1
|
Song Q, Sui J, Yang Y, Zhang H, Ya L, Yang L. Fructose-1,6-bisphosphatase 1 in cancer: Dual roles, mechanistic insights, and therapeutic potential - A comprehensive review. Int J Biol Macromol 2025; 293:139273. [PMID: 39753180 DOI: 10.1016/j.ijbiomac.2024.139273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Fructose-1,6-bisphosphatase 1 (FBP1) is a key gluconeogenic enzyme that plays complex and context-dependent roles in cancer biology. This review comprehensively examines FBP1's dual functions as both a tumor suppressor and an oncogene across various cancer types. In many cancers, such as hepatocellular carcinoma, clear cell renal cell carcinoma, and lung cancer, downregulation of FBP1 contributes to tumor progression through metabolic reprogramming, promoting glycolysis, and altering the tumor microenvironment. Conversely, in certain contexts like breast and prostate cancers, FBP1 overexpression is associated with tumor promotion, indicating its oncogenic potential. The review explores FBP1's interactions with immune cells within the tumor microenvironment, influencing immune surveillance and tumor immune escape mechanisms. Additionally, FBP1 emerges as a promising diagnostic and prognostic biomarker, with expression levels correlating with patient outcomes in multiple cancers. Future therapeutic strategies targeting FBP1 are discussed, including inhibitors, activators, epigenetic modulation, and combination therapies, while addressing the challenges posed by its dual nature. Understanding the multifaceted roles of FBP1 offers valuable insights into cancer metabolism and opens avenues for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Qinghang Song
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jiazhen Sui
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Huhu Zhang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Li Ya
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Lina Yang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Zhu B, Yang C, Hua S, Li K, Shang P, Chen X, Hua ZC. Lithium Enhances Ferroptosis sensitivity in melanoma cells and promotes CD8 + T Cell infiltration and differentiation. Free Radic Biol Med 2025; 227:233-245. [PMID: 39645207 DOI: 10.1016/j.freeradbiomed.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Lithium exposure reduces melanoma incidence and mortality, yet its therapeutic mechanisms are unclear. This study explores the effects of lithium on ferroptosis sensitivity and anti-tumor T cell response in melanoma. We found that lithium significantly enhanced RSL3-induced ferroptosis in vitro, evidenced by increased mitochondrial peroxide, lipid peroxidation, and mitochondrial abnormalities. Lithium also inhibited B16-F10 melanoma cell proliferation and migration in a dose-dependent manner. Cell cycle analysis showed lithium and RSL3 induced distinct perturbations, including G2/M and G0/G1 phase arrests. Mechanistically, lithium influenced intracellular ferrous ion levels by downregulating ferritin heavy chain (Fth1), crucial for iron homeostasis. The combination of lithium and RSL3 significantly suppressed tumor growth in mice, correlating with reduced Fth1 expression and increased iron deposition in the spleen and liver, highlighting a novel interaction between lithium and iron metabolism. Additionally, this combination enhanced CD8+ T cell infiltration and IFN-γ expression in the tumor microenvironment, especially among cytotoxic effector CD8+ T cells. These findings reveal the pro-ferroptotic and immune regulation roles of lithium, broaden our understanding of its biological roles, and propose new strategies for ferroptosis-targeted therapies in melanoma.
Collapse
Affiliation(s)
- Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Siqi Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Changzhou High-tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Kaiqiang Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Changzhou High-tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Pengyou Shang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Changzhou High-tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zi-Chun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Changzhou High-tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210032, China; Faculty of Pharmaceutical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Jiang J, Sun Y, Sun Y, Lu F, Liu F, Zhang H. Rational Design of a Yeast-derived 3',5'-bisphosphate Nucleotidase with Improved Substrate Specificity. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38897942 DOI: 10.2323/jgam.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In recent years, a convenient phosphatase-coupled sulfotransferase assay method has been proven to be applicable to most sulfotransferases. The central principle of the method is that phosphatase specifically degrades 3'-phosphoadenosine-5'-phosphate (PAP) and leaves 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Our group previously acquired a yeast 3',5'-bisphosphate nucleotidase (YND), which showed a higher catalytic activity for PAP than PAPS and could be a potential phosphatase for the sulfotransferase assay. Here, we obtained a beneficial mutant of YND with markedly improved substrate specificity towards PAP via rational design. Of 9 chosen mutation sites in the active site pocket, the mutation G236D showed the best specificity for PAP. After optimization of the reaction conditions, the mutant YNDG236D displayed a 4.8-fold increase in the catalytic ratio PAP/PAPS compared to the wild-type. We subsequently applied YNDG236D to the assay of human SULT1A1 and SULT1A3 with their known substrate 1-naphthol, indicating that the mutant could be used to evaluate sulfotransferase activity by colorimetry. Analysis of the MD simulation results revealed that the improved substrate specificity of the mutant towards PAP may stem from a more stable protein conformation and the changed flexibility of key residues in the entrance of the substrate tunnel. This research will provide a valuable reference for the development of efficient sulfotransferase activity assays.
Collapse
Affiliation(s)
- Jipeng Jiang
- College of Biotechnology, Tianjin University of Science & Technology
| | - Yanqing Sun
- College of Biotechnology, Tianjin University of Science & Technology
| | - Yanan Sun
- College of Biotechnology, Tianjin University of Science & Technology
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology
| | - Huitu Zhang
- College of Biotechnology, Tianjin University of Science & Technology
| |
Collapse
|
4
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
5
|
Yang C, Zhu B, Zhan M, Hua ZC. Lithium in Cancer Therapy: Friend or Foe? Cancers (Basel) 2023; 15:cancers15041095. [PMID: 36831437 PMCID: PMC9954674 DOI: 10.3390/cancers15041095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Lithium, a trace element important for fetal health and development, is considered a metal drug with a well-established clinical regime, economical production process, and a mature storage system. Several studies have shown that lithium affects tumor development by regulating inositol monophosphate (IMPase) and glycogen synthase kinase-3 (GSK-3). Lithium can also promote proliferation and programmed cell death (PCD) in tumor cells through a number of new targets, such as the nuclear receptor NR4A1 and Hedgehog-Gli. Lithium may increase cancer treatment efficacy while reducing side effects, suggesting that it can be used as an adjunctive therapy. In this review, we summarize the effects of lithium on tumor progression and discuss the underlying mechanisms. Additionally, we discuss lithium's limitations in antitumor clinical applications, including its narrow therapeutic window and potential pro-cancer effects on the tumor immune system.
Collapse
Affiliation(s)
- Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (B.Z.); (Z.-C.H.)
| | - Mingjie Zhan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zi-Chun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Correspondence: (B.Z.); (Z.-C.H.)
| |
Collapse
|
6
|
Shirzadian-Khorramabad R, Moazzenzadeh T, Sajedi RH, Jing HC, Hille J, Dijkwel PP. A mutation in Arabidopsis SAL1 alters its in vitro activity against IP 3 and delays developmental leaf senescence in association with lower ROS levels. PLANT MOLECULAR BIOLOGY 2022; 108:549-563. [PMID: 35122174 DOI: 10.1007/s11103-022-01245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Our manuscript is the first to find a link between activity of SAL1/OLD101 against IP3 and plant leaf senescence regulation and ROS levels assigning a potential biological role for IP3. Leaf senescence is a genetically programmed process that limits the longevity of a leaf. We identified and analyzed the recessive Arabidopsis stay-green mutation onset of leaf death 101 (old101). Developmental leaf longevity is extended in old101 plants, which coincided with higher peroxidase activity and decreased H2O2 levels in young 10-day-old, but not 25-day-old plants. The old101 phenotype is caused by a point mutation in SAL1, which encodes a bifunctional enzyme with inositol polyphosphate-1-phosphatase and 3' (2'), 5'-bisphosphate nucleotidase activity. SAL1 activity is highly specific for its substrates 3-polyadenosine 5-phosphate (PAP) and inositol 1, 4, 5-trisphosphate (IP3), where it removes the 1-phosphate group from the IP3 second messenger. The in vitro activity of recombinant old101 protein against its substrate IP3 was 2.5-fold lower than that of wild type SAL1 protein. However, the in vitro activity of recombinant old101 mutant protein against PAP remained the same as that of the wild type SAL1 protein. The results open the possibility that the activity of SAL1 against IP3 may affect the redox balance of young seedlings and that this delays the onset of leaf senescence.
Collapse
Affiliation(s)
- Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Taghi Moazzenzadeh
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hai-Chun Jing
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jacques Hille
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | - Paul P Dijkwel
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
7
|
Eisele BS, Luka Z, Wu AJ, Yang F, Hale AT, York JD. Sulfation of glycosaminoglycans depends on the catalytic activity of lithium-inhibited phosphatase BPNT2 in vitro. J Biol Chem 2021; 297:101293. [PMID: 34634304 PMCID: PMC8551643 DOI: 10.1016/j.jbc.2021.101293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Golgi-resident bisphosphate nucleotidase 2 (BPNT2) is a member of a family of magnesium-dependent, lithium-inhibited phosphatases that share a three-dimensional structural motif that directly coordinates metal binding to effect phosphate hydrolysis. BPNT2 catalyzes the breakdown of 3'-phosphoadenosine-5'-phosphate, a by-product of glycosaminoglycan (GAG) sulfation. KO of BPNT2 in mice leads to skeletal abnormalities because of impaired GAG sulfation, especially chondroitin-4-sulfation, which is critical for proper extracellular matrix development. Mutations in BPNT2 have also been found to underlie a chondrodysplastic disorder in humans. The precise mechanism by which the loss of BPNT2 impairs sulfation remains unclear. Here, we used mouse embryonic fibroblasts (MEFs) to test the hypothesis that the catalytic activity of BPNT2 is required for GAG sulfation in vitro. We show that a catalytic-dead Bpnt2 construct (D108A) does not rescue impairments in intracellular or secreted sulfated GAGs, including decreased chondroitin-4-sulfate, present in Bpnt2-KO MEFs. We also demonstrate that missense mutations in Bpnt2 adjacent to the catalytic site, which are known to cause chondrodysplasia in humans, recapitulate defects in overall GAG sulfation and chondroitin-4-sulfation in MEF cultures. We further show that treatment of MEFs with lithium (a common psychotropic medication) inhibits GAG sulfation and that this effect depends on the presence of BPNT2. Taken together, this work demonstrates that the catalytic activity of an enzyme potently inhibited by lithium can modulate GAG sulfation and therefore extracellular matrix composition, revealing new insights into lithium pharmacology.
