1
|
Direct photoresponsive inhibition of a p53-like transcription activation domain in PIF3 by Arabidopsis phytochrome B. Nat Commun 2021; 12:5614. [PMID: 34556672 PMCID: PMC8460787 DOI: 10.1038/s41467-021-25909-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Photoactivated phytochrome B (PHYB) binds to antagonistically acting PHYTOCHROME-INTERACTING transcription FACTORs (PIFs) to regulate hundreds of light responsive genes in Arabidopsis by promoting PIF degradation. However, whether PHYB directly controls the transactivation activity of PIFs remains ambiguous. Here we show that the prototypic PIF, PIF3, possesses a p53-like transcription activation domain (AD) consisting of a hydrophobic activator motif flanked by acidic residues. A PIF3mAD mutant, in which the activator motif is replaced with alanines, fails to activate PIF3 target genes in Arabidopsis, validating the functions of the PIF3 AD in vivo. Intriguingly, the N-terminal photosensory module of PHYB binds immediately adjacent to the PIF3 AD to repress PIF3’s transactivation activity, demonstrating a novel PHYB signaling mechanism through direct interference of the transactivation activity of PIF3. Our findings indicate that PHYB, likely also PHYA, controls the stability and activity of PIFs via structurally separable dual signaling mechanisms. Photoactivated phytochrome B regulates gene expression by interacting with PIF transcription factors. Here the authors show that PIF3 contains a p53-like transcription activation domain (AD) and that PHYB can directly suppress PIF3 transactivation activity by binding adjacent to the AD.
Collapse
|
2
|
Hochrein L, Machens F, Messerschmidt K, Mueller-Roeber B. PhiReX: a programmable and red light-regulated protein expression switch for yeast. Nucleic Acids Res 2017; 45:9193-9205. [PMID: 28911120 PMCID: PMC5587811 DOI: 10.1093/nar/gkx610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Highly regulated induction systems enabling dose-dependent and reversible fine-tuning of protein expression output are beneficial for engineering complex biosynthetic pathways. To address this, we developed PhiReX, a novel red/far-red light-regulated protein expression system for use in Saccharomyces cerevisiae. PhiReX is based on the combination of a customizable synTALE DNA-binding domain, the VP64 activation domain and the light-sensitive dimerization of the photoreceptor PhyB and its interacting partner PIF3 from Arabidopsis thaliana. Robust gene expression and high protein levels are achieved by combining genome integrated red light-sensing components with an episomal high-copy reporter construct. The gene of interest as well as the synTALE DNA-binding domain can be easily exchanged, allowing the flexible regulation of any desired gene by targeting endogenous or heterologous promoter regions. To allow low-cost induction of gene expression for industrial fermentation processes, we engineered yeast to endogenously produce the chromophore required for the effective dimerization of PhyB and PIF3. Time course experiments demonstrate high-level induction over a period of at least 48 h.
Collapse
Affiliation(s)
- Lena Hochrein
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Fabian Machens
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Katrin Messerschmidt
- University of Potsdam, Cell2Fab Research Unit, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.,Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Shin AY, Han YJ, Song PS, Kim JI. Expression of recombinant full-length plant phytochromes assembled with phytochromobilin in Pichia pastoris. FEBS Lett 2014; 588:2964-70. [PMID: 24911206 DOI: 10.1016/j.febslet.2014.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 11/17/2022]
Abstract
We have successfully developed a system to produce full-length plant phytochrome assembled with phytochromobilin in Pichia pastoris by co-expressing apophytochromes and chromophore biosynthetic genes, heme oxygenase (HY1) and phytochromobilin synthase (HY2) from Arabidopsis. Affinity-purified phytochrome proteins from Pichia cells displayed zinc fluorescence indicating chromophore attachment. Spectroscopic analyses showed absorbance maximum peaks identical to in vitro reconstituted phytochromobilin-assembled phytochromes, suggesting that the co-expression system is effective to generate holo-phytochromes. Moreover, mitochondria localization of the phytochromobilin biosynthetic genes increased the efficiency of holophytochrome biosynthesis. Therefore, this system provides an excellent source of holophytochromes, including oat phytochrome A and Arabidopsis phytochrome B.
Collapse
Affiliation(s)
- Ah-Young Shin
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Pill-Soon Song
- Faculty of Biotechnology and Subtropical Horticulture Research Institute, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
4
|
Pathak GP, Vrana JD, Tucker CL. Optogenetic control of cell function using engineered photoreceptors. Biol Cell 2012; 105:59-72. [PMID: 23157573 DOI: 10.1111/boc.201200056] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/12/2012] [Indexed: 11/29/2022]
Abstract
Over the past decades, there has been growing recognition that light can provide a powerful stimulus for biological interrogation. Light-actuated tools allow manipulation of molecular events with ultra-fine spatial and fast temporal resolution, as light can be rapidly delivered and focused with sub-micrometre precision within cells. While light-actuated chemicals such as photolabile 'caged' compounds have been in existence for decades, the use of genetically encoded natural photoreceptors for optical control of biological processes has recently emerged as a powerful new approach with several advantages over traditional methods. Here, we review recent advances using light to control basic cellular functions and discuss the engineering challenges that lie ahead for improving and expanding the ever-growing optogenetic toolkit.
Collapse
Affiliation(s)
- Gopal P Pathak
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 90045, USA
| | | | | |
Collapse
|
5
|
Hughes RM, Vrana JD, Song J, Tucker CL. Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phytochrome B proteins. J Biol Chem 2012; 287:22165-72. [PMID: 22577138 DOI: 10.1074/jbc.m112.360545] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plant photoreceptors transduce environmental light cues to downstream signaling pathways, regulating a wide array of processes during growth and development. Two major plant photoreceptors with critical roles in photomorphogenesis are phytochrome B (phyB), a red/far-red absorbing photoreceptor, and cryptochrome 1 (CRY1), a UV-A/blue photoreceptor. Despite substantial genetic evidence for cross-talk between phyB and CRY1 pathways, a direct interaction between these proteins has not been observed. Here, we report that Arabidopsis phyB interacts directly with CRY1 in a light-dependent interaction. Surprisingly, the interaction is light-dissociated; CRY1 interacts specifically with the dark/far-red (Pr) state of phyB, but not with the red light-activated (Pfr) or the chromophore unconjugated form of the enzyme. The interaction is also regulated by light activation of CRY1; phyB Pr interacts only with the unstimulated form of CRY1 but not with the photostimulated protein. Further studies reveal that a small domain extending from the photolyase homology region (PHR) of CRY1 regulates the specificity of the interaction with different conformational states of phyB. We hypothesize that in plants, the phyB/CRY1 interaction may mediate cross-talk between the red/far-red- and blue/UV-sensing pathways, enabling fine-tuning of light responses to different spectral inputs.
Collapse
Affiliation(s)
- Robert M Hughes
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
6
|
Gärtner W. Kurt Schaffner: from organic photochemistry to photobiology. Photochem Photobiol Sci 2012; 11:872-80. [DOI: 10.1039/c2pp05405a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Abstract
An important basic requirement of synthetic genetic networks is the option of external control of gene expression. Although several chemically inducible systems are available, all of these suffer from the common problem: the chemical inducers are difficult to remove so that to terminate the response. We have described a regulatory expression system for yeast, which employs light as inducer. This light switch translates light-controlled protein-protein interactions into the transcription of selected genes in a dose-dependent and reversible manner.
Collapse
|
8
|
Sorokina O, Kapus A, Terecskei K, Dixon LE, Kozma-Bognar L, Nagy F, Millar AJ. A switchable light-input, light-output system modelled and constructed in yeast. J Biol Eng 2009; 3:15. [PMID: 19761615 PMCID: PMC2758823 DOI: 10.1186/1754-1611-3-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022] Open
Abstract
Background Advances in synthetic biology will require spatio-temporal regulation of biological processes in heterologous host cells. We develop a light-switchable, two-hybrid interaction in yeast, based upon the Arabidopsis proteins PHYTOCHROME A and FAR-RED ELONGATED HYPOCOTYL 1-LIKE. Light input to this regulatory module allows dynamic control of a light-emitting LUCIFERASE reporter gene, which we detect by real-time imaging of yeast colonies on solid media. Results The reversible activation of the phytochrome by red light, and its inactivation by far-red light, is retained. We use this quantitative readout to construct a mathematical model that matches the system's behaviour and predicts the molecular targets for future manipulation. Conclusion Our model, methods and materials together constitute a novel system for a eukaryotic host with the potential to convert a dynamic pattern of light input into a predictable gene expression response. This system could be applied for the regulation of genetic networks - both known and synthetic.
Collapse
Affiliation(s)
- Oxana Sorokina
- Institute of Molecular Plant Sciences, The University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JH, UK
| | - Anita Kapus
- Institute of Plant Biology, Biological Research Center, Temesvari krt. 62, H-6726, Szeged, Hungary
| | - Kata Terecskei
- Institute of Plant Biology, Biological Research Center, Temesvari krt. 62, H-6726, Szeged, Hungary
| | - Laura E Dixon
- Institute of Molecular Plant Sciences, The University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JH, UK.,Centre for Systems Biology at Edinburgh, C.H. Waddington Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JD, UK
| | - Laszlo Kozma-Bognar
- Institute of Plant Biology, Biological Research Center, Temesvari krt. 62, H-6726, Szeged, Hungary
| | - Ferenc Nagy
- Institute of Molecular Plant Sciences, The University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JH, UK.,Institute of Plant Biology, Biological Research Center, Temesvari krt. 62, H-6726, Szeged, Hungary
| | - Andrew J Millar
- Institute of Molecular Plant Sciences, The University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JH, UK.,Centre for Systems Biology at Edinburgh, C.H. Waddington Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JD, UK
| |
Collapse
|
9
|
Zheng CC, Potter D, O'Neill SD. Phytochrome gene expression and phylogenetic analysis in the short-day plant Pharbitis nil (Convolvulaceae): Differential regulation by light and an endogenous clock. AMERICAN JOURNAL OF BOTANY 2009; 96:1319-1336. [PMID: 21628281 DOI: 10.3732/ajb.0800340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To investigate the role of distinct phytochrome pools in photoperiodic timekeeping, we characterized four phytochrome genes in the short-day plant Pharbitis nil. Each PHY gene had different photosensory properties and sensitivity to night break that inhibits flowering. During extended dark periods, PHYE, PHYB, and PHYC mRNA accumulation exhibited a circadian rhythmicity indicative of control by an endogenous clock. Phylogenetic analysis recovered four clades of angiosperm phytochrome genes, phyA, phyB, phyC, and phyE. All except the phyE clade included sequences from both monocots and eudicots. In addition, phyA is sister to phyC and phyE sister to phyB, with gymnosperm sequences sister to either the phyA-phyC clade or to the phyB-phyE clade. These results suggest that a single duplication occurred in an ancestral seed plant before the divergence of extant gymnosperms from angiosperms and that two subsequent duplications occurred in an ancestral angiosperm before the divergence of monocots from eudicots. Thus in P. nil, a multigene family with different patterns of mRNA abundance in light and darkness contributes to the total phytochrome pool: one pool is light labile (phyA), whereas the other is light stable (phyB and phyE). In addition, PHYC mRNA represents a third phytochrome pool with intermediate photosensory properties.
Collapse
Affiliation(s)
- Cheng Chao Zheng
- Section of Plant Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, California 95616 USA
| | | | | |
Collapse
|
10
|
Lee HM, Larson DR, Lawrence DS. Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. ACS Chem Biol 2009; 4:409-27. [PMID: 19298086 DOI: 10.1021/cb900036s] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biological systems are characterized by a level of spatial and temporal organization that often lies beyond the grasp of present day methods. Light-modulated bioreagents, including analogs of low molecular weight compounds, peptides, proteins, and nucleic acids, represent a compelling strategy to probe, perturb, or sample biological phenomena with the requisite control to address many of these organizational complexities. Although this technology has created considerable excitement in the chemical community, its application to biological questions has been relatively limited. We describe the challenges associated with the design, synthesis, and use of light-responsive bioreagents; the scope and limitations associated with the instrumentation required for their application; and recent chemical and biological advances in this field.
Collapse
Affiliation(s)
- Hsien-Ming Lee
- Departments of Chemistry, Medicinal Chemistry & Natural Products, and Pharmacology, The University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Daniel R. Larson
- Department of Anatomy and Structural Biology, The Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - David S. Lawrence
- Departments of Chemistry, Medicinal Chemistry & Natural Products, and Pharmacology, The University of North Carolina, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
11
|
Schwinté P, Gärtner W, Sharda S, Mroginski MA, Hildebrandt P, Siebert F. The Photoreactions of Recombinant Phytochrome CphA from the CyanobacteriumCalothrixPCC7601: A Low-Temperature UV-Vis and FTIR Study. Photochem Photobiol 2009; 85:239-49. [DOI: 10.1111/j.1751-1097.2008.00426.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway. Proc Natl Acad Sci U S A 2008; 105:12797-802. [PMID: 18728185 DOI: 10.1073/pnas.0801232105] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
General methods to engineer genetically encoded, reversible, light-mediated control over protein function would be useful in many areas of biomedical research and technology. We describe a system that yields such photo-control over actin assembly. We fused the Rho family GTPase Cdc42 in its GDP-bound form to the photosensory domain of phytochrome B (PhyB) and fused the Cdc42 effector, the Wiskott-Aldrich Syndrome Protein (WASP), to the light-dependent PhyB-binding domain of phytochrome interacting factor 3 (Pif3). Upon red light illumination, the fusion proteins bind each other, activating WASP, and consequently stimulating actin assembly by the WASP target, the Arp2/3 complex. Binding and WASP activation are reversed by far-red illumination. Our approach, in which the biochemical specificity of the nucleotide switch in Cdc42 is overridden by the light-dependent PhyB-Pif3 interaction, should be generally applicable to other GTPase-effector pairs.
Collapse
|
13
|
Sung D, Kang H. The N-Terminal Amino Acid Sequences of the Firefly Luciferase Are Important for the Stability of the Enzyme. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1998.tb02540.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Phee BK, Shin DH, Cho JH, Kim SH, Kim JI, Lee YH, Jeon JS, Bhoo SH, Hahn TR. Identification of phytochrome-interacting protein candidates in Arabidopsis thaliana by co-immunoprecipitation coupled with MALDI-TOF MS. Proteomics 2006; 6:3671-80. [PMID: 16705748 DOI: 10.1002/pmic.200500222] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Phytochrome-interacting proteins have been extensively studied to elucidate light-signaling pathway in plants. However, most of these proteins have been identified by yeast two-hybrid screening using the C-terminal domain of phytochromes. We used co-immunoprecipitation followed by proteomic analysis in plant cell extracts in an attempt to screen for proteins interacting either directly or indirectly with native holophytochromes including the N-terminal domain as well as C-terminal domain. A total of 16 protein candidates were identified, and were selected from 2-DE experiments. Using MALDI-TOF MS analysis, 7 of these candidates were predicted to be putative phytochrome A-interacting proteins and the remaining ones to be phytochrome B-interacting proteins. Among these putative interacting proteins, protein phosphatase type 2C (PP2C) and a 66-kDa protein were strong candidates as novel phytochrome-interacting proteins, as knockout mutants for the genes encoding these two proteins had impaired light-signaling functions. A transgenic knockout Arabidopsis study showed that a 66-kDa protein candidate regulates hypocotyl elongation in a light-specific manner, and altered cotyledon development under white light during early developmental stages. The PP2C knockout plants also displayed light-specific changes in hypocotyl elongation. These results suggest that co-immunoprecipitation, followed by proteomic analysis, is a useful method for identifying novel interacting proteins and determining real protein-protein interactions in the cell.
Collapse
Affiliation(s)
- Bong-Kwan Phee
- Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Racki WJ, Bécam AM, Nasr F, Herbert CJ. Cbk1p, a protein similar to the human myotonic dystrophy kinase, is essential for normal morphogenesis in Saccharomyces cerevisiae. EMBO J 2000; 19:4524-32. [PMID: 10970846 PMCID: PMC302079 DOI: 10.1093/emboj/19.17.4524] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have studied the CBK1 gene of Saccharomyces cerevisiae, which encodes a conserved protein kinase similar to the human myotonic dystrophy kinase. We have shown that the subcellular localization of the protein, Cbk1p, varies in a cell cycle-dependent manner. Three phenotypes are associated with the inactivation of the CBK1 gene: large aggregates of cells, round rather than ellipsoidal cells and a change from a bipolar to a random budding pattern. Two-hybrid and extragenic suppressor studies have linked Cbk1p with the transcription factor Ace2p, which is responsible for the transcription of chitinase. Cbk1p is necessary for the activation of Ace2p and we have shown that the aggregation phenotype is due to a lack of chitinase expression. The random budding pattern and the round cell phenotype of the CBK1 deletion strain show that in addition to its role in regulating chitinase expression via Ace2p, Cbk1p is essential for a wild-type morphological development of the cell.
Collapse
Affiliation(s)
- W J Racki
- Centre de Génétique Moléculaire, Laboratoire propre du CNRS, Associé à l'Université Pierre et Marie Curie, F-91198, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
16
|
Eichenberg K, Kunkel T, Kretsch T, Speth V, Schäfer E. In vivo characterization of chimeric phytochromes in yeast. J Biol Chem 1999; 274:354-9. [PMID: 9867850 DOI: 10.1074/jbc.274.1.354] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochromes are plant photoreceptors that play a major role in photomorphogenesis. Two members of the phytochrome family have been characterized in some detail. Phytochrome A, which controls very low fluence and high irradiance responses, is rapidly degraded in the light, forms sequestered areas of phytochrome (SAPs), and does not exhibit dark reversion in monocotyledonous seedlings. Phytochrome B mediates red/far-red reversible responses, is stable in the light, and does not form SAPs. We report on the behavior in yeast of the phytochrome apoproteins of rice PHYA, tobacco PHYB, and chimeric PHYAB and PHYBA and on the behavior of the respective holoprotein adducts after assembly with phycocyanobilin chromophore (PHY*). SAP-like formation in yeast was not observed for PHYB, but was detectable for PHYA, PHYAB, and PHYBA. Rice PHYA* did not undergo dark reversion in yeast. Surprisingly, all other tested phytochrome constructs did exhibit dark reversion, including chimeric phytochromes with a short N-terminal part of tobacco PHYB or parsley PHYA fused to rice PHYA. Furthermore, the proportion of phytochrome undergoing dark reversion and the rate of reversion were increased for both the N terminus-swapped constructs and PHYBA*. These results are discussed with respect to structure/function analysis of phytochromes A and B.
Collapse
Affiliation(s)
- K Eichenberg
- Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Sch anzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Zheng CC, Porat R, Lu P, O'Neill SD. PNZIP is a novel mesophyll-specific cDNA that is regulated by phytochrome and the circadian rhythm and encodes a protein with a leucine zipper motif. PLANT PHYSIOLOGY 1998; 116:27-35. [PMID: 9449833 PMCID: PMC35166 DOI: 10.1104/pp.116.1.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/1997] [Accepted: 09/28/1997] [Indexed: 05/19/2023]
Abstract
We isolated and characterized a novel light-regulated cDNA from the short-day plant Pharbitis nil that encodes a protein with a leucine (Leu) zipper motif, designated PNZIP (Pharbitis nil Leu zipper). The PNZIP cDNA is not similar to any other gene with a known function in the database, but it shares high sequence homology with an Arabidopsis expressed sequence tag and to two other sequences of unknown function from the cyanobacterium Synechocystis spp. and the red alga Porphyra purpurea, which together define a new family of evolutionarily conserved Leu zipper proteins. PNZIP is a single-copy gene that is expressed specifically in leaf photosynthetically active mesophyll cells but not in other nonphotosynthetic tissues such as the epidermis, trichomes, and vascular tissues. When plants were exposed to continuous darkness, PNZIP exhibited a rhythmic pattern of mRNA accumulation with a circadian periodicity of approximately 24 h, suggesting that its expression is under the control of an endogenous clock. However, the expression of PNZIP was unusual in that darkness rather than light promoted its mRNA accumulation. Accumulation of PNZIP mRNA during the dark is also regulated by phytochrome, since a brief exposure to red light in the middle of the night reduced its mRNA levels. Moreover, a far-red-light treatment at the end of day also reduced PNZIP mRNA accumulation during the dark, and that effect could be inhibited by a subsequent exposure to red light, showing the photoreversible response attributable to control through the phytochrome system.
Collapse
Affiliation(s)
- C C Zheng
- Division of Biological Sciences, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
18
|
Abstract
BACKGROUND Biologically compatible fluorescent protein probes, particularly the self-assembling green fluorescent protein (GFP) from the jellyfish Aequorea victoria, have revolutionized research in cell, molecular and developmental biology because they allow visualization of biochemical events in living cells. Additional fluorescent proteins that could be reconstituted in vivo while extending the useful wavelength range towards the orange and red regions of the light spectrum would increase the range of applications currently available with fluorescent protein probes. RESULTS Intensely orange fluorescent adducts, which we designate phytofluors, are spontaneously formed upon incubation of recombinant plant phytochrome apoproteins with phycoerythrobilin, the linear tetrapyrrole precursor of the phycoerythrin chromophore. Phytofluors have large molar absorption coefficients, fluorescence quantum yields greater than 0.7, excellent photostability, stability over a wide range of pH, and can be reconstituted in living plant cells. CONCLUSIONS The phytofluors constitute a new class of fluorophore that can potentially be produced upon bilin uptake by any living cell expressing an apophytochrome cDNA. Mutagenesis of the phytochrome apoprotein and/or alteration of the linear tetrapyrrole precursor by chemical synthesis are expected to afford new phytofluors with fluorescence excitation and emission spectra spanning the visible to near-infrared light spectrum.
Collapse
Affiliation(s)
- J T Murphy
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
19
|
Lamparter T, Mittmann F, Gärtner W, Börner T, Hartmann E, Hughes J. Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Proc Natl Acad Sci U S A 1997; 94:11792-7. [PMID: 9342316 PMCID: PMC23587 DOI: 10.1073/pnas.94.22.11792] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The complete sequence of the Synechocystis chromosome has revealed a phytochrome-like sequence that yielded an authentic phytochrome when overexpressed in Escherichia coli. In this paper we describe this recombinant Synechocystis phytochrome in more detail. Islands of strong similarity to plant phytochromes were found throughout the cyanobacterial sequence whereas C-terminal homologies identify it as a likely sensory histidine kinase, a family to which plant phytochromes are related. An approximately 300 residue portion that is important for plant phytochrome function is missing from the Synechocystis sequence, immediately in front of the putative kinase region. The recombinant apoprotein is soluble and can easily be purified to homogeneity by affinity chromatography. Phycocyanobilin and similar tetrapyrroles are covalently attached within seconds, an autocatalytic process followed by slow conformational changes culminating in red-absorbing phytochrome formation. Spectral absorbance characteristics are remarkably similar to those of plant phytochromes, although the conformation of the chromophore is likely to be more helical in the Synechocystis phytochrome. According to size-exclusion chromatography the native recombinant apoproteins and holoproteins elute predominantly as 115- and 170-kDa species, respectively. Both tend to form dimers in vitro and aggregate under low salt conditions. Nevertheless, the purity and solubility of the recombinant gene product make it a most attractive model for molecular studies of phytochrome, including x-ray crystallography.
Collapse
Affiliation(s)
- T Lamparter
- Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universität, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Manabe K, Nakazawa M. The structure and function of phytochrome A: the roles of the entire molecule and of its various parts. JOURNAL OF PLANT RESEARCH 1997; 110:109-122. [PMID: 27520051 DOI: 10.1007/bf02506850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/1996] [Revised: 12/14/1996] [Indexed: 06/06/2023]
Abstract
Phytochrome A is readily cleavable by proteolytic agents to yield an amino-terminal fragment of 66 kilodalton (kDa), which consists of residues 1 to approximately 600, and a dimer of the carboxy-terminal 55-kDa fragment, from residue 600 or so to the carboxyl terminus. The former domain, carrying the tetrapyrrole chromophore, has been studied extensively because of its photoactivity, while less attention has been paid to the non-chromophoric portion until quite recently. However, the evidence gathered to date suggests that this domain is also of great improtance. We present here a review of the structure and the biochemical and physiological functions of the two domains, of parts of these domains, and of the cooperation between them.
Collapse
Affiliation(s)
- K Manabe
- Biological Materials, Faculty of Science, Yokohama City University, Seto 22-2, Kanazawa-ku, 236, Yokohama, Japan
| | - M Nakazawa
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka-ku, 244, Yokohama, Japan
| |
Collapse
|
21
|
Affiliation(s)
- J M Staub
- Department of Biology, Yale University, New Haven, CT 06520-8104, USA
| | | |
Collapse
|
22
|
Wu SH, Lagarias JC. The methylotrophic yeast Pichia pastoris synthesizes a functionally active chromophore precursor of the plant photoreceptor phytochrome. Proc Natl Acad Sci U S A 1996; 93:8989-94. [PMID: 8799141 PMCID: PMC38582 DOI: 10.1073/pnas.93.17.8989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Induction of the expression of an algal phytochrome cDNA in the methylotrophic yeast Pichia pastoris led to time-dependent formation of photoactive holophytochrome without the addition of exogenous bilins. Both in vivo and in vitro difference spectra of this phytochromic species are very similar to those of higher plant phytochrome A, supporting the conclusion that this species possesses a phytochromobilin prosthetic group. Zinc blot analyses confirm that a bilin chromophore is covalently bound to the algal phytochrome apoprotein. The hypothesis that P. pastoris contains phytochromobilin synthase, the enzyme that converts biliverdin IX alpha to phytochromobilin, was also addressed in this study. Soluble extracts from P. pastoris were able to convert biliverdin to a bilin pigment, which produced a native difference spectrum upon assembly with oat apophytochrome A. HPLC analyses confirm that biliverdin is converted to both 3E- and 3Z-isomers of phytochromobilin. These investigations demonstrate that the ability to synthesize phytochromobilin is not restricted to photosynthetic organisms and support the hypothesis of a more widespread distribution of the phytochrome photoreceptor.
Collapse
Affiliation(s)
- S H Wu
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
23
|
Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:323-43. [PMID: 8647070 DOI: 10.1111/j.1432-1033.1996.00323.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
All living organisms contain tetrapyrroles. In plants, chlorophyll (chlorophyll a plus chlorophyll b) is the most abundant and probably most important tetrapyrrole. It is involved in light absorption and energy transduction during photosynthesis. Chlorophyll is synthesized from the intact carbon skeleton of glutamate via the C5 pathway. This pathway takes place in the chloroplast. It is the aim of this review to summarize the current knowledge on the biochemistry and molecular biology of the C5-pathway enzymes, their regulated expression in response to light, and the impact of chlorophyll biosynthesis on chloroplast development. Particular emphasis will be placed on the key regulatory steps of chlorophyll biosynthesis in higher plants, such as 5-aminolevulinic acid formation, the production of Mg(2+)-protoporphyrin IX, and light-dependent protochlorophyllide reduction.
Collapse
Affiliation(s)
- S Reinbothe
- Department of Genetics, Swiss Federal Institute of Technology Zurich (ETH), Switzerland
| | | |
Collapse
|
24
|
Kunkel T, Speth V, Büche C, Schäfer E. In vivo characterization of phytochrome-phycocyanobilin adducts in yeast. J Biol Chem 1995; 270:20193-200. [PMID: 7650038 DOI: 10.1074/jbc.270.34.20193] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The in vivo reconstitution of phycocyanobilin with apophytochrome leads to photoreversible adducts in living yeast cells. Investigations with the rice phytochrome A phycocyanobilin adduct (PHYA*) and the tobacco phytochrome B phycocyanobilin adduct (PHYB*) show that the protein stability in yeast is independent of the form of the photoreceptor. After in vivo assembly and irradiation with red light, 25.6% of the far-red light-absorbing form of PHYB* exhibited dark reversion with a half-life time of approximately 20 min. Control experiments with PHYA* revealed no dark reversion. The data indicate that the molecular basis for this reaction is the formation of heterodimers between the red and the far-red light absorbing form of phytochrome. Electron microscopic in situ localizations and in vitro sequestering experiments showed that phytochrome A was able to sequester in yeast. On the electron microscopic level, the sequestered areas of phytochrome from etiolated plants and yeast are indistinguishable. The sequestering reaction in yeast is independent of the formation of the far-red light absorbing form of phytochrome. Therefore, we discuss a new model for this reaction in plants. Since it is unlikely that yeast cells contain elements that distinguish between phytochrome A and B, we conclude that sequestering and dark reversion reflect intrinsic properties of phytochrome.
Collapse
Affiliation(s)
- T Kunkel
- Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
25
|
Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D. Phytochromes: photosensory perception and signal transduction. Science 1995; 268:675-80. [PMID: 7732376 DOI: 10.1126/science.7732376] [Citation(s) in RCA: 433] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The phytochrome family of photoreceptors monitors the light environment and dictates patterns of gene expression that enable the plant to optimize growth and development in accordance with prevailing conditions. The enduring challenge is to define the biochemical mechanism of phytochrome action and to dissect the signaling circuitry by which the photoreceptor molecules relay sensory information to the genes they regulate. Evidence indicates that individual phytochromes have specialized photosensory functions. The amino-terminal domain of the molecule determines this photosensory specificity, whereas a short segment in the carboxyl-terminal domain is critical for signal transfer to downstream components. Heterotrimeric GTP-binding proteins, calcium-calmodulin, cyclic guanosine 5'-phosphate, and the COP-DET-FUS class of master regulators are implicated as signaling intermediates in phototransduction.
Collapse
Affiliation(s)
- P H Quail
- Department of Plant Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|