1
|
Balint E, Unk I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Int J Mol Sci 2023; 25:363. [PMID: 38203535 PMCID: PMC10779026 DOI: 10.3390/ijms25010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
DNA polymerases constitute a versatile group of enzymes that not only perform the essential task of genome duplication but also participate in various genome maintenance pathways, such as base and nucleotide excision repair, non-homologous end-joining, homologous recombination, and translesion synthesis. Polymerases catalyze DNA synthesis via the stepwise addition of deoxynucleoside monophosphates to the 3' primer end in a partially double-stranded DNA. They require divalent metal cations coordinated by active site residues of the polymerase. Mg2+ is considered the likely physiological activator because of its high cellular concentration and ability to activate DNA polymerases universally. Mn2+ can also activate the known DNA polymerases, but in most cases, it causes a significant decrease in fidelity and/or processivity. Hence, Mn2+ has been considered mutagenic and irrelevant during normal cellular function. Intriguingly, a growing body of evidence indicates that Mn2+ can positively influence some DNA polymerases by conferring translesion synthesis activity or altering the substrate specificity. Here, we review the relevant literature focusing on the impact of Mn2+ on the biochemical activity of a selected set of polymerases, namely, Polβ, Polλ, and Polµ, of the X family, as well as Polι and Polη of the Y family of polymerases, where congruous data implicate the physiological relevance of Mn2+ in the cellular function of these enzymes.
Collapse
Affiliation(s)
| | - Ildiko Unk
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
2
|
Chen D, Gervai JZ, Póti Á, Németh E, Szeltner Z, Szikriszt B, Gyüre Z, Zámborszky J, Ceccon M, d'Adda di Fagagna F, Szallasi Z, Richardson AL, Szüts D. BRCA1 deficiency specific base substitution mutagenesis is dependent on translesion synthesis and regulated by 53BP1. Nat Commun 2022; 13:226. [PMID: 35017534 PMCID: PMC8752635 DOI: 10.1038/s41467-021-27872-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Defects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch-mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells. 53BP1 also promotes TLS in human cellular extracts in vitro. Our results show that HR deficiency-specific mutagenesis is largely caused by TLS, and suggest a function for 53BP1 in regulating the choice between TLS and error-free template switching in replicative DNA damage bypass.
Collapse
Affiliation(s)
- Dan Chen
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Judit Z Gervai
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Zoltán Szeltner
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Bernadett Szikriszt
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Zsolt Gyüre
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, H-1085, Hungary
| | - Judit Zámborszky
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Marta Ceccon
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139, Milan, Italy
| | - Fabrizio d'Adda di Fagagna
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Zoltan Szallasi
- Computational Health Informatics Program (CHIP), Boston Children's Hospital and Harvard Medical School, Boston, MA, 02215, USA
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
- SE-NAP, Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, H-1092, Hungary
| | | | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
| |
Collapse
|
3
|
Boldinova EO, Yudkina AV, Shilkin ES, Gagarinskaya DI, Baranovskiy AG, Tahirov TH, Zharkov DO, Makarova AV. Translesion activity of PrimPol on DNA with cisplatin and DNA-protein cross-links. Sci Rep 2021; 11:17588. [PMID: 34475447 PMCID: PMC8413282 DOI: 10.1038/s41598-021-96692-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
Human PrimPol belongs to the archaeo-eukaryotic primase superfamily of primases and is involved in de novo DNA synthesis downstream of blocking DNA lesions and non-B DNA structures. PrimPol possesses both DNA/RNA primase and DNA polymerase activities, and also bypasses a number of DNA lesions in vitro. In this work, we have analyzed translesion synthesis activity of PrimPol in vitro on DNA with an 1,2-intrastrand cisplatin cross-link (1,2-GG CisPt CL) or a model DNA–protein cross-link (DpCL). PrimPol was capable of the 1,2-GG CisPt CL bypass in the presence of Mn2+ ions and preferentially incorporated two complementary dCMPs opposite the lesion. Nucleotide incorporation was stimulated by PolDIP2, and yeast Pol ζ efficiently extended from the nucleotides inserted opposite the 1,2-GG CisPt CL in vitro. DpCLs significantly blocked the DNA polymerase activity and strand displacement synthesis of PrimPol. However, PrimPol was able to reach the DpCL site in single strand template DNA in the presence of both Mg2+ and Mn2+ ions despite the presence of the bulky protein obstacle.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Institute of Molecular Genetics, National Research Center «Kurchatov Institute», Kurchatov sq. 2, Moscow, Russia, 123182
| | - Anna V Yudkina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Evgeniy S Shilkin
- Institute of Molecular Genetics, National Research Center «Kurchatov Institute», Kurchatov sq. 2, Moscow, Russia, 123182
| | - Diana I Gagarinskaya
- Institute of Molecular Genetics, National Research Center «Kurchatov Institute», Kurchatov sq. 2, Moscow, Russia, 123182
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk, Russia, 630090.,Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia, 630090
| | - Alena V Makarova
- Institute of Molecular Genetics, National Research Center «Kurchatov Institute», Kurchatov sq. 2, Moscow, Russia, 123182.