Collapse
Affiliation(s)
- Brynna S Eisele
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice J Wu
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Fei Yang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrew T Hale
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
8
|
Snitow ME, Bhansali RS, Klein PS. Lithium and Therapeutic Targeting of GSK-3. Cells 2021; 10:255. [PMID: 33525562 PMCID: PMC7910927 DOI: 10.3390/cells10020255] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lithium salts have been in the therapeutic toolbox for better or worse since the 19th century, with purported benefit in gout, hangover, insomnia, and early suggestions that lithium improved psychiatric disorders. However, the remarkable effects of lithium reported by John Cade and subsequently by Mogens Schou revolutionized the treatment of bipolar disorder. The known molecular targets of lithium are surprisingly few and include the signaling kinase glycogen synthase kinase-3 (GSK-3), a group of structurally related phosphomonoesterases that includes inositol monophosphatases, and phosphoglucomutase. Here we present a brief history of the therapeutic uses of lithium and then focus on GSK-3 as a therapeutic target in diverse diseases, including bipolar disorder, cancer, and coronavirus infections.
Collapse
Affiliation(s)
| | | | - Peter S. Klein
- Department of Medicine, Perelman School of Medicine,
University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (M.E.S.); (R.S.B.)
| |
Collapse
|
9
|
Dollins DE, Xiong JP, Endo-Streeter S, Anderson DE, Bansal VS, Ponder JW, Ren Y, York JD. A structural basis for lithium and substrate binding of an inositide phosphatase. J Biol Chem 2021; 296:100059. [PMID: 33172890 PMCID: PMC7948987 DOI: 10.1074/jbc.ra120.014057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 01/07/2023] Open
Abstract
Inositol polyphosphate 1-phosphatase (INPP1) is a prototype member of metal-dependent/lithium-inhibited phosphomonoesterase protein family defined by a conserved three-dimensional core structure. Enzymes within this family function in distinct pathways including inositide signaling, gluconeogenesis, and sulfur assimilation. Using structural and biochemical studies, we report the effect of substrate and lithium on a network of metal binding sites within the catalytic center of INPP1. We find that lithium preferentially occupies a key site involved in metal-activation only when substrate or product is added. Mutation of a conserved residue that selectively coordinates the putative lithium-binding site results in a dramatic 100-fold reduction in the inhibitory constant as compared with wild-type. Furthermore, we report the INPP1/inositol 1,4-bisphosphate complex which illuminates key features of the enzyme active site. Our results provide insights into a structural basis for uncompetitive lithium inhibition and substrate recognition and define a sequence motif for metal binding within this family of regulatory phosphatases.
Collapse
Affiliation(s)
- D Eric Dollins
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Jian-Ping Xiong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Stuart Endo-Streeter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - David E Anderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Vinay S Bansal
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Jay W Ponder
- Department of Chemistry, Washington University, St Louis, Missouri, USA
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - John D York
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
10
|
Lithium Preparations in Psychiatry, Addiction Medicine and Neurology. Part II. Biochemical Mechanisms of Its Action. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.2.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lithium is the first and the lightest in the series of alkali metals, to which, in addition to lithium, two very biologically important elements – sodium and potassium, as well as trace elements rubidium and cesium, belong. Despite its formal affiliation to the group of alkali metals, lithium, like many other chemical elements of the «atypical» second period of the periodic table (for example, boron), is more similar in its chemical properties not to its counterparts in the group, but to its «diagonal brother» – magnesium. As we will show in this article, the diagonal chemical similarity between lithium and magnesium is of great importance for understanding the mechanisms of its intracellular biochemical action. At the same time, the intragroup chemical similarity of lithium with sodium and potassium is more important for understanding the mechanisms of its absorption, its distribution in the body and its excretion. Despite the 70 years that have passed since John Cade’s discovery of the antimanic effect of lithium, the mechanisms of its therapeutic action are still not completely understood. In the end, it turns out that the mechanism of the therapeutic action of lithium is extremely complex, multicomponent, unique and not imitable. Certain aspects of the mechanism of its action may be compatible with the mechanisms of action of other mood stabilizers, or with the mechanisms of action of so-called «lithium-mimetics», such as ebselen. However, no other drug to date failed to fully reproduce the biochemical effect of lithium on the body.
Collapse
|
11
|
Murry R, Kniemeyer O, Krause K, Saiardi A, Kothe E. Crosstalk between Ras and inositol phosphate signaling revealed by lithium action on inositol monophosphatase in Schizophyllum commune. Adv Biol Regul 2019; 72:78-88. [PMID: 30639095 PMCID: PMC6520614 DOI: 10.1016/j.jbior.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Mushroom forming basidiomycete Schizophyllum commune has been used as a tractable model organism to study fungal sexual development. Ras signaling activation via G-protein-coupled receptors (GPCRs) has been postulated to play a significant role in the mating and development of S. commune. In this study, a crosstalk between Ras signaling and inositol phosphate signaling by inositol monophosphatase (IMPase) is revealed. Constitutively active Ras1 leads to the repression of IMPase transcription and lithium action on IMPase activity is compensated by the induction of IMPase at transcriptome level. Astonishingly, in S. commune lithium induces a considerable shift to inositol phosphate metabolism leading to a massive increase in the level of higher phosphorylated inositol species up to the inositol pyrophosphates. The lithium induced metabolic changes are not observable in a constitutively active Ras1 mutant. In addition to that, proteome profile helps us to elucidate an overview of lithium action to the broad aspect of fungal metabolism and cellular signaling. Taken together, these findings imply a crosstalk between Ras and inositol phosphate signaling.
Collapse
Affiliation(s)
- Reyna Murry
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Katrin Krause
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Adolfo Saiardi
- Medical Research Council (MRC) Laboratory for Molecular Cell Biology, Department of Biochemistry and Molecular Biology, University College London, London, UK.
| | - Erika Kothe
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany.
| |
Collapse
|
12
|
Goswami R, Bondoc JMG, Wheeler PR, Jafari A, Gonzalez T, Mehboob S, Movahedzadeh F. Inositol Monophosphatase: A Bifunctional Enzyme in Mycobacterium smegmatis. ACS OMEGA 2018; 3:13876-13881. [PMID: 30411052 PMCID: PMC6217659 DOI: 10.1021/acsomega.8b01753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Inositol monophosphatase (IMPase) is a crucial enzyme for the biosynthesis of phosphatidylinositol, an essential component in mycobacterial cell walls. IMPase A (ImpA) from Mycobacterium smegmatis is a bifunctional enzyme that also functions as a fructose-1,6-bisphosphatase (FBPase). To better understand the bifunctional nature of this enzyme, point mutagenesis was conducted on several key residues and their enzyme activity was tested. Our results along with active site models support the fact that ImpA is a bifunctional enzyme with residues Gly94, Thr95 hypothesized to be contributing to the FBPase activity and residues Trp220, Asp221 hypothesized to be contributing to the IMPase activity. Double mutants, W220A + D221A reduced both FBPase and IMPase activity drastically while the double mutant G94A + T95A surprisingly partially restored the IMPase activity compared to the single mutants. This study establishes the foundation toward obtaining a better understanding of the bifunctional nature of this enzyme.
Collapse
Affiliation(s)
- Rajendra Goswami
- Institute
for Tuberculosis Research, College of Pharmacy, and Department of
Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Jasper Marc G. Bondoc
- Institute
for Tuberculosis Research, College of Pharmacy, and Department of
Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Paul R. Wheeler
- Tuberculosis
Research, Animal and Plant Health Agency, Addlestone, Surrey KT15 3NB, U.K.
| | - Alireza Jafari
- Institute
for Tuberculosis Research, College of Pharmacy, and Department of
Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
- Inflammatory
Lung Disease Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular
and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Trinidad Gonzalez
- Institute
for Tuberculosis Research, College of Pharmacy, and Department of
Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| | - Shahila Mehboob
- Neugenica
LLC, 2242 W Harrison
Street, #201, Chicago, Illinois 60612, United States
| | - Farahnaz Movahedzadeh
- Institute
for Tuberculosis Research, College of Pharmacy, and Department of
Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
13
|
Saiardi A, Mudge AW. Lithium and fluoxetine regulate the rate of phosphoinositide synthesis in neurons: a new view of their mechanisms of action in bipolar disorder. Transl Psychiatry 2018; 8:175. [PMID: 30171184 PMCID: PMC6119186 DOI: 10.1038/s41398-018-0235-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Lithium is widely used to treat bipolar disorder, but its primary mechanism of action is uncertain. One proposal has been that lithium's ability to inhibit the enzyme inositol monophosphatase (IMPase) reduces the supply of recycled inositol used for membrane phosphoinositide (PIns) synthesis. This 28-year-old hypothesis is still widely debated, however, largely because total levels of PIns in brain or in cultured neurons do not decrease after lithium treatment. Here we use mature cultured cortical neurons to show that, although lithium has little effect on steady-state levels of either inositol or PIns, it markedly inhibits the rate of PIns synthesis. Moreover, we show that rapid synthesis of membrane PIns preferentially uses inositol newly imported from the extracellular space. Unexpectedly, we also find that the antidepressant drug fluoxetine (FLUO: Prozac) stimulates the rate of PIns synthesis. The convergence of both lithium and FLUO in regulating the rate of synthesis of PIns in opposite ways highlights PIns turnover in neurons as a potential new drug target, as well as for understanding mood control in BD. Our results also indicate new avenues for investigation of how neurons regulate their supply of inositol.
Collapse
Affiliation(s)
- Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Anne W. Mudge
- 0000000121901201grid.83440.3bMedical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
14
|
Abstract
Regulation of iron homeostasis is perturbed in numerous pathologic states. Thus, identifications of mechanisms responsible for iron metabolism have broad implications for disease modification. Here, we link the sulfur assimilation pathway to iron-deficiency anemia. Deletion of bisphosphate 3′-nucleotidase (Bpnt1), a key component of the sulfur assimilation pathway, leads to accumulation of phosphoadenosine phosphate (PAP), causing iron deficiency anemia in part due to inhibition of hypoxia-inducible factor 2-α. Reduction of PAP through introduction of a hypomorphic mutation in 3′-phosphoadenosine 5-phosphosulfate synthase 2 gene (Papss2, the enzyme responsible for PAP production) rescues the iron deficiency phenotype. Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis.
Collapse
|
15
|
Jakobsson E, Argüello-Miranda O, Chiu SW, Fazal Z, Kruczek J, Nunez-Corrales S, Pandit S, Pritchet L. Towards a Unified Understanding of Lithium Action in Basic Biology and its Significance for Applied Biology. J Membr Biol 2017; 250:587-604. [PMID: 29127487 PMCID: PMC5696506 DOI: 10.1007/s00232-017-9998-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/21/2017] [Indexed: 01/14/2023]
Abstract
Lithium has literally been everywhere forever, since it is one of the three elements created in the Big Bang. Lithium concentration in rocks, soil, and fresh water is highly variable from place to place, and has varied widely in specific regions over evolutionary and geologic time. The biological effects of lithium are many and varied. Based on experiments in which animals are deprived of lithium, lithium is an essential nutrient. At the other extreme, at lithium ingestion sufficient to raise blood concentration significantly over 1 mM/, lithium is acutely toxic. There is no consensus regarding optimum levels of lithium intake for populations or individuals-with the single exception that lithium is a generally accepted first-line therapy for bipolar disorder, and specific dosage guidelines for sufferers of that condition are generally agreed on. Epidemiological evidence correlating various markers of social dysfunction and disease vs. lithium level in drinking water suggest benefits of moderately elevated lithium compared to average levels of lithium intake. In contrast to other biologically significant ions, lithium is unusual in not having its concentration in fluids of multicellular animals closely regulated. For hydrogen ions, sodium ions, potassium ions, calcium ions, chloride ions, and magnesium ions, blood and extracellular fluid concentrations are closely and necessarily regulated by systems of highly selective channels, and primary and secondary active transporters. Lithium, while having strong biological activity, is tolerated over body fluid concentrations ranging over many orders of magnitude. The lack of biological regulation of lithium appears due to lack of lithium-specific binding sites and selectivity filters. Rather lithium exerts its myriad physiological and biochemical effects by competing for macromolecular sites that are relatively specific for other cations, most especially for sodium and magnesium. This review will consider what is known about the nature of this competition and suggest using and extending this knowledge towards the goal of a unified understanding of lithium in biology and the application of that understanding in medicine and nutrition.
Collapse
Affiliation(s)
- Eric Jakobsson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | - See-Wing Chiu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zeeshan Fazal
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James Kruczek
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Santiago Nunez-Corrales
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sagar Pandit
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Laura Pritchet
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
16
|
Morgan MB, Edge SE, Venn AA, Jones RJ. Developing transcriptional profiles in Orbicella franksi exposed to copper: Characterizing responses associated with a spectrum of laboratory-controlled environmental conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:60-76. [PMID: 28599170 DOI: 10.1016/j.aquatox.2017.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/23/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, School of Mathematics and Natural Sciences, 2277 Martha Berry Hwy, Mount Berry, GA, 30149, USA.
| | - Sara E Edge
- Hawaii Pacific University, 45-045 Kamehameha Hwy, Kaneohe, HI, 96744, USA
| | - Alexander A Venn
- Marine Biology Department et Laboratoire International Associé 647 "BIOSENSIB", Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco
| | - Ross J Jones
- Australian Institute of Marine Science (AIMS), Perth, 6009, Australia
| |
Collapse
|
17
|
Bondoc JMG, Wolf NM, Ndichuck M, Abad-Zapatero C, Movahedzadeh F. Mutagenesis of threonine to serine in the active site of Mycobacterium tuberculosis fructose-1,6-bisphosphatase (Class II) retains partial enzyme activity. ACTA ACUST UNITED AC 2017; 15:48-54. [PMID: 28702369 PMCID: PMC5485559 DOI: 10.1016/j.btre.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 01/08/2023]
Abstract
The glpX gene encodes for the Class II fructose-1,6-bisphosphatase enzyme in Mycobacterium tuberculosis (Mt), an essential enzyme for pathogenesis. We have performed site directed mutagenesis to introduce two mutations at residue Thr84, T84A and T84S, to explore the binding affinity of the substrate and the catalytic mechanism. The T84A mutant fully abolishes enzyme activity while retaining substrate binding affinity. In contrast, the T84S mutant retains some activity having a 10 times reduction in Vmax and exhibited similar sensitivity to lithium when compared to the wildtype. Homology modeling using the Escherichia coli enzyme structure suggests that the replacement of the critical nucleophile OH- in the Thr84 residue of the wildtype of MtFBPase by Ser84 results in subtle alterations of the position and orientation that reduce the catalytic efficiency. This mutant could be used to trap reaction intermediates, through crystallographic methods, facilitating the design of potent inhibitors via structure-based drug design.
Collapse
Affiliation(s)
- Jasper Marc G Bondoc
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Nina M Wolf
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael Ndichuck
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Celerino Abad-Zapatero
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Farahnaz Movahedzadeh
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.,Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Mikosha AS, State Institution V. P. Komisarenko Institute of Endocrinology and Metabolism,National Academy of Medical Sciences of Ukraine, Kyiv, Kovzun OI, Tronko MD, State Institution V. P. Komisarenko Institute of Endocrinology and Metabolism,National Academy of Medical Sciences of Ukraine, Kyiv, State Institution V. P. Komisarenko Institute of Endocrinology and Metabolism,National Academy of Medical Sciences of Ukraine, Kyiv. Biological effects of lithium – fundamental and medical aspects. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
19
|
Li W, Wang Y, Zhu J, Wang Z, Tang G, Huang B. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii. Fungal Biol 2017; 121:293-303. [DOI: 10.1016/j.funbio.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/17/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022]
|
20
|
Ghanem A, Kitanovic A, Holzwarth J, Wölfl S. Mutational analysis of fructose-1,6-bis-phosphatase FBP1 indicates partially independent functions in gluconeogenesis and sensitivity to genotoxic stress. MICROBIAL CELL 2017; 4:52-63. [PMID: 28357389 PMCID: PMC5349122 DOI: 10.15698/mic2017.02.557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fructose-1,6-bisphosphatase (FBP1) is a key enzyme in the
evolutionary conserved pathway of gluconeogenesis. We had shown in an earlier
study that FBP1 is involved in the response and sensitivity to
methyl-methanesulfonate (MMS)-induced DNA damage in yeast. In the work presented
here we performed an alanine screen mutational analysis of several evolutionary
conserved amino acid residues of FBP1, which were selected
based on conserved residues and structural studies of mammalian and yeast
homologues of FBP1. Mutants were examined for enzymatic
activity, and yeast cells expressing these mutants were tested for growth on
non-fermentable and MMS-containing media. The results obtained support predicted
vital roles of several residues for enzymatic activity and led to the
identification of residues indispensable for the MMS-sensitizing effect. Despite
an overlap between these two properties, careful analysis revealed two
mutations, Asn75 and His324, which decouple the enzymatic activity and the
MMS-sensitizing effect, indicating two distinctive biological activities linked
in this key gluconeogenesis enzyme.
Collapse
Affiliation(s)
- Ali Ghanem
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Ana Kitanovic
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Jinda Holzwarth
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
21
|
Roux M, Dosseto A. From direct to indirect lithium targets: a comprehensive review of omics data. Metallomics 2017; 9:1326-1351. [DOI: 10.1039/c7mt00203c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal ions are critical to a wide range of biological processes.
Collapse
Affiliation(s)
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory
- School of Earth & Environmental Sciences
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
22
|
van Woerkom AE. A fully integrated new paradigm for lithium's mode of action - lithium utilizes latent cellular fail-safe mechanisms. Neuropsychiatr Dis Treat 2017; 13:275-302. [PMID: 28203080 PMCID: PMC5293501 DOI: 10.2147/ndt.s123612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It is proposed that lithium's therapeutic effects occur indirectly by augmenting a cascade of protective "fail-safe" pathways pre-configured to activate in response to a dangerous low cell [Mg++] situation, eg, posttraumatic brain injury, alongside relative cell adenosine triphosphate depletion. Lithium activates cell protection, as it neatly mimics a lowered intracellular [Mg++] level.
Collapse
Affiliation(s)
- Arthur Ernst van Woerkom
- South Birmingham and Solihull Mental Health NHS Foundation Trust, Longbridge CMHT, Rubery, Birmingham, UK
| |
Collapse
|
23
|
Sade Y, Toker L, Kara NZ, Einat H, Rapoport S, Moechars D, Berry GT, Bersudsky Y, Agam G. IP3 accumulation and/or inositol depletion: two downstream lithium's effects that may mediate its behavioral and cellular changes. Transl Psychiatry 2016; 6:e968. [PMID: 27922641 PMCID: PMC5315558 DOI: 10.1038/tp.2016.217] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/17/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Lithium is the prototype mood stabilizer but its mechanism is still unresolved. Two hypotheses dominate-the consequences of lithium's inhibition of inositol monophosphatase at therapeutically relevant concentrations (the 'inositol depletion' hypothesis), and of glycogen-synthase kinase-3. To further elaborate the inositol depletion hypothesis that did not decisively determine whether inositol depletion per se, or phosphoinositols accumulation induces the beneficial effects, we utilized knockout mice of either of two inositol metabolism-related genes-IMPA1 or SMIT1, both mimic several lithium's behavioral and biochemical effects. We assessed in vivo, under non-agonist-stimulated conditions, 3H-inositol incorporation into brain phosphoinositols and phosphoinositides in wild-type, lithium-treated, IMPA1 and SMIT1 knockout mice. Lithium treatment increased frontal cortex and hippocampal phosphoinositols labeling by several fold, but decreased phosphoinositides labeling in the frontal cortex of the wild-type mice of the IMPA1 colony strain by ~50%. Inositol metabolites were differently affected by IMPA1 and SMIT1 knockout. Inositoltrisphosphate administered intracerebroventricularly affected bipolar-related behaviors and autophagy markers in a lithium-like manner. Namely, IP3 but not IP1 reduced the immobility time of wild-type mice in the forced swim test model of antidepressant action by 30%, an effect that was reversed by an antagonist of all three IP3 receptors; amphetamine-induced hyperlocomotion of wild-type mice (distance traveled) was 35% reduced by IP3 administration; IP3 administration increased hippocampal messenger RNA levels of Beclin-1 (required for autophagy execution) and hippocampal and frontal cortex protein levels ratio of Beclin-1/p62 by about threefold (p62 is degraded by autophagy). To conclude, lithium affects the phosphatidylinositol signaling system in two ways: depleting inositol, consequently decreasing phosphoinositides; elevating inositol monophosphate levels followed by phosphoinositols accumulation. Each or both may mediate lithium-induced behavior.
Collapse
Affiliation(s)
- Y Sade
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel
| | - L Toker
- Department of Psychiatry and Centre for High-Throughput Biology, University of British Columbia Vancouver, BC, Canada
| | - N Z Kara
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel Aviv, Israel
| | - H Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel Aviv, Israel
| | - S Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - D Moechars
- Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - G T Berry
- Metabolism Program Division of Genetics, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Y Bersudsky
- Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel
| | - G Agam
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel,Professor, , Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev or Psychiatry Research Unit, Ben-Gurion University of the Negev or Faculty of Health Sciences, Ben-Gurion University of the Negev or Mental Health Center, Beer-Sheva 84170, Israel. E-mail:
| |
Collapse
|
24
|
Erickson AI, Sarsam RD, Fisher AJ. Crystal Structures of Mycobacterium tuberculosis CysQ, with Substrate and Products Bound. Biochemistry 2015; 54:6830-41. [PMID: 26512869 DOI: 10.1021/acs.biochem.5b01000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In many organisms, 3'-phosphoadenosine 5'-phosphate (PAP) is a product of two reactions in the sulfur activation pathway. The sulfurylation of biomolecules, catalyzed by sulfotransferases, uses 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfate donor, producing the sulfated biomolecule and PAP product. Additionally, the first step in sulfate reduction for many bacteria and fungi reduces the sulfate moiety of PAPS, producing PAP and sulfite, which is subsequently reduced to sulfide. PAP is removed by the phosphatase activity of CysQ, a 3',5'-bisphosphate nucleotidase, yielding AMP and phosphate. Because excess PAP alters the equilibrium of the sulfur pathway and inhibits sulfotransferases, PAP concentrations can affect the levels of sulfur-containing metabolites. Therefore, CysQ, a divalent cation metal-dependent phosphatase, is a major regulator of this pathway. CysQ (Rv2131c) from Mycobacterium tuberculosis (Mtb) was successfully expressed, purified, and crystallized in a variety of ligand-bound states. Here we report six crystal structures of Mtb CysQ, including a ligand-free structure, a lithium-inhibited state with substrate PAP bound, and a product-bound complex with AMP, phosphate, and three Mg(2+) ions bound. Comparison of these structures together with homologues of the superfamily has provided insight into substrate specificity, metal coordination, and catalytic mechanism.
Collapse
Affiliation(s)
- Anna I Erickson
- Department of Chemistry, ‡Department of Molecular and Cellular Biology, and §Graduate Program in Biochemistry and Molecular, Cellular and Developmental Biology, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Reta D Sarsam
- Department of Chemistry, ‡Department of Molecular and Cellular Biology, and §Graduate Program in Biochemistry and Molecular, Cellular and Developmental Biology, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Andrew J Fisher
- Department of Chemistry, ‡Department of Molecular and Cellular Biology, and §Graduate Program in Biochemistry and Molecular, Cellular and Developmental Biology, University of California , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
25
|
Abstract
The synthesis of L-cysteine from inorganic sulfur is the predominant mechanism by which reduced sulfur is incorporated into organic compounds. L-cysteineis used for protein and glutathione synthesis and serves as the primary source of reduced sulfur in L-methionine, lipoic acid, thiamin, coenzyme A (CoA), molybdopterin, and other organic molecules. Sulfate and thiosulfate uptake in E. coli and serovar Typhimurium are achieved through a single periplasmic transport system that utilizes two different but similar periplasmic binding proteins. Kinetic studies indicate that selenate and selenite share a single transporter with sulfate, but molybdate also has a separate transport system. During aerobic growth, the reduction of sulfite to sulfide is catalyzed by NADPH-sulfite reductase (SiR), and serovar Typhimurium mutants lacking this enzyme accumulate sulfite from sulfate, implying that sulfite is a normal intermediate in assimilatory sulfate reduction. L-Cysteine biosynthesis in serovar Typhimurium and E. coli ceases almost entirely when cells are grown on L-cysteine or L-cystine, owing to a combination of end product inhibition of serine transacetylase by L-cysteine and a gene regulatory system known as the cysteine regulon, wherein genes for sulfate assimilation and alkanesulfonate utilization are expressed only when sulfur is limiting. In vitro studies with the cysJIH, cysK, and cysP promoters have confirmed that they are inefficient at forming transcription initiation complexes without CysB and N-acetyl-L-serine. Activation of the tauA and ssuE promoters requires Cbl. It has been proposed that the three serovar Typhimurium anaerobic reductases for sulfite, thiosulfate, and tetrathionate may function primarily in anaerobic respiration.
Collapse
|
26
|
Ganapathy U, Marrero J, Calhoun S, Eoh H, de Carvalho LPS, Rhee K, Ehrt S. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis. Nat Commun 2015; 6:7912. [PMID: 26258286 PMCID: PMC4535450 DOI: 10.1038/ncomms8912] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/25/2015] [Indexed: 01/23/2023] Open
Abstract
The human pathogen Mycobacterium tuberculosis (Mtb) likely utilizes host fatty acids as a carbon source during infection. Gluconeogenesis is essential for the conversion of fatty acids into biomass. A rate-limiting step in gluconeogenesis is the conversion of fructose 1,6-bisphosphate to fructose 6-phosphate by a fructose bisphosphatase (FBPase). The Mtb genome contains only one annotated FBPase gene, glpX. Here we show that, unexpectedly, an Mtb mutant lacking GLPX grows on gluconeogenic carbon sources and has detectable FBPase activity. We demonstrate that the Mtb genome encodes an alternative FBPase (GPM2, Rv3214) that can maintain gluconeogenesis in the absence of GLPX. Consequently, deletion of both GLPX and GPM2 is required for disruption of gluconeogenesis and attenuation of Mtb in a mouse model of infection. Our work affirms a role for gluconeogenesis in Mtb virulence and reveals previously unidentified metabolic redundancy at the FBPase-catalysed reaction step of the pathway. Mycobacterium tuberculosis feeds on host fatty acids during infection, a process that requires a fructose bisphosphatase (FBPase) enzyme for gluconeogenesis. Here, Ganapathy et al. show that the bacterium has two different FBPases and that this enzymatic activity is required for full virulence.
Collapse
Affiliation(s)
- Uday Ganapathy
- Department of Microbiology and Immunology, Weill Cornell Medical College, 413 East 69th Street, New York, New York 10021, USA
| | - Joeli Marrero
- Department of Microbiology and Immunology, Weill Cornell Medical College, 413 East 69th Street, New York, New York 10021, USA
| | - Susannah Calhoun
- Department of Microbiology and Immunology, Weill Cornell Medical College, 413 East 69th Street, New York, New York 10021, USA
| | - Hyungjin Eoh
- Department of Medicine, Weill Cornell Medical College, New York, New York 10021, USA
| | | | - Kyu Rhee
- Department of Medicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, 413 East 69th Street, New York, New York 10021, USA
| |
Collapse
|
27
|
Faisal Tarique K, Arif Abdul Rehman S, Betzel C, Gourinath S. Structure-based identification of inositol polyphosphate 1-phosphatase from Entamoeba histolytica. ACTA ACUST UNITED AC 2014; 70:3023-33. [PMID: 25372691 DOI: 10.1107/s1399004714021245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/24/2014] [Indexed: 12/30/2022]
Abstract
Inositol polyphosphate 1-phosphatase from Entamoeba histolytica (EhIPPase) is an Mg(2+)-dependent and Li(+)-sensitive enzyme that catalyzes the hydrolysis of inositol 1,4-bisphosphate [Ins(1,4)P2] into myo-inositol 1-monophosphate and PO4(3-). In the present work, EhIPPase has been biochemically identified and its crystal structure has been determined in the presence of Mg(2+) and PO4(3-) at 2.5 Å resolution. This enzyme was previously classified as a 3'(2'),5'-bisphosphate nucleotidase in the NCBI, but its biochemical activity and structural analysis suggest that this enzyme behaves more like an inositol polyphosphate 1-phosphatase. The ability of EhIPPase to hydrolyze the smaller Ins(1,4)P2 better than the bulkier 3'-phosphoadenosine 5'-phosphate (PAP) is explained on the basis of the orientations of amino-acid residues in the binding site. This structure is the first of its class to be determined from any protozoan parasite, and is the third to determined among all organisms, following its rat and bovine homologues. The three-dimensional fold of EhIPPase is similar to those of other members of the inositol monophosphatase superfamily, which also includes inositol monophosphatase, 3'(2'),5'-bisphosphate nucleotidase and fructose-1,6-bisphosphate 1-phosphatase. They all share conserved residues essential for metal binding and substrate hydrolysis, with the motif D-Xn-EE-Xn-DP(I/L)DG(S/T)-Xn-WD-Xn-GG. The structure is divided into two domains, namely α+β and α/β, and the substrate and metal ions bind between them. However, the ability of each enzyme class to act specifically on its cognate substrate is governed by the class-specific amino-acid residues at the active site.
Collapse
Affiliation(s)
| | | | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, c/o DESY, University of Hamburg, Notkestrasse 85, 22603 Hamburg, Germany
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
28
|
Faisal Tarique K, Arif Abdul Rehman S, Gourinath S. Structural elucidation of a dual-activity PAP phosphatase-1 from Entamoeba histolytica capable of hydrolysing both 3'-phosphoadenosine 5'-phosphate and inositol 1,4-bisphosphate. ACTA ACUST UNITED AC 2014; 70:2019-31. [PMID: 25004978 DOI: 10.1107/s1399004714010268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 12/28/2022]
Abstract
The enzyme 3'-phosphoadenosine 5'-phosphatase-1 (PAP phosphatase-1) is a member of the Li(+)-sensitive Mg(2+)-dependent phosphatase superfamily, or inositol monophosphatase (IMPase) superfamily, and is an important regulator of the sulfate-activation pathway in all living organisms. Inhibition of this enzyme leads to accumulation of the toxic byproduct 3'-phosphoadenosine 5'-phosphate (PAP), which could be lethal to the organism. Genomic analysis of Entamoeba histolytica suggests the presence of two isoforms of PAP phosphatase. The PAP phosphatase-1 isoform of this organism is shown to be active over wide ranges of pH and temperature. Interestingly, this enzyme is inhibited by submillimolar concentrations of Li(+), while being insensitive to Na(+). Interestingly, the enzyme showed activity towards both PAP and inositol 1,4-bisphosphate and behaved as an inositol polyphosphate 1-phosphatase. Crystal structures of this enzyme in its native form and in complex with adenosine 5'-monophosphate have been determined to 2.1 and 2.6 Å resolution, respectively. The PAP phosphatase-1 structure is divided into two domains, namely α+β and α/β, and the substrate and metal ions bind between them. This is a first structure of any PAP phosphatase to be determined from a human parasitic protozoan. This enzyme appears to function using a mechanism involving three-metal-ion assisted catalysis. Comparison with other structures indicates that the sensitivity to alkali-metal ions may depend on the orientation of a specific catalytic loop.
Collapse
Affiliation(s)
| | | | - S Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
29
|
Meng F, Liu X, Wang Q. Identification of Wood Decay Related Genes fromPiptoporus Betulinus(Bull. Fr.) Karsten Using Differential Display Reverse Transcription PCR (DDRT-PCR). BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Can A, Schulze TG, Gould TD. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 2014; 123:3-16. [PMID: 24534415 DOI: 10.1016/j.pbb.2014.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/21/2022]
Abstract
Mood disorders, including bipolar disorder and depression, are relatively common human diseases for which pharmacological treatment options are often not optimal. Among existing pharmacological agents and mood stabilizers used for the treatment of mood disorders, lithium has a unique clinical profile. Lithium has efficacy in the treatment of bipolar disorder generally, and in particular mania, while also being useful in the adjunct treatment of refractory depression. In addition to antimanic and adjunct antidepressant efficacy, lithium is also proven effective in the reduction of suicide and suicidal behaviors. However, only a subset of patients manifests beneficial responses to lithium therapy and the underlying genetic factors of response are not exactly known. Here we discuss preclinical research suggesting mechanisms likely to underlie lithium's therapeutic actions including direct targets inositol monophosphatase and glycogen synthase kinase-3 (GSK-3) among others, as well as indirect actions including modulation of neurotrophic and neurotransmitter systems and circadian function. We follow with a discussion of current knowledge related to the pharmacogenetic underpinnings of effective lithium therapy in patients within this context. Progress in elucidation of genetic factors that may be involved in human response to lithium pharmacology has been slow, and there is still limited conclusive evidence for the role of a particular genetic factor. However, the development of new approaches such as genome-wide association studies (GWAS), and increased use of genetic testing and improved identification of mood disorder patients sub-groups will lead to improved elucidation of relevant genetic factors in the future.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Thomas G Schulze
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
31
|
Characterization of fructose 1,6-bisphosphatase and sedoheptulose 1,7-bisphosphatase from the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. J Bacteriol 2013; 195:5112-22. [PMID: 24013630 DOI: 10.1128/jb.00672-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genome of the facultative ribulose monophosphate (RuMP) cycle methylotroph Bacillus methanolicus encodes two bisphosphatases (GlpX), one on the chromosome (GlpX(C)) and one on plasmid pBM19 (GlpX(P)), which is required for methylotrophy. Both enzymes were purified from recombinant Escherichia coli and were shown to be active as fructose 1,6-bisphosphatases (FBPases). The FBPase-negative Corynebacterium glutamicum Δfbp mutant could be phenotypically complemented with glpX(C) and glpX(P) from B. methanolicus. GlpX(P) and GlpX(C) share similar functional properties, as they were found here to be active as homotetramers in vitro, activated by Mn(2+) ions and inhibited by Li(+), but differed in terms of the kinetic parameters. GlpX(C) showed a much higher catalytic efficiency and a lower Km for fructose 1,6-bisphosphate (86.3 s(-1) mM(-1) and 14 ± 0.5 μM, respectively) than GlpX(P) (8.8 s(-1) mM(-1) and 440 ± 7.6 μM, respectively), indicating that GlpX(C) is the major FBPase of B. methanolicus. Both enzymes were tested for activity as sedoheptulose 1,7-bisphosphatase (SBPase), since a SBPase variant of the ribulose monophosphate cycle has been proposed for B. methanolicus. The substrate for the SBPase reaction, sedoheptulose 1,7-bisphosphate, could be synthesized in vitro by using both fructose 1,6-bisphosphate aldolase proteins from B. methanolicus. Evidence for activity as an SBPase could be obtained for GlpX(P) but not for GlpX(C). Based on these in vitro data, GlpX(P) is a promiscuous SBPase/FBPase and might function in the RuMP cycle of B. methanolicus.
Collapse
|
32
|
Role for cytoplasmic nucleotide hydrolysis in hepatic function and protein synthesis. Proc Natl Acad Sci U S A 2013; 110:5040-5. [PMID: 23479625 DOI: 10.1073/pnas.1205001110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nucleotide hydrolysis is essential for many aspects of cellular function. In the case of 3',5'-bisphosphorylated nucleotides, mammals possess two related 3'-nucleotidases, Golgi-resident 3'-phosphoadenosine 5'-phosphate (PAP) phosphatase (gPAPP) and Bisphosphate 3'-nucleotidase 1 (Bpnt1). gPAPP and Bpnt1 localize to distinct subcellular compartments and are members of a conserved family of metal-dependent lithium-sensitive enzymes. Although recent studies have demonstrated the importance of gPAPP for proper skeletal development in mice and humans, the role of Bpnt1 in mammals remains largely unknown. Here we report that mice deficient for Bpnt1 do not exhibit skeletal defects but instead develop severe liver pathologies, including hypoproteinemia, hepatocellular damage, and in severe cases, frank whole-body edema and death. Accompanying these phenotypes, we observed tissue-specific elevations of the substrate PAP, up to 50-fold in liver, repressed translation, and aberrant nucleolar architecture. Remarkably, the phenotypes of the Bpnt1 knockout are rescued by generating a double mutant mouse deficient for both PAP synthesis and hydrolysis, consistent with a mechanism in which PAP accumulation is toxic to tissue function independent of sulfation. Overall, our study defines a role for Bpnt1 in mammalian physiology and provides mechanistic insights into the importance of sulfur assimilation and cytoplasmic PAP hydrolysis to normal liver function.
Collapse
|
33
|
Lourenço J, Pereira R, Gonçalves F, Mendo S. SSH gene expression profile of Eisenia andrei exposed in situ to a naturally contaminated soil from an abandoned uranium mine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 88:16-25. [PMID: 23164450 DOI: 10.1016/j.ecoenv.2012.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/12/2012] [Accepted: 10/13/2012] [Indexed: 06/01/2023]
Abstract
The effects of the exposure of earthworms (Eisenia andrei) to contaminated soil from an abandoned uranium mine, were assessed through gene expression profile evaluation by Suppression Subtractive Hybridization (SSH). Organisms were exposed in situ for 56 days, in containers placed both in a contaminated and in a non-contaminated site (reference). Organisms were sampled after 14 and 56 days of exposure. Results showed that the main physiological functions affected by the exposure to metals and radionuclides were: metabolism, oxireductase activity, redox homeostasis and response to chemical stimulus and stress. The relative expression of NADH dehydrogenase subunit 1 and elongation factor 1 alpha was also affected, since the genes encoding these enzymes were significantly up and down-regulated, after 14 and 56 days of exposure, respectively. Also, an EST with homology for SET oncogene was found to be up-regulated. To the best of our knowledge, this is the first time that this gene was identified in earthworms and thus, further studies are required, to clarify its involvement in the toxicity of metals and radionuclides. Considering the results herein presented, gene expression profiling proved to be a very useful tool to detect earthworms underlying responses to metals and radionuclides exposure, pointing out for the detection and development of potential new biomarkers.
Collapse
Affiliation(s)
- Joana Lourenço
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
34
|
Jia B, Cheong GW, Zhang S. Multifunctional enzymes in archaea: promiscuity and moonlight. Extremophiles 2013; 17:193-203. [PMID: 23283522 DOI: 10.1007/s00792-012-0509-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
Enzymes from many archaea colonizing extreme environments are of great interest because of their potential for various biotechnological processes and scientific value of evolution. Many enzymes from archaea have been reported to catalyze promiscuous reactions or moonlight in different functions. Here, we summarize known archaeal enzymes of both groups that include different kinds of proteins. Knowledge of their biochemical properties and three-dimensional structures has proved invaluable in understanding mechanism, application, and evolutionary implications of this manifestation. In addition, the review also summarizes the methods to unravel the extra function which almost was discovered serendipitously. The study of these amazing enzymes will provide clues to optimize protein engineering applications and how enzymes might have evolved on Earth.
Collapse
Affiliation(s)
- Baolei Jia
- College of Plant Sciences, Jilin University, Changchun, China.
| | | | | |
Collapse
|
35
|
Wang FK, Latifi A, Chen WL, Zhang CC. The inositol monophosphatase All2917 (IMPA1) is involved in osmotic adaptation in Anabaena sp. PCC7120. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:622-632. [PMID: 23760933 DOI: 10.1111/j.1758-2229.2012.00388.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/07/2012] [Accepted: 04/10/2012] [Indexed: 06/02/2023]
Abstract
Inositol monophosphatase (IMPase; EC 3.1.3.25) acts at the last step in the inositol biosynthesis pathway by hydrolysing inositol-1-phosphate into inositol. In this study, an IMPase encoding gene, all2917 from Anabaena sp. PCC7120, was characterized. We found that All2917 exhibits a specific activity on inositol-1-phosphate, in a typical Mg(2+) -dependent, Li(+) -sensitive manner. The deletion of all2917 in Anabaena made the cells more sensitive to osmotic stress caused by sucrose or sorbitol, while its overexpression led to an increased resistance to such stress. Consistent with these phenotypes, the transcription of all2917 was significantly upregulated upon the sucrose-mediated osmotic stress. Phylogenic analysis using 134 IMPase homologues from 36 cyanobacterial strains shows that members of IMPase family form three major distinct clades, suggesting that multiple copies of IMPase family proteins have been maintained in Cyanobacteria during a long history of evolution, and they may play important roles in cyanobacterial physiology.
Collapse
Affiliation(s)
- Fang-Kui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | | | | | | |
Collapse
|
36
|
3'-5' phosphoadenosine phosphate is an inhibitor of PARP-1 and a potential mediator of the lithium-dependent inhibition of PARP-1 in vivo. Biochem J 2012; 443:485-90. [PMID: 22240080 PMCID: PMC3316155 DOI: 10.1042/bj20111057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
pAp (3′-5′ phosphoadenosine phosphate) is a by-product of sulfur and lipid metabolism and has been shown to have strong inhibitory properties on RNA catabolism. In the present paper we report a new target of pAp, PARP-1 [poly(ADP-ribose) polymerase 1], a key enzyme in the detection of DNA single-strand breaks. We show that pAp can interact with PARP-1 and inhibit its poly(ADP-ribosyl)ation activity. In vitro, inhibition of PARP-1 was detectable at micromolar concentrations of pAp and altered both PARP-1 automodification and heteromodification of histones. Analysis of the kinetic parameters revealed that pAp acted as a mixed inhibitor that modulated both the Km and the Vmax of PARP-1. In addition, we showed that upon treatment with lithium, a very potent inhibitor of the enzyme responsible for pAp recycling, HeLa cells exhibited a reduced level of poly(ADP-ribosyl)ation in response to oxidative stress. From these results, we propose that pAp might be a physiological regulator of PARP-1 activity.
Collapse
|
37
|
Johansson AS, Brask J, Owe-Larsson B, Hetta J, Lundkvist GBS. Valproic acid phase shifts the rhythmic expression of Period2::Luciferase. J Biol Rhythms 2012; 26:541-51. [PMID: 22215612 DOI: 10.1177/0748730411419775] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Valproic acid (VPA) is an anticonvulsant used to treat bipolar disorder, a psychiatric disease associated with disturbances in circadian rhythmicity. Little is known about how VPA affects circadian rhythms. The authors cultured tissues containing the master brain pacemaker for circadian rhythmicity, the suprachiasmatic nuclei (SCN), and skin fibroblasts from transgenic PERIOD2::LUCIFERASE (PER2::LUC) mice and studied the effect of VPA on the circadian PER2::LUC rhythm by measuring bioluminescence. VPA (1 mM) significantly phase advanced the PER2::LUC rhythm when applied at a time point corresponding to the lowest (trough, ~ZT 0) PER2::LUC expression but phase delayed the PER2::LUC rhythm when the drug was administered at the time of highest (peak, ~ZT 12) protein expression. In addition, it significantly increased the overall amplitude of PER2::LUC oscillations at time points at or close to ZT 12 but had no effect on period. Real-time PCR analyses on mouse and human fibroblasts revealed that expressions of other clock genes were increased after 2 h treatment with VPA. Because VPA is known to inhibit histone deacetylation, the authors treated cultures with an established histone deacetylation inhibitor, trichostatin A (TSA; 20 ng/mL), to compare the effect of VPA and TSA on molecular rhythmicity. They found that TSA had similar effects on the PER2::LUC rhythm as VPA. Furthermore, VPA and TSA significantly increased acetylation on histone H3 but in comparison little on histone H4. Lithium is another commonly used treatment for bipolar disorder. Therefore, the authors also studied the impact of lithium chloride (LiCl; 10 mM) on the PER2::LUC rhythm. LiCl delayed the phase, but in contrast to VPA and TSA, LiCl lengthened the PER2::LUC period and had no effect on histone acetylation. These results demonstrate that VPA can delay or advance the phase, as well as increase the amplitude, of the PERIOD2::LUCIFERASE rhythm depending on the circadian time of application. Furthermore, the authors show that LiCl delays the phase and lengthens the period of the PER2::LUC rhythm, confirming previous reports on circadian lithium effects. These different molecular effects may underlie differential chronotherapeutic effects of VPA and lithium.
Collapse
Affiliation(s)
- Anne-Sofie Johansson
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
38
|
Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates--Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 2012; 20:127-50. [PMID: 22271002 DOI: 10.1007/s10787-011-0111-7] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 12/15/2011] [Indexed: 02/07/2023]
Abstract
This paper reviews new drug targets in the treatment of depression and new drug candidates to treat depression. Depression is characterized by aberrations in six intertwined pathways: (1) inflammatory pathways as indicated by increased levels of proinflammatory cytokines, e.g. interleukin-1 (IL-1), IL-6, and tumour necrosis factor α. (2) Activation of cell-mediated immune pathways as indicated by an increased production of interferon γ and neopterin. (3) Increased reactive oxygen and nitrogen species and damage by oxidative and nitrosative stress (O&NS), including lipid peroxidation, damage to DNA, proteins and mitochondria. (4) Lowered levels of key antioxidants, such as coenzyme Q10, zinc, vitamin E, glutathione, and glutathione peroxidase. (5) Damage to mitochondria and mitochondrial DNA and reduced activity of respiratory chain enzymes and adenosine triphosphate production. (6) Neuroprogression, which is the progressive process of neurodegeneration, apoptosis, and reduced neurogenesis and neuronal plasticity, phenomena that are probably caused by inflammation and O&NS. Antidepressants tend to normalize the above six pathways. Targeting these pathways has the potential to yield antidepressant effects, e.g. using cytokine antagonists, minocycline, Cox-2 inhibitors, statins, acetylsalicylic acid, ketamine, ω3 poly-unsaturated fatty acids, antioxidants, and neurotrophic factors. These six pathways offer new, pathophysiologically guided drug targets suggesting that novel therapies could be developed that target these six pathways simultaneously. Both nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activators and glycogen synthase kinase-3 (GSK-3) inhibitors target the six above-mentioned pathways. GSK-3 inhibitors have antidepressant effects in animal models of depression. Nrf2 activators and GSK-3 inhibitors have the potential to be advanced to phase-2 clinical trials to examine whether they augment the efficacy of antidepressants or are useful as monotherapy.
Collapse
Affiliation(s)
- Michael Maes
- Maes Clinics@TRIA, 998 Rimklongsamsen Road, Bangkok 10310, Thailand.
| | | | | | | | | | | |
Collapse
|
39
|
Medina M, Garrido JJ, Wandosell FG. Modulation of GSK-3 as a Therapeutic Strategy on Tau Pathologies. Front Mol Neurosci 2011; 4:24. [PMID: 22007157 PMCID: PMC3186940 DOI: 10.3389/fnmol.2011.00024] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/30/2011] [Indexed: 12/29/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is ubiquitously expressed and unusually active in resting, non-stimulated cells. In mammals, at least three proteins (α, β1, and β2), generated from two different genes, gsk-3α and gsk-3β, are widely expressed at both the RNA and protein levels although some tissues show preferential expression of some of the three proteins. Control of GSK-3 activity occurs by complex mechanisms that depend on specific signaling pathways, often controlling the inhibition of the kinase activity. GSK-3 appears to integrate different signaling pathways from a wide selection of cellular stimuli. The unique position of GSK-3 in modulating the function of a diverse series of proteins and its association with a wide variety of human disorders has attracted significant attention as a therapeutic target and as a means to understand the molecular basis of brain disorders. Different neurodegenerative diseases including frontotemporal dementia, progressive supranuclear palsy, and Alzheimer's disease, present prominent tau pathology such as tau hyperphosphorylation and aggregation and are collectively referred to as tauopathies. GSK-3 has also been associated to different neuropsychiatric disorders, like schizophrenia and bipolar disorder. GSK-3β is the major kinase to phosphorylate tau both in vitro and in vivo and has been proposed as a target for therapeutic intervention. The first therapeutic strategy to modulate GSK-3 activity was the direct inhibition of its kinase activity. This review will focus on the signaling pathways involved in the control of GSK-3 activity and its pathological deregulation. We will highlight different alternatives of GSK-3 modulation including the direct pharmacological inhibition as compared to the modulation by upstream regulators.
Collapse
Affiliation(s)
- Miguel Medina
- Research Department, Noscira S.A., Tres Cantos Madrid, Spain
| | | | | |
Collapse
|
40
|
Zhu Z, Kremer P, Tadmori I, Ren Y, Sun D, He X, Young W. Lithium suppresses astrogliogenesis by neural stem and progenitor cells by inhibiting STAT3 pathway independently of glycogen synthase kinase 3 beta. PLoS One 2011; 6:e23341. [PMID: 21931595 PMCID: PMC3170293 DOI: 10.1371/journal.pone.0023341] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/14/2011] [Indexed: 11/19/2022] Open
Abstract
Transplanted neural stem and progenitor cells (NSCs) produce mostly astrocytes in injured spinal cords. Lithium stimulates neurogenesis by inhibiting GSK3b (glycogen synthetase kinase 3-beta) and increasing WNT/beta catenin. Lithium suppresses astrogliogenesis but the mechanisms were unclear. We cultured NSCs from subventricular zone of neonatal rats and showed that lithium reduced NSC production of astrocytes as well as proliferation of glia restricted progenitor (GRP) cells. Lithium strongly inhibited STAT3 (signal transducer and activator of transcription 3) activation, a messenger system known to promote astrogliogenesis and cancer. Lithium abolished STAT3 activation and astrogliogenesis induced by a STAT3 agonist AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), suggesting that lithium suppresses astrogliogenesis by inhibiting STAT3. GSK3β inhibition either by a specific GSK3β inhibitor SB216763 or overexpression of GID5-6 (GSK3β Interaction Domain aa380 to 404) did not suppress astrogliogenesis and GRP proliferation. GSK3β inhibition also did not suppress STAT3 activation. Together, these results indicate that lithium inhibits astrogliogenesis through non-GSK3β-mediated inhibition of STAT. Lithium may increase efficacy of NSC transplants by increasing neurogenesis and reducing astrogliogenesis. Our results also may explain the strong safety record of lithium treatment of manic depression. Millions of people take high-dose (>1 gram/day) lithium carbonate for a lifetime. GSK3b inhibition increases WNT/beta catenin, associated with colon and other cancers. STAT3 inhibition may reduce risk for cancer.
Collapse
Affiliation(s)
- Zhenzhong Zhu
- The 2nd Department of Orthopedics Surgery, The 2nd Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, People's Republic of China
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Penny Kremer
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Iman Tadmori
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Yi Ren
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Xijing He
- The 2nd Department of Orthopedics Surgery, The 2nd Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, People's Republic of China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
41
|
Clark LF, Johnson JV, Horenstein NA. Identification of a Gene Cluster that Initiates Azasugar Biosynthesis in Bacillus amyloliquefaciens. Chembiochem 2011; 12:2147-50. [DOI: 10.1002/cbic.201100347] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Indexed: 11/10/2022]
|
42
|
Kaufmann L, Marinescu G, Nazarenko I, Thiele W, Oberle C, Sleeman J, Blattner C. LiCl induces TNF-α and FasL production, thereby stimulating apoptosis in cancer cells. Cell Commun Signal 2011; 9:15. [PMID: 21609428 PMCID: PMC3115922 DOI: 10.1186/1478-811x-9-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/24/2011] [Indexed: 12/28/2022] Open
Abstract
Background The incidence of cancer in patients with neurological diseases, who have been treated with LiCl, is below average. LiCl is a well-established inhibitor of Glycogen synthase kinase-3, a kinase that controls several cellular processes, among which is the degradation of the tumour suppressor protein p53. We therefore wondered whether LiCl induces p53-dependent cell death in cancer cell lines and experimental tumours. Results Here we show that LiCl induces apoptosis of tumour cells both in vitro and in vivo. Cell death was accompanied by cleavage of PARP and Caspases-3, -8 and -10. LiCl-induced cell death was not dependent on p53, but was augmented by its presence. Treatment of tumour cells with LiCl strongly increased TNF-α and FasL expression. Inhibition of TNF-α induction using siRNA or inhibition of FasL binding to its receptor by the Nok-1 antibody potently reduced LiCl-dependent cleavage of Caspase-3 and increased cell survival. Treatment of xenografted rats with LiCl strongly reduced tumour growth. Conclusions Induction of cell death by LiCl supports the notion that GSK-3 may represent a promising target for cancer therapy. LiCl-induced cell death is largely independent of p53 and mediated by the release of TNF-α and FasL. Key words: LiCl, TNF-α, FasL, apoptosis, GSK-3, FasL
Collapse
Affiliation(s)
- Larissa Kaufmann
- Karlsruher Institute of Technology, Institute of Toxicology and Genetics, PO-Box 3640, 76021 Karlsruhe, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Sato Y, Yazawa K, Yoshida S, Tamaoki M, Nakajima N, Iwai H, Ishii T, Satoh S. Expression and functions of myo-inositol monophosphatase family genes in seed development of Arabidopsis. JOURNAL OF PLANT RESEARCH 2011; 124:385-94. [PMID: 20960216 DOI: 10.1007/s10265-010-0381-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 09/16/2010] [Indexed: 05/08/2023]
Abstract
Myo-inositol monophosphatase (IMP) catalyzes the dephosphorylation of myo-inositol 3-phosphate in the last step of myo-inositol biosynthesis. IMP is also important in phosphate metabolism and is required for the biosynthesis of cell wall polysaccharides, phytic acid, and phosphatidylinositol. In Arabidopsis, IMP is encoded by VTC4. There are, however, two additional IMP candidate genes, IMPL1 and IMPL2, which have not yet been elucidated. In our genetic studies of Arabidopsis IMP genes, only the loss-of-function mutant impl2 showed embryonic lethality at the globular stage. All IMP genes were expressed in a similar manner both in the vegetative and reproductive organs. In developing seeds, expression of IMP genes was not coupled with the expression of the genes encoding myo-inositol phosphate synthases, which supply the substrate for IMPs in the de novo synthesis pathway. Instead, expression of IMP genes was correlated with expression of the gene for myo-inositol polyphosphate 1-phosphatase (SAL1), which is involved in the myo-inositol salvage pathway, suggesting a possible salvage pathway role in seed development. Moreover, the partial rescue of the impl2 phenotype by histidine application implies that IMPL2 is also involved in histidine biosynthesis during embryo development.
Collapse
Affiliation(s)
- Yuko Sato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Medina M, Wandosell F. Deconstructing GSK-3: The Fine Regulation of Its Activity. Int J Alzheimers Dis 2011; 2011:479249. [PMID: 21629747 PMCID: PMC3100567 DOI: 10.4061/2011/479249] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/28/2011] [Indexed: 01/12/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) unique position in modulating the function of a diverse series of proteins in combination with its association with a wide variety of human disorders has attracted significant attention to the protein both as a therapeutic target and as a means to understand the molecular basis of these disorders. GSK-3 is ubiquitously expressed and, unusually, constitutively active in resting, unstimulated cells. In mammals, GSK-3α and β are each expressed widely at both the RNA and protein levels although some tissues show preferential levels of some of the two proteins. Neither gene appears to be acutely regulated at the transcriptional level, whereas the proteins are controlled posttranslationally, largely through protein-protein interactions or by posttranslational regulation. Control of GSK-3 activity thus occurs by complex mechanisms that are each dependent upon specific signalling pathways. Furthermore, GSK-3 appears to be a cellular nexus, integrating several signalling systems, including several second messengers and a wide selection of cellular stimulants. This paper will focus on the different ways to control GSK-3 activity (phosphorylation, protein complex formation, truncation, subcellular localization, etc.), the main signalling pathways involved in its control, and its pathological deregulation.
Collapse
|
45
|
Gutka HJ, Rukseree K, Wheeler PR, Franzblau SG, Movahedzadeh F. glpX gene of Mycobacterium tuberculosis: heterologous expression, purification, and enzymatic characterization of the encoded fructose 1,6-bisphosphatase II. Appl Biochem Biotechnol 2011; 164:1376-89. [PMID: 21451980 DOI: 10.1007/s12010-011-9219-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/01/2011] [Indexed: 12/22/2022]
Abstract
The glpX gene (Rv1099c) of Mycobacterium tuberculosis (Mtb) encodes Fructose 1,6-bisphosphatase II (FBPase II; EC 3.1.3.11); a key gluconeogenic enzyme. Mtb possesses glpX homologue as the major known FBPase. This study explored the expression, purification and enzymatic characterization of functionally active FBPase II from Mtb. The glpX gene was cloned, expressed and purified using a two step purification strategy including affinity and size exclusion chromatography. The specific activity of Mtb FBPase II is 1.3 U/mg. The enzyme is oligomeric, followed Michaelis-Menten kinetics with an apparent km = 44 μM. Enzyme activity is dependent on bivalent metal ions and is inhibited by lithium and inorganic phosphate. The pH optimum and thermostability of the enzyme have been determined. The robust expression, purification and assay protocols ensure sufficient production of this protein for structural biology and screening of inhibitors against this enzyme.
Collapse
Affiliation(s)
- Hiten J Gutka
- Institute for Tuberculosis Research (M/C 964), College of Pharmacy, Room 412, University of Illinois at Chicago, 833 S. Wood St, Chicago, IL 60612-7231, USA
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Squassina A, Manchia M, Del Zompo M. Pharmacogenomics of mood stabilizers in the treatment of bipolar disorder. HUMAN GENOMICS AND PROTEOMICS : HGP 2010; 2010:159761. [PMID: 20981231 PMCID: PMC2958627 DOI: 10.4061/2010/159761] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/24/2010] [Indexed: 11/20/2022]
Abstract
Bipolar disorder (BD) is a chronic and often severe psychiatric illness characterized by manic and depressive episodes. Among the most effective treatments, mood stabilizers represent the keystone in acute mania, depression, and maintenance treatment of BD. However, treatment response is a highly heterogeneous trait, thus emphasizing the need for a structured informational framework of phenotypic and genetic predictors. In this paper, we present the current state of pharmacogenomic research on long-term treatment in BD, specifically focusing on mood stabilizers. While the results provided so far support the key role of genetic factors in modulating the response phenotype, strong evidence for genetic predictors is still lacking. In order to facilitate implementation of pharmacogenomics into clinical settings (i.e., the creation of personalized therapy), further research efforts are needed.
Collapse
Affiliation(s)
- Alessio Squassina
- Laboratory of Molecular Genetics, Unit of Clinical Pharmacology, Department of Neuroscience "B.B. Brodie", University of Cagliari, sp8 Sestu-Monserrato, km. 0,700, Monserrato 09042, Cagliari, Italy
| | | | | |
Collapse
|
48
|
Hui W, Litherland GJ, Jefferson M, Barter MJ, Elias MS, Cawston TE, Rowan AD, Young DA. Lithium protects cartilage from cytokine-mediated degradation by reducing collagen-degrading MMP production via inhibition of the P38 mitogen-activated protein kinase pathway. Rheumatology (Oxford) 2010; 49:2043-53. [PMID: 20634235 DOI: 10.1093/rheumatology/keq217] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To determine the effects and mechanism of action of lithium chloride (LiCl) on cartilage destruction induced by the pro-inflammatory cytokines IL-1, IL-1 + oncostatin M and TNF-α. METHODS The release of collagen was assessed in bovine cartilage explant cultures, whereas collagenolytic activities (active and total) in conditioned culture supernatants were determined by bioassay. The expression and production of MMP from chondrocytes were analysed by real-time RT-PCR and ELISA. Signalling pathway analysis was performed using a phospho-antibody array and standard immunoblotting. RESULTS LiCl, but not selective glycogen synthase kinase 3 (GSK-3) inhibitor compounds SB-415286 and TDZD-8, significantly decreased pro-inflammatory cytokine-induced collagen release from bovine cartilage via the down-regulation of collagenolytic activity. Furthermore, MMP-1 and MMP-13 expression was reduced in both bovine and human chondrocytes. Pathway analysis revealed that LiCl selectively inhibited activation of the p38 mitogen-activated protein kinase pathway; effects that were recapitulated by specific p38 pathway inhibition. CONCLUSIONS This study demonstrates for the first time that LiCl can protect against cartilage damage induced by pro-inflammatory cytokines, and indicates that LiCl-mediated cartilage protection is not via a GSK-3-dependent mechanism, but potentially via inhibition of the p38 pathway. These data indicate that lithium administration may represent a potential therapy for arthritis.
Collapse
Affiliation(s)
- Wang Hui
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle-upon-Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Quiroz JA, Machado-Vieira R, Zarate CA, Manji HK. Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology 2010; 62:50-60. [PMID: 20453535 PMCID: PMC2889681 DOI: 10.1159/000314310] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The monovalent cation lithium partially exerts its effects by activating neurotrophic and neuroprotective cellular cascades. Here, we discuss the effects of lithium on oxidative stress, programmed cell death (apoptosis), inflammation, glial dysfunction, neurotrophic factor functioning, excitotoxicity, and mitochondrial stability. In particular, we review evidence demonstrating the action of lithium on cyclic adenosine monophosphate (cAMP)-mediated signal transduction, cAMP response element binding activation, increased expression of brain-derived neurotrophic factor, the phosphatidylinositide cascade, protein kinase C inhibition, glycogen synthase kinase 3 inhibition, and B-cell lymphoma 2 expression. Notably, we also review data from clinical studies demonstrating neurotrophic effects of lithium. We expect that a better understanding of the clinically relevant pathophysiological targets of lithium will lead to improved treatments for those who suffer from mood as well as neurodegenerative disorders.
Collapse
Affiliation(s)
- Jorge A. Quiroz
- Hoffman-La Roche Inc., Pharma Development and Exploratory Neuroscience, Nutley, N.J
| | - Rodrigo Machado-Vieira
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, NIMH-NIH, Bethesda, Md
| | - Carlos A. Zarate
- Experimental Therapeutics, Mood and Anxiety Disorders Research Program, NIMH-NIH, Bethesda, Md
| | - Husseini K. Manji
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Titusville, N.J., USA,*Husseini K. Manji, MD, FRCPC, Johnson & Johnson Pharmaceuticals Group, 1125 Trenton-Harbourton Road, E32000, Titusville, NJ 08560 (USA), Tel. +1 609 730 2968, Fax +1 609 730 2940, E-Mail
| |
Collapse
|
50
|
Kuznetsova E, Xu L, Singer A, Brown G, Dong A, Flick R, Cui H, Cuff M, Joachimiak A, Savchenko A, Yakunin AF. Structure and activity of the metal-independent fructose-1,6-bisphosphatase YK23 from Saccharomyces cerevisiae. J Biol Chem 2010; 285:21049-59. [PMID: 20427268 DOI: 10.1074/jbc.m110.118315] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis and photosynthetic CO(2) fixation, catalyzes the hydrolysis of fructose 1,6-bisphosphate (FBP) to produce fructose 6-phosphate, an important precursor in various biosynthetic pathways. All known FBPases are metal-dependent enzymes, which are classified into five different classes based on their amino acid sequences. Eukaryotes are known to contain only the type-I FBPases, whereas all five types exist in various combinations in prokaryotes. Here we demonstrate that the uncharacterized protein YK23 from Saccharomyces cerevisiae efficiently hydrolyzes FBP in a metal-independent reaction. YK23 is a member of the histidine phosphatase (phosphoglyceromutase) superfamily with homologues found in all organisms. The crystal structure of the YK23 apo-form was solved at 1.75-A resolution and revealed the core domain with the alpha/beta/alpha-fold covered by two small cap domains. Two liganded structures of this protein show the presence of two phosphate molecules (an inhibitor) or FBP (a substrate) bound to the active site. FBP is bound in its linear, open conformation with the cleavable C1-phosphate positioned deep in the active site. Alanine replacement mutagenesis of YK23 identified six conserved residues absolutely required for activity and suggested that His(13) and Glu(99) are the primary catalytic residues. Thus, YK23 represents the first family of metal-independent FBPases and a second FBPase family in eukaryotes.
Collapse
Affiliation(s)
- Ekaterina Kuznetsova
- Banting and Best Department of Medical Research, Centre for Structural Proteomics in Toronto, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|