1
|
Hu X, Cheng J, Lu M, Fang T, Zhu Y, Li Z, Wang X, Wang Y, Guo Y, Yang S, Gong Z. Ca 2+-independent ZmCPK2 is inhibited by Ca 2+-dependent ZmCPK17 during drought response in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1313-1333. [PMID: 38751035 DOI: 10.1111/jipb.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 07/12/2024]
Abstract
Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.
Collapse
Affiliation(s)
- Xiaoying Hu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Minmin Lu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tingting Fang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yujuan Zhu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiqing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
2
|
Yuan P, Luo F, Gleason C, Poovaiah BW. Calcium/calmodulin-mediated microbial symbiotic interactions in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:984909. [PMID: 36330252 PMCID: PMC9623113 DOI: 10.3389/fpls.2022.984909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cytoplasmic calcium (Ca2+) transients and nuclear Ca2+ oscillations act as hubs during root nodulation and arbuscular mycorrhizal symbioses. Plants perceive bacterial Nod factors or fungal signals to induce the Ca2+ oscillation in the nucleus of root hair cells, and subsequently activate calmodulin (CaM) and Ca2+/CaM-dependent protein kinase (CCaMK). Ca2+ and CaM-bound CCaMK phosphorylate transcription factors then initiate down-stream signaling events. In addition, distinct Ca2+ signatures are activated at different symbiotic stages: microbial colonization and infection; nodule formation; and mycorrhizal development. Ca2+ acts as a key signal that regulates a complex interplay of downstream responses in many biological processes. This short review focuses on advances in Ca2+ signaling-regulated symbiotic events. It is meant to be an introduction to readers in and outside the field of bacterial and fungal symbioses. We summarize the molecular mechanisms underlying Ca2+/CaM-mediated signaling in fine-tuning both local and systemic symbiotic events.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Feixiong Luo
- Department of Pomology, Hunan Agricultural University, Changsha, China
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - B. W. Poovaiah
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Yuan P, Tanaka K, Poovaiah BW. Calcium/Calmodulin-Mediated Defense Signaling: What Is Looming on the Horizon for AtSR1/CAMTA3-Mediated Signaling in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 12:795353. [PMID: 35087556 PMCID: PMC8787297 DOI: 10.3389/fpls.2021.795353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/15/2021] [Indexed: 05/14/2023]
Abstract
Calcium (Ca2+) signaling in plant cells is an essential and early event during plant-microbe interactions. The recognition of microbe-derived molecules activates Ca2+ channels or Ca2+ pumps that trigger a transient increase in Ca2+ in the cytoplasm. The Ca2+ binding proteins (such as CBL, CPK, CaM, and CML), known as Ca2+ sensors, relay the Ca2+ signal into down-stream signaling events, e.g., activating transcription factors in the nucleus. For example, CaM and CML decode the Ca2+ signals to the CaM/CML-binding protein, especially CaM-binding transcription factors (AtSRs/CAMTAs), to induce the expressions of immune-related genes. In this review, we discuss the recent breakthroughs in down-stream Ca2+ signaling as a dynamic process, subjected to continuous variation and gradual change. AtSR1/CAMTA3 is a CaM-mediated transcription factor that represses plant immunity in non-stressful environments. Stress-triggered Ca2+ spikes impact the Ca2+-CaM-AtSR1 complex to control plant immune response. We also discuss other regulatory mechanisms in which Ca2+ signaling activates CPKs and MAPKs cascades followed by regulating the function of AtSR1 by changing its stability, phosphorylation status, and subcellular localization during plant defense.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - B. W. Poovaiah
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
4
|
Calmodulin and Its Interactive Proteins Participate in Regulating the Explosive Growth of Alexandrium pacificum (Dinoflagellate). Int J Mol Sci 2021; 23:ijms23010145. [PMID: 35008568 PMCID: PMC8745774 DOI: 10.3390/ijms23010145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Alexandrium pacificum is a typical dinoflagellate that can cause harmful algal blooms, resulting in negative impacts on ecology and human health. The calcium (Ca2+) signal transduction pathway plays an important role in cell proliferation. Calmodulin (CaM) and CaM-related proteins are the main cellular Ca2+ sensors, and can act as an intermediate in the Ca2+ signal transduction pathway. In this study, the proteins that interacted with CaM of A. pacificum were screened by two-dimensional electrophoresis analysis and far western blots under different growth conditions including lag phase and high phosphorus and manganese induced log phase (HPM). The interactive proteins were then identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Four proteins were identified, including Ca2+/CaM-dependent protein kinase, serine/threonine kinase, annexin, and inositol-3-phosphate synthase, which all showed high expression levels under HPM. The gene expression levels encoding these four proteins were also up-regulated under HPM, as revealed by quantitative polymerase chain reaction, suggesting that the identified proteins participate in the Ca2+ transport channel and cell cycle regulation to promote cell division. A network of proteins interacting with CaM and their target proteins involved in the regulation of cell proliferation was raised, which provided new insights into the mechanisms behind the explosive growth of A. pacificum.
Collapse
|
5
|
Marcec MJ, Gilroy S, Poovaiah BW, Tanaka K. Mutual interplay of Ca 2+ and ROS signaling in plant immune response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:343-354. [PMID: 31128705 DOI: 10.1016/j.plantsci.2019.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/20/2023]
Abstract
Second messengers are cellular chemicals that act as "language codes", allowing cells to pass outside information to the cell interior. The cells then respond through triggering downstream reactions, including transcriptional reprograming to affect appropriate adaptive responses. The spatiotemporal patterning of these stimuli-induced signal changes has been referred to as a "signature", which is detected, decoded, and transmitted to elicit these downstream cellular responses. Recent studies have suggested that dynamic changes in second messengers, such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO), serve as signatures for both intracellular signaling and cell-to-cell communications. These second messenger signatures work in concert with physical signal signatures (such as electrical and hydraulic waves) to create a "lock and key" mechanism that triggers appropriate response to highly varied stresses. In plants, detailed information of how these signatures deploy their downstream signaling networks remains to be elucidated. Recent evidence suggests a mutual interplay between Ca2+ and ROS signaling has important implications for fine-tuning cellular signaling networks in plant immunity. These two signaling mechanisms amplify each other and this interaction may be a critical element of their roles in information processing for plant defense responses.
Collapse
Affiliation(s)
- Matthew J Marcec
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - B W Poovaiah
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA; Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
6
|
Ni L, Fu X, Zhang H, Li X, Cai X, Zhang P, Liu L, Wang Q, Sun M, Wang QW, Zhang A, Zhang Z, Jiang M. Abscisic Acid Inhibits Rice Protein Phosphatase PP45 via H 2O 2 and Relieves Repression of the Ca 2+/CaM-Dependent Protein Kinase DMI3. THE PLANT CELL 2019; 31:128-152. [PMID: 30538152 PMCID: PMC6391686 DOI: 10.1105/tpc.18.00506] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/01/2018] [Accepted: 11/30/2018] [Indexed: 05/05/2023]
Abstract
In plants, Ca2+/calmodulin-dependent protein kinase (CCaMK) is a positive regulator of abscisic acid (ABA) responses, including root growth, antioxidant defense, and tolerance of both water stress and oxidative stress. However, the underlying molecular mechanisms are poorly understood. Here, we show a direct interaction between DMI3 (Doesn't Make Infections 3), a rice (Oryza sativa) CCaMK and PP45, a type 2C protein phosphatase in rice (PP2C). This interaction involves the CaM binding domain of DMI3 and the PP2C domain of PP45. In the absence of ABA, PP45 directly inactivates DMI3 by dephosphorylating Thr-263 in DMI3. However, in the presence of ABA, ABA-induced H2O2 production by the NADPH oxidases RbohB/E inhibits the activity of PP45 not only by inhibiting the expression of PP45 but also by oxidizing Cys-350 and Cys-428 residues to form PP45 intermolecular dimers. ABA-induced oxidation of Cys-350 and Cys-428 in PP45 blocked the interaction between PP45 and DMI3 and substantially prevented PP45-mediated inhibition in DMI3 activity. Genetic analysis indicated that PP45 is an important negative regulator of ABA signaling. These results reveal important pathways for the inhibition of DMI3 under the basal state and for its ABA-induced activation in rice.
Collapse
Affiliation(s)
- Lan Ni
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaopu Fu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Panpan Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingwen Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Manman Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian-Wen Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Chen F, Zhang L, Lin Z, Cheng ZMM. Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling. BMC Genomics 2018; 19:306. [PMID: 29703146 PMCID: PMC5924475 DOI: 10.1186/s12864-018-4685-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK, comprises SnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions This report identified a novel gene fusion and dated its precise fusion time in Metakinetoplastina protists. This potential fourth eukaryotic calcium signal conversion pathway complements our current knowledge that convergent evolution occurs in eukaryotic calcium signaling. Electronic supplementary material The online version of this article (10.1186/s12864-018-4685-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps; Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Plant Sciences, University of Tennessee, Knoxville, 37996, USA
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps; Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, 63103-2010, USA
| | - Zong-Ming Max Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Department of Plant Sciences, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
8
|
Charpentier M. Calcium Signals in the Plant Nucleus: Origin and Function. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4986421. [PMID: 29718301 DOI: 10.1093/jxb/ery160] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The universality of calcium as an intracellular messenger depends on the dynamics of its spatial and temporal release from calcium stores. Accumulating evidence over the past two decades supports an essential role for nuclear calcium signalling in the transduction of specific stimuli into cellular responses. This review focusses on mechanisms underpinning changes in nuclear calcium concentrations and discusses what is known so far, about the origin of the nuclear calcium signals identified, primarily in the context of microbial symbioses and abiotic stresses.
Collapse
Affiliation(s)
- Myriam Charpentier
- John Innes Centre, Department of Cell and developmental Biology, Colney Lane, Norwich, UK
| |
Collapse
|
9
|
Lenzoni G, Liu J, Knight MR. Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures. THE NEW PHYTOLOGIST 2018; 217:1598-1609. [PMID: 29218709 DOI: 10.1111/nph.14924] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/25/2017] [Indexed: 05/28/2023]
Abstract
Calcium plays a key role in determining the specificity of a vast array of signalling pathways in plants. Cellular calcium elevations with different characteristics (calcium signatures) carry information on the identity of the primary stimulus, ensuring appropriate downstream responses. However, the mechanism for decoding calcium signatures is unknown. To determine this, decoding of the salicylic acid (SA)-mediated plant immunity signalling network controlling gene expression was examined. A dynamic mathematical model of the SA-mediated plant immunity network was developed. This model was used to predict responses to different calcium signatures; these were validated empirically using quantitative real-time PCR to measure gene expression. The mechanism for decoding calcium signatures to control expression of plant immunity genes enhanced disease susceptibility 1 (EDS1) and isochorismate synthase 1 (ICS1) was identified. Calcium, calmodulin, calmodulin-binding transcription activators (CAMTA)3 and calmodulin binding protein 60g (CBP60g) together amplify each calcium signature into three active signals, simultaneously regulating expression. The time required for calcium to return to steady-state level also quantitatively regulates gene expression. Decoding of calcium signatures occurs via nonlinear interactions between these active signals, producing a unique response in each case. Key properties of the calcium signatures are not intuitive, exemplifying the importance of mathematical modelling approaches. This approach can be applied to identifying the decoding mechanisms of other plant calcium signalling pathways.
Collapse
Affiliation(s)
- Gioia Lenzoni
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
10
|
Poovaiah BW, Du L. Calcium signaling: decoding mechanism of calcium signatures. THE NEW PHYTOLOGIST 2018; 217:1394-1396. [PMID: 29405360 DOI: 10.1111/nph.15003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- B W Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA, 99164-6414, USA
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| |
Collapse
|
11
|
Jauregui E, Du L, Gleason C, Poovaiah BW. W342F Mutation in CCaMK Enhances Its Affinity to Calmodulin But Compromises Its Role in Supporting Root Nodule Symbiosis in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2017; 8:1921. [PMID: 29201032 PMCID: PMC5696362 DOI: 10.3389/fpls.2017.01921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
The calcium/calmodulin-dependent protein kinase (CCaMK) is regulated by free Ca2+ and Ca2+-loaded calmodulin. This dual binding is believed to be involved in its regulation and associated physiological functions, although direct experimental evidence for this is lacking. Here we document that site-directed mutations in the calmodulin-binding domain of CCaMK alters its binding capacity to calmodulin, providing an effective approach to study how calmodulin regulates CCaMK in terms of kinase activity and regulation of rhizobial symbiosis in Medicago truncatula. We observed that mutating the tryptophan at position 342 to phenylalanine (W342F) markedly increased the calmodulin-binding capability of the mutant. The mutant CCaMK underwent autophosphorylation and catalyzed substrate phosphorylation in the absence of calcium and calmodulin. When the mutant W342F was expressed in ccamk-1 roots, the transgenic roots exhibited an altered nodulation phenotype. These results indicate that altering the calmodulin-binding domain of CCaMK could generate a constitutively activated kinase with a negative role in the physiological function of CCaMK.
Collapse
Affiliation(s)
- Edgard Jauregui
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Liqun Du
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA, United States
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - B. W. Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
12
|
Yuan P, Jauregui E, Du L, Tanaka K, Poovaiah BW. Calcium signatures and signaling events orchestrate plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:173-183. [PMID: 28692858 DOI: 10.1016/j.pbi.2017.06.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 05/20/2023]
Abstract
Calcium (Ca2+) acts as an essential second messenger connecting the perception of microbe signals to the establishment of appropriate immune and symbiotic responses in plants. Accumulating evidence suggests that plants distinguish different microorganisms through plasma membrane-localized pattern recognition receptors. The particular recognition events are encoded into Ca2+ signatures, which are sensed by diverse intracellular Ca2+ binding proteins. The Ca2+ signatures are eventually decoded to distinct downstream responses through transcriptional reprogramming of the defense or symbiosis-related genes. Recent observations further reveal that Ca2+-mediated signaling is also involved in negative regulation of plant immunity. This review is intended as an overview of Ca2+ signaling during immunity and symbiosis, including Ca2+ responses in the nucleus and cytosol.
Collapse
Affiliation(s)
- Peiguo Yuan
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Edgard Jauregui
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Liqun Du
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - B W Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA.
| |
Collapse
|
13
|
Jauregui E, Du L, Gleason C, Poovaiah BW. Autophosphorylation of calcium/calmodulin-dependent protein kinase (CCaMK) at S343 or S344 generates an intramolecular interaction blocking the CaM-binding. PLANT SIGNALING & BEHAVIOR 2017; 12:e1343779. [PMID: 28696815 PMCID: PMC5586396 DOI: 10.1080/15592324.2017.1343779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
The Ca2+ and Ca2+/calmodulin-dependent protein kinase (CCaMK) is an important effector protein of Ca2+/calmodulin-mediated signaling, and in legumes, it is a critical regulator of plant-rhizobia and mycorrhizal symbioses. CCaMK contains a kinase domain, a calmodulin-binding/autoinhibitory domain and a visinin-like domain. Previous studies revealed the presence of 2 phosphorylation sites, S343 and S344, in the calmodulin-binding domain. Mutations at these sites affected the kinase activity and downstream rhizobium and mycorrhizal symbioses, which highlighted the importance of these residues in regulating protein activity. This addendum further clarifies the regulation of CCaMK by identifying an intramolecular interaction between residue(s) in the kinase domain and phosphorylation sites S343 and S344. This interaction turns off the substrate phosphorylation capacity of CCaMK.
Collapse
Affiliation(s)
- Edgard Jauregui
- Department of Horticulture, Washington State University, Pullman, Washington, USA
| | - Liqun Du
- Department of Horticulture, Washington State University, Pullman, Washington, USA
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - B. W. Poovaiah
- Department of Horticulture, Washington State University, Pullman, Washington, USA
| |
Collapse
|
14
|
The calmodulin fused kinase novel gene family is the major system in plants converting Ca 2+ signals to protein phosphorylation responses. Sci Rep 2017. [PMID: 28646145 PMCID: PMC5482843 DOI: 10.1038/s41598-017-03367-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Eukaryotes utilize Ca2+ as a universal second messenger to convert and multiply environmental and developmental signals to downstream protein phosphorylation responses. However, the phylogenetic relationships of the genes that convert Ca2+ signal (CS) to protein phosphorylation responses (PPRs) remain highly controversial, and their origin and evolutionary trajectory are unclear, which greatly hinders functional studies. Here we examined the deep phylogeny of eukaryotic CS converter gene families and identified a phylogenetically and structurally distinctive monophyly in Archaeplastida. This monophyly can be divided into four subfamilies, and each can be traced to ancestral members that contain a kinase domain and a calmodulin-like domain. This strongly indicates that the ancestor of this monophyly originated by a de novo fusion of a kinase gene and a calmodulin gene. This gene family, with a proposed new name, Calmodulin Fused Kinase (CFK), had expanded and diverged significantly both in sizes and in structures for efficient and accurate Ca2+ signalling, and was shown to play pivotal roles in all the six major plant adaptation events in evolution. Our findings elucidated the common origin of all CS-PPR converter genes except CBL-CIPK converter genes, and revealed that CFKs act as the main CS conversion system in plants.
Collapse
|
15
|
Abstract
ABSTRACT
Mycorrhizal fungi belong to several taxa and develop mutualistic symbiotic associations with over 90% of all plant species, from liverworts to angiosperms. While descriptive approaches have dominated the initial studies of these fascinating symbioses, the advent of molecular biology, live cell imaging, and “omics” techniques have provided new and powerful tools to decipher the cellular and molecular mechanisms that rule mutualistic plant-fungus interactions. In this article we focus on the most common mycorrhizal association, arbuscular mycorrhiza (AM), which is formed by a group of soil fungi belonging to Glomeromycota. AM fungi are believed to have assisted the conquest of dry lands by early plants around 450 million years ago and are found today in most land ecosystems. AM fungi have several peculiar biological traits, including obligate biotrophy, intracellular development inside the plant tissues, coenocytic multinucleate hyphae, and spores, as well as unique genetics, such as the putative absence of a sexual cycle, and multiple ecological functions. All of these features make the study of AM fungi as intriguing as it is challenging, and their symbiotic association with most crop plants is currently raising a broad interest in agronomic contexts for the potential use of AM fungi in sustainable production under conditions of low chemical input.
Collapse
|
16
|
Vijayakumar P, Datta S, Dolan L. ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth. THE NEW PHYTOLOGIST 2016; 212:944-953. [PMID: 27452638 PMCID: PMC5111604 DOI: 10.1111/nph.14095] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/05/2016] [Indexed: 05/07/2023]
Abstract
ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) is necessary and sufficient for root hair elongation in Arabidopsis thaliana. Root hair length is determined by the duration for which RSL4 protein is present in the developing root hair. The aim of this research was to identify genes regulated by RSL4 that affect root hair growth. To identify genes regulated by RSL4, we identified genes whose expression was elevated by induction of RSL4 activity in the presence of an inhibitor of translation. Thirty-four genes were identified as putative targets of RSL transcriptional regulation, and the results suggest that the activities of SUPPRESSOR OF ACTIN (SAC1), EXOCSYT SUBUNIT 70A1 (EXO70A1), PEROXIDASE7 (PRX7) and CALCIUM-DEPENDENT PROTEIN KINASE11 (CPK11) are required for root hair elongation. These data indicate that RSL4 controls cell growth by controlling the expression of genes encoding proteins involved in cell signalling, cell wall modification and secretion.
Collapse
Affiliation(s)
| | - Sourav Datta
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| | - Liam Dolan
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| |
Collapse
|
17
|
Zhu Y, Yan J, Liu W, Liu L, Sheng Y, Sun Y, Li Y, Scheller HV, Jiang M, Hou X, Ni L, Zhang A. Phosphorylation of a NAC Transcription Factor by a Calcium/Calmodulin-Dependent Protein Kinase Regulates Abscisic Acid-Induced Antioxidant Defense in Maize. PLANT PHYSIOLOGY 2016; 171:1651-64. [PMID: 27208250 PMCID: PMC4936550 DOI: 10.1104/pp.16.00168] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/03/2016] [Indexed: 05/18/2023]
Abstract
Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize (Zea mays), which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 displays a partially overlapping expression pattern with ZmCCaMK after ABA treatment, and H2O2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates Ser-113 of ZmNAC84 in vitro, and Ser-113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco (Nicotiana tabacum) can improve drought tolerance and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H2O2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK. Subsequently, the activated ZmCCaMK phosphorylates ZmNAC84 at Ser-113, thereby inducing antioxidant defense by activating downstream genes.
Collapse
Affiliation(s)
- Yuan Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| | - Weijuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| | - Lei Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| | - Yu Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| | - Yue Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| | - Yanyun Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| | - Henrik Vibe Scheller
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| | - Xilin Hou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| | - Lan Ni
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (Y.Z., J.Y., W.L., L.L., Y.Sh., Y.S., Y.L., M.J., X.H., L.N., A.Z.);Physical Biosciences Division, Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, California 94720 (H.V.S.);National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China (M.J.); andJiangsu Polytechnic College of Agriculture and Forestry, Engineering and Technology Center for Modern Horticulture, Zhenjiang, Jiangsu, 212400 China (X.H.)
| |
Collapse
|
18
|
Geng H, Sui Z, Zhang S, Du Q, Ren Y, Liu Y, Kong F, Zhong J, Ma Q. Identification of microRNAs in the Toxigenic Dinoflagellate Alexandrium catenella by High-Throughput Illumina Sequencing and Bioinformatic Analysis. PLoS One 2015; 10:e0138709. [PMID: 26398216 PMCID: PMC4580472 DOI: 10.1371/journal.pone.0138709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/02/2015] [Indexed: 12/19/2022] Open
Abstract
Micro-ribonucleic acids (miRNAs) are a large group of endogenous, tiny, non-coding RNAs consisting of 19–25 nucleotides that regulate gene expression at either the transcriptional or post-transcriptional level by mediating gene silencing in eukaryotes. They are considered to be important regulators that affect growth, development, and response to various stresses in plants. Alexandrium catenella is an important marine toxic phytoplankton species that can cause harmful algal blooms (HABs). To date, identification and function analysis of miRNAs in A. catenella remain largely unexamined. In this study, high-throughput sequencing was performed on A. catenella to identify and quantitatively profile the repertoire of small RNAs from two different growth phases. A total of 38,092,056 and 32,969,156 raw reads were obtained from the two small RNA libraries, respectively. In total, 88 mature miRNAs belonging to 32 miRNA families were identified. Significant differences were found in the member number, expression level of various families, and expression abundance of each member within a family. A total of 15 potentially novel miRNAs were identified. Comparative profiling showed that 12 known miRNAs exhibited differential expression between the lag phase and the logarithmic phase. Real-time quantitative RT-PCR (qPCR) was performed to confirm the expression of two differentially expressed miRNAs that were one up-regulated novel miRNA (aca-miR-3p-456915), and one down-regulated conserved miRNA (tae-miR159a). The expression trend of the qPCR assay was generally consistent with the deep sequencing result. Target predictions of the 12 differentially expressed miRNAs resulted in 1813target genes. Gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG) annotations revealed that some miRNAs were associated with growth and developmental processes of the alga. These results provide insights into the roles that miRNAs play in the growth of A. catenella, and they provide the basis for further studies of the molecular mechanisms that underlie bloom growth in red tides species.
Collapse
Affiliation(s)
- Huili Geng
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
- * E-mail:
| | - Shu Zhang
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qingwei Du
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuanyuan Ren
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Fanna Kong
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jie Zhong
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qingxia Ma
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
19
|
Nouri E, Reinhardt D. Flowers and mycorrhizal roots--closer than we think? TRENDS IN PLANT SCIENCE 2015; 20:344-50. [PMID: 25868653 DOI: 10.1016/j.tplants.2015.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 05/24/2023]
Abstract
Roots and flowers are formed at the extreme ends of plants and they differ in almost every aspect of their development and function; even so, they exhibit surprising molecular commonalities. For example, the calcium and calmodulin-dependent protein kinase (CCaMK) plays a central role in root symbioses with fungi and bacteria, but is also highly expressed in developing anthers. Moreover, independent evidence from transcriptomics, phylogenomics, and genetics reveals common developmental elements in root symbioses and reproductive development. We discuss the significance of these overlaps, and we argue that an integrated comparative view of the two phenomena will stimulate research and provide new insight, not only into shared components, but also into the specific aspects of anther development and root symbioses.