| |
Collapse
|
4
|
Ma F, Yan S, Zhang J, Wang Y, Wang L, Wang Y, Zhang S, Du X, Zhang P, Chen HY, Huang S. Nanopore Sequencing Accurately Identifies the Cisplatin Adduct on DNA. ACS Sens 2021; 6:3082-3092. [PMID: 34319692 DOI: 10.1021/acssensors.1c01212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cisplatin, which selectively binds to N7 atoms of purines to inhibit normal replication and transcription, is a widely applied chemotherapeutic drug in the treatment of cancer. Though direct identification of cisplatin lesions on DNA is of great significance, existing sequencing methods have issues such as complications of preamplification or enrichment-induced false-positive reports. Direct identification of cisplatin lesions by nanopore sequencing (NPS) is in principle feasible. However, relevant investigations have never been reported. By constructing model sequences (83 nucleotides in length) containing a sole cisplatin lesion, identification of corresponding lesions by NPS is achieved with <10 ng of input sequencing library. Moreover, characteristic high-frequency noises caused by cisplatin lesions are consistently observed during NPS, clearly identifiable in corresponding high-pass filtered traces. This feature is, however, never observed in any other combinations of natural DNA bases and could be taken as a reference to identify cisplatin lesions on DNA. Further investigations demonstrate that cisplatin stalls the replication of phi29 DNA polymerase, which appears as a ∼5 pA level fluctuation in the single-molecule resolution. These results have confirmed the feasibility of NPS to identify cisplatin lesions at the genomic level and may provide new insights into understanding the molecular mechanism of platinum-based drugs.
Collapse
Affiliation(s)
- Fubo Ma
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Jinyue Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Yu Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
5
|
Wenmaekers S, Viergever BJ, Kumar G, Kranenburg O, Black PC, Daugaard M, Meijer RP. A Potential Role for HUWE1 in Modulating Cisplatin Sensitivity. Cells 2021; 10:cells10051262. [PMID: 34065298 PMCID: PMC8160634 DOI: 10.3390/cells10051262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Cisplatin is a widely used antineoplastic agent, whose efficacy is limited by primary and acquired therapeutic resistance. Recently, a bladder cancer genome-wide CRISPR/Cas9 knock-out screen correlated cisplatin sensitivity to multiple genetic biomarkers. Among the screen’s top hits was the HECT domain-containing ubiquitin E3 ligase (HUWE1). In this review, HUWE1 is postulated as a therapeutic response modulator, affecting the collision between platinum-DNA adducts and the replication fork, the primary cytotoxic action of platins. HUWE1 can alter the cytotoxic response to platins by targeting essential components of the DNA damage response including BRCA1, p53, and Mcl-1. Deficiency of HUWE1 could lead to enhanced DNA damage repair and a dysfunctional apoptotic apparatus, thereby inducing resistance to platins. Future research on the relationship between HUWE1 and platins could generate new mechanistic insights into therapy resistance. Ultimately, HUWE1 might serve as a clinical biomarker to tailor cancer treatment strategies, thereby improving cancer care and patient outcomes.
Collapse
Affiliation(s)
- Stijn Wenmaekers
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
- Department of Oncological Urology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Bastiaan J. Viergever
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
- Department of Oncological Urology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Gunjan Kumar
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (G.K.); (P.C.B.)
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Onno Kranenburg
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
| | - Peter C. Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (G.K.); (P.C.B.)
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (G.K.); (P.C.B.)
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Correspondence: (M.D.); (R.P.M.)
| | - Richard P. Meijer
- Laboratory Translational Oncology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands; (S.W.); (B.J.V.); (O.K.)
- Department of Oncological Urology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
- Correspondence: (M.D.); (R.P.M.)
| |
Collapse
|
6
|
Koag MC, Jung H, Lee S. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases. J Am Chem Soc 2019; 141:4584-4596. [PMID: 30817143 DOI: 10.1021/jacs.8b08551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species attack DNA to produce 7,8-dihyro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major lesions. The structural basis for the mutagenicity of oxoG, which induces G to T mutations, is well understood. However, the structural basis for the mutagenic potential of oxoA, which induces A to C mutations, remains poorly understood. To gain insight into oxoA-induced mutagenesis, we conducted kinetic studies of human DNA polymerases β and η replicating across oxoA and structural studies of polβ incorporating dTTP/dGTP opposite oxoA. While polη readily bypassed oxoA, it incorporated dGTP opposite oxoA with a catalytic specificity comparable to that of correct insertion, underscoring the promutagenic nature of the major oxidative adenine lesion. Polη and polβ incorporated dGTP opposite oxoA ∼170-fold and ∼100-fold more efficiently than that opposite dA, respectively, indicating that the 8-oxo moiety greatly facilitated error-prone replication. Crystal structures of polβ showed that, when paired with an incoming dTTP, the templating oxoA adopted an anti conformation and formed Watson-Crick base pair. When paired with dGTP, oxoA adopted a syn conformation and formed a Hoogsteen base pair with Watson-Crick-like geometry, highlighting the dual-coding potential of oxoA. The templating oxoA was stabilized by Lys280-mediated stacking and hydrogen bonds. Overall, these results provide insight into the mutagenic potential and dual-coding nature of the major oxidative adenine lesion.
