1
|
Lavin M, Khanna K, Beamish H, Teale B, Hobson K, Watters D. Defect in Radiation Signal Transduction in Ataxia-telangiectasia. Int J Radiat Biol 2009. [DOI: 10.1080/09553009414551981] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M.F. Lavin
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Bancroft Centre, 300 Herston Road, Brisbane, 4029, Australia
| | - K.K. Khanna
- Department of Surgery, University of Queensland, Herston, Brisbane, 4029, Australia
| | - H. Beamish
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Bancroft Centre, 300 Herston Road, Brisbane, 4029, Australia
| | - B. Teale
- Department of Surgery, University of Queensland, Herston, Brisbane, 4029, Australia
| | - K. Hobson
- Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, Bancroft Centre, 300 Herston Road, Brisbane, 4029, Australia
| | - D. Watters
- Department of Surgery, University of Queensland, Herston, Brisbane, 4029, Australia
| |
Collapse
|
2
|
Himmelbach A, Iten M, Grill E. Signalling of abscisic acid to regulate plant growth. Philos Trans R Soc Lond B Biol Sci 1998; 353:1439-44. [PMID: 9800207 PMCID: PMC1692344 DOI: 10.1098/rstb.1998.0299] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abscisic acid (ABA) mediated growth control is a fundamental response of plants to adverse environmental cues. The linkage between ABA perception and growth control is currently being unravelled by using different experimental approaches such as mutant analysis and microinjection experiments. So far, two protein phosphatases, ABI1 and ABI2, cADPR, pH, and Ca2+ have been identified as main components of the ABA signalling pathway. Here, the ABA signal transduction pathway is compared to signalling cascades from yeast and mammalian cells. A model for a bifurcated ABA signal transduction pathway exerting a positive and negative control mechanism is proposed.
Collapse
Affiliation(s)
- A Himmelbach
- Lehrstuhl für Botanik, Technische Universität München, Germany
| | | | | |
Collapse
|
3
|
Luft JC, Bengtén E, Clem LW, Miller NW, Wilson MR. Identification and characterization of the tumor suppressor p53 in channel catfish (Ictalurus punctatus). Comp Biochem Physiol B Biochem Mol Biol 1998; 120:675-82. [PMID: 9854815 DOI: 10.1016/s0305-0491(98)10062-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Herein is presented the sequence of a catfish full-length p53 cDNA obtained from a cloned B cell line cDNA library. Southern blot analyses determined that a restriction fragment linked polymorphism (RFLP) existed with PstI among outbred catfish. Western blot analyses demonstrated that, when compared to PBLs, the catfish leukocyte lines express higher levels of p53 protein. Additionally, the results of Western blot analyses and in vitro translation experiments suggest that the catfish leukocyte lines may produce truncated forms of p53 due to internal initiation.
Collapse
Affiliation(s)
- J C Luft
- Department of Microbiology, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | | | | | |
Collapse
|
4
|
Sakaguchi K, Sakamoto H, Xie D, Erickson JW, Lewis MS, Anderson CW, Appella E. Effect of phosphorylation on tetramerization of the tumor suppressor protein p53. JOURNAL OF PROTEIN CHEMISTRY 1997; 16:553-6. [PMID: 9246643 DOI: 10.1023/a:1026334116189] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human tumor suppressor protein p53 is a 393-amino acid phosphoprotein that enhances transcription in response to DNA damage from several genes that regulate cell cycle progression. The tetrameric state of p53 is critical to wild-type function; the p53 tetramerization element is located in the C-terminal region of the protein. This region is phosphorylated at several evolutionarily conserved serines, suggesting that phosphorylation may be an important regulator of p53 function. In order to determine the effect of phosphorylation on tetramer formation, we synthesized phosphopeptides corresponding to p53(Ser303-Asp393) with phosphate incorporated at Ser315, Ser378, or Ser392, and at both Ser315 and Ser392. Equilibrium ultracentrifugation analysis showed that phosphorylation at Ser392 increased the association constant for tetramer formation nearly ten-fold. By itself, phosphorylation at Ser315 or Ser378 had little effect on tetramer formation, but Ser315 largely reversed the effect of phosphorylation at Ser392. Analysis by calorimetry suggests that phosphorylation may influence subunit affinity by an enthalpy driven process.
Collapse
Affiliation(s)
- K Sakaguchi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Willett CG, Smith DI, Shridhar V, Wang MH, Emanuel RL, Patidar K, Graham SA, Zhang F, Hatch V, Sugarbaker DJ, Sunday ME. Differential screening of a human chromosome 3 library identifies hepatocyte growth factor-like/macrophage-stimulating protein and its receptor in injured lung. Possible implications for neuroendocrine cell survival. J Clin Invest 1997; 99:2979-91. [PMID: 9185522 PMCID: PMC508150 DOI: 10.1172/jci119493] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transient pulmonary neuroendocrine cell hyperplasia and non-neuroendocrine lung tumors develop in nitrosaminetreated hamsters, which we hypothesized might modulate epithelial cell phenotype by expressing gene(s) homologous to human chromosome 3p gene(s) deleted in small cell carcinoma of the lung (SCLC). We differentially screened a chromosome 3 library using nitrosamine-treated versus normal hamster lung cDNAs and identified hepatocyte growth factor-like/macrophage-stimulating protein (HGFL/MSP) in injured lung. HGFL/MSP mRNA is low to undetectable in human SCLC and carcinoid tumors, but the HGFL/MSP tyrosine kinase receptor, RON, is present and functional on many of these neuroendocrine tumors. In H835, a pulmonary carcinoid cell line, and H187, a SCLC cell line, HGFL/ MSP induced adhesion/flattening and apoptosis. Using viable cell counts to assess proliferation after 14 d of treatment with HGFL/MSP, there is growth inhibition of H835 but not H187. Nitrosamine-treated hamsters also demonstrate pulmonary neuroendocrine cell apoptosis in situ during the same time period as expression of the endogenous HGFL/ MSP gene, immediately preceding the spontaneous regression of neuroendocrine cell hyperplasia. These observations suggest that HGFL/MSP might regulate neuroendocrine cell survival during preneoplastic lung injury, which could influence the ultimate tumor cell phenotype.
Collapse
Affiliation(s)
- C G Willett
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
MESH Headings
- Adipose Tissue/metabolism
- CCAAT-Enhancer-Binding Proteins
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 12/ultrastructure
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 16/ultrastructure
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Dimerization
- Gene Expression Regulation, Neoplastic
- Heterogeneous-Nuclear Ribonucleoproteins
- Humans
- Leucine Zippers/genetics
- Liposarcoma, Myxoid/genetics
- Liposarcoma, Myxoid/pathology
- Neoplasm Proteins/physiology
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Oncogenes
- RNA-Binding Protein FUS
- RNA-Binding Proteins/physiology
- Ribonucleoproteins/genetics
- Ribonucleoproteins/physiology
- Transcription Factor CHOP
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- D Ron
- Skirball Institute of Biomolecular Medicine, Department of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Sakamoto H, Kodama H, Higashimoto Y, Kondo M, Lewis MS, Anderson CW, Appella E, Sakaguchi K. Chemical synthesis of phosphorylated peptides of the carboxy-terminal domain of human p53 by a segment condensation method. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1996; 48:429-42. [PMID: 8956076 DOI: 10.1111/j.1399-3011.1996.tb00861.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A segment condensation method was developed for the chemical synthesis of large (> 90 amino acid) phosphopeptides and was used to produce phosphorylated and non-phosphorylated derivatives of the C-terminal tetramerization and regulatory domains of human p53 (residues 303-393). Efficient condensation synthesis of the 91 residue p53 domain was achieved in two steps. The non-phosphorylated N-terminal segment p53(303-334) (1) and its derivative phosphorylated at serine 315 (1P315), and the non-phosphorylated middle segment p53(335-360) (2), were synthesized as partially protected peptide thioesters in the solid phase using Boc chemistry. The C-terminal segment p53(361-393) (3) and its derivative phosphorylated at serine 392 (3P392) were synthesized as partially protected peptides in the solid phase using Fmoc chemistry. Phosphoamino acid was incorporated into the N-terminal segment (1P315) at the residue corresponding to p53 serine 315 as Boc-Ser(PO3(Bzl)2)-OH during synthesis. Serine 392 in the C-terminal segment was selectively phosphorylated after synthesis by phosphitylation followed by oxidation. A derivative phosphorylated at serine 378 was synthesized in a one-step condensation of the unphosphorylated N-terminal segment (1) and the phosphorylated long C-terminal segment p53(335-393) (2-3P378). Yields of the ligated peptides after removal of the protecting groups and HPLC purification averaged 60% for the first condensation and 35% for the second condensation. All five p53 peptides exhibited monomer-tetramer association as determined by analytical ultracentrifugation. Circular dichroism spectroscopy revealed that phosphorylation at Ser315 increased the alpha-helical content, which was abolished when Ser392 also was phosphorylated, suggesting an interaction between N-terminal and C-terminal residues of the C-terminal domain of p53.
Collapse
Affiliation(s)
- H Sakamoto
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Dominguez JH, Song B, Liu-Chen S, Qulali M, Howard R, Lee CH, McAteer J. Studies of renal injury. II. Activation of the glucose transporter 1 (GLUT1) gene and glycolysis in LLC-PK1 cells under Ca2+ stress. J Clin Invest 1996; 98:395-404. [PMID: 8755650 PMCID: PMC507443 DOI: 10.1172/jci118805] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Injury to the renal proximal tubule is common and may be followed by either recovery or cell death. The survival of injured cells is supported by a transient change in cellular metabolism that maintains life even when oxygen tension is reduced. This adaptive process involves the activation of the gene encoding the glucose transporter GLUT1, which is essential to maintain the high rates of glucose influx demanded by glycolysis. We hypothesized that after cell injury increases of cell Ca2+ (Ca2+i) initiate the flow of information that culminates with the upregulation of the stress response gene GLUT1. We found that elevations of Ca2+i caused by the calcium ionophore A23187 activated the expression of the GLUT1 gene in LLC-PK1 cells. The stimulatory effect of Ca2+i on GLUT1 gene expression was, at least in part, transcriptional and resulted in higher levels of GLUT1 mRNA, cognate protein, cellular hexose transport activity, glucose consumption, and lactate production. This response was vital to the renal cells, as its interruption severely increased Ca2+-induced cytotoxicity and cell mortality. We propose that increases of Ca2+i initiate stress responses, represented in part by activation of the GLUT1 gene, and that disruption to the flow of information originating from Ca2+-induced stress, or to the coordinated expression of the stress response, prevents cell recovery after injury and may be an important cause of permanent renal cell injury and cell death.
Collapse
Affiliation(s)
- J H Dominguez
- Department of Medicine, Indiana University Medical Center, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Rosenberger RF. The initiation of senescence and its relationship to embryonic cell differentiation. Bioessays 1995; 17:257-60. [PMID: 7748179 DOI: 10.1002/bies.950170312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mouse embryonic stem cells have an unlimited lifespan in cultures if they are prevented from differentiating. After differentiating, they produce cells which divide only a limited number of times. These changes seen in cultures parallel events that occur in the developing embryo, where immortal embryonic cells differentiate and produce mortal somatic ones. The data strongly suggest that differentiation initiates senescence, but this view entails additional assumptions in order to explain how the highly differentiated sexual gametes manage to remain potentially immortal. Cells differentiate by blocking expression from large parts of their genome and it is suggested that losses or gains of genetic totipotency determine cellular lifespans. Cells destined to be somatic do not regain totipotency and senesce, while germ-line cells regain complete genome expression and immortality after meiosis and gamete fusions. Losses of genetic totipotency could induce senescence by lowering the levels of repair and maintenance enzymes.
Collapse
Affiliation(s)
- R F Rosenberger
- Division of Eukaryotic Genetics, National Institute for Medical Research, Mill Hill, London, UK
| |
Collapse
|
10
|
Puisieux A, Ji J, Guillot C, Legros Y, Soussi T, Isselbacher K, Ozturk M. p53-mediated cellular response to DNA damage in cells with replicative hepatitis B virus. Proc Natl Acad Sci U S A 1995; 92:1342-6. [PMID: 7877979 PMCID: PMC42515 DOI: 10.1073/pnas.92.5.1342] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.
Collapse
Affiliation(s)
- A Puisieux
- Laboratoire d'Oncologie Moléculaire, Institut National de la Santé et de la Recherche Médicale CJF 9302, Centre Léon Bérard, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Williams J, Williams M, Liu C, Telling G. Assessing the role of E1A in the differential oncogenicity of group A and group C human adenoviruses. Curr Top Microbiol Immunol 1995; 199 ( Pt 3):149-75. [PMID: 7555075 DOI: 10.1007/978-3-642-79586-2_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J Williams
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Nitric oxide (NO) is a diffusible messenger involved in several patho-physiological processes including immune-mediated cytotoxicity and neural cell killing. NO or the products of its redox chemistry can cause DNA damage and activate subsequent lethal reactions including energy depletion and cell necrosis. However, regardless of whether it is endogenously produced in response to cytokines, or generated by chemical breakdown of donor molecules, NO can also induce apoptosis in different systems. Here, we report that NO generation in response to a cytokine induced NO-synthase or by NO donors stimulates the expression of the tumor suppressor gene, p53, in RAW 264.7 macrophages or pancreatic RINm5F cells prior to apoptosis. NO-synthase inhibitors such as NG-monomethyl-L-arginine prevent the inducible NO generation as well as p53 expression and apoptosis. Since p53 expression is linked to apoptosis in some cells exposed to DNA damaging agents, we suggest that NO-induced apoptosis in these cell systems is the consequence of DNA damage and subsequent expression of this tumor suppressor gene.
Collapse
Affiliation(s)
- U K Messmer
- University of Konstanz, Faculty of Biology, Germany
| | | | | | | |
Collapse
|
13
|
Okamoto A, Demetrick DJ, Spillare EA, Hagiwara K, Hussain SP, Bennett WP, Forrester K, Gerwin B, Serrano M, Beach DH. Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci U S A 1994; 91:11045-9. [PMID: 7972006 PMCID: PMC45163 DOI: 10.1073/pnas.91.23.11045] [Citation(s) in RCA: 386] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cell cycle arrest at the G1 checkpoint allows completion of critical macromolecular events prior to S phase. Regulators of the G1 checkpoint include an inhibitor of cyclin-dependent kinase, p16INK4; two tumor-suppressor proteins, p53 and RB (the product of the retinoblastoma-susceptibility gene); and cyclin D1. Neither p16INK4 nor the RB protein was detected in 28 of 29 tumor cell lines from human lung, esophagus, liver, colon, and pancreas. The presence of p16INK4 protein is inversely correlated with detectable RB or cyclin D1 proteins and is not correlated with p53 mutations. Homozygous deletions of p16INK4 were detected in several cell lines, but intragenic mutations of this gene were unusual in either cell lines or primary tumors. Transfection of the p16INK4 cDNA expression vector into carcinoma cells inhibits their colony-forming efficiency and the p16INK4 expressing cells are selected against with continued passage in vitro. These results are consistent with the hypothesis that p16INK4 is a tumor-suppressor protein and that genetic and epigenetic abnormalities in genes controlling the G1 checkpoint can lead to both escape from senescence and cancer formation.
Collapse
Affiliation(s)
- A Okamoto
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zinszner H, Albalat R, Ron D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 1994; 8:2513-26. [PMID: 7958914 DOI: 10.1101/gad.8.21.2513] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In human myxoid liposarcoma, a chromosomal rearrangement leads to fusion of the growth-arresting and DNA-damage-inducible transcription factor CHOP (GADD153) to a peptide fragment encoded by the TLS gene. We have found that wild-type TLS and a closely related sarcoma-associated protein, EWS, are both abundant nuclear proteins that associate in vivo with products of RNA polymerase II transcription. This association leads to the formation of a ternary complex with other heterogeneous RNA-binding proteins (hnRNPs), such as A1 and C1/C2. An NIH-3T3-based transformation assay was used to study the oncogenic role of the sarcoma-associated domain of these RNA-binding proteins. Transduction of the TLS-CHOP oncogene into cells by means of a retroviral expression vector leads to loss of contact inhibition, acquisition of the ability to grow as colonies in soft agar, and tumor formation in nude mice. Mutations that interfere with the function of the leucine zipper dimerization domain or the adjacent basic region of CHOP abolish transformation. The essential role of the TLS component was revealed by the inability of truncated forms to fully transform cells. Domain swap between TLS- and EWS-associated oncogenes demonstrated that the component contributed by the RNA-binding proteins are functionally interchangeable, whereas the transcription factor component specifies tumor phenotype. The sarcoma-associated component of TLS and EWS contribute a strong transcriptional activation domain to the fusion proteins; however, transforming activity cannot be fully substituted by fusion of CHOP to other strong trans-activators. The juxtaposition of a novel effector domain from sarcoma-associated RNA-binding proteins to the targeting domain of transcription factors such as CHOP leads to the creation of a potent oncogene.
Collapse
Affiliation(s)
- H Zinszner
- Skirball Institute of Biomolecular Medicine, Department of Medicine, New York University Medical Center, New York, New York 10016
| | | | | |
Collapse
|