Collapse
Affiliation(s)
- Eva Nouri
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
20
|
Chen J, Gutjahr C, Bleckmann A, Dresselhaus T. Calcium signaling during reproduction and biotrophic fungal interactions in plants. MOLECULAR PLANT 2015; 8:595-611. [PMID: 25660409 DOI: 10.1016/j.molp.2015.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/18/2015] [Accepted: 01/20/2015] [Indexed: 05/25/2023]
Abstract
Many recent studies have indicated that cellular communications during plant reproduction, fungal invasion, and defense involve identical or similar molecular players and mechanisms. Indeed, pollen tube invasion and sperm release shares many common features with infection of plant tissue by fungi and oomycetes, as a tip-growing intruder needs to communicate with the receptive cells to gain access into a cell and tissue. Depending on the compatibility between cells, interactions may result in defense, invasion, growth support, or cell death. Plant cells stimulated by both pollen tubes and fungal hyphae secrete, for example, small cysteine-rich proteins and receptor-like kinases are activated leading to intracellular signaling events such as the production of reactive oxygen species (ROS) and the generation of calcium (Ca(2+)) transients. The ubiquitous and versatile second messenger Ca(2+) thereafter plays a central and crucial role in modulating numerous downstream signaling processes. In stimulated cells, it elicits both fast and slow cellular responses depending on the shape, frequency, amplitude, and duration of the Ca(2+) transients. The various Ca(2+) signatures are transduced into cellular information via a battery of Ca(2+)-binding proteins. In this review, we focus on Ca(2+) signaling and discuss its occurrence during plant reproduction and interactions of plant cells with biotrophic filamentous microbes. The participation of Ca(2+) in ROS signaling pathways is also discussed.
Collapse
Affiliation(s)
- Junyi Chen
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Caroline Gutjahr
- Faculty of Biology Genetics, Biocenter Martinsried, University of Munich (LMU), Grosshaderner Strasse 2-4, D-82152 Martinsried, Germany
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
21
|
Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus. PLANT PHYSIOLOGY 2015; 167:545-57. [PMID: 25527715 PMCID: PMC4326748 DOI: 10.1104/pp.114.247700] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/17/2014] [Indexed: 05/06/2023]
Abstract
Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root.
Collapse
Affiliation(s)
- Naoya Takeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| | - Yoshihiro Handa
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| | - Syusaku Tsuzuki
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| | - Mikiko Kojima
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| | - Hitoshi Sakakibara
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., Y.H., M.Ka.);Department of Basic Biology, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan (N.T., S.T., M.Ka.); andPlant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan (M.Ko., H.S.)
| |
Collapse
|
22
|
Wang JP, Munyampundu JP, Xu YP, Cai XZ. Phylogeny of Plant Calcium and Calmodulin-Dependent Protein Kinases (CCaMKs) and Functional Analyses of Tomato CCaMK in Disease Resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:1075. [PMID: 26697034 PMCID: PMC4672059 DOI: 10.3389/fpls.2015.01075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/17/2015] [Indexed: 05/14/2023]
Abstract
Calcium and calmodulin-dependent protein kinase (CCaMK) is a member of calcium/calmodulin-dependent protein kinase superfamily and is essential to microbe- plant symbiosis. To date, the distribution of CCaMK gene in plants has not yet been completely understood, and its function in plant disease resistance remains unclear. In this study, we systemically identified the CCaMK genes in genomes of 44 plant species in Phytozome and analyzed the function of tomato CCaMK (SlCCaMK) in resistance to various pathogens. CCaMKs in 18 additional plant species were identified, yet the absence of CCaMK gene in green algae and cruciferous species was confirmed. Sequence analysis of full-length CCaMK proteins from 44 plant species demonstrated that plant CCaMKs are highly conserved across all domains. Most of the important regulatory amino acids are conserved throughout all sequences, with the only notable exception being observed in N-terminal autophosphorylation site corresponding to Ser 9 in the Medicago truncatula CCaMK. CCaMK gene structures are similar, mostly containing six introns with a phase profile of 200200 and the exception was only noticed at the first exons. Phylogenetic analysis demonstrated that CCaMK lineage is likely to have diverged early from a calcium-dependent protein kinase (CDPK) gene in the ancestor of all nonvascular plant species. The SlCCaMK gene was widely and differently responsive to diverse pathogenic stimuli. Furthermore, knock-down of SlCCaMK reduced tomato resistance to Sclerotinia sclerotiorum and Pseudomonas syringae pv. tomato (Pst) DC3000 and decreased H2O2 accumulation in response to Pst DC3000 inoculation. Our results reveal that SlCCaMK positively regulates disease resistance in tomato via promoting H2O2 accumulation. SlCCaMK is the first CCaMK gene proved to function in plant disease resistance.
Collapse
Affiliation(s)
- Ji-Peng Wang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Jean-Pierre Munyampundu
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang UniversityHangzhou, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- State Key Laboratory of Rice Biology, Zhejiang UniversityHangzhou, China
- *Correspondence: Xin-Zhong Cai
| |
Collapse
|
23
|
Miller JB, Pratap A, Miyahara A, Zhou L, Bornemann S, Morris RJ, Oldroyd GE. Calcium/Calmodulin-dependent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling. THE PLANT CELL 2013; 25:5053-66. [PMID: 24368786 PMCID: PMC3904005 DOI: 10.1105/tpc.113.116921] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The establishment of symbiotic associations in plants requires calcium oscillations that must be decoded to invoke downstream developmental programs. In animal systems, comparable calcium oscillations are decoded by calmodulin (CaM)-dependent protein kinases, but symbiotic signaling involves a calcium/CaM-dependent protein kinase (CCaMK) that is unique to plants. CCaMK differs from the animal CaM kinases by its dual ability to bind free calcium, via calcium binding EF-hand domains on the protein, or to bind calcium complexed with CaM, via a CaM binding domain. In this study, we dissect this dual regulation of CCaMK by calcium. We find that calcium binding to the EF-hand domains promotes autophosphorylation, which negatively regulates CCaMK by stabilizing the inactive state of the protein. By contrast, calcium-dependent CaM binding overrides the effects of autophosphorylation and activates the protein. The differential calcium binding affinities of the EF-hand domains compared with those of CaM suggest that CCaMK is maintained in the inactive state at basal calcium concentrations and is activated via CaM binding during calcium oscillations. This work provides a model for decoding calcium oscillations that uses differential calcium binding affinities to create a robust molecular switch that is responsive to calcium concentrations associated with both the basal state and with oscillations.
Collapse
|
24
|
Poovaiah B, Du L, Wang H, Yang T. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. PLANT PHYSIOLOGY 2013; 163:531-42. [PMID: 24014576 PMCID: PMC3793035 DOI: 10.1104/pp.113.220780] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/28/2013] [Indexed: 05/18/2023]
Abstract
Calcium/calmodulin-mediated signaling contributes in diverse roles in plant growth, development, and response to environmental stimuli .
Collapse
Affiliation(s)
| | | | - Huizhong Wang
- Department of Horticulture, Washington State University, Pullman, Washington 99164–6414 (B.W.P., L.D.)
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, People’s Republic of China (L.D., H.W.); and
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705 (T.Y.)
| | - Tianbao Yang
- Department of Horticulture, Washington State University, Pullman, Washington 99164–6414 (B.W.P., L.D.)
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, People’s Republic of China (L.D., H.W.); and
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705 (T.Y.)
| |
Collapse
|
25
|
Routray P, Miller JB, Du L, Oldroyd G, Poovaiah BW. Phosphorylation of S344 in the calmodulin-binding domain negatively affects CCaMK function during bacterial and fungal symbioses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:287-296. [PMID: 23869591 DOI: 10.1111/tpj.12288] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 05/27/2023]
Abstract
Calcium and Ca(2+)/calmodulin-dependent protein kinase (CCaMK) plays a critical role in the signaling pathway that establishes root nodule symbiosis and arbuscular mycorrhizal symbiosis. Calcium-dependent autophosphorylation is central to the regulation of CCaMK, and this has been shown to promote calmodulin binding. Here, we report a regulatory mechanism of Medicago truncatula CCaMK (MtCCaMK) through autophosphorylation of S344 in the calmodulin-binding/autoinhibitory domain. The phospho-ablative mutation S344A did not have significant effect on its kinase activities, and supports root nodule symbiosis and arbuscular mycorrhizal symbiosis, indicating that phosphorylation at this position is not required for establishment of symbioses. The phospho-mimic mutation S344D show drastically reduced calmodulin-stimulated substrate phosphorylation, and this coincides with a compromised interaction with calmodulin and its interacting partner, IPD3. Functional complementation tests revealed that the S344D mutation blocked root nodule symbiosis and reduced the mycorrhizal association. Furthermore, S344D was shown to suppress the spontaneous nodulation associated with a gain-of-function mutant of MtCCaMK (T271A), revealing that phosphorylation at S344 of MtCCaMK is adequate for shutting down its activity, and is epistatic over previously identified T271 autophosphorylation. These results reveal a mechanism that enables CCaMK to 'turn off' its function through autophosphorylation.
Collapse
Affiliation(s)
- Pratyush Routray
- Graduate Program in Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-6414, USA; Department of Horticulture, Washington State University, Pullman, WA, 99164-6414, USA
| | | | | | | | | |
Collapse
|
26
|
Zuo R, Hu R, Chai G, Xu M, Qi G, Kong Y, Zhou G. Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa). Mol Biol Rep 2012; 40:2645-62. [PMID: 23242656 DOI: 10.1007/s11033-012-2351-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/09/2012] [Indexed: 11/26/2022]
Abstract
Calcium-dependent protein kinases (CDPKs) are Ca(2+)-binding proteins known to play crucial roles in Ca(2+) signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.
Collapse
Affiliation(s)
- Ran Zuo
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Liao J, Singh S, Hossain MS, Andersen SU, Ross L, Bonetta D, Zhou Y, Sato S, Tabata S, Stougaard J, Szczyglowski K, Parniske M. Negative regulation of CCaMK is essential for symbiotic infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:572-84. [PMID: 22775286 DOI: 10.1111/j.1365-313x.2012.05098.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
One of the earliest responses of legumes to symbiotic signalling is oscillation of the calcium concentration in the nucleoplasm of root epidermal cells. Integration and decoding of the calcium-spiking signal involve a calcium- and calmodulin-dependent protein kinase (CCaMK) and its phosphorylation substrates, such as CYCLOPS. Here we describe the Lotus japonicus ccamk-14 mutant that originated from a har1-1 suppressor screen. The ccamk-14 mutation causes a serine to asparagine substitution at position 337 located within the calmodulin binding site, which we determined to be an in vitro phosphorylation site in CCaMK. We show that ccamk-14 exerts cell-specific effects on symbiosis. The mutant is characterized by an increased frequency of epidermal infections and significantly compromised cortical infections by Mesorhizobium loti and also the arbuscular mycorrhiza fungus Rhizophagus irregularis. The S337 residue is conserved across angiosperm CCaMKs, and testing discrete substitutions at this site showed that it participates in a negative regulation of CCaMK activity, which is required for the cell-type-specific integration of symbiotic signalling.
Collapse
Affiliation(s)
- Jinqiu Liao
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shi B, Ni L, Zhang A, Cao J, Zhang H, Qin T, Tan M, Zhang J, Jiang M. OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice. MOLECULAR PLANT 2012; 5:1359-74. [PMID: 22869603 DOI: 10.1093/mp/sss068] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ca(2+) and calmodulin (CaM) have been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense. However, it is unknown whether Ca(2+)/CaM-dependent protein kinase (CCaMK) is involved in the process. In the present study, the role of rice CCaMK, OsDMI3, in ABA-induced antioxidant defense was investigated in leaves of rice (Oryza sativa) plants. Treatments with ABA, H(2)O(2), and polyethylene glycol (PEG) induced the expression of OsDMI3 and the activity of OsDMI3, and H(2)O(2) is required for the ABA-induced increases in the expression and the activity of OsDMI3 under water stress. Subcellular localization analysis showed that OsDMI3 is located in the nucleus, the cytoplasm, and the plasma membrane. The analysis of the transient expression of OsDMI3 in rice protoplasts and the RNA interference (RNAi) silencing of OsDMI3 in rice protoplasts showed that OsDMI3 is required for ABA-induced increases in the expression and the activities of superoxide dismutase (SOD) and catalase (CAT). Further, the oxidative damage induced by higher concentrations of PEG and H(2)O(2) was aggravated in the mutant of OsDMI3. Moreover, the analysis of the RNAi silencing of OsDMI3 in protoplasts and the mutant of OsDMI3 showed that higher levels of H(2)O(2) accumulation require OsDMI3 activation in ABA signaling, but the initial H(2)O(2) production induced by ABA is not dependent on the activation of OsDMI3 in leaves of rice plants. Our data reveal that OsDMI3 is an important component in ABA-induced antioxidant defense in rice.
Collapse
Affiliation(s)
- Ben Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Swainsbury DJK, Zhou L, Oldroyd GED, Bornemann S. Calcium ion binding properties of Medicago truncatula calcium/calmodulin-dependent protein kinase. Biochemistry 2012; 51:6895-907. [PMID: 22889004 DOI: 10.1021/bi300826m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A calcium/calmodulin-dependent protein kinase (CCaMK) is essential in the interpretation of calcium oscillations in plant root cells for the establishment of symbiotic relationships with rhizobia and mycorrhizal fungi. Some of its properties have been studied in detail, but its calcium ion binding properties and subsequent conformational change have not. A biophysical approach was taken with constructs comprising either the visinin-like domain of Medicago truncatula CCaMK, which contains EF-hand motifs, or this domain together with the autoinhibitory domain. The visinin-like domain binds three calcium ions, leading to a conformational change involving the exposure of hydrophobic surfaces and a change in tertiary but not net secondary or quaternary structure. The affinity for calcium ions of visinin-like domain EF-hands 1 and 2 (K(d) = 200 ± 50 nM) was appropriate for the interpretation of calcium oscillations (~125-850 nM), while that of EF-hand 3 (K(d) ≤ 20 nM) implied occupancy at basal calcium ion levels. Calcium dissociation rate constants were determined for the visinin-like domain of CCaMK, M. truncatula calmodulin 1, and the complex between these two proteins (the slowest of which was 0.123 ± 0.002 s(-1)), suggesting the corresponding calcium association rate constants were at or near the diffusion-limited rate. In addition, the dissociation of calmodulin from the protein complex was shown to be on the same time scale as the dissociation of calcium ions. These observations suggest that the formation and dissociation of the complex between calmodulin and CCaMK would substantially mirror calcium oscillations, which typically have a 90 s periodicity.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
30
|
Singh S, Parniske M. Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:444-53. [PMID: 22727503 DOI: 10.1016/j.pbi.2012.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 04/26/2012] [Indexed: 05/19/2023]
Abstract
The key molecular event during the development of arbuscular mycorrhiza and the root nodule symbiosis is the activation of calcium- and calmodulin-dependent protein kinase (CCaMK). Its regulation is complex and involves positive as well as negative regulation facilitated by autophosphorylation of two conserved sites. Deregulated versions of CCaMK are sufficient for mediating both organogenesis and infection processes. Epistasis tests demonstrated that a main function of signaling components upstream of calcium spiking is the activation of CCaMK. Despite CCaMK being a central signaling hub, specificity for both symbioses exists, resulting in differential transcriptional gene expression patterns. While the specificity upstream of CCaMK can be conceptualized by the specific perception of rhizobial and fungal lipo-chitooligosaccharides via cognate LysM receptors, the mechanisms conferring transcriptional specificity downstream of CCaMK are likely conferred by a variety of transcriptional regulators, mediating symbiosis appropriate gene regulation.
Collapse
Affiliation(s)
- Sylvia Singh
- Genetics, University of Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
31
|
Ma F, Lu R, Liu H, Shi B, Zhang J, Tan M, Zhang A, Jiang M. Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4835-47. [PMID: 22865912 PMCID: PMC3427994 DOI: 10.1093/jxb/ers161] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nitric oxide (NO), hydrogen peroxide (H2O2), and calcium (Ca2+)/calmodulin (CaM) are all required for abscisic acid (ABA)-induced antioxidant defence. Ca2+/CaM-dependent protein kinase (CCaMK) is a strong candidate for the decoder of Ca2+ signals. However, whether CCaMK is involved in ABA-induced antioxidant defence is unknown. The results of the present study show that exogenous and endogenous ABA induced increases in the activity of ZmCCaMK and the expression of ZmCCaMK in leaves of maize. Subcellular localization analysis showed that ZmCCaMK is located in the nucleus, the cytoplasm, and the plasma membrane. The transient expression of ZmCCaMK and the RNA interference (RNAi) silencing of ZmCCaMK analysis in maize protoplasts revealed that ZmCCaMK is required for ABA-induced antioxidant defence. Moreover, treatment with the NO donor sodium nitroprusside (SNP) induced the activation of ZmCCaMK and the expression of ZmCCaMK. Pre-treatments with an NO scavenger and inhibitor blocked the ABA-induced increases in the activity and the transcript level of ZmCCaMK. Conversely, RNAi silencing of ZmCCaMK in maize protoplasts did not affect the ABA-induced NO production, which was further confirmed using a mutant of OsCCaMK, the homologous gene of ZmCCaMK in rice. Moreover, H2O2 was also required for the ABA activation of ZmCCaMK, and pre-treatments with an NO scavenger and inhibitor inhibited the H2O2-induced increase in the activity of ZmCCaMK. Taken together, the data clearly suggest that ZmCCaMK is required for ABA-induced antioxidant defence, and H2O2-dependent NO production plays an important role in the ABA-induced activation of ZmCCaMK.
Collapse
Affiliation(s)
- Fangfang Ma
- These authors contributed equally to this work
- College of Life Sciences, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
| | - Rui Lu
- These authors contributed equally to this work
- College of Life Sciences, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
| | - Huiying Liu
- These authors contributed equally to this work
- College of Life Sciences, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
| | - Ben Shi
- College of Life Sciences, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist UniversityHong Kong, People’s Republic of China
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing 210095, People’s Republic of China
| |
Collapse
|
32
|
Takeda N, Maekawa T, Hayashi M. Nuclear-localized and deregulated calcium- and calmodulin-dependent protein kinase activates rhizobial and mycorrhizal responses in Lotus japonicus. THE PLANT CELL 2012; 24:810-22. [PMID: 22337918 PMCID: PMC3315248 DOI: 10.1105/tpc.111.091827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/11/2011] [Accepted: 01/31/2012] [Indexed: 05/02/2023]
Abstract
The common symbiosis pathway is at the core of symbiosis signaling between plants and soil microbes. In this pathway, calcium- and calmodulin-dependent protein kinase (CCaMK) plays a crucial role in integrating the signals both in arbuscular mycorrhizal symbiosis (AMS) and in root nodule symbiosis (RNS). However, the molecular mechanism by which CCaMK coordinates AMS and RNS is largely unknown. Here, we report that the gain-of-function (GOF) variants of CCaMK without the regulatory domains activate both AMS and RNS signaling pathways in the absence of symbiotic partners. This activation requires nuclear localization of CCaMK. Enforced nuclear localization of the GOF-CCaMK variants by fusion with a canonical nuclear localization signal enhances signaling activity of AMS and RNS. The GOF-CCaMK variant triggers formation of a structure similar to the prepenetration apparatus, which guides infection of arbuscular mycorrhizal fungi to host root cells. In addition, the GOF-CCaMK variants without the regulatory domains partly restore AMS but fail to support rhizobial infection in ccamk mutants. These data indicate that AMS, the more ancient type of symbiosis, can be mainly regulated by the kinase activity of CCaMK, whereas RNS, which evolved more recently, requires complex regulation performed by the regulatory domains of CCaMK.
Collapse
Affiliation(s)
- Naoya Takeda
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Division of Symbiotic Systems, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takaki Maekawa
- Institut für Genetik, Ludwig-Maximilians-Universität München, 80638 Munich, Germany
| | - Makoto Hayashi
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Institut für Genetik, Ludwig-Maximilians-Universität München, 80638 Munich, Germany
| |
Collapse
|
33
|
Shimoda Y, Han L, Yamazaki T, Suzuki R, Hayashi M, Imaizumi-Anraku H. Rhizobial and fungal symbioses show different requirements for calmodulin binding to calcium calmodulin-dependent protein kinase in Lotus japonicus. THE PLANT CELL 2012; 24:304-21. [PMID: 22253228 PMCID: PMC3289572 DOI: 10.1105/tpc.111.092197] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/05/2011] [Accepted: 12/15/2011] [Indexed: 05/18/2023]
Abstract
Ca(2+)/calmodulin (CaM)-dependent protein kinase (CCaMK) is a key regulator of root nodule and arbuscular mycorrhizal symbioses and is believed to be a decoder for Ca(2+) signals induced by microbial symbionts. However, it is unclear how CCaMK is activated by these microbes. Here, we investigated in vivo activation of CCaMK in symbiotic signaling, focusing mainly on the significance of and epistatic relationships among functional domains of CCaMK. Loss-of-function mutations in EF-hand motifs revealed the critical importance of the third EF hand for CCaMK activation to promote infection of endosymbionts. However, a gain-of-function mutation (T265D) in the kinase domain compensated for these loss-of-function mutations in the EF hands. Mutation of the CaM binding domain abolished CaM binding and suppressed CCaMK(T265D) activity in rhizobial infection, but not in mycorrhization, indicating that the requirement for CaM binding to CCaMK differs between root nodule and arbuscular mycorrhizal symbioses. Homology modeling and mutagenesis studies showed that the hydrogen bond network including Thr265 has an important role in the regulation of CCaMK. Based on these genetic, biochemical, and structural studies, we propose an activation mechanism of CCaMK in which root nodule and arbuscular mycorrhizal symbioses are distinguished by differential regulation of CCaMK by CaM binding.
Collapse
Affiliation(s)
- Yoshikazu Shimoda
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Lu Han
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Toshimasa Yamazaki
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Rintaro Suzuki
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Makoto Hayashi
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Haruko Imaizumi-Anraku
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Address correspondence to
| |
Collapse
|
34
|
Analysis of calcium signaling pathways in plants. Biochim Biophys Acta Gen Subj 2011; 1820:1283-93. [PMID: 22061997 DOI: 10.1016/j.bbagen.2011.10.012] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Calcium serves as a versatile messenger in many adaptation and developmental processes in plants. Ca2+ signals are represented by stimulus-specific spatially and temporally defined Ca2+ signatures. These Ca2+ signatures are detected, decoded and transmitted to downstream responses by a complex toolkit of Ca2+ binding proteins that function as Ca2+ sensors. SCOPE OF REVIEW This review will reflect on advancements in monitoring Ca2+ dynamics in plants. Moreover, it will provide insights in the extensive and complex toolkit of plant Ca2+ sensor proteins that relay the information presented in the Ca2+ signatures into phosphorylation events, changes in protein-protein interaction or regulation of gene expression. MAJOR CONCLUSIONS Plants' response to signals is encoded by different Ca2+ signatures. The plant decoding Ca2+ toolkit encompasses different families of Ca2+ sensors like Calmodulins (CaM), Calmodulin-like proteins (CMLs), Ca2+-dependent protein kinases (CDPKs), Calcineurin B-like proteins (CBLs) and their interacting kinases (CIPKs). These Ca2+ sensors are encoded by complex gene families and form intricate signaling networks in plants that enable specific, robust and flexible information processing. GENERAL SIGNIFICANCE This review provides new insights about the biochemical regulation, physiological functions and of newly identified target proteins of the major plant Ca2+ sensor families. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
|
35
|
Kang H, Zhu H, Chu X, Yang Z, Yuan S, Yu D, Wang C, Hong Z, Zhang Z. A novel interaction between CCaMK and a protein containing the Scythe_N ubiquitin-like domain in Lotus japonicus. PLANT PHYSIOLOGY 2011; 155:1312-24. [PMID: 21209278 PMCID: PMC3046588 DOI: 10.1104/pp.110.167965] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/02/2011] [Indexed: 05/18/2023]
Abstract
In the Rhizobium-legume symbiosis, calcium/calmodulin-dependent protein kinase (CCaMK) is a key regulator for both rhizobial infection and nodule organogenesis. Deregulation of CCaMK by either a point mutation in the autophosphorylation site or the deletion of the carboxyl-terminal regulatory domain results in spontaneous nodule formation without rhizobia. However, the underlying biochemical mechanisms are poorly understood. Here, using the kinase domain of CCaMK as a bait in yeast two-hybrid screening, we identify a novel protein, CIP73 (for CCaMK-interacting protein of approximately 73 kD), that interacts with CCaMK. CIP73 contains a Scythe_N ubiquitin-like domain and belongs to the large ubiquitin superfamily. Deletion and mutagenesis analysis demonstrate that CIP73 could only interact with CCaMK when the calmodulin-binding domain and three EF-hand motifs are removed from the kinase domain. The amino-terminal 80 amino acid residues (80-160) of CCaMK are required for interacting with CIP73 in yeast cells. On the other hand, protein pull-down assay and bimolecular fluorescence complementation assay in Nicotiana benthamiana show that the full-length CCaMK could interact with CIP73 in vitro and in planta. Importantly, CCaMK phosphorylates the amino terminus of CIP73 in a Ca2+/calmodulin-dependent manner in vitro. CIP73 transcripts are preferentially expressed in roots, and very low expression is detected in leaves, stems, and nodules. The expression in roots is significantly decreased after inoculation of Mesorhizobium loti. RNA interference knockdown of CIP73 expression by hairy root transformation in Lotus japonicus led to decreased nodule formation, suggesting that CIP73 performed an essential role in nodulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China (H.K., H.Z., X.C., Z.Y., S.Y., D.Y., C.W., Z.Z.); Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844–3052 (Z.H.)
| |
Collapse
|
36
|
Choi WG, Swanson SJ, Gilroy S. Calcium, Mechanical Signaling, and Tip Growth. CODING AND DECODING OF CALCIUM SIGNALS IN PLANTS 2011. [DOI: 10.1007/978-3-642-20829-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. PLANT & CELL PHYSIOLOGY 2010; 51:1381-97. [PMID: 20660226 PMCID: PMC2938637 DOI: 10.1093/pcp/pcq107] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria is the most prominent plant-microbe endosymbiotic system and, together with mycorrhizal fungi, has critical importance in agriculture. The introduction of two model legume species, Lotus japonicus and Medicago truncatula, has enabled us to identify a number of host legume genes required for symbiosis. A total of 26 genes have so far been cloned from various symbiotic mutants of these model legumes, which are involved in recognition of rhizobial nodulation signals, early symbiotic signaling cascades, infection and nodulation processes, and regulation of nitrogen fixation. These accomplishments during the past decade provide important clues to understanding not only the molecular mechanisms underlying plant-microbe endosymbiotic associations but also the evolutionary aspects of nitrogen-fixing symbiosis between legume plants and Rhizobium bacteria. In this review we survey recent progress in molecular genetic studies using these model legumes.
Collapse
Affiliation(s)
- Hiroshi Kouchi
- Department of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yang T, Shad Ali G, Yang L, Du L, Reddy ASN, Poovaiah BW. Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants. PLANT SIGNALING & BEHAVIOR 2010; 5:991-4. [PMID: 20724845 PMCID: PMC3115177 DOI: 10.4161/psb.5.8.12225] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 05/20/2023]
Abstract
Recently we reported that CRLK1, a novel calcium/calmodulin-regulated receptor-like kinase plays an important role in regulating plant cold tolerance. Calcium/calmodulin binds to CRLK1 and upregulates its activity. Gene knockout and complementation studies revealed that CRLK1 is a positive regulator of plant response to chilling and freezing temperatures. Here we show that MEKK1, a member of MAP kinase kinase kinase family, interacts with CRLK1 both in vitro and in planta. The cold triggered MAP kinase activation in wild-type plants was abolished in crlk1 knockout mutants. Similarly, the cold induced expression levels of genes involved in MAP kinase signaling are also altered in crlk1 mutants. These results suggest that calcium/calmodulin-regulated CRLK1 modulates cold acclimation through MAP kinase cascade in plants.
Collapse
Affiliation(s)
- Tianbao Yang
- Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, WA, USA
| | | | | | | | | | | |
Collapse
|
39
|
Capoen W, Den Herder J, Sun J, Verplancke C, De Keyser A, De Rycke R, Goormachtig S, Oldroyd G, Holsters M. Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata. THE PLANT CELL 2009; 21:1526-40. [PMID: 19470588 PMCID: PMC2700542 DOI: 10.1105/tpc.109.066233] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nodulation factor (NF) signal transduction in the legume-rhizobium symbiosis involves calcium oscillations that are instrumental in eliciting nodulation. To date, Ca2+ spiking has been studied exclusively in the intracellular bacterial invasion of growing root hairs in zone I. This mechanism is not the only one by which rhizobia gain entry into their hosts; the tropical legume Sesbania rostrata can be invaded intercellularly by rhizobia at cracks caused by lateral root emergence, and this process is associated with cell death for formation of infection pockets. We show that epidermal cells at lateral root bases respond to NFs with Ca2+ oscillations that are faster and more symmetrical than those observed during root hair invasion. Enhanced jasmonic acid or reduced ethylene levels slowed down the Ca2+ spiking frequency and stimulated intracellular root hair invasion by rhizobia, but prevented nodule formation. Hence, intracellular invasion in root hairs is linked with a very specific Ca2+ signature. In parallel experiments, we found that knockdown of the calcium/calmodulin-dependent protein kinase gene of S. rostrata abolished nodule development but not the formation of infection pockets by intercellular invasion at lateral root bases, suggesting that the colonization of the outer cortex is independent of Ca2+ spiking decoding.
Collapse
Affiliation(s)
- Ward Capoen
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Ishida S, Yuasa T, Nakata M, Takahashi Y. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins. THE PLANT CELL 2008; 20:3273-88. [PMID: 19106376 PMCID: PMC2630431 DOI: 10.1105/tpc.107.057489] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 11/08/2008] [Accepted: 12/04/2008] [Indexed: 05/18/2023]
Abstract
The homeostasis of gibberellins (GAs) is maintained by negative feedback in plants. REPRESSION OF SHOOT GROWTH (RSG) is a tobacco (Nicotiana tabacum) transcriptional activator that has been suggested to play a role in GA feedback by the regulation of GA biosynthetic enzymes. The 14-3-3 signaling proteins negatively regulate RSG by sequestering it in the cytoplasm in response to GAs. The phosphorylation on Ser-114 of RSG is essential for 14-3-3 binding of RSG. Here, we identified tobacco Ca(2+)-dependent protein kinase (CDPK1) as an RSG kinase that promotes 14-3-3 binding to RSG by phosphorylation of Ser-114 of RSG. CDPK1 interacts with RSG in a Ca(2+)-dependent manner in vivo and in vitro and specifically phosphorylates Ser-114 of RSG. Inhibition of CDPK repressed the GA-induced phosphorylation of Ser-114 of RSG and the GA-induced nuclear export of RSG. Overexpression of CDPK1 inhibited the feedback regulation of a GA 20-oxidase gene and resulted in sensitization to the GA biosynthetic inhibitor. Our results suggest that CDPK1 decodes the Ca(2+) signal produced by GAs and regulates the intracellular localization of RSG.
Collapse
Affiliation(s)
- Sarahmi Ishida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
42
|
Li C, Xie W, Bai W, Li Z, Zhao Y, Liu H. Calmodulin binds to maize lipid transfer protein and modulates its lipids binding ability. FEBS J 2008; 275:5298-308. [DOI: 10.1111/j.1742-4658.2008.06660.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Markmann K, Giczey G, Parniske M. Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 2008; 6:e68. [PMID: 18318603 PMCID: PMC2270324 DOI: 10.1371/journal.pbio.0060068] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 02/06/2008] [Indexed: 11/19/2022] Open
Abstract
Nitrogen-fixing root nodule symbioses (RNS) occur in two major forms-Actinorhiza and legume-rhizobium symbiosis-which differ in bacterial partner, intracellular infection pattern, and morphogenesis. The phylogenetic restriction of nodulation to eurosid angiosperms indicates a common and recent evolutionary invention, but the molecular steps involved are still obscure. In legumes, at least seven genes-including the symbiosis receptor-kinase gene SYMRK-are essential for the interaction with rhizobia bacteria and for the Arbuscular Mycorrhiza (AM) symbiosis with phosphate-acquiring fungi, which is widespread in occurrence and believed to date back to the earliest land plants. We show that SYMRK is also required for Actinorhiza symbiosis of the cucurbit Datisca glomerata with actinobacteria of the genus Frankia, revealing a common genetic basis for both forms of RNS. We found that SYMRK exists in at least three different structural versions, of which the shorter forms from rice and tomato are sufficient for AM, but not for functional endosymbiosis with bacteria in the legume Lotus japonicus. Our data support the idea that SYMRK sequence evolution was involved in the recruitment of a pre-existing signalling network from AM, paving the way for the evolution of intracellular root symbioses with nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Katharina Markmann
- Genetics, Faculty of Biology, Ludwig Maximilians Universität, Munich, Germany
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | - Gábor Giczey
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | - Martin Parniske
- Genetics, Faculty of Biology, Ludwig Maximilians Universität, Munich, Germany
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
44
|
Oldroyd GED, Downie JA. Coordinating nodule morphogenesis with rhizobial infection in legumes. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:519-46. [PMID: 18444906 DOI: 10.1146/annurev.arplant.59.032607.092839] [Citation(s) in RCA: 611] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The formation of nitrogen-fixing nodules on legumes requires an integration of infection by rhizobia at the root epidermis and the initiation of cell division in the cortex, several cell layers away from the sites of infection. Several recent developments have added to our understanding of the signaling events in the epidermis associated with the perception of rhizobial nodulation factors and the role of plant hormones in the activation of cell division leading to nodule morphogenesis. This review focuses on the tissue-specific nature of the developmental processes associated with nodulation and the mechanisms by which these processes are coordinated during the formation of a nodule.
Collapse
Affiliation(s)
- Giles E D Oldroyd
- Department of Disease and Stress Biology, John Innes Center, Norwich NR4 7UH, UK.
| | | |
Collapse
|
45
|
Messinese E, Mun JH, Yeun LH, Jayaraman D, Rougé P, Barre A, Lougnon G, Schornack S, Bono JJ, Cook DR, Ané JM. A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:912-21. [PMID: 17722695 DOI: 10.1094/mpmi-20-8-0912] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many higher plants establish symbiotic relationships with arbuscular mycorrhizal (AM) fungi that improve their ability to acquire nutrients from the soil. In addition to establishing AM symbiosis, legumes also enter into a nitrogen-fixing symbiosis with bacteria known as rhizobia that results in the formation of root nodules. Several genes involved in the perception and transduction of bacterial symbiotic signals named "Nod factors" have been cloned recently in model legumes through forward genetic approaches. Among them, DMI3 (Doesn't Make Infections 3) is a calcium- and calmodulin-dependent kinase required for the establishment of both nodulation and AM symbiosis. We have identified, by a yeast two-hybrid system, a novel protein interacting with DMI3 named IPD3 (Interacting Protein of DMI3). IPD3 is predicted to interact with DMI3 through a C-terminal coiled-coil domain. Chimeric IPD3::GFP is localized to the nucleus of transformed Medicago truncatula root cells, in which split yellow fluorescent protein assays suggest that IPD3 and DMI3 physically interact in Nicotiana benthamiana. Like DMI3, IPD3 is extremely well conserved among the angiosperms and is absent from Arabidopsis. Despite this high level of conservation, none of the homologous proteins have a demonstrated biological or biochemical function. This work provides the first evidence of the involvement of IPD3 in a nuclear interaction with DMI3.
Collapse
Affiliation(s)
- Elsa Messinese
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang T, Du L, Poovaiah BW. Viewpoint: Concept of redesigning proteins by manipulating calcium/calmodulin-binding domains to engineer plants with altered traits. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:343-352. [PMID: 32689361 DOI: 10.1071/fp06293] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 02/05/2007] [Indexed: 06/11/2023]
Abstract
The importance of calcium and calcium-binding proteins such as calmodulin in plant growth and development as well as plant response to environmental stimuli has been recognised for some time. However, it is only recently that the underlying mechanisms have begun to be unravelled. A variety of intracellular calcium signatures have been observed in response to various stimuli. However, how these changes induce downstream actions and how one can manipulate these events to alter plant response is an area of major interest. Here we discuss the recent advances on three intriguing calcium/calmodulin-regulated proteins: a calcium/calmodulin-regulated metabolic enzyme (DWF1); a chimeric calcium/calmodulin-dependent protein kinase (CCaMK); and a family of calcium/calmodulin-regulated transcription factors (AtSRs or CAMTAs). These proteins play critical roles in plant growth, plant : microbe interactions and plant response to multiple environmental signals. The identification and manipulation of calcium-binding and calmodulin-binding sites in these proteins have provided direct evidence for the role of calcium-binding and calmodulin-binding to the proteins, as well as providing new ways to rebuild the proteins and engineer plants to obtain desired traits.
Collapse
Affiliation(s)
- Tianbao Yang
- Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Liqun Du
- Center for Integrated Biotechnology and Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | | |
Collapse
|
47
|
Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kaló P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, VandenBosch K, Long SR, Cook DR, Kiss GB, Oldroyd GED. An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. THE PLANT CELL 2007; 19:1221-34. [PMID: 17449807 PMCID: PMC1913751 DOI: 10.1105/tpc.106.048264] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/20/2007] [Accepted: 04/06/2007] [Indexed: 05/15/2023]
Abstract
Rhizobial bacteria activate the formation of nodules on the appropriate host legume plant, and this requires the bacterial signaling molecule Nod factor. Perception of Nod factor in the plant leads to the activation of a number of rhizobial-induced genes. Putative transcriptional regulators in the GRAS family are known to function in Nod factor signaling, but these proteins have not been shown to be capable of direct DNA binding. Here, we identify an ERF transcription factor, ERF Required for Nodulation (ERN), which contains a highly conserved AP2 DNA binding domain, that is necessary for nodulation. Mutations in this gene block the initiation and development of rhizobial invasion structures, termed infection threads, and thus block nodule invasion by the bacteria. We show that ERN is necessary for Nod factor-induced gene expression and for spontaneous nodulation activated by the calcium- and calmodulin-dependent protein kinase, DMI3, which is a component of the Nod factor signaling pathway. We propose that ERN is a component of the Nod factor signal transduction pathway and functions downstream of DMI3 to activate nodulation gene expression.
Collapse
Affiliation(s)
- Patrick H Middleton
- Department of Disease and Stress Biology, John Ines Centre, Norwich NR4 7UH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen AS, Kawaguchi M, Downie A, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S, Stougaard J. Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 2006; 441:1153-6. [PMID: 16810257 DOI: 10.1038/nature04862] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 05/05/2006] [Indexed: 11/08/2022]
Abstract
Induced development of a new plant organ in response to rhizobia is the most prominent manifestation of legume root-nodule symbiosis with nitrogen-fixing bacteria. Here we show that the complex root-nodule organogenic programme can be genetically deregulated to trigger de novo nodule formation in the absence of rhizobia or exogenous rhizobial signals. In an ethylmethane sulphonate-induced snf1 (spontaneous nodule formation) mutant of Lotus japonicus, a single amino-acid replacement in a Ca2+/calmodulin-dependent protein kinase (CCaMK) is sufficient to turn fully differentiated root cortical cells into meristematic founder cells of root nodule primordia. These spontaneous nodules are genuine nodules with an ontogeny similar to that of rhizobial-induced root nodules, corroborating previous physiological studies. Using two receptor-deficient genetic backgrounds we provide evidence for a developmentally integrated spontaneous nodulation process that is independent of lipochitin-oligosaccharide signal perception and oscillations in Ca2+ second messenger levels. Our results reveal a key regulatory position of CCaMK upstream of all components required for cell-cycle activation, and a phenotypically divergent series of mutant alleles demonstrates positive and negative regulation of the process.
Collapse
|
49
|
Gleason C, Chaudhuri S, Yang T, Muñoz A, Poovaiah BW, Oldroyd GED. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 2006; 441:1149-52. [PMID: 16810256 DOI: 10.1038/nature04812] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 04/11/2006] [Indexed: 11/09/2022]
Abstract
Legumes, such as Medicago truncatula, form mutualistic symbiotic relationships with nitrogen-fixing rhizobial bacteria. This occurs within specialized root organs--nodules--that provide the conditions required for nitrogen fixation. A rhizobium-derived signalling molecule, Nod factor, is required to establish the symbiosis. Perception of Nod factor in the plant leads to the induction of Ca2+ oscillations, and the transduction of this Ca2+ signal requires DMI3 (refs 2, 3), which encodes the protein kinase Ca2+/calmodulin-dependent protein kinase (CCaMK). Central to the regulation of CCaMK is an autoinhibitory domain that negatively regulates kinase activity. Here we show that the specific removal of the autoinhibition domain leads to the autoactivation of the nodulation signalling pathway in the plant, with the resultant induction of nodules and nodulation gene expression in the absence of bacterial elicitation. This autoactivation requires nodulation-specific transcriptional regulators in the GRAS family. This work demonstrates that the release of autoinhibition from CCaMK after calmodulin binding is a central switch that is sufficient to activate nodule morphogenesis. The fact that a single regulation event is sufficient to induce nodulation highlights the possibility of transferring this process to non-legumes.
Collapse
|
50
|
Li DF, Li J, Ma L, Zhang L, Lu YT. Calmodulin isoform-specific activation of a rice calmodulin-binding kinase conferred by only three amino-acids of OsCaM61. FEBS Lett 2006; 580:4325-31. [PMID: 16842786 DOI: 10.1016/j.febslet.2006.06.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 06/29/2006] [Indexed: 11/29/2022]
Abstract
The kinase activity of a Ca(2+)/calmodulin (CaM)-binding serine/threonine protein kinase from rice (Oryza sativa) (OsCBK) has been reported to be unaffected by OsCaM1 binding. In this study, we examined whether other rice CaMs can stimulate OsCBK. It was observed that OsCaM61 stimulated OsCBK in a Ca(2+)-dependent manner. In addition, Ala(111), Gly(123) and Ser(127) were identified as critical residues for OsCBK activation. Mutational study and fluorescent spectroscopy analysis indicated that CaM-binding affinity does not correlate with the kinase activity and that these key amino-acids in OsCaM61 play a vital role in suitable changes of OsCBK conformation for kinase activation.
Collapse
Affiliation(s)
- Dian-Fan Li
- Key Lab of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | |
Collapse
|