Collapse
Affiliation(s)
- Myong-Chul Koag
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Hunmin Jung
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Seongmin Lee
- The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
7
|
Kou Y, Koag MC, Lee S. Structural and Kinetic Studies of the Effect of Guanine N7 Alkylation and Metal Cofactors on DNA Replication. Biochemistry 2018; 57:5105-5116. [PMID: 29957995 DOI: 10.1021/acs.biochem.8b00331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide variety of endogenous and exogenous alkylating agents attack DNA to preferentially generate N7-alkylguanine (N7-alkylG) adducts. Studies of the effect of N7-alkylG lesions on biological processes have been difficult in part because of complications arising from the chemical lability of the positively charged N7-alkylG, which can readily produce secondary lesions. To assess the effect of bulky N7-alkylG on DNA replication, we prepared chemically stable N7-benzylguanine (N7bnG)-containing DNA and evaluated nucleotide incorporation opposite the lesion by human DNA polymerase β (polβ), a model enzyme for high-fidelity DNA polymerases. Kinetic studies showed that the N7-benzyl-G lesion greatly inhibited dCTP incorporation by polβ. The crystal structure of polβ incorporating dCTP opposite N7bnG showed a Watson-Crick N7bnG:dCTP structure. The polβ-N7bnG:dCTP structure showed an open protein conformation, a relatively disordered dCTP, and a lack of catalytic metal, which explained the inefficient nucleotide incorporation opposite N7bnG. This indicates that polβ is sensitive to major groove adducts in the templating base side and deters nucleotide incorporation opposite bulky N7-alkylG adducts by adopting a catalytically incompetent conformation. Substituting Mg2+ for Mn2+ induced an open-to-closed conformational change due to the presence of catalytic metal and stably bound dCTP and increased the catalytic efficiency by ∼10-fold, highlighting the effect of binding of the incoming nucleotide and catalytic metal on protein conformation and nucleotidyl transfer reaction. Overall, these results suggest that, although bulky alkyl groups at guanine-N7 may not alter base pairing properties of guanine, the major groove-positioned lesions in the template could impede nucleotidyl transfer by some DNA polymerases.
Collapse
Affiliation(s)
- Yi Kou
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Myong-Chul Koag
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Seongmin Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
8
|
Kirby TW, Gassman NR, Smith CE, Zhao ML, Horton JK, Wilson SH, London RE. DNA polymerase β contains a functional nuclear localization signal at its N-terminus. Nucleic Acids Res 2017; 45:1958-1970. [PMID: 27956495 PMCID: PMC5389473 DOI: 10.1093/nar/gkw1257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022] Open
Abstract
DNA polymerase β (pol β) requires nuclear localization to fulfil its DNA repair function. Although its small size has been interpreted to imply the absence of a need for active nuclear import, sequence and structural analysis suggests that a monopartite nuclear localization signal (NLS) may reside in the N-terminal lyase domain. Binding of this domain to Importin α1 (Impα1) was confirmed by gel filtration and NMR studies. Affinity was quantified by fluorescence polarization analysis of a fluorescein-tagged peptide corresponding to pol β residues 2–13. These studies indicate high affinity binding, characterized by a low micromolar Kd, that is selective for the murine Importin α1 (mImpα1) minor site, with the Kd strengthening to ∼140 nM for the full lyase domain (residues 2–87). A further reduction in Kd obtains in binding studies with human Importin α5 (hImpα5), which in some cases has been demonstrated to bind small domains connected to the NLS. The role of this NLS was confirmed by fluorescent imaging of wild-type and NLS-mutated pol β(R4S,K5S) in mouse embryonic fibroblasts lacking endogenous pol β. Together these data demonstrate that pol β contains a specific NLS sequence in the N-terminal lyase domain that promotes transport of the protein independent of its interaction partners. Active nuclear uptake allows development of a nuclear/cytosolic concentration gradient against a background of passive diffusion.
Collapse
Affiliation(s)
- Thomas W Kirby
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Natalie R Gassman
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Cassandra E Smith
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ming-Lang Zhao
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Julie K Horton
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert E London
- National Institute of Environmental Health Sciences, Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
10
|
Nemec AA, Abriola L, Merkel JS, de Stanchina E, DeVeaux M, Zelterman D, Glazer PM, Sweasy JB. DNA Polymerase Beta Germline Variant Confers Cellular Response to Cisplatin Therapy. Mol Cancer Res 2017; 15:269-280. [PMID: 28074003 DOI: 10.1158/1541-7786.mcr-16-0227-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Resistance to cancer chemotherapies leads to deadly consequences, yet current research focuses only on the roles of somatically acquired mutations in this resistance. The mutational status of the germline is also likely to play a role in the way cells respond to chemotherapy. The carrier status for the POLB rs3136797 germline mutation encoding P242R DNA polymerase beta (Pol β) is associated with poor prognosis for lung cancer, specifically in response to treatment with cisplatin. Here, it is revealed that the P242R mutation is sufficient to promote resistance to cisplatin in human cells and in mouse xenografts. Mechanistically, P242R Pol β acts as a translesion polymerase and prefers to insert the correct nucleotide opposite cisplatin intrastrand cross-links, leading to the activation of the nucleotide excision repair (NER) pathway, removal of crosslinks, and resistance to cisplatin. In contrast, wild-type (WT) Pol β preferentially inserts the incorrect nucleotide initiating mismatch repair and cell death. Importantly, in a mouse xenograft model, tumors derived from lung cancer cells expressing WT Pol β displayed a slower rate of growth when treated with cisplatin, whereas tumors expressing P242R Pol β had no response to cisplatin. Pol β is critical for mediating crosstalk in response to cisplatin. The current data strongly suggest that the status of Pol β influences cellular responses to crosslinking agents and that Pol β is a promising biomarker to predict responses to specific chemotherapies. Finally, these results highlight that the genetic status of the germline is a critical factor in the response to cancer treatment.Implications: Pol β has prognostic biomarker potential in the treatment of cancer with cisplatin and perhaps other intrastrand crosslinking agents. Mol Cancer Res; 15(3); 269-80. ©2017 AACR.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut. .,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Laura Abriola
- Center for Molecular Discovery, Yale University, West Haven, Connecticut
| | - Jane S Merkel
- Center for Molecular Discovery, Yale University, West Haven, Connecticut
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelle DeVeaux
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Daniel Zelterman
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut. .,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
Mezencev R, Matyunina LV, Wagner GT, McDonald JF. Acquired resistance of pancreatic cancer cells to cisplatin is multifactorial with cell context-dependent involvement of resistance genes. Cancer Gene Ther 2016; 23:446-453. [PMID: 27910856 PMCID: PMC5159445 DOI: 10.1038/cgt.2016.71] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal of malignancies, in large measure, due to the propensity of PDAC cells to acquire resistance to chemotherapeutic agents. A better understanding of the molecular basis of acquired resistance is a major focus of contemporary PDAC research. We report here the results of a study to independently develop cisplatin resistance in two distinct parental PDAC cell lines, AsPC1 and BxPC3, and to subsequently examine the molecular mechanisms associated with the acquired resistance. Cisplatin resistance in both resistant cell lines was found to be multifactorial and to be associated with mechanisms related to drug transport, drug inactivation, DNA damage response, DNA repair and the modulation of apoptosis. Our results demonstrate that the two resistant cell lines employed alternative molecular strategies in acquiring resistance dictated, in part, by pre-existing molecular differences between the parental cell lines. Collectively, our findings indicate that strategies to inhibit or reverse acquired resistance of PDAC cells to cisplatin, and perhaps other chemotherapeutic agents, may not be generalized but will require individual molecular profiling and analysis to be effective.
Collapse
Affiliation(s)
- R Mezencev
- Integrated Cancer Research Center, School of Biological Sciences, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - L V Matyunina
- Integrated Cancer Research Center, School of Biological Sciences, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - G T Wagner
- Integrated Cancer Research Center, School of Biological Sciences, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J F McDonald
- Integrated Cancer Research Center, School of Biological Sciences, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
12
|
Bostian ACL, Eoff RL. Aberrant Kynurenine Signaling Modulates DNA Replication Stress Factors and Promotes Genomic Instability in Gliomas. Chem Res Toxicol 2016; 29:1369-80. [PMID: 27482758 DOI: 10.1021/acs.chemrestox.6b00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolism of the essential amino acid L-tryptophan (TRP) is implicated in a number of neurological conditions including depression, neurodegenerative diseases, and cancer. The TRP catabolite kynurenine (KYN) has recently emerged as an important neuroactive factor in brain tumor pathogenesis, with additional studies implicating KYN in other types of cancer. Often highlighted as a modulator of the immune response and a contributor to immune escape for malignant tumors, it is well-known that KYN has effects on the production of the coenzyme nicotinamide adenine dinucleotide (NAD(+)), which can have a direct impact on DNA repair, replication, cell division, redox signaling, and mitochondrial function. Additional effects of KYN signaling are imparted through its role as an endogenous agonist for the aryl hydrocarbon receptor (AhR), and it is largely through activation of the AhR that KYN appears to mediate malignant progression in gliomas. We have recently reported on the ability of KYN signaling to modulate expression of human DNA polymerase kappa (hpol κ), a translesion enzyme involved in bypass of bulky DNA lesions and activation of the replication stress response. Given the impact of KYN on NAD(+) production, AhR signaling, and translesion DNA synthesis, it follows that dysregulation of KYN signaling in cancer may promote malignancy through alterations in the level of endogenous DNA damage and replication stress. In this perspective, we discuss the connections between KYN signaling, DNA damage tolerance, and genomic instability, as they relate to cancer.
Collapse
Affiliation(s)
- April C L Bostian
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
13
|
Szikriszt B, Póti Á, Pipek O, Krzystanek M, Kanu N, Molnár J, Ribli D, Szeltner Z, Tusnády GE, Csabai I, Szallasi Z, Swanton C, Szüts D. A comprehensive survey of the mutagenic impact of common cancer cytotoxics. Genome Biol 2016; 17:99. [PMID: 27161042 PMCID: PMC4862131 DOI: 10.1186/s13059-016-0963-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic mutations caused by cytotoxic agents used in cancer chemotherapy may cause secondary malignancies as well as contribute to the evolution of treatment-resistant tumour cells. The stable diploid genome of the chicken DT40 lymphoblast cell line, an established DNA repair model system, is well suited to accurately assay genomic mutations. RESULTS We use whole genome sequencing of multiple DT40 clones to determine the mutagenic effect of eight common cytotoxics used for the treatment of millions of patients worldwide. We determine the spontaneous mutagenesis rate at 2.3 × 10(-10) per base per cell division and find that cisplatin, cyclophosphamide and etoposide induce extra base substitutions with distinct spectra. After four cycles of exposure, cisplatin induces 0.8 mutations per Mb, equivalent to the median mutational burden in common leukaemias. Cisplatin-induced mutations, including short insertions and deletions, are mainly located at sites of putative intrastrand crosslinks. We find two of the newly defined cisplatin-specific mutation types as causes of the reversion of BRCA2 mutations in emerging cisplatin-resistant tumours or cell clones. Gemcitabine, 5-fluorouracil, hydroxyurea, doxorubicin and paclitaxel have no measurable mutagenic effect. The cisplatin-induced mutation spectrum shows good correlation with cancer mutation signatures attributed to smoking and other sources of guanine-directed base damage. CONCLUSION This study provides support for the use of cell line mutagenesis assays to validate or predict the mutagenic effect of environmental and iatrogenic exposures. Our results suggest genetic reversion due to cisplatin-induced mutations as a distinct mechanism for developing resistance.
Collapse
Affiliation(s)
- Bernadett Szikriszt
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Orsolya Pipek
- Department of Physics of Complex Systems, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Marcin Krzystanek
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Nnennaya Kanu
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - János Molnár
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Dezső Ribli
- Department of Physics of Complex Systems, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Zoltán Szeltner
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Gábor E Tusnády
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Zoltan Szallasi
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800, Lyngby, Denmark.
- Computational Health Informatics Program (CHIP), Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
- MTA-SE-NAP, Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, 1091, Budapest, Hungary.
| | - Charles Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK.
- Francis Crick Institute, 44 Lincoln's Inn Fields, London, WCA2 3PX, UK.
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.
| |
Collapse
|
14
|
Abstract
Scaffold proteins play a central role in DNA repair by recruiting and organizing sets of enzymes required to perform multi-step repair processes. X-ray cross complementing group 1 protein (XRCC1) forms enzyme complexes optimized for single-strand break repair, but participates in other repair pathways as well. Available structural data for XRCC1 interactions is summarized and evaluated in terms of its proposed roles in DNA repair. Mutational approaches related to the abrogation of specific XRCC1 interactions are also discussed. Although substantial progress has been made in elucidating the structural basis for XRCC1 function, the molecular mechanisms of XRCC1 recruitment related to several proposed roles of the XRCC1 DNA repair complex remain undetermined.
Collapse
Affiliation(s)
- Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
15
|
DNA polymerases β and λ and their roles in cell. DNA Repair (Amst) 2015; 29:112-26. [DOI: 10.1016/j.dnarep.2015.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
16
|
Schiesser S, Hackner B, Vrabel M, Beck W, Carell T. Synthesis and DNA-Damaging Properties of Cisplatin-N-Mustard Conjugates. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Tan X, Wang H, Luo G, Ren S, Li W, Cui J, Gill HS, Fu SW, Lu Y. Clinical significance of a point mutation in DNA polymerase beta (POLB) gene in gastric cancer. Int J Biol Sci 2015; 11:144-55. [PMID: 25561897 PMCID: PMC4279090 DOI: 10.7150/ijbs.10692] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/19/2014] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer (GC) is a major cause of global cancer mortality. Genetic variations in DNA repair genes can modulate DNA repair capability and, consequently, have been associated with risk of developing cancer. We have previously identified a T to C point mutation at nucleotide 889 (T889C) in DNA polymerase beta (POLB) gene, a key enzyme involved in base excision repair in primary GCs. The purpose of this study was to evaluate the mutation and expression of POLB in a larger cohort and to identify possible prognostic roles of the POLB alterations in GC. Primary GC specimens and their matched normal adjacent tissues were collected at the time of surgery. DNA, RNA and protein samples were isolated from GC specimens and cell lines. Mutations were detected by PCR-RFLP/DHPLC and sequencing analysis. POLB gene expression was examined by RT-PCR, tissue microarray, Western blotting and immunofluorescence assays. The function of the mutation was evaluated by chemosensitivity, MTT, Transwell matrigel invasion and host cell reactivation assays. The T889C mutation was detected in 18 (10.17%) of 177 GC patients. And the T889C mutation was associated with POLB overexpression, lymph nodes metastases and poor tumor differentiation. In addition, patients with- the mutation had significantly shorter survival time than those without-, following postoperative chemotherapy. Furthermore, cell lines with T889C mutation in POLB gene were more resistant to the treatment of 5-fluorouracil, cisplatin and epirubicin than those with wild type POLB. Forced expression of POLB gene with T889C mutation resulted in enhanced cell proliferation, invasion and resistance to anticancer drugs, along with increased DNA repair capability. These results suggest that POLB gene with T889C mutation in surgically resected primary gastric tissues may be clinically useful for predicting responsiveness to chemotherapy in patients with GC. The POLB gene alteration may serve as a prognostic biomarker for GC.
Collapse
Affiliation(s)
- Xiaohui Tan
- 1. Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); ; 4. Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Hongyi Wang
- 2. Department of Sugary, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, 100142, P.R. China
| | - Guangbin Luo
- 3. Department of Genetics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shuyang Ren
- 1. Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)
| | - Wenmei Li
- 1. Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)
| | - Jiantao Cui
- 1. Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)
| | - Harindarpal S Gill
- 4. Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Sidney W Fu
- 4. Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Youyong Lu
- 1. Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)
| |
Collapse
|
18
|
Xu L, Vaidyanathan VG, Cho BP. Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions. Chem Res Toxicol 2014; 27:1796-807. [PMID: 25195494 PMCID: PMC4203393 DOI: 10.1021/tx500252z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Surface plasmon resonance (SPR) was
used to measure polymerase-binding
interactions of the bulky mutagenic DNA lesions N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl
(FABP) or N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene
(FAAF) in the context of two unique 5′-flanking bases (CG*A and TG*A). The enzymes used
were exo-nuclease-deficient Klenow fragment (Kf-exo–) or polymerase β (pol β). Specific binary and ternary
DNA binding affinities of the enzymes were characterized at subnanomolar
concentrations. The SPR results showed that Kf-exo– binds strongly to a double strand/single strand template/primer
junction, whereas pol β binds preferentially to double-stranded
DNA having a one-nucleotide gap. Both enzymes exhibited tight binding
to native DNA, with high nucleotide selectivity, where the KD values for each base pair increased in the
order dCTP ≪ dTTP ∼ dATP ≪ dGTP. In contrast
to that for pol β, Kf-exo– binds tightly to
lesion-modified templates; however, both polymerases exhibited minimal
nucleotide selectivity toward adducted DNA. Primer steady-state kinetics
and 19F NMR results support the SPR data. The relative
insertion efficiency fins of dCTP opposite
FABP was significantly higher in the TG*A sequence
compared to that in CG*A. Although Kf-exo– was not sensitive to the presence of a DNA lesion,
FAAF-induced conformational heterogeneity perturbed the active site
of pol β, weakening the enzyme’s ability to bind to FAAF
adducts compared to FABP adducts. The present study demonstrates the
effectiveness of SPR for elucidating how lesion-induced conformational
heterogeneity affects the binding capability of polymerases and ultimately
the nucleotide insertion efficiency.
Collapse
Affiliation(s)
- Lifang Xu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | | | | |
Collapse
|
19
|
Koag MC, Lai L, Lee S. Structural basis for the inefficient nucleotide incorporation opposite cisplatin-DNA lesion by human DNA polymerase β. J Biol Chem 2014; 289:31341-8. [PMID: 25237188 DOI: 10.1074/jbc.m114.605451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human DNA polymerase β (polβ) has been suggested to play a role in cisplatin resistance, especially in polβ-overexpressing cancer cells. Polβ has been shown to accurately albeit slowly bypass the cisplatin-1,2-d(GpG) (Pt-GG) intramolecular cross-link in vitro. Currently, the structural basis for the inefficient Pt-GG bypass mechanism of polβ is unknown. To gain structural insights into the mechanism, we determined two ternary structures of polβ incorporating dCTP opposite the templating Pt-GG lesion in the presence of the active site Mg(2+) or Mn(2+). The Mg(2+)-bound structure shows that the bulky Pt-GG adduct is accommodated in the polβ active site without any steric hindrance. In addition, both guanines of the Pt-GG lesion form Watson-Crick base pairing with the primer terminus dC and the incoming dCTP, providing the structural basis for the accurate bypass of the Pt-GG adduct by polβ. The Mn(2+)-bound structure shows that polβ adopts a catalytically suboptimal semiclosed conformation during the insertion of dCTP opposite the templating Pt-GG, explaining the inefficient replication across the Pt-GG lesion by polβ. Overall, our studies provide the first structural insights into the mechanism of the potential polβ-mediated cisplatin resistance.
Collapse
Affiliation(s)
- Myong-Chul Koag
- From the Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
| | - Lara Lai
- From the Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
| | - Seongmin Lee
- From the Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, Texas 78712
| |
Collapse
|
20
|
Maddukuri L, Shuck SC, Eoff RL, Zhao L, Rizzo CJ, Guengerich FP, Marnett LJ. Replication, repair, and translesion polymerase bypass of N⁶-oxopropenyl-2'-deoxyadenosine. Biochemistry 2013; 52:8766-76. [PMID: 24171480 DOI: 10.1021/bi401103k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The oxidative stress products malondialdehyde and base propenal react with DNA bases forming the adduction products 3-(2'-deoxy-β-D-erythro-pentofuranosyl)pyrimido[1,2-a]purin-10(3H)-one (M1dG) and N(6)-(oxypropenyl)-2'-deoxyadenosine (OPdA). M1dG is mutagenic in vivo and miscodes in vitro, but little work has been done on OPdA. To improve our understanding of the effect of OPdA on polymerase activity and mutagenicity, we evaluated the ability of the translesion DNA polymerases hPols η, κ, and ι to bypass OPdA in vitro. hPols η and κ inserted dNTPs opposite the lesion and extended the OPdA-modified primer to the terminus. hPol ι inserted dNTPs opposite OPdA but failed to fully extend the primer. Steady-state kinetic analysis indicated that these polymerases preferentially insert dTTP opposite OPdA, although less efficiently than opposite dA. Minimal incorrect base insertion was observed for all polymerases, and dCTP was the primary mis-insertion event. Examining replicative and repair polymerases revealed little effect of OPdA on the Sulfolobus solfataricus polymerase Dpo1 or the Klenow fragment of Escherichia coli DNA polymerase I. Bacteriophage T7 DNA polymerase displayed a reduced level of OPdA bypass compared to unmodified DNA, and OPdA nearly completely blocked the activity of base excision repair polymerase hPol β. This work demonstrates that bypass of OPdA is generally error-free, modestly decreases the catalytic activity of most polymerases, and blocks hPol β polymerase activity. Although mis-insertion opposite OPdA is relatively weak, the efficiency of bypass may introduce A → G transitions observed in vivo.
Collapse
Affiliation(s)
- Leena Maddukuri
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, †Department of Biochemistry, ‡Department of Chemistry, and §Department of Pharmacology, Center in Molecular Toxicology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Smith LA, Makarova AV, Samson L, Thiesen KE, Dhar A, Bessho T. Bypass of a psoralen DNA interstrand cross-link by DNA polymerases β, ι, and κ in vitro. Biochemistry 2012; 51:8931-8. [PMID: 23106263 DOI: 10.1021/bi3008565] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Repair of DNA interstrand cross-links in mammalian cells involves several biochemically distinctive processes, including the release of one of the cross-linked strands and translesion DNA synthesis (TLS). In this report, we investigated the in vitro TLS activity of a psoralen DNA interstrand cross-link by three DNA repair polymerases, DNA polymerases β, κ, and ι. DNA polymerase β is capable of bypassing a psoralen cross-link with a low efficiency. Cell extracts prepared from DNA polymerase β knockout mouse embryonic fibroblasts showed a reduced bypass activity of the psoralen cross-link, and purified DNA polymerase β restored the bypass activity. In addition, DNA polymerase ι misincorporated thymine across the psoralen cross-link and DNA polymerase κ extended these mispaired primer ends, suggesting that DNA polymerase ι may serve as an inserter and DNA polymerase κ may play a role as an extender in the repair of psoralen DNA interstrand cross-links. The results demonstrated here indicate that multiple DNA polymerases could participate in TLS steps in mammalian DNA interstrand cross-link repair.
Collapse
Affiliation(s)
- Leigh A Smith
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | | | | | | | | | | |
Collapse
|
22
|
Brabec V, Malina J, Margiotta N, Natile G, Kasparkova J. Thermodynamic and mechanistic insights into translesion DNA synthesis catalyzed by Y-family DNA polymerase across a bulky double-base lesion of an antitumor platinum drug. Chemistry 2012; 18:15439-48. [PMID: 23065963 DOI: 10.1002/chem.201202117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Indexed: 01/10/2023]
Abstract
To determine how the Y-family translesion DNA polymerase η (Polη) processes lesions remains fundamental to understanding the molecular origins of the mutagenic translesion bypass. We utilized model systems employing a DNA double-base lesion derived from 1,2-GG intrastrand cross-links of a new antitumor Pt(II) complex containing a bulky carrier ligand, namely [PtCl(2)(cis-1,4-dach)] (DACH=diaminocyclohexane). The catalytic efficiency of Polη for the insertion of correct dCTP, with respect to the other incorrect nucleotides, opposite the 1,2-GG cross-link was markedly reduced by the DACH carrier ligand. This reduced efficiency of Polη to incorporate the correct dCTP could be due to a more extensive DNA unstacking and deformation of the minor groove induced in the DNA by the cross-link of bulky [PtCl(2)(cis-1,4-dach)]. The major products of the bypass of this double-base lesion produced by [PtCl(2)(cis-1,4-dach)] by Polη resulted from misincorporation of dATP opposite the platinated G residues. The results of the present work support the thesis that this misincorporation could be due to sterical effects of the bulkier 1,4-DACH ligand hindering the formation of the Polη-DNA-incoming nucleotide complex. Calorimetric analysis suggested that thermodynamic factors may contribute to the forces that governed enhanced incorporation of the incorrect dATP by Polη as well.
Collapse
Affiliation(s)
- Viktor Brabec
- Department of Molecular Biophysics and Pharmacology, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 61265 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
23
|
Knobel PA, Marti TM. Translesion DNA synthesis in the context of cancer research. Cancer Cell Int 2011; 11:39. [PMID: 22047021 PMCID: PMC3224763 DOI: 10.1186/1475-2867-11-39] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/02/2011] [Indexed: 11/17/2022] Open
Abstract
During cell division, replication of the genomic DNA is performed by high-fidelity DNA polymerases but these error-free enzymes can not synthesize across damaged DNA. Specialized DNA polymerases, so called DNA translesion synthesis polymerases (TLS polymerases), can replicate damaged DNA thereby avoiding replication fork breakdown and subsequent chromosomal instability. We focus on the involvement of mammalian TLS polymerases in DNA damage tolerance mechanisms. In detail, we review the discovery of TLS polymerases and describe the molecular features of all the mammalian TLS polymerases identified so far. We give a short overview of the mechanisms that regulate the selectivity and activity of TLS polymerases. In addition, we summarize the current knowledge how different types of DNA damage, relevant either for the induction or treatment of cancer, are bypassed by TLS polymerases. Finally, we elucidate the relevance of TLS polymerases in the context of cancer therapy.
Collapse
Affiliation(s)
- Philip A Knobel
- Laboratory of Molecular Oncology, Clinic and Polyclinic of Oncology, University Hospital Zürich, Häldeliweg 4, CH-8044 Zürich, Switzerland.
| | | |
Collapse
|
24
|
Belousova EA, Lavrik OI. DNA polymerases β and λ and their roles in DNA replication and repair. Mol Biol 2010. [DOI: 10.1134/s0026893310060014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Hoffmann JS, Cazaux C. Aberrant expression of alternative DNA polymerases: a source of mutator phenotype as well as replicative stress in cancer. Semin Cancer Biol 2010; 20:312-9. [PMID: 20934518 DOI: 10.1016/j.semcancer.2010.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/01/2010] [Indexed: 12/22/2022]
Abstract
The cell life span depends on a subtle equilibrium between the accurate duplication of the genomic DNA and less stringent DNA transactions which allow cells to tolerate mutations associated with DNA damage. The physiological role of the alternative, specialized or TLS (translesion synthesis) DNA polymerases could be to favor the necessary "flexibility" of the replication machinery, by allowing DNA replication to occur even in the presence of blocking DNA damage. As these alternative DNA polymerases are inaccurate when replicating undamaged DNA, the regulation of their expression needs to be carefully controlled. Evidence in the literature supports that dysregulation of these error-prone enzymes contributes to the acquisition of a mutator phenotype that, along with defective cell cycle control or other genome stability pathways, could be a motor for accelerated tumor progression.
Collapse
Affiliation(s)
- Jean-Sébastien Hoffmann
- CNRS, IPBS (Institute of Pharmacology and Structural Biology), 205, route de Narbonne, University of Toulouse, UPS, 31077 Toulouse, France.
| | | |
Collapse
|
26
|
Arana ME, Kunkel TA. Mutator phenotypes due to DNA replication infidelity. Semin Cancer Biol 2010; 20:304-11. [PMID: 20934516 PMCID: PMC3087159 DOI: 10.1016/j.semcancer.2010.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/01/2010] [Indexed: 12/19/2022]
Abstract
This article considers the fidelity of DNA replication performed by eukaryotic DNA polymerases involved in replicating the nuclear genome. DNA replication fidelity can vary widely depending on the DNA polymerase, the composition of the error, the flanking sequence, the presence of DNA damage and the ability to correct errors. As a consequence, defects in processes that determine DNA replication fidelity can confer strong mutator phenotypes whose specificity can help determine the molecular nature of the defect.
Collapse
Affiliation(s)
- Mercedes E. Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
27
|
Krutyakov VM, Kravetskaya TP. DNA polymerases and carcinogenesis. BIOCHEMISTRY (MOSCOW) 2010; 75:959-64. [DOI: 10.1134/s000629791008002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Belousova EA, Maga G, Fan Y, Kubareva EA, Romanova EA, Lebedeva NA, Oretskaya TS, Lavrik OI. DNA polymerases beta and lambda bypass thymine glycol in gapped DNA structures. Biochemistry 2010; 49:4695-704. [PMID: 20423048 DOI: 10.1021/bi901792c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here we investigated the ability of the human X-family DNA polymerases beta and lambda to bypass thymine glycol (Tg) in gapped DNA substrates with the damage located in a defined position of the template strand. Maximum velocities and the Michaelis constant values were determined to study DNA synthesis in the presence of either Mg(2+) or Mn(2+). Additionally, the influence of hRPA (human replication protein A) and hPCNA (human proliferating cell nuclear antigen) on TLS (translesion synthesis) activity of DNA polymerases beta and lambda was examined. The results show that (i) DNA polymerase lambda is able to catalyze DNA synthesis across Tg, (ii) the ability of DNA polymerase lambda to elongate from a base paired to a Tg lesion is influenced by the size of the DNA gap, (iii) hPCNA increases the fidelity of Tg bypass and does not influence normal DNA synthesis catalyzed by DNA polymerase lambda, (iv) DNA polymerase beta catalyzes the incorporation of all four dNTPs opposite Tg, and (v) hPCNA as well as hRPA has no specific effect on TLS in comparison with the normal DNA synthesis catalyzed by DNA polymerase beta. These results considerably extend our knowledge concerning the ability of specialized DNA polymerases to cope with a very common DNA lesion such as Tg.
Collapse
|
29
|
Ahmad S. Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers 2010; 7:543-66. [PMID: 20232326 DOI: 10.1002/cbdv.200800340] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platinum-based compounds are widely used as chemotherapeutics for the treatment of a variety of cancers. The anticancer activity of cisplatin and other platinum drugs is believed to arise from their interaction with DNA. Several cellular pathways are activated in response to this interaction, which include recognition by high-mobility group and repair proteins, translesion synthesis by polymerases, and induction of apoptosis. The apoptotic process is regulated by activation of caspases, p53 gene, and several proapoptotic and antiapoptotic proteins. Such cellular processing eventually leads to an inhibition of the replication or transcription machinery of the cell. Deactivation of platinum drugs by thiols, increased nucleotide excision repair of Pt-DNA adducts, decreased mismatch repair, and defective apoptosis result in resistance to platinum therapy. The differences in cytotoxicity of various platinum complexes are attributed to the differential recognition of their adducts by cellular proteins. Cisplatin and oxaliplatin both produce mainly 1,2-GG intrastrand cross-links as major adducts, but oxaliplatin is found to be more active particularly against cisplatin-resistant tumor cells. Mismatch repair and replicative bypass appear to be the processes most likely involved in differentiating the molecular responses to these two agents. This review describes the formation of Pt-DNA adducts, their interaction with cellular components, and biological effects of this interaction.
Collapse
Affiliation(s)
- Saeed Ahmad
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.
| |
Collapse
|
30
|
Wong JHY, Brown JA, Suo Z, Blum P, Nohmi T, Ling H. Structural insight into dynamic bypass of the major cisplatin-DNA adduct by Y-family polymerase Dpo4. EMBO J 2010; 29:2059-69. [PMID: 20512114 DOI: 10.1038/emboj.2010.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/27/2010] [Indexed: 01/17/2023] Open
Abstract
Y-family DNA polymerases bypass Pt-GG, the cisplatin-DNA double-base lesion, contributing to the cisplatin resistance in tumour cells. To reveal the mechanism, we determined three structures of the Y-family DNA polymerase, Dpo4, in complex with Pt-GG DNA. The crystallographic snapshots show three stages of lesion bypass: the nucleotide insertions opposite the 3'G (first insertion) and 5'G (second insertion) of Pt-GG, and the primer extension beyond the lesion site. We observed a dynamic process, in which the lesion was converted from an open and angular conformation at the first insertion to a depressed and nearly parallel conformation at the subsequent reaction stages to fit into the active site of Dpo4. The DNA translocation-coupled conformational change may account for additional inhibition on the second insertion reaction. