1
|
Intertwined αβ spectrin meeting helical actin protofilament in the erythrocyte membrane skeleton: wrap-around vs. point-attachment. Ann Biomed Eng 2011; 39:1984-93. [PMID: 21416170 PMCID: PMC3110870 DOI: 10.1007/s10439-011-0293-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/03/2011] [Indexed: 11/24/2022]
Abstract
Our 3-D model for a junctional complex (JC) in the erythrocyte membrane skeleton proposed that the helical actin protofilament functions as a mechanical axis for three pairs of αβ spectrin (Sp), and each pair wraps around the protofilament in a back-to-back fashion. The distal end of each Sp is further associated with the lipid bilayer by a suspension complex (SC). Here, we detail how splitting and rejoining of αβ Sp around a protofilament may form a loop that sustains and equilibrates tension. Sequential association of β and α Sp solves the challenge of constructing multiple loops along the protofilament, and topological connection facilitates their re-association. The wrap-around model minimizes the strain of the actin binding site on β Sp due to tension, redirection, or sliding of intertwined Sp. Pairing Sp balances the opposing forces and provides a mechanism for elastic recovery. The wrap-around junction thus provides mechanical advantages over a point-attachment junction in maintaining the integrity and functionality of the network. Severing α or β Sp may convert a wrapping-around junction to a point-attachment junction. In that case, a “bow up” motion of JC during deformation may disturb or flip the overlaid lipid bilayer, and mark stressed erythrocytes for phagocytosis.
Collapse
|
2
|
Inter-subunit interactions in erythroid and non-erythroid spectrins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:420-7. [DOI: 10.1016/j.bbapap.2010.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/09/2010] [Accepted: 12/22/2010] [Indexed: 11/19/2022]
|
3
|
Morrow JS, Rimm DL, Kennedy SP, Cianci CD, Sinard JH, Weed SA. Of Membrane Stability and Mosaics: The Spectrin Cytoskeleton. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Low SH, Mukhina S, Srinivas V, Ng CZ, Murata-Hori M. Domain analysis of α-actinin reveals new aspects of its association with F-actin during cytokinesis. Exp Cell Res 2010; 316:1925-34. [DOI: 10.1016/j.yexcr.2010.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 03/02/2010] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
|
5
|
Ipsaro JJ, Harper SL, Messick TE, Marmorstein R, Mondragón A, Speicher DW. Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. Blood 2010; 115:4843-52. [PMID: 20197550 PMCID: PMC2890174 DOI: 10.1182/blood-2010-01-261396] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/04/2010] [Indexed: 11/20/2022] Open
Abstract
As the principal component of the membrane skeleton, spectrin confers integrity and flexibility to red cell membranes. Although this network involves many interactions, the most common hemolytic anemia mutations that disrupt erythrocyte morphology affect the spectrin tetramerization domains. Although much is known clinically about the resulting conditions (hereditary elliptocytosis and pyropoikilocytosis), the detailed structural basis for spectrin tetramerization and its disruption by hereditary anemia mutations remains elusive. Thus, to provide further insights into spectrin assembly and tetramer site mutations, a crystal structure of the spectrin tetramerization domain complex has been determined. Architecturally, this complex shows striking resemblance to multirepeat spectrin fragments, with the interacting tetramer site region forming a central, composite repeat. This structure identifies conformational changes in alpha-spectrin that occur upon binding to beta-spectrin, and it reports the first structure of the beta-spectrin tetramerization domain. Analysis of the interaction surfaces indicates an extensive interface dominated by hydrophobic contacts and supplemented by electrostatic complementarity. Analysis of evolutionarily conserved residues suggests additional surfaces that may form important interactions. Finally, mapping of hereditary anemia-related mutations onto the structure demonstrate that most, but not all, local hereditary anemia mutations map to the interacting domains. The potential molecular effects of these mutations are described.
Collapse
Affiliation(s)
- Jonathan J Ipsaro
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | |
Collapse
|
6
|
Zhang Y, Resneck WG, Lee PC, Randall WR, Bloch RJ, Ursitti JA. Characterization and expression of a heart-selective alternatively spliced variant of alpha II-spectrin, cardi+, during development in the rat. J Mol Cell Cardiol 2010; 48:1050-9. [PMID: 20114050 DOI: 10.1016/j.yjmcc.2010.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
Abstract
Spectrin is a large, flexible protein that stabilizes membranes and organizes proteins and lipids into microdomains in intracellular organelles and at the plasma membrane. Alternative splicing occurs in spectrins, but it is not yet clear if these small variations in structure alter spectrin's functions. Three alternative splice sites have been identified previously for alpha II-spectrin. Here we describe a new alternative splice site, a 21-amino acid sequence in the 21st spectrin repeat that is only expressed in significant amounts in cardiac muscle (GenBank GQ502182). The insert, which we term alpha II-cardi+, results in an insertion within the high affinity nucleation site for binding of alpha-spectrins to beta-spectrins. To assess the developmental regulation of the alpha II-cardi+ isoform, we used qRT-PCR and quantitative immunoblotting methods to measure the levels of this form and the alpha II-cardi- form in the cardiac muscles of rats, from embryonic day 16 (E16) through adulthood. The alpha II-cardi+ isoform constituted approximately 26% of the total alpha II-spectrin in E16 hearts but decreased to approximately 6% of the total after 3 weeks of age. We used long-range RT-PCR and Southern blot hybridization to examine possible linkage of the alpha II-cardi+ alternatively spliced sequence with alternatively spliced sequences of alpha II-spectrin that had been previously reported. We identified two new isoforms of alpha II-spectrin containing the cardi+ insert. These were named alpha II Sigma 9 and alpha II Sigma 10 in accordance with the spectrin naming conventions. In vitro studies of recombinant alpha II-spectrin polypeptides representing the two splice variants of alpha II-spectrin, alpha II-cardi+ and alpha II-cardi-, revealed that the alpha II-cardi+ subunit has lower affinity for the complementary site in repeats 1-4 of betaII-spectrin, with a K(D) value of approximately 1 nM, as measured by surface plasmon resonance (SPR). In addition, the alpha II-cardi+ form showed 1.8-fold lower levels of binding to its site on beta II-spectrin than the alpha II-cardi- form, both by SPR and blot overlay. This suggests that the 21-amino acid insert prevented some of the alpha II-cardi+ form from interacting with beta II-spectrin. Fusion proteins expressing the alpha II-cardi+ sequence within the two terminal spectrin repeats of alpha II-spectrin were insoluble in solution and aggregated in neonatal myocytes, consistent with the possibility that this insert removes a significant portion of the protein from the population that can bind beta subunits. Neonatal rat cardiomyocytes infected with adenovirus encoding GFP-fusion proteins of repeats 18-21 of alpha II-spectrin with the cardi+ insert formed many new processes. These processes were only rarely seen in myocytes expressing the fusion protein lacking the insert or in controls expressing only GFP. Our results suggest that the embryonic mammalian heart expresses a significant amount of alpha II-spectrin with a reduced avidity for beta-spectrin and the ability to promote myocyte growth.
Collapse
Affiliation(s)
- Yinghua Zhang
- Department of Physiology, University of Maryland, School of Medicine, 655 W Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
7
|
Gaetani M, Mootien S, Harper S, Gallagher PG, Speicher DW. Structural and functional effects of hereditary hemolytic anemia-associated point mutations in the alpha spectrin tetramer site. Blood 2008; 111:5712-20. [PMID: 18218854 PMCID: PMC2424163 DOI: 10.1182/blood-2007-11-122457] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 01/15/2008] [Indexed: 11/20/2022] Open
Abstract
The most common hereditary elliptocytosis (HE) and hereditary pyropoikilocytosis (HPP) mutations are alpha-spectrin missense mutations in the dimer-tetramer self-association site. In this study, we systematically compared structural and functional properties of the 14 known HE/HPP mutations located in the alpha-spectrin tetramer binding site. All mutant alpha-spectrin recombinant peptides were well folded, stable structures, with only the R34W mutant exhibiting a slight structural destabilization. In contrast, binding affinities measured by isothermal titration calorimetry were greatly variable, ranging from no detectable binding observed for I24S, R28C, R28H, R28S, and R45S to approximately wild-type binding for R34W and K48R. Binding affinities for the other 7 mutants were reduced by approximately 10- to 100-fold relative to wild-type binding. Some sites, such as R28, were hot spots that were very sensitive to even relatively conservative substitutions, whereas other sites were only moderately perturbed by nonconservative substitutions. The R34W and K48R mutations were particularly intriguing mutations that apparently either destabilize tetramers through mechanisms not probed by the univalent tetramer binding assay or represent polymorphisms rather than the pathogenic mutations responsible for observed clinical symptoms. All alpha0 HE/HPP mutations studied here appear to exert their destabilizing effects through molecular recognition rather than structural mechanisms.
Collapse
|
8
|
Zhu Q, Vera C, Asaro RJ, Sche P, Sung LA. A hybrid model for erythrocyte membrane: a single unit of protein network coupled with lipid bilayer. Biophys J 2007; 93:386-400. [PMID: 17449663 PMCID: PMC1896248 DOI: 10.1529/biophysj.106.094383] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the nanomechanics of the erythrocyte membrane we developed a hybrid model that couples the actin-spectrin network to the lipid bilayer. This model features a Fourier space Brownian dynamics model of the bilayer, a Brownian dynamics model of the actin protofilament, and a modified wormlike-chain model of the spectrin (including a cable-dynamics model to predict the oscillation in tension). This model enables us to predict the nanomechanics of single or multiple units of the protein network, the lipid bilayer, and the effect of their interactions. The present work is focused on the attitude of the actin protofilament at the equilibrium states coupled with the elevations of the lipid bilayer through their primary linkage at the suspension complex in deformations. Two different actin-spectrin junctions are considered at the junctional complex. With a point-attachment junction, large pitch angles and bifurcation of yaw angles are predicted. Thermal fluctuations at bifurcation may lead to mode-switching, which may affect the network and the physiological performance of the membrane. In contrast, with a wrap-around junction, pitch angles remain small, and the occurrence of bifurcation is greatly reduced. These simulations suggest the importance of three-dimensional molecular junctions and the lipid bilayer/protein network coupling on cell membrane mechanics.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
9
|
Bignone PA, King MDA, Pinder JC, Baines AJ. Phosphorylation of a threonine unique to the short C-terminal isoform of betaII-spectrin links regulation of alpha-beta spectrin interaction to neuritogenesis. J Biol Chem 2007; 282:888-96. [PMID: 17088250 DOI: 10.1074/jbc.m605920200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spectrin tetramers are cytoskeletal proteins required in the formation of complex animal tissues. Mammalian alphaII- and betaII-spectrin subunits form dimers that associate head to head with high affinity to form tetramers, but it is not known if this interaction is regulated. We show here that the short C-terminal splice variant of betaII-spectrin (betaIISigma2) is a substrate for phosphorylation. In vitro, protein kinase CK2 phosphorylates Ser-2110 and Thr-2159; protein kinase A phosphorylates Thr-2159. Antiphospho-Thr-2159 peptide antibody detected phosphorylated betaIISigma2 in Cos-1 cells. Immunoreactivity was increased in Cos-1 cells by treatment with forskolin, indicating that phosphorylation is promoted by elevated cAMP. The effect of forskolin was counteracted by the cAMP-dependent kinase inhibitor, H89. In vitro, protein kinase A phosphorylation of an active fragment of betaIISigma2 greatly reduced its interaction with alphaII-spectrin at the tetramerization site. Mutation of Thr-2159 to alanine eliminated inhibition by phosphorylation. Among the processes that require spectrin in mammals is the formation of neurites (incipient nerve axons). We tested the relationship of spectrin phosphorylation to neuritogenesis by transfecting the neuronal cell line, PC12, with enhanced green fluorescent protein-coupled fragments of betaIISigma2-spectrin predicted to act as inhibitors of spectrin tetramer formation. Both wild-type and T2159E mutant fragments allowed normal neuritogenesis in PC12 cells in response to nerve growth factor. The mutant T2159A inhibited neuritogenesis. Because the T2159A mutant represents a high affinity inhibitor of tetramer formation, we conclude that tetramers are requisite for neuritogenesis. Furthermore, because both the T2159E mutant and the wild-type allow neuritogenesis, we conclude that the short C-terminal betaII-spectrin is phosphorylated during this process.
Collapse
Affiliation(s)
- Paola A Bignone
- Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, Great Britain
| | | | | | | |
Collapse
|
10
|
Uemoto Y, Suzuki SI, Terada N, Ohno N, Ohno S, Yamanaka S, Komada M. Specific role of the truncated betaIV-spectrin Sigma6 in sodium channel clustering at axon initial segments and nodes of ranvier. J Biol Chem 2006; 282:6548-55. [PMID: 17197442 DOI: 10.1074/jbc.m609223200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At axon initial segments and nodes of Ranvier in neurons, the spectrin membrane skeleton plays roles in physically stabilizing the plasma membrane integrity and in clustering voltage-gated sodium channels for proper conduction of the action potential. betaIV-Spectrin, an essential component of the membrane skeleton at these sites, has an N-terminal-truncated isoform, Sigma6, which is expressed at much higher levels than the full-length isoform Sigma1. To investigate the role of betaIV-spectrin Sigma6, we generated Sigma1-deficient mice with a normal level of Sigma6 expression (Sigma1(-/-) mice), and compared their phenotypes with those of previously generated mice lacking both Sigma1 and Sigma6(Sigma1Sigma6(-/-) mice). The gross neurological defects observed in Sigma1Sigma6(-/-) mice, such as hindleg contraction, were apparently ameliorated in Sigma1(-/-) mice. At cellular levels, Sigma1Sigma6(-/-) and Sigma1(-/-) neurons similarly exhibited waving and swelling of the plasma membrane at axon initial segments and nodes of Ranvier. By contrast, the levels of ankyrin G and voltage-gated sodium channels at these sites, which are significantly reduced in Sigma1Sigma6(-/-) mice, were substantially recovered in Sigma1(-/-) mice. We conclude that the truncated betaIV-spectrin isoform Sigma6 plays a specific role in clustering voltage-gated sodium channels, whereas it is dispensable for membrane stabilization at axon initial segments and nodes of Ranvier.
Collapse
Affiliation(s)
- Yoko Uemoto
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Hereditary elliptocytosis (HE) is a common disorder of erythrocyte shape, occurring especially in individuals of African and Mediterranean ancestry, presumably because elliptocytes confer some resistance to malaria. The principle lesion in HE is mechanical weakness or fragility of the erythrocyte membrane skeleton due to defects in alpha-spectrin, beta-spectrin, or protein 4.1. Numerous mutations have been described in the genes encoding these proteins, including point mutations, gene deletions and insertions, and mRNA processing defects. Several mutations have been identified in a number of individuals on the same genetic background, suggesting a "founder effect." The majority of HE patients are asymptomatic, but some may experience hemolytic anemia, splenomegaly, and intermittent jaundice.
Collapse
Affiliation(s)
- Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, PO Box 208064, New Haven, CT 06520-8064, USA
| |
Collapse
|
12
|
Raae AJ, Bañuelos S, Ylänne J, Olausson T, Goldie KN, Wendt T, Hoenger A, Saraste M. Actin binding of a minispectrin. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1646:67-76. [PMID: 12637013 DOI: 10.1016/s1570-9639(02)00551-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A "minispectrin" has been constructed from the tail end of the alpha/beta heterodimer, and its actin-binding properties have been characterised. It is a complex of the N-terminal fragment of the beta-subunit consisting of the actin-binding domain plus the two first triple-helical repeats beta 1 and beta 2, and the C-terminal fragment of the alpha-subunit containing the repeats alpha 19 and alpha 20 plus the calmodulin-like domain. This minispectrin exists in a dimeric form that contains one copy of each polypeptide and binds to actin in a cooperative manner with an apparent K(d) of 2.5 microM. Calcium seems not to have any effect on its binding to actin. Electron microscopic analysis shows that the minispectrin decorates actin filaments as clusters, and induces formation of actin bundles. This study shows that the actin-binding region of the spectrin alpha/beta heterodimer retains its functional properties in a truncated form and establishes basis for further research on spectrin's structure and function.
Collapse
Affiliation(s)
- Arnt J Raae
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Postfach 102209, D-69012 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 2001; 81:1353-92. [PMID: 11427698 DOI: 10.1152/physrev.2001.81.3.1353] [Citation(s) in RCA: 728] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.
Collapse
Affiliation(s)
- V Bennett
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
14
|
Stabach PR, Morrow JS. Identification and characterization of beta V spectrin, a mammalian ortholog of Drosophila beta H spectrin. J Biol Chem 2000; 275:21385-95. [PMID: 10764729 DOI: 10.1074/jbc.c000159200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four mammalian beta-spectrin genes are currently recognized, all encode proteins of approximately 240-280,000 M(r) and display 17 triple helical homologous approximately 106-residue repeat units. In Drosophila and Caenorhabditis elegans, a variant beta spectrin with unusual properties has been recognized. Termed beta heavy (beta(H)), this spectrin contains 30 spectrin repeats, has a molecular weight in excess of 400,000, and associates with the apical domain of polarized epithelia. We have cloned and characterized from a human retina cDNA library a mammalian ortholog of Drosophila beta(H) spectrin, and in accord with standard spectrin naming conventions we term this new mammalian spectrin beta 5 (betaV). The gene for human betaV spectrin (HUBSPECV) is on chromosome 15q21. The 11, 722-nucleotide cDNA of betaV spectrin is generated from 68 exons and is predicted to encode a protein with a molecular weight of 416,960. Like its fly counterpart, the derived amino acid sequence of this unusual mammalian spectrin displays 30 spectrin repeats, a modestly conserved actin-binding domain, a conserved membrane association domain 1, a conserved self-association domain, and a pleckstrin homology domain near its COOH terminus. Its putative ankyrin-binding domain is poorly conserved and may be inactive. These structural features suggest that betaV spectrin is likely to form heterodimers and oligomers with alpha spectrin and to interact directly with cellular membranes. Unlike its Drosophila ortholog, betaV spectrin does not contain an SH3 domain but displays in repeat 5 a 45-residue insertion that displays 42% identity to amino acids 85-115 of the E4 protein of type 75 human papilloma virus. Human betaV spectrin is expressed at low levels in many tissues. By indirect immunofluorescence, it is detected prominently in the outer segments of photoreceptor rods and cones and in the basolateral membrane and cytosol of gastric epithelial cells. Unlike its Drosophila ortholog, a distinct apical distribution of betaV spectrin is inapparent in the epithelial cell populations examined, although it is confined to the outer segments of photoreceptor cells. The complete cDNA sequence of human betaV spectrin is available from GenBank(TM) as accession number.
Collapse
Affiliation(s)
- P R Stabach
- Department of Pathology and the Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
15
|
Abstract
We have prepared two fragments of the human dystrophin rod domain, each containing eight spectrin-like repeating units, by expression in Escherichia coli. The first corresponds to the central portion of the rod, the other to three repeats from the N-terminal end, fused to five repeats from the C-terminal end. The latter makes up the entire mutant rod, found in a patient with mild (Becker-type) muscular dystrophy. Both fragments were found to possess an ordered, stable structure, and had the form of short rod-like particles in the electron microscope. Molecular weight determinations by sedimentation equilibrium revealed that both polypeptides were monomeric in solution, suggesting that the dystrophin rod domain is incapable of forming an antiparallel homodimer. This supports the inference from sequence analyses [Winder et al., 1995: FEBS Lett. 369:27-33, 1996: Biochem. Soc. Trans. 24:2805] that the dystrophin rod domain lacks the arrangement of sites required for lateral self-association, and that dystrophin, unlike the other known proteins of the spectrin superfamily, may thus exist as a monomer.
Collapse
Affiliation(s)
- E Kahana
- Medical Research Council Muscle and Cell Motility Unit, King's College, London, England
| | | | | |
Collapse
|
16
|
Begg GE, Harper SL, Morris MB, Speicher DW. Initiation of spectrin dimerization involves complementary electrostatic interactions between paired triple-helical bundles. J Biol Chem 2000; 275:3279-87. [PMID: 10652315 DOI: 10.1074/jbc.275.5.3279] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spectrin heterodimer is formed by the antiparallel lateral association of an alpha and a beta subunit, each of which comprises largely a series of homologous triple-helical motifs. Initiation of dimer assembly involves strong binding between complementary motifs near the actin-binding end of the dimer. In this study, the mechanism of lateral spectrin association at this dimer nucleation site was investigated using the analytical ultracentrifuge to analyze heterodimers formed from recombinant peptides containing two or four homologous motifs from each subunit (alpha20-21/beta1-2; alpha18-21/beta1-4). Both the two-motif and four-motif dimer associations were weakened substantially with increasing salt concentration, indicating that electrostatic interactions are important for the dimer initiation process. Modeling of the electrostatic potential on the surface of the alpha20 and beta2 motifs showed that the side of the motifs comprising the A and B helices is the most favorable for association, with an area of positive electrostatic potential on the AB face of the beta2 motif opposite negative potential on the AB face of the alpha20 motif and vise versa. Protease protection analysis of the alpha20-21/beta1-2 dimer showed that multiple trypsin and proteinase K sites in the A helices of the beta2 and alpha21 motifs become buried upon dimer formation. Together, these data support a model where complementary long range electrostatic interactions on the AB faces of the triple-helical motifs in the dimer nucleation site initiate the correct pairing of motifs, i.e. alpha21-beta1 and alpha20-beta2. After initial docking of these complementary triple-helical motifs, this association is probably stabilized by subsequent formation of stronger hydrophobic interactions in a complex involving the A helices of both subunits and possibly most of the AB faces. The beta subunit A helix in particular appears to be buried in the dimer interface.
Collapse
Affiliation(s)
- G E Begg
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
17
|
Abstract
In red blood cells, the integrity of the spectrin network is essential for normal cell shape and elasticity. To understand the molecular basis for spectrin's mechanical properties, one must determine how spectrin subunits interact with each other. The newly described crystallographic structures of two consecutive homologous repeats of human alpha-actinin, a member of the spectrin superfamily, shed new light on alpha-actinin interchain binding properties. Here I present evidence that interchain binding at the tail end of the spectrin molecule is likely to occur via a mechanism similar to that observed for alpha-actinin.
Collapse
Affiliation(s)
- A Viel
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Bldg. 149, 13th Street, Charlestown, MA 02129,
| |
Collapse
|
18
|
Djinović-Carugo K, Young P, Gautel M, Saraste M. Structure of the alpha-actinin rod: molecular basis for cross-linking of actin filaments. Cell 1999; 98:537-46. [PMID: 10481917 DOI: 10.1016/s0092-8674(00)81981-9] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have determined the crystal structure of the two central repeats in the alpha-actinin rod at 2.5 A resolution. The repeats are connected by a helical linker and form a symmetric, antiparallel dimer in which the repeats are aligned rather than staggered. Using this structure, which reveals the structural principle that governs the architecture of alpha-actinin, we have devised a plausible model of the entire alpha-actinin rod. The electrostatic properties explain how the two alpha-actinin subunits assemble in an antiparallel fashion, placing the actin-binding sites at both ends of the rod. This molecular architecture results in a protein that is able to form cross-links between actin filaments.
Collapse
Affiliation(s)
- K Djinović-Carugo
- Structural Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
19
|
Bañuelos S, Saraste M, Djinović Carugo K. Structural comparisons of calponin homology domains: implications for actin binding. Structure 1998; 6:1419-31. [PMID: 9817844 DOI: 10.1016/s0969-2126(98)00141-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The actin-binding site of several cytoskeletal proteins is comprised of two calponin homology (CH) domains in a tandem arrangement. As a single copy, the CH domain is also found in regulatory proteins in muscle and in signal-transduction proteins. The three-dimensional structures of three CH domains are known, but they have not yet clarified the molecular details of the interaction between actin filaments and proteins harbouring CH domains. RESULTS We have compared the crystal structure of a CH domain from beta-spectrin, which has been refined to 1.1 A resolution, with the two CH domains that constitute the actin-binding region of fimbrin. This analysis has allowed the construction of a structure-based sequence alignment of CH domains that can be used in further comparisons of members of the CH domain family. The study has also improved our understanding of the factors that determine domain architecture, and has led to discussion on the functional differences that seem to exist between subfamilies of CH domains, as regards binding to F-actin. CONCLUSIONS Our analysis supports biochemical data that implicate a surface centered at the last helix of the N-terminal CH domain as the most probable actin-binding site in cytoskeletal proteins. It is not clear whether the C-terminal domains of the tandem arrangement or the single CH domains have this function alone. This may imply that although the CH domains are homologous and have a conserved structure, they may have evolved to perform different functions.
Collapse
Affiliation(s)
- S Bañuelos
- European Molecular Biology Laboratory Postfach 10.2209 D-69012 Heidelberg, Germany
| | | | | |
Collapse
|
20
|
Viel A, Gee MS, Tomooka L, Branton D. Motifs involved in interchain binding at the tail-end of spectrin. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1384:396-404. [PMID: 9659401 DOI: 10.1016/s0167-4838(98)00036-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Segments 20-22 of alpha-spectrin and 1-3 of beta-spectrin are required for high avidity interchain binding at the tail-end of the molecule. Here, sequence analysis guided by the crystal structure of spectrin's repeating segments was used to redefine the boundaries of a repetitive beta segment that is critical for interchain binding and demonstrate the contribution of non-repetitive spectrin segments in high avidity interchain binding. Our results show that several motifs together are required for high avidity binding, indicating that interchain binding at the tail-end of the spectrin molecule depends on the long distance coordination of several different elements. We also explored the role of unusual motifs contained in beta segments involved in interchain binding. A row of basic residues and a row of small hydrophobic residues were found not to be required for interchain binding, suggesting that their conservation among species reflects functions unrelated to interchain binding. The octamer between segments beta 2 and beta 3 that maintains a specific register between true binding sites was found to have an indirect role in interchain binding by stabilizing neighboring segments. A 5-residue domain in segment beta 2 (EKPPK) was required for interchain binding because it sustains normal helix-helix interactions within segments beta 2.
Collapse
Affiliation(s)
- A Viel
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
21
|
The Exon 46-Encoded Sequence Is Essential for Stability of Human Erythroid α-Spectrin and Heterodimer Formation. Blood 1997. [DOI: 10.1182/blood.v90.10.4188] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHuman erythroid α-spectrin alleles responsible for hereditary elliptocytosis (αHE alleles) undergo increased incorporation into red blood cell membranes when the polymorphism αLELY (LELY: Low Expression LYon) occurs in trans. The αLELY polymorphism is characterized by a mutation in exon 40 at codon 1857 (CTA → GTA, Leu → Val) and the partial (50%) skipping of exon 46, which encodes residues 2177-2182 (Wilmotte et al, J Clin Invest 91:2091, 1993). Both of these peptide sequence alterations are located within the region of the α-chain involved in initiating heterodimer assembly, and either or both mutations could potentially contribute to decreased incorporation of α-chains from the αLELY allele in heterozygotes into red blood cell membranes. These possibilities were evaluated by testing the protease resistance and in vitro binding properties of normal and mutant recombinant 4-motif α subunit peptides containing the dimer initiation region. The two forms of α spectrin produced by alternative mRNA splicing of the αLELY allele were represented by α18-211857, a peptide with the codon 1857 mutation and retaining the exon 46 encoded sequence, and α18-211857-Δ46, a peptide carrying both the 1857 codon mutation and the exon 46 deletion. The properties of these two recombinant peptides were compared with α18-21, a peptide with the normal sequence at codon 1857 and retaining the exon 46 encoded sequence. The codon 1857 mutation does not adversely affect dimer formation, but it is responsible for the increased trypsin cleavage between the αIV and αV domains that was the characteristic feature initially used to identify the αLELY (SpαV/41) polymorphism (Alloisio et al, J Clin Invest 87:2169, 1991). Deletion of the six amino acids encoded by exon 46 perturbs folding of the α21 motif, because this region of the α18-211857-Δ46 peptide is rapidly degraded and this recombinant peptide is unusually prone to self-aggregation. Exon 46 deletion reduces, but does not eliminate, dimerization. Comparison of mild trypsin proteolytic products from an αLELY homozygote and the two αLELY recombinant peptides strongly suggests that little, if any, of the 50% of the α chains from the αLELY allele that contain the exon 46 deletion are incorporated into the mature erythroid membrane. Based on the in vitro analysis of recombinant αLELY peptides, the inability of detectable amounts of exon 46− α chains to assemble into the mature membrane skeleton in vivo is probably due to a combination of decreased dimer binding affinity and increased proteolytic degradation of these mutant chains.
Collapse
|
22
|
Abstract
Dystrophin, a component of the muscle membrane cytoskeleton, is the protein altered in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Dystrophin shares significant homology with other cytoskeletal proteins, such as alpha-actinin and spectrin. On the basis of its sequence similarity with alpha-actinin and spectrin, dystrophin has been proposed to function as dimer. However, the existence of both dimers and monomers have been observed by electron microscopy. To address this apparent discrepancy, we expressed dystrophin fragments composed of different domains in an in vitro translation system. The expressed fragments were tested for their ability to interact with each other and full-length dystrophin by both immunoprecipitation and blot overlay assays. These assays were successfully used to demonstrate the dimerization of alpha-actinin and spectrin, yet failed to detect any interaction between dystrophin fragments. Although these in vitro results do not prove that dystrophin is not a dimer in vivo, they do indicate that this interaction is not like that of the alpha-actinin and spectrin.
Collapse
Affiliation(s)
- Y Chan
- Howard Hughes Medical Institute, and Division of Genetics at Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
23
|
Li X, Bennett V. Identification of the spectrin subunit and domains required for formation of spectrin/adducin/actin complexes. J Biol Chem 1996; 271:15695-702. [PMID: 8663089 DOI: 10.1074/jbc.271.26.15695] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Adducin is an actin-binding protein that has been proposed to function as a regulated assembly factor for the spectrin/actin network. This study has addressed the question of the subunit and domains of spectrin required for formation of spectrin/adducin/actin complexes in in vitro assays. Quantitative evidence is presented that the beta-spectrin N-terminal domain plus the first two alpha-helical domains are required for optimal participation of spectrin in spectrin/adducin/actin complexes. The alpha subunit exhibited no detectable activity either alone or following association with beta-spectrin. The critical domains of beta-spectrin involved in complex formation were determined using recombinant proteins expressed in bacteria. The N-terminal domain (residues 1-313) of beta-spectrin associated with F-actin with a Kd of 26 microM, and promoted adducin binding to F-actin with half-maximal activation at 110 nM. Addition of the first alpha-helical domain (residues 1-422) lowered the Kdfor F-actin by 4-fold to 6 microM, but also reduced the capacity by 3-fold and had no effect on interaction with adducin. Further addition of the second alpha-helical domain (residues 1-528) did not alter binding to F-actin but resulted in a 2-fold increased activity in promoting adducin binding with half-maximal activation at 50 nM. Addition of up to eight additional alpha-helical domains (residues 1-1388) resulted in no further change in F-actin binding or association with adducin. These results demonstrate an unanticipated role of the first repeat of beta-spectrin in actin binding activity and of the second repeat in association with adducin/actin, and imply the possibility of an extended contact between adducin, spectrin, and actin involving several actin subunits.
Collapse
Affiliation(s)
- X Li
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
24
|
Ursitti JA, Kotula L, DeSilva TM, Curtis PJ, Speicher DW. Mapping the human erythrocyte beta-spectrin dimer initiation site using recombinant peptides and correlation of its phasing with the alpha-actinin dimer site. J Biol Chem 1996; 271:6636-44. [PMID: 8636080 DOI: 10.1074/jbc.271.12.6636] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human erythroid spectrin dimer assembly is initiated by the association of a specific region near the N-terminal of beta-spectrin with a complementary region near the C-terminal of alpha-spectrin (Speicher, D. W., Weglarz, L., and DeSilva, T. M. (1992) J. Biol. Chem. 267, 14775-14782). Both spectrin subunits consist primarily of tandem, 106-residue long, homologous, triple-helical motifs. In this study, the minimal region of beta-spectrin required for association with alpha-spectrin was determined using recombinant peptides. The start site (phasing) for construction of dimerization competent beta-spectrin peptides was particularly critical. The beginning of the first homologous motif for both beta-spectrin and the related dimerization site of alpha-actinin is approximately 8 residues earlier than most spectrin motifs. A four-motif beta-spectrin peptide (beta1-4+) with this earlier starting point bound to full-length alpha-spectrin with a Kd of about 10 nM, while deletion of these first 8 residues reduced binding nearly 10-fold. N- and C-terminal truncations of one or more motifs from beta1-4+ showed that the first motif was essential for dimerization since its deletion abolished binding, but beta1+ alone could not associate with alpha-monomers. The first two motifs (beta1 2+) represented the minimum lateral dimer assembly site with a Kd of about 230 nM for interaction with full-length alpha-spectrin or an alpha-spectrin nucleation site recombinant peptide, alpha18-21. Each additional motif increased the dimerization affinity by approximately 5-fold. In addition to this strong inter-subunit dimer association, interactions between the helices of a single triple-helical motif are frequently strong enough to maintain a noncovalent complex after internal protease cleavage similar to the interactions thought to be involved in tetramer formation. Analysis of hydrodynamic radii of recombinant peptides containing differing numbers of motifs showed that a single motif had a Stokes radius of 2.35 nM, while each additional motif added only 0.85 nM to the Stokes radius. This is the first direct demonstration that spectrin's flexibility arises from regions between each triple helical motif rather than from within the segment itself and suggests that current models of inter-motif connections may need to be revised.
Collapse
Affiliation(s)
- J A Ursitti
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
New structural analyses of the spectrin family of actin cross-linking proteins are providing molecular explanations for both the interchain binding between the alpha and beta chains of spectrin and the intermolecular associations between spectrin and other proteins. Additionally, the analyses bring into focus a conformation which may explain aspects of spectrin's interaction with lipids.
Collapse
Affiliation(s)
- A Viel
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
26
|
Chapter 6 The Spectrin Cytoskeleton and Organization of Polarized Epithelial Cell Membranes. CURRENT TOPICS IN MEMBRANES 1996. [DOI: 10.1016/s0070-2161(08)60386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|