive bone marrow failure. Experimental evidence suggests that enhanced oxidant and myelosuppressive cytokine-mediated apoptosis of hematopoietic stem and progenitor cells contributes to the pathogenesis of marrow failure in FA. However, the molecular mechanisms responsible for the apoptotic phenotype in hematopoietic cells are incompletely understood. Recent data in Fancc-/- murine embryonic fibroblasts (MEFs) implicate increased oxidant-induced apoptotic signaling through the redox-dependent protein, apoptosis signal-regulating kinase 1 (Ask1). Here, we examined whether altered Ask1 signaling participated in the proapoptotic phenotype of primary Fancc-/- MEFs and hematopoietic progenitors treated with the myelosuppressive cytokine tumor necrosis factor-alpha (TNF-alpha). Our data indicate that TNF-alpha induces hyperactivation of Ask1 and the downstream effector p38 in Fancc-/- MEFs. In addition,Ask1 inactivation in Fancc-/- MEFs and hematopoietic progenitors restored survival to wild-type (WT) levels in the presence of TNF-alpha. Furthermore, targeting the Ask1 pathway by using either antioxidants or a p38 inhibitor protected Fancc-/- MEFs and c-kit+ cells from TNF-alpha-induced apoptosis. Collectively, these data argue that the predisposition of Fancc-/- hematopoietic progenitors to apoptosis is mediated in part through altered redox regulation and Ask1 hyperactivation.
Collapse
Affiliation(s)
- Khadijeh Bijangi-Vishehsaraei
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, R4-476, 1044 W. Walnut St, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Saadatzadeh MR, Bijangi-Vishehsaraei K, Hong P, Bergmann H, Haneline LS. Oxidant hypersensitivity of Fanconi anemia type C-deficient cells is dependent on a redox-regulated apoptotic pathway. J Biol Chem 2004; 279:16805-12. [PMID: 14764578 DOI: 10.1074/jbc.m313721200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia is a genetic disorder characterized by bone marrow failure. Significant evidence supports enhanced apoptosis of hematopoietic stem/progenitor cells as a critical factor in the pathogenesis of bone marrow failure in Fanconi anemia. However, the molecular mechanism(s) responsible for the apoptotic phenotype are incompletely understood. Here, we tested whether alterations in the activation of a redox-dependent pathway may participate in the pro-apoptotic phenotype of primary Fancc -/- cells in response to oxidative stress. Our data indicate that Fancc -/- cells are highly sensitive to oxidant stimuli and undergo enhanced oxidant-mediated apoptosis compared with wild type controls. In addition, antioxidants preferentially enhanced the survival of Fancc -/- cells. Because oxidative stress activates the redox-dependent ASK1 pathway, we assessed whether Fancc -/- cells exhibited increased oxidant-induced ASK1 activation. Our results revealed ASK1 hyperactivation in H2O2-treated Fancc -/- cells. Furthermore, using small interfering RNAs to decrease ASK1 expression and a dominant negative ASK1 mutant to inhibit ASK1 kinase activity, we determined that H2O2-induced apoptosis was ASK1-dependent. Collectively, these data argue that the predisposition of Fancc -/- hematopoietic stem/progenitor cells to apoptosis is mediated in part through altered redox regulation and ASK1 hyperactivation.
Collapse
Affiliation(s)
- M Reza Saadatzadeh
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202-5254, USA
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Randy J Legerski
- Department of Molecular Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
15
|
Pace P, Johnson M, Tan WM, Mosedale G, Sng C, Hoatlin M, de Winter J, Joenje H, Gergely F, Patel K. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J 2002; 21:3414-23. [PMID: 12093742 PMCID: PMC125396 DOI: 10.1093/emboj/cdf355] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Fanconi anaemia (FA) nuclear complex (composed of the FA proteins A, C, G and F) is essential for protection against chromosome breakage. It activates the downstream protein FANCD2 by monoubiquitylation; this then forges an association with the BRCA1 protein at sites of DNA damage. Here we show that the recently identified FANCE protein is part of this nuclear complex, binding both FANCC and FANCD2. Indeed, FANCE is required for the nuclear accumulation of FANCC and provides a critical bridge between the FA complex and FANCD2. Disease-associated FANCC mutants do not bind to FANCE, cannot accumulate in the nucleus and are unable to prevent chromosome breakage.
Collapse
Affiliation(s)
- Paul Pace
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, Division of Molecular Medicine and Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA, Department of Clinical Genetics and Human Genetics, Free University Medical Center, NL-1081 BT Amsterdam, The Netherlands, Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge and Department of Investigative Medicine, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, UK Corresponding author e-mail: P.Pace and M.Johnson contributed equally to this work
| | - Mark Johnson
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, Division of Molecular Medicine and Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA, Department of Clinical Genetics and Human Genetics, Free University Medical Center, NL-1081 BT Amsterdam, The Netherlands, Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge and Department of Investigative Medicine, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, UK Corresponding author e-mail: P.Pace and M.Johnson contributed equally to this work
| | - Wu Meng Tan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, Division of Molecular Medicine and Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA, Department of Clinical Genetics and Human Genetics, Free University Medical Center, NL-1081 BT Amsterdam, The Netherlands, Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge and Department of Investigative Medicine, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, UK Corresponding author e-mail: P.Pace and M.Johnson contributed equally to this work
| | - Georgina Mosedale
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, Division of Molecular Medicine and Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA, Department of Clinical Genetics and Human Genetics, Free University Medical Center, NL-1081 BT Amsterdam, The Netherlands, Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge and Department of Investigative Medicine, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, UK Corresponding author e-mail: P.Pace and M.Johnson contributed equally to this work
| | - Chelvin Sng
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, Division of Molecular Medicine and Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA, Department of Clinical Genetics and Human Genetics, Free University Medical Center, NL-1081 BT Amsterdam, The Netherlands, Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge and Department of Investigative Medicine, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, UK Corresponding author e-mail: P.Pace and M.Johnson contributed equally to this work
| | - Maureen Hoatlin
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, Division of Molecular Medicine and Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA, Department of Clinical Genetics and Human Genetics, Free University Medical Center, NL-1081 BT Amsterdam, The Netherlands, Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge and Department of Investigative Medicine, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, UK Corresponding author e-mail: P.Pace and M.Johnson contributed equally to this work
| | - Johan de Winter
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, Division of Molecular Medicine and Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA, Department of Clinical Genetics and Human Genetics, Free University Medical Center, NL-1081 BT Amsterdam, The Netherlands, Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge and Department of Investigative Medicine, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, UK Corresponding author e-mail: P.Pace and M.Johnson contributed equally to this work
| | - Hans Joenje
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, Division of Molecular Medicine and Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA, Department of Clinical Genetics and Human Genetics, Free University Medical Center, NL-1081 BT Amsterdam, The Netherlands, Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge and Department of Investigative Medicine, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, UK Corresponding author e-mail: P.Pace and M.Johnson contributed equally to this work
| | - Fanni Gergely
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, Division of Molecular Medicine and Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA, Department of Clinical Genetics and Human Genetics, Free University Medical Center, NL-1081 BT Amsterdam, The Netherlands, Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge and Department of Investigative Medicine, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, UK Corresponding author e-mail: P.Pace and M.Johnson contributed equally to this work
| | - K.J. Patel
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK, Division of Molecular Medicine and Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA, Department of Clinical Genetics and Human Genetics, Free University Medical Center, NL-1081 BT Amsterdam, The Netherlands, Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge and Department of Investigative Medicine, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, UK Corresponding author e-mail: P.Pace and M.Johnson contributed equally to this work
| |
Collapse
|
16
|
Abstract
Inherited defects in DNA repair or the processing of DNA damage can lead to disease. Both autosomal recessive and autosomal dominant modes of inheritance are represented. The diseases as a group are characterized by genomic instability, with eventual appearance of cancer. The inherited defects frequently have a specific DNA damage sensitivity, with cells from affected individuals showing normal resistance to other genotoxic agents. The known defects are subtle alterations in transcription, replication, or recombination, with alternate pathways of processing permitting cellular viability. Distinct diseases may arise from different mutations in one gene; thus, clinical phenotypes may reflect the loss of different partial functions of a gene. The findings indicate that partial defects in transcription or recombination lead to genomic instability, cancer, and characteristic disease phenotypes.
Collapse
Affiliation(s)
- R E Moses
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| |
Collapse
|
17
|
Yagasaki H, Adachi D, Oda T, Garcia-Higuera I, Tetteh N, D'Andrea AD, Futaki M, Asano S, Yamashita T. A cytoplasmic serine protein kinase binds and may regulate the Fanconi anemia protein FANCA. Blood 2001; 98:3650-7. [PMID: 11739169 DOI: 10.1182/blood.v98.13.3650] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive disease with congenital anomalies, bone marrow failure, and susceptibility to leukemia. Patient cells show chromosome instability and hypersensitivity to DNA cross-linking agents. At least 8 complementation groups (A-G) have been identified and 6 FA genes (for subtypes A, C, D2, E, F, and G) have been cloned. Increasing evidence indicates that a protein complex assembly of multiple FA proteins, including FANCA and FANCG, plays a crucial role in the FA pathway. Previously, it was reported that FANCA was phosphorylated in lymphoblasts from normal controls, whereas the phosphorylation was defective in those derived from patients with FA of multiple complementation groups. The present study examined phosphorylation of FANCA ectopically expressed in FANCA(-) cells. Several patient-derived mutations abrogated in vivo phosphorylation of FANCA in this system, suggesting that FANCA phosphorylation is associated with its function. In vitro phosphorylation studies indicated that a physiologic protein kinase for FANCA (FANCA-PK) forms a complex with the substrate. Furthermore, at least a part of FANCA-PK as well as phosphorylated FANCA were included in the FANCA/FANCG complex. Thus, FANCA-PK appears to be another component of the FA protein complex and may regulate function of FANCA. FANCA-PK was characterized as a cytoplasmic serine kinase sensitive to wortmannin. Identification of the protein kinase is expected to elucidate regulatory mechanisms that control the FA pathway.
Collapse
Affiliation(s)
- H Yagasaki
- Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Holmes RK, Harutyunyan K, Shah M, Joenje H, Youssoufian H. Correction of cross-linker sensitivity of Fanconi anemia group F cells by CD33-mediated protein transfer. Blood 2001; 98:3817-22. [PMID: 11739191 DOI: 10.1182/blood.v98.13.3817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies have previously described the feasibility of receptor-mediated protein transfer in a cell culture model of Fanconi anemia (FA) group C. This study explores the versatility of this approach by using an antibody single-chain fusion protein to correct the phenotypic defect in FA group F cells. A 68.5-kd chimeric protein (His-M195FANCF) was expressed, consisting of a His tag, a single-chain antibody to the myeloid antigen CD33, and the FANCF protein, as well as a 43-kd His-FANCF fusion protein lacking the antibody motif, in Escherichia coli. The nickel-agarose-purified His-M195FANCF protein bound specifically to the surface of HeLa cells transfected with CD33 and internalized through vesicular structures. The fusion protein, but not CD33, sorted to the nucleus, consistent with the known nuclear localization of FANCF. No similar binding or internalization was observed with His-FANCF. Pretreatment of the transfected cells with chloroquine abolished nuclear accumulation, but there was little change with brefeldin A, indicating a minimal if any role for the Golgi apparatus in mediating transport from endosomes to the cytosol and the nucleus. The intracellular half-life of His-M195FANCF was approximately 160 minutes. Treatment of CD33-transfected FA group F lymphoblastoid cells with 0.1 mg/mL His-M195FANCF conferred resistance to mitomycin C. No similar protection was noted in CD33(-) parental cells or CD33(+) FA cells belonging to groups A and C. These results demonstrate that antibody-directed, receptor-mediated protein transfer is a versatile method for the delivery of biologically active proteins into hematopoietic cells.
Collapse
Affiliation(s)
- R K Holmes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Fagerlie S, Lensch MW, Pang Q, Bagby GC. The Fanconi anemia group C gene product: signaling functions in hematopoietic cells. Exp Hematol 2001; 29:1371-81. [PMID: 11750095 DOI: 10.1016/s0301-472x(01)00755-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- S Fagerlie
- OHSU Cancer Institute, Department of Medicine, Oregon Health and Science University, Portland, Ore. 97201-3098, USA
| | | | | | | |
Collapse
|
21
|
|
22
|
Pang Q, Christianson TA, Keeble W, Diaz J, Faulkner GR, Reifsteck C, Olson S, Bagby GC. The Fanconi anemia complementation group C gene product: structural evidence of multifunctionality. Blood 2001; 98:1392-401. [PMID: 11520787 DOI: 10.1182/blood.v98.5.1392] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Fanconi anemia (FA) group C gene product (FANCC) functions to protect cells from cytotoxic and genotoxic effects of cross-linking agents. FANCC is also required for optimal activation of STAT1 in response to cytokine and growth factors and for suppressing cytokine-induced apoptosis by modulating the activity of double-stranded RNA-dependent protein kinase. Because not all FANCC mutations affect STAT1 activation, the hypothesis was considered that cross-linker resistance function of FANCC depends on structural elements that differ from those required for the cytokine signaling functions of FANCC. Structure-function studies were designed to test this notion. Six separate alanine-substituted mutations were generated in 3 highly conserved motifs of FANCC. All mutants complemented mitomycin C (MMC) hypersensitive phenotype of FA-C cells and corrected aberrant posttranslational activation of FANCD2 in FA-C mutant cells. However, 2 of the mutants, S249A and E251A, failed to correct defective STAT1 activation. FA-C lymphoblasts carrying these 2 mutants demonstrated a defect in recruitment of STAT1 to the interferon gamma (IFN-gamma) receptor and GST-fusion proteins bearing S249A and E251A mutations were less efficient binding partners for STAT1 in stimulated lymphoblasts. These same mutations failed to complement the characteristic hypersensitive apoptotic responses of FA-C cells to tumor necrosis factor-alpha (TNF-alpha) and IFN-gamma. Cells bearing a naturally occurring FANCC mutation (322delG) that preserves this conserved region showed normal STAT1 activation but remained hypersensitive to MMC. The conclusion is that a central highly conserved domain of FANCC is required for functional interaction with STAT1 and that structural elements required for STAT1-related functions differ from those required for genotoxic responses to cross-linking agents. Preservation of signaling capacity of cells bearing the del322G mutation may account for the reduced severity and later onset of bone marrow failure associated with this mutation.
Collapse
Affiliation(s)
- Q Pang
- Oregon Cancer Center, Department of Medicine (Division of Hematology and Medical Oncology), Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Fanconi's anemia is a rare autosomal recessive disease characterized by congenital abnormalities, a progressive pancytopenia and a predisposition to cancer. The diagnosis is based on an abnormal increase of spontaneous chromosome breakage, more specifically on a clear-cut increase of chromosome breakage in the presence of bifunctional alkylating agents. Eight complementation groups (A to H) have been defined, and the genes corresponding to four of these groups have been cloned (FANCA, FANCC, FANCF and FANCG). The function of the proteins encoded by the genes of Fanconi's anemia remains unknown. Numerous studies indicate that different cellular processes are probably involved, including DNA repair pathways, apoptosis, cell cycle regulation and oxygen metabolism. Nevertheless, the exact cellular and molecular mechanisms implicated in Fanconi's anemia remain a challenge for fundamental research. The treatment of Fanconi's anemia is also the subject of intense research, bearing principally upon bone marrow transplantation, which is successful in the case of HLA-identical sibling donors, and gene therapy, which is still at a preliminary stage on the clinical level.
Collapse
Affiliation(s)
- B Mondovits
- Service d'hématologie pédiatrique, cliniques universitaires Saint-Luc, avenue Hippocrate 10, 1200 Bruxelles, Belgique
| | | | | | | |
Collapse
|
24
|
Yamashita T, Nakahata T. Current knowledge on the pathophysiology of Fanconi anemia: from genes to phenotypes. Int J Hematol 2001; 74:33-41. [PMID: 11530803 DOI: 10.1007/bf02982547] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fanconi anemia (FA) is an autosomal recessive disease characterized by congenital anomalies, bone marrow failure, and leukemia susceptibility. FA cells show chromosome instability and hypersensitivity to DNA cross-linking agents such as mitomycin C. Recent studies indicate that there are at least 8 genetically distinct FA groups (A, B, C, D1, D2, E, F, G). To date, 6 genes (for A, C, D2, E, F, and G) have been cloned. In this review, we describe the structures and functions of FA proteins. Increasing evidence indicates that the multiple FA proteins cooperate in a biochemical pathway and/or a multimer complex. FANCD2, a downstream component of the FA pathway, has recently been shown to be ubiquitinated in response to DNA damage and to translocate to nuclear foci containing BRCA1, a breast cancer susceptibility gene product, suggesting a role for this protein in DNA repair functions. We also describe 2 emerging issues: genotype-phenotype relationships and mosaicism. The FA pathway is likely to play a critical role as a caretaker of genomic integrity in hematopoietic stem cells. Clarifying the molecular basis of this disease may provide new insights into the pathogenesis of bone marrow failure syndromes and myeloid malignancies.
Collapse
Affiliation(s)
- T Yamashita
- Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, Japan.
| | | |
Collapse
|
25
|
Cumming RC, Lightfoot J, Beard K, Youssoufian H, O'Brien PJ, Buchwald M. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat Med 2001; 7:814-20. [PMID: 11433346 DOI: 10.1038/89937] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Fanconi anemia group C protein (FANCC) plays an important role in hematopoiesis by ensuring the survival of hematopoietic progenitor cells through an unknown mechanism. We investigated the function of FANCC by identifying FANCC-binding proteins in hematopoietic cells. Here we show that glutathione S-transferase P1-1 (GSTP1) interacts with FANCC, and that overexpression of both proteins in a myeloid progenitor cell line prevents apoptosis following factor deprivation. FANCC increases GSTP1 activity after the induction of apoptosis. GSTP1 is an enzyme that catalyzes the detoxification of xenobiotics and by-products of oxidative stress, and it is frequently upregulated in neoplastic cells. Although FANCC lacks homology with conventional disulfide reductases, it functions by preventing the formation of inactivating disulfide bonds within GSTP1 during apoptosis. The prevention of protein oxidation by FANCC reveals a novel mechanism of enzyme regulation during apoptosis and has implications for the treatment of degenerative diseases with thiol reducing agents.
Collapse
Affiliation(s)
- R C Cumming
- Program in Genetics and Genomic Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Tipping AJ, Mathew CG. Erythropoiesis: Current Clinical Practice: Advances in the Genetics and Biology of Fanconi Anaemia. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2001; 5:1-13. [PMID: 11399597 DOI: 10.1080/10245332.2000.11746483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The autosomal recessive disorder Fanconi anaemia (FA) has been the subject of intense study for over a decade. The genes mutated in FA patients are being cloned, but so far, the sequences of these genes have not given any clear indication of their function. Various models for the function of the FA proteins have been postulated to explain the spontaneous chromosomal abnormalities and clastogen sensitivity described in FA cells. This review summarises the critical experimental evidence for and against these models, and attempts to give some indication of the possible mechanisms by which mutations in FA genes cause patients to suffer pancytopaenia and acute myeloid leukaemia, as well as an increased risk of other malignancies.
Collapse
Affiliation(s)
- A. J. Tipping
- Division of Medical and Molecular Genetics, GKT School of Medicine, King's College London
| | | |
Collapse
|
27
|
Abstract
The past few years have witnessed a considerable expansion in our understanding of the pathways that maintain chromosome stability in dividing cells through the identification of genes that are mutated in certain human chromosome instability disorders. Cells that are derived from patients with Fanconi anaemia (FA) show spontaneous chromosomal instability and mutagen hypersensitivity, but FA poses a unique challenge as the nature of the DNA-damage-response pathway thought to be affected by the disease has long been a mystery. However, the recent cloning of most of the FA-associated genes, and the characterization of their protein products, has provided tantalizing clues as to the molecular basis of this disease.
Collapse
Affiliation(s)
- H Joenje
- Department of Clinical Genetics and Human Genetics, and Oncology Research Institute, Free University Medical Centre, Van der Boechorststraat 7, NL-1081 BT, Amsterdam, The Netherlands.
| | | |
Collapse
|
28
|
Timmers C, Taniguchi T, Hejna J, Reifsteck C, Lucas L, Bruun D, Thayer M, Cox B, Olson S, D'Andrea AD, Moses R, Grompe M. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol Cell 2001; 7:241-8. [PMID: 11239453 DOI: 10.1016/s1097-2765(01)00172-1] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fanconi anemia (FA) is a genetic disease with birth defects, bone marrow failure, and cancer susceptibility. To date, genes for five of the seven known complementation groups have been cloned. Complementation group D is heterogeneous, consisting of two distinct genes, FANCD1 and FANCD2. Here we report the positional cloning of FANCD2. The gene consists of 44 exons, encodes a novel 1451 amino acid nuclear protein, and has two protein isoforms. Similar to other FA proteins, the FANCD2 protein has no known functional domains, but unlike other known FA genes, FANCD2 is highly conserved in A. thaliana, C. elegans, and Drosophila. Retroviral transduction of the cloned FANCD2 cDNA into FA-D2 cells resulted in functional complementation of MMC sensitivity.
Collapse
Affiliation(s)
- C Timmers
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ren J, Youssoufian H. Functional analysis of the putative peroxidase domain of FANCA, the Fanconi anemia complementation group A protein. Mol Genet Metab 2001; 72:54-60. [PMID: 11161829 DOI: 10.1006/mgme.2000.3109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fanconi anemia (FA) is an autosomal recessive disorder manifested by chromosomal breakage, birth defects, and susceptibility to bone marrow failure and cancer. At least seven complementation groups have been identified, and the genes defective in four groups have been cloned. The most common subtype is complementation group A. Although the normal functions of the gene products defective in FA cells are not completely understood, a clue to the function of the FA group A gene product (FANCA) was provided by the detection of limited homology in the amino terminal region to a class of heme peroxidases. We evaluated this hypothesis by mutagenesis and functional complementation studies. We substituted alanine residues for the most conserved FANCA residues in the putative peroxidase domain and tested their effects on known biochemical and cellular functions of FANCA. While the substitution mutants were comparable to wild-type FANCA with regard to their stability, subcellular localization, and interaction with FANCG, only the Trp(183)-to-Ala substitution (W183A) abolished the ability of FANCA to complement the sensitivity of FA group A cells to mitomycin C. By contrast, TUNEL assays for apoptosis after exposure to H2O2 showed no differences between parental FA group A cells, cells complemented with wild-type FANCA, and cells complemented with the W183A of FANCA. Moreover, semiquantitative RT-PCR analysis for the expression of the peroxide-sensitive heme oxygenase gene showed appropriate induction after H2O2 exposure. Thus, W183A appears to be essential for the in vivo activity of FANCA in a manner independent of its interaction with FANCG. Moreover, neither wild-type FANCA nor the W183A mutation appears to alter the peroxide-induced apoptosisor peroxide-sensing ability of FA group A cells.
Collapse
Affiliation(s)
- J Ren
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Interferon-γ–induced apoptotic responses of Fanconi anemia group C hematopoietic progenitor cells involve caspase 8–dependent activation of caspase 3 family members. Blood 2000. [DOI: 10.1182/blood.v96.13.4204.h8004204_4204_4211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic progenitor cells (HPC) from mice nullizygous at the Fanconi anemia (FA) group C locus and children with Fanconi anemia group C (FA-C) are hypersensitive to interferon-gamma (IFN-γ) and tumor necrosis factor-α. This hypersensitivity results, in part, from the capacity of these cytokines to prime the fas pathway. Because fas-mediated programmed cell death in many cells involves sequential activation of specific caspases, we tested the hypothesis that programmed cell death in FA HPC involves the ordered activation of specific caspase molecules. Lysates from lymphoblasts treated with both agonistic anti-fas antibody and IFN-γ contained activated caspase 3 family members (caspases 3, 6, and 7), as well as caspase 8, whereas activation of caspases 1, 2, 4, 9, and 10 was not detected. The apoptotic effects of fas agonists in IFN-γ-treated human and murine FA-C cells were blocked when pretreated with inhibitors (ac-DEVD-cho, CP-DEVD-cho, Z-DEVD-FMK) of the caspase 3 protease. Inhibitors (ac-YVAD-cho, CP-YVAD-cho, Z-YVAD-FMK) of caspase 1 did not block apoptosis or caspase 3 activation. Treatment of FA cells with the fluoromethyl ketone tetrapeptide caspase 8 inhibitor (ac-IETD-FMK) did suppress caspase 3 activation. A 4-fold greater fraction of IFN-induced FA-C cells expressed caspase 3 than FA-C cells complemented by retroviral-mediated transfer of FANCC. Therefore fas-induced apoptosis in Fanconi anemia cells of the C type involves the activation of caspase 8, which controls activation of caspase 3 family members and one direct or indirect function of the FANCC protein is to suppress apoptotic responses to IFN-γ upstream of caspase 3 activation.
Collapse
|
31
|
Interferon-γ–induced apoptotic responses of Fanconi anemia group C hematopoietic progenitor cells involve caspase 8–dependent activation of caspase 3 family members. Blood 2000. [DOI: 10.1182/blood.v96.13.4204] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHematopoietic progenitor cells (HPC) from mice nullizygous at the Fanconi anemia (FA) group C locus and children with Fanconi anemia group C (FA-C) are hypersensitive to interferon-gamma (IFN-γ) and tumor necrosis factor-α. This hypersensitivity results, in part, from the capacity of these cytokines to prime the fas pathway. Because fas-mediated programmed cell death in many cells involves sequential activation of specific caspases, we tested the hypothesis that programmed cell death in FA HPC involves the ordered activation of specific caspase molecules. Lysates from lymphoblasts treated with both agonistic anti-fas antibody and IFN-γ contained activated caspase 3 family members (caspases 3, 6, and 7), as well as caspase 8, whereas activation of caspases 1, 2, 4, 9, and 10 was not detected. The apoptotic effects of fas agonists in IFN-γ-treated human and murine FA-C cells were blocked when pretreated with inhibitors (ac-DEVD-cho, CP-DEVD-cho, Z-DEVD-FMK) of the caspase 3 protease. Inhibitors (ac-YVAD-cho, CP-YVAD-cho, Z-YVAD-FMK) of caspase 1 did not block apoptosis or caspase 3 activation. Treatment of FA cells with the fluoromethyl ketone tetrapeptide caspase 8 inhibitor (ac-IETD-FMK) did suppress caspase 3 activation. A 4-fold greater fraction of IFN-induced FA-C cells expressed caspase 3 than FA-C cells complemented by retroviral-mediated transfer of FANCC. Therefore fas-induced apoptosis in Fanconi anemia cells of the C type involves the activation of caspase 8, which controls activation of caspase 3 family members and one direct or indirect function of the FANCC protein is to suppress apoptotic responses to IFN-γ upstream of caspase 3 activation.
Collapse
|
32
|
Abstract
Fanconi's anaemia (FA) is an inherited bone marrow failure syndrome characterized by considerable clinical and cellular heterogeneity. This has also been recently demonstrated at the genetic and molecular levels following cloning of four out of the seven FA genes. Although this now enables molecular diagnosis in the majority of patients, because of the considerable molecular heterogeneity, the diepoxybutane/mitomycin-C stress test based on the increased chromosomal instability seen in FA cells, compared to normal controls, remains the front-line diagnostic test. This FA cell hallmark has led to the suggestion that FA may represent a defect in DNA repair although the precise function of the cloned FA genes remains unknown. Recent data suggest that they function in a novel cell pathway which has an important role in maintaining chromosome stability. The advances in the genetics of FA have already had some impact on diagnosis--for example, identification of patients with somatic mosaicism who have atypical clinical presentations--but to date they have had little impact on treatment. However, new treatments may now follow; indeed, for a number of reasons, FA may be a good candidate for haemopoietic gene therapy.
Collapse
Affiliation(s)
- I Dokal
- Department of Haematology, Hammersmith Hospital, London, UK
| |
Collapse
|
33
|
Slayton WB, Schibler KR. Congenital bone marrow failure syndromes associated with protean developmental defects and leukemia. Clin Perinatol 2000; 27:543-58. [PMID: 10986628 DOI: 10.1016/s0095-5108(05)70038-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Congenital bone marrow failure syndromes are associated with a number of congenital abnormalities affecting a wide range of organ systems. The underlying molecular abnormalities that cause these disorders affect normal embryonic development during the critical organogenesis phase (weeks 4 to 8). These syndromes predispose patients to leukemia and other malignancies, and these genetic disorders may represent the first hit of at least two hits necessary for malignant transformation. The molecular defects underlying these diseases are just beginning to be understood; mechanisms suggested by recent research include DNA repair (FA-A, FA-G); abnormalities of the ribosomes (DBA, DC); to disorders of electron transport (FA-C, Pearson's syndrome, Barth's syndrome). Understanding these molecular mechanisms provides the knowledge necessary to develop better therapy, possibly including gene therapy, offering for the first time the potential for curing the hematologic manifestations of these illnesses.
Collapse
Affiliation(s)
- W B Slayton
- Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, USA.
| | | |
Collapse
|
34
|
Pang Q, Fagerlie S, Christianson TA, Keeble W, Faulkner G, Diaz J, Rathbun RK, Bagby GC. The Fanconi anemia protein FANCC binds to and facilitates the activation of STAT1 by gamma interferon and hematopoietic growth factors. Mol Cell Biol 2000; 20:4724-35. [PMID: 10848598 PMCID: PMC85895 DOI: 10.1128/mcb.20.13.4724-4735.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1999] [Accepted: 04/07/2000] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic progenitor cells from Fanconi anemia (FA) group C (FA-C) patients display hypersensitivity to the apoptotic effects of gamma interferon (IFN-gamma) and constitutively express a variety of IFN-dependent genes. Paradoxically, however, STAT1 activation is suppressed in IFN-stimulated FA cells, an abnormality corrected by transduction of normal FANCC cDNA. We therefore sought to define the specific role of FANCC protein in signal transduction through receptors that activate STAT1. Expression and phosphorylation of IFN-gamma receptor alpha chain (IFN-gammaRalpha) and JAK1 and JAK2 tyrosine kinases were equivalent in both normal and FA-C cells. However, in coimmunoprecipitation experiments STAT1 did not dock at the IFN-gammaR of FA-C cells, an abnormality corrected by transduction of the FANCC gene. In addition, glutathione S-transferase fusion genes encoding normal FANCC but not a mutant FANCC bearing an inactivating point mutation (L554P) bound to STAT1 in lysates of IFN-gamma-stimulated B cells and IFN-, granulocyte-macrophage colony-stimulating factor- and stem cell factor-stimulated MO7e cells. Kinetic studies revealed that the initial binding of FANCC was to nonphosphorylated STAT1 but that subsequently the complex moved to the receptor docking site, at which point STAT1 became phosphorylated. The STAT1 phosphorylation defect in FA-C cells was functionally significant in that IFN induction of IFN response factor 1 was suppressed and STAT1-DNA complexes were not detected in nuclear extracts of FA-C cells. We also determined that the IFN-gamma hypersensitivity of FA-C hematopoietic progenitor cells does not derive from STAT1 activation defects because granulocyte-macrophage CFU and erythroid burst-forming units from STAT1(-/-) mice were resistant to IFN-gamma. However, BFU-E responses to SCF and erythropoietin were suppressed in STAT(-/-) mice. Consequently, because the FANCC protein is involved in the activation of STAT1 through receptors for at least three hematopoietic growth and survival factor molecules, we reason that FA-C hematopoietic cells are excessively apoptotic because of an imbalance between survival cues (owing to a failure of STAT1 activation in FA-C cells) and apoptotic and mitogenic inhibitory cues (constitutively activated in FA-C cells in a STAT1-independent fashion).
Collapse
Affiliation(s)
- Q Pang
- Oregon Cancer Center, Department of Medicine, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tachibana A, Kato T, Ejima Y, Yamada T, Shimizu T, Yang L, Tsunematsu Y, Sasaki MS. The FANCA gene in Japanese Fanconi anemia: reports of eight novel mutations and analysis of sequence variability. Hum Mutat 2000; 13:237-44. [PMID: 10090479 DOI: 10.1002/(sici)1098-1004(1999)13:3<237::aid-humu8>3.0.co;2-f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fanconi anemia (FA), an autosomal recessive disorder characterized by a progressive pancytopenia associated with congenital anomalies and high predisposition to malignancies, is a genetically and clinically heterogeneous disease. At least eight complementation groups (FA-A to FA-H) have been identified with their relative prevalence varying among the ethnical backgrounds. Recently, responsible genes, FANCA and FANCC, have been cloned. This report describes mutations of the FANCA gene, which we studied by direct sequencing of cDNA with confirmation on genomic DNA in 15 unclassified Japanese FA patients. A total of 19 sequence alterations were identified, of which 10 (six missense and four silent alterations) were likely to be nonpathogenic polymorphism. The remaining nine alterations, of which eight were novel mutations, were assumed to be pathogenic and consisted of two missense mutations and seven mutations resulting in truncation of gene product, demonstrating a wide allelic heterogeneity. The pathogenic mutations were found in 12 patients (80%); they were either homozygous or compound heterozygous in 10 patients, apparently heterozygous in two patients and none in three patients. We conclude that the sequence variability is intrinsic to the FANCA gene and that the relative prevalence of the FA-A subtype is unusually high in Japanese FA patients.
Collapse
Affiliation(s)
- A Tachibana
- Radiation Biology Center, Kyoto University, Yoshida-konoecho, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The Fanconi Anemia (FA) Group C complementation group gene (FANCC) encodes a protein, FANCC, with a predicted Mr of 63000 daltons. FANCC is found in both the cytoplasmic and the nuclear compartments and interacts with certain other FA complementation group proteins as well as with non-FA proteins. Despite intensive investigation, the biologic roles of FANCC and of the other cloned FA gene products (FANCA and FANCG) remain unknown. As an approach to understanding FANCC function, we have studied the molecular regulation of FANCC expression. We found that although FANCCmRNA levels are constant throughout the cell cycle, FANCC is expressed in a cell cycle-dependent manner, with the lowest levels seen in cells synchronized at the G1/S boundary and the highest levels in the M-phase. Cell cycle–dependent regulation occurred despite deletion of the 5′ and 3′ FANCC untranslated regions, indicating that information in the FANCC coding sequence is sufficient to mediate cell cycle–dependent regulation. Moreover, inhibitors of proteasome function blocked the observed regulation. We conclude that FANCC expression is controlled by posttranscriptional mechanisms that are proteasome dependent. Recent work has demonstrated that the functional activity of FA proteins requires the physical interaction of at least FANCA, FANCC, and FANCG, and possibly of other FA and non-FA proteins. Our observation of dynamic control of FANCC expression by the proteasome has important implications for understanding the molecular regulation of the multiprotein complex.
Collapse
|
37
|
Abstract
AbstractThe Fanconi Anemia (FA) Group C complementation group gene (FANCC) encodes a protein, FANCC, with a predicted Mr of 63000 daltons. FANCC is found in both the cytoplasmic and the nuclear compartments and interacts with certain other FA complementation group proteins as well as with non-FA proteins. Despite intensive investigation, the biologic roles of FANCC and of the other cloned FA gene products (FANCA and FANCG) remain unknown. As an approach to understanding FANCC function, we have studied the molecular regulation of FANCC expression. We found that although FANCCmRNA levels are constant throughout the cell cycle, FANCC is expressed in a cell cycle-dependent manner, with the lowest levels seen in cells synchronized at the G1/S boundary and the highest levels in the M-phase. Cell cycle–dependent regulation occurred despite deletion of the 5′ and 3′ FANCC untranslated regions, indicating that information in the FANCC coding sequence is sufficient to mediate cell cycle–dependent regulation. Moreover, inhibitors of proteasome function blocked the observed regulation. We conclude that FANCC expression is controlled by posttranscriptional mechanisms that are proteasome dependent. Recent work has demonstrated that the functional activity of FA proteins requires the physical interaction of at least FANCA, FANCC, and FANCG, and possibly of other FA and non-FA proteins. Our observation of dynamic control of FANCC expression by the proteasome has important implications for understanding the molecular regulation of the multiprotein complex.
Collapse
|
38
|
Huber PA, Medhurst AL, Youssoufian H, Mathew CG. Investigation of Fanconi anemia protein interactions by yeast two-hybrid analysis. Biochem Biophys Res Commun 2000; 268:73-7. [PMID: 10652215 DOI: 10.1006/bbrc.1999.2055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fanconi anemia is a chromosomal breakage disorder with eight complementation groups (A-H), and three genes (FANCA, FANCC, and FANCG) have been identified. Initial investigations of the interaction between FANCA and FANCC, principally by co-immunoprecipitation, have proved controversial. We used the yeast two-hybrid assay to test for interactions of the FANCA, FANCC, and FANCG proteins. No activation of the reporter gene was observed in yeast co-expressing FANCA and FANCC as hybrid proteins, suggesting that FANCA does not directly interact with FANCC. However, a high level of activation was found when FANCA was co-expressed with FANCG, indicating strong, direct interaction between these proteins. Both FANCA and FANCG show weak but consistent interaction with themselves, suggesting that their function may involve dimerisation. The site of interaction of FANCG with FANCA was investigated by analysis of 12 mutant fragments of FANCG. Although both N- and C-terminal fragments did interact, binding to FANCA was drastically reduced, suggesting that more than one region of the FANCG protein is required for proper interaction with FANCA.
Collapse
Affiliation(s)
- P A Huber
- Division of Medical Genetics, Guy's, King's and St. Thomas' School of Medicine, Guy's Hospital, 7th Floor, Guy's Tower, London, SE1 9RT, United Kingdom.
| | | | | | | |
Collapse
|
39
|
Guillouf C, Vit JP, Rosselli F. Loss of the Fanconi anemia group C protein activity results in an inability to activate caspase-3 after ionizing radiation. Biochimie 2000; 82:51-8. [PMID: 10717387 DOI: 10.1016/s0300-9084(00)00359-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fanconi anemia (FA) is a human genetic disease featuring cancer predisposition, genetic instability and DNA damage hypersensitivity. Although abnormalities in DNA repair and cell cycle checkpoint have been proposed as the underlying defect in this syndrome, these hypotheses did not provide full explanations of the complex phenotype. Although not exclusive of such possibilities, alterations in the control of apoptosis might account for the pleiotropic phenotype of this syndrome. We and others have previously reported a deregulation of the apoptotic response to mitomycin C, suggesting that the products of the Fanconi anemia group C protein (FANCC) contribute to the regulation of apoptosis. To explore the functional importance of the apoptotic alterations in FA we analyzed biochemical steps of the execution phase of apoptosis stimulated by another DNA damaging agent, the gamma-ray using FA cell lines derived from complementation group C (FA-C) independent patients. It is shown that the poly(ADP-ribose) polymerase, a target of caspase-3, is not cleaved in FA-C after ionizing radiation (IR). Moreover, caspase-3 is not processed in its active form and, its activity is not increased by IR in FA-C cells compared to normal cells. Altogether, these results demonstrate that loss of the FANCC activity results in a deficiency of the IR-induced apoptosis which is due to an inability to activate caspase-3. Our work suggests that apoptosis signaling induced by mitomycin C and IR is subject to common regulation involving the FANCC protein.
Collapse
Affiliation(s)
- C Guillouf
- UMR 218 CNRS, Institut Curie Recherche, Paris, France
| | | | | |
Collapse
|
40
|
A Novel BTB/POZ Transcriptional Repressor Protein Interacts With the Fanconi Anemia Group C Protein and PLZF. Blood 1999. [DOI: 10.1182/blood.v94.11.3737] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractFanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome. The phenotype includes developmental defects, bone marrow failure, and cell cycle abnormalities. At least eight complementation groups (A-H) exist, and although three of the corresponding complementation group genes have been cloned, they lack recognizable motifs, and their functions are unknown. We have isolated a binding partner for the Fanconi anemia group C protein (FANCC) by yeast two-hybrid screening. We show that the novel gene, FAZF, encodes a 486 amino acid protein containing a conserved amino terminal BTB/POZ protein interaction domain and three C-terminal Krüppel-like zinc fingers. FAZF is homologous to the promyelocytic leukemia zinc finger (PLZF) protein, which has been shown to act as a transcriptional repressor by recruitment of nuclear corepressors (N-CoR, Sin3, and HDAC1 complex). Consistent with a role in FA, BTB/POZ-containing proteins have been implicated in oncogenesis, limb morphogenesis, hematopoiesis, and proliferation. We show that FAZF is a transcriptional repressor that is able to bind to the same DNA target sequences as PLZF. Our data suggest that the FAZF/FANCC interaction maps to a region of FANCC deleted in FA patients with a severe disease phenotype. We also show that FAZF and wild-type FANCC can colocalize in nuclear foci, whereas a patient-derived mutant FANCC that is compromised for nuclear localization cannot. These results suggest that the function of FANCC may be linked to a transcriptional repression pathway involved in chromatin remodeling.
Collapse
|
41
|
Abstract
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome. The phenotype includes developmental defects, bone marrow failure, and cell cycle abnormalities. At least eight complementation groups (A-H) exist, and although three of the corresponding complementation group genes have been cloned, they lack recognizable motifs, and their functions are unknown. We have isolated a binding partner for the Fanconi anemia group C protein (FANCC) by yeast two-hybrid screening. We show that the novel gene, FAZF, encodes a 486 amino acid protein containing a conserved amino terminal BTB/POZ protein interaction domain and three C-terminal Krüppel-like zinc fingers. FAZF is homologous to the promyelocytic leukemia zinc finger (PLZF) protein, which has been shown to act as a transcriptional repressor by recruitment of nuclear corepressors (N-CoR, Sin3, and HDAC1 complex). Consistent with a role in FA, BTB/POZ-containing proteins have been implicated in oncogenesis, limb morphogenesis, hematopoiesis, and proliferation. We show that FAZF is a transcriptional repressor that is able to bind to the same DNA target sequences as PLZF. Our data suggest that the FAZF/FANCC interaction maps to a region of FANCC deleted in FA patients with a severe disease phenotype. We also show that FAZF and wild-type FANCC can colocalize in nuclear foci, whereas a patient-derived mutant FANCC that is compromised for nuclear localization cannot. These results suggest that the function of FANCC may be linked to a transcriptional repression pathway involved in chromatin remodeling.
Collapse
|
42
|
Kruyt FA, Abou-Zahr F, Mok H, Youssoufian H. Resistance to mitomycin C requires direct interaction between the Fanconi anemia proteins FANCA and FANCG in the nucleus through an arginine-rich domain. J Biol Chem 1999; 274:34212-8. [PMID: 10567393 DOI: 10.1074/jbc.274.48.34212] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous disorder characterized by bone marrow failure, birth defects, and chromosomal instability. Because FA cells are sensitive to mitomycin C (MMC), FA gene products could be involved in cellular defense mechanisms. The FANCA and FANCG proteins deficient in FA groups A and G interact directly with each other. We have localized the mutual interaction domains of these proteins to amino acids 18-29 of FANCA and to two noncontiguous carboxyl-terminal domains of FANCG encompassing amino acids 400-475 and 585-622. Site-directed mutagenesis of FANCA residues 18-29 revealed a novel arginine-rich interaction domain (RRRAWAELLAG). By alanine mutagenesis, Arg(1), Arg(2), and Leu(8) but not Arg(3), Trp(5), and Glu(7) appeared to be critical for binding to FANCG. Similar immunolocalization for FANCA and FANCG suggested that these proteins interact in vivo. Moreover, targeting of FANCA to the nucleus or the cytoplasm with nuclear localization and nuclear export signals, respectively, showed concordance between the localization patterns of FANCA and FANCG. The complementation function of FANCA was abolished by mutations in its FANCG-binding domain. Conversely, stable expression of FANCA mutants encoding intact FANCG interaction domains induced hypersensitivity to MMC in HeLa cells. These results demonstrate that FANCA-FANCG complexes are required for cellular resistance to MMC. Because the FANCC protein deficient in FA group C works within the cytoplasm, we suggest that FANCC and the FANCA-FANCG complexes suppress MMC cytotoxicity within distinct cellular compartments.
Collapse
Affiliation(s)
- F A Kruyt
- Department of Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
43
|
Waisfisz Q, de Winter JP, Kruyt FA, de Groot J, van der Weel L, Dijkmans LM, Zhi Y, Arwert F, Scheper RJ, Youssoufian H, Hoatlin ME, Joenje H. A physical complex of the Fanconi anemia proteins FANCG/XRCC9 and FANCA. Proc Natl Acad Sci U S A 1999; 96:10320-5. [PMID: 10468606 PMCID: PMC17886 DOI: 10.1073/pnas.96.18.10320] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/1999] [Accepted: 05/17/1999] [Indexed: 12/29/2022] Open
Abstract
Fanconi anemia (FA) is a recessively inherited disease characterized at the cellular level by spontaneous chromosomal instability and specific hypersensitivity to cross-linking agents. FA is genetically heterogeneous, comprising at least eight complementation groups (A-H). We report that the protein encoded by the gene mutated in complementation group G (FANCG) localizes to the cytoplasm and nucleus of the cell and assembles in a molecular complex with the FANCA protein, both in vivo and in vitro. Endogenous FANCA/FANCG complex was detected in both non-FA cells and in FA cells from groups D and E. By contrast, no complex was detected in specific cell lines belonging to groups A and G, whereas reduced levels were found in cells from groups B, C, F, and H. Wild-type levels of FANCA/FANCG complex were restored upon correction of the cellular phenotype by transfection or cell fusion experiments, suggesting that this complex is of functional significance in the FA pathway. These results indicate that the cellular FA phenotype can be connected to three biochemical subtypes based on the levels of FANCA/FANCG complex. Disruption of the complex may provide an experimental strategy for chemosensitization of neoplastic cells.
Collapse
Affiliation(s)
- Q Waisfisz
- Department of Clinical Genetics and Human Genetics, Free University, NL-1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Fanconi anemia (FA) is an autosomal recessive disorder characterized clinically by progressive pancytopenia, diverse congenital abnormalities, and a predisposition to malignancy, particularly acute myelogenous leukemia (AML). Hypersensitivity of FA cells to the clastogenic effect of crosslinking agents such as diepoxybutane (DEB) is used as a diagnostic criterion, because phenotypic heterogeneity makes clinical diagnosis difficult. Studies of genetic heterogeneity have shown that there are at least five different complementation groups, FA-A through FA-E. Overall, FA-A is the most prevalent group, accounting for 60%-65% of all FA. The FAA gene, which maps to chromosome 16q24.3, was recently isolated and methods for molecular diagnosis of FA-A are currently being developed. The first FA gene to be isolated (FAC) maps to chromosome 9q22.3; FA-C accounts for 10%-15% of FA. A variety of mutations and polymorphisms have been described in FAC. The most common of these is IVS4 +4 A-->T, which is the only FAC mutation found in Ashkenazi Jewish FA patients and their families. This mutation has not been found in any affected individual of non-Jewish ancestry. The carrier frequency of the IVS4 mutation was found to be 1 in 89 (1.1%; 95% confidence interval 0.79% to 1.56%) in an Ashkenazi Jewish population, whereas no carriers were identified in an Iraqi Jewish population, which represents the original gene pool of the Jews. We have developed amplification refractory mutation system (ARMS) assays for FAC mutations, which provide a means of rapid, nonradioactive genetic testing. These assays have been used to assign FA patients to Group C, to provide rapid carrier testing and prenatal diagnosis for FA-C families.
Collapse
Affiliation(s)
- A D Auerbach
- Laboratory of Human Genetics and Hematology, Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
45
|
Li L, Peterson CA, Lu X, Wei P, Legerski RJ. Interstrand cross-links induce DNA synthesis in damaged and undamaged plasmids in mammalian cell extracts. Mol Cell Biol 1999; 19:5619-30. [PMID: 10409751 PMCID: PMC84414 DOI: 10.1128/mcb.19.8.5619] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian cell extracts have been shown to carry out damage-specific DNA repair synthesis induced by a variety of lesions, including those created by UV and cisplatin. Here, we show that a single psoralen interstrand cross-link induces DNA synthesis in both the damaged plasmid and a second homologous unmodified plasmid coincubated in the extract. The presence of the second plasmid strongly stimulates repair synthesis in the cross-linked plasmid. Heterologous DNAs also stimulate repair synthesis to variable extents. Psoralen monoadducts and double-strand breaks do not induce repair synthesis in the unmodified plasmid, indicating that such incorporation is specific to interstrand cross-links. This induced repair synthesis is consistent with previous evidence indicating a recombinational mode of repair for interstrand cross-links. DNA synthesis is compromised in extracts from mutants (deficient in ERCC1, XPF, XRCC2, and XRCC3) which are all sensitive to DNA cross-linking agents but is normal in extracts from mutants (XP-A, XP-C, and XP-G) which are much less sensitive. Extracts from Fanconi anemia cells exhibit an intermediate to wild-type level of activity dependent upon the complementation group. The DNA synthesis deficit in ERCC1- and XPF-deficient extracts is restored by addition of purified ERCC1-XPF heterodimer. This system provides a biochemical assay for investigating mechanisms of interstrand cross-link repair and should also facilitate the identification and functional characterization of cellular proteins involved in repair of these lesions.
Collapse
Affiliation(s)
- L Li
- Departments of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Abstract
About 80% of all cases of Fanconi anemia (FA) can be accounted for by complementation groups A and C. To understand the relationship between these groups, we analyzed the expression pattern of the mouse FA group-A gene (Fanca) during embryogenesis and compared it with the known pattern of the group-C gene (Fancc). Northern analysis of RNA from mouse embryos at embryonic days 7, 11, 15, and 17 showed a predominant 4.5 kb band in all stages. By in situ hybridization, Fanca transcripts were found in the whisker follicles, teeth, brain, retina, kidney, liver, and limbs. There was also stage-specific variation in Fanca expression, particularly within the developing whiskers and the brain. Some tissues known to express Fancc (eg, gut) failed to show Fancaexpression. These observations show that (1) Fanca is under both tissue- and stage-specific regulation in several tissues; (2) the expression pattern of Fanca is consistent with the phenotype of the human disease; and (3) Fanca expression is not necessarily coupled to that of Fancc. The presence of distinct tissue targets for FA genes suggests that some of the variability in the clinical phenotype can be attributed to the complementation group assignment.
Collapse
|
47
|
Expression of the Fanconi Anemia Group A Gene (Fanca) During Mouse Embryogenesis. Blood 1999. [DOI: 10.1182/blood.v94.2.818.414k33_818_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 80% of all cases of Fanconi anemia (FA) can be accounted for by complementation groups A and C. To understand the relationship between these groups, we analyzed the expression pattern of the mouse FA group-A gene (Fanca) during embryogenesis and compared it with the known pattern of the group-C gene (Fancc). Northern analysis of RNA from mouse embryos at embryonic days 7, 11, 15, and 17 showed a predominant 4.5 kb band in all stages. By in situ hybridization, Fanca transcripts were found in the whisker follicles, teeth, brain, retina, kidney, liver, and limbs. There was also stage-specific variation in Fanca expression, particularly within the developing whiskers and the brain. Some tissues known to express Fancc (eg, gut) failed to show Fancaexpression. These observations show that (1) Fanca is under both tissue- and stage-specific regulation in several tissues; (2) the expression pattern of Fanca is consistent with the phenotype of the human disease; and (3) Fanca expression is not necessarily coupled to that of Fancc. The presence of distinct tissue targets for FA genes suggests that some of the variability in the clinical phenotype can be attributed to the complementation group assignment.
Collapse
|
48
|
Garcia-Higuera I, Kuang Y, Näf D, Wasik J, D'Andrea AD. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol Cell Biol 1999; 19:4866-73. [PMID: 10373536 PMCID: PMC84285 DOI: 10.1128/mcb.19.7.4866] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A to H). Three FA genes, corresponding to complementation groups A, C, and G, have been cloned, but their cellular function remains unknown. We have previously demonstrated that the FANCA and FANCC proteins interact and form a nuclear complex in normal cells, suggesting that the proteins cooperate in a nuclear function. In this report, we demonstrate that the recently cloned FANCG/XRCC9 protein is required for binding of the FANCA and FANCC proteins. Moreover, the FANCG protein is a component of a nuclear protein complex containing FANCA and FANCC. The amino-terminal region of the FANCA protein is required for FANCG binding, FANCC binding, nuclear localization, and functional activity of the complex. Our results demonstrate that the three cloned FA proteins cooperate in a large multisubunit complex. Disruption of this complex results in the specific cellular and clinical phenotype common to most FA complementation groups.
Collapse
Affiliation(s)
- I Garcia-Higuera
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Abou-Zahr F, Bejjani B, Kruyt FA, Kurg R, Bacino C, Shapira SK, Youssoufian H. Normal expression of the Fanconi anemia proteins FAA and FAC and sensitivity to mitomycin C in two patients with Seckel syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 83:388-91. [PMID: 10232749 DOI: 10.1002/(sici)1096-8628(19990423)83:5<388::aid-ajmg9>3.0.co;2-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Seckel syndrome is a rare autosomal recessive disorder. The classical presentation includes pre- and postnatal growth deficiency, mental retardation, and characteristic facial appearance. There have been several reports of associated hematological abnormalities and chromosomal breakage, findings suggestive of Fanconi anemia (FA). We tested for these findings in two Arabic patients with this syndrome. We compared the growth profile of lymphoblastoid cells from our patients and their parents with the FA group A cell line HSC72 in the presence and absence of mitomycin C (MMC). By Western analysis, we also determined the expression of FAA and FAC, two FA disease gene products that together account for approximately 80% of FA. Unlike HSC72 cells, cells from the patients were resistant to MMC, and both FAA and FAC proteins were expressed at similar levels in all cell lines. There is an increasing recognition of clinical variability and perhaps genetic heterogeneity in Seckel syndrome. Our results demonstrate that cross-link sensitivity comparable to FA is not a uniform finding in patients with Seckel syndrome.
Collapse
Affiliation(s)
- F Abou-Zahr
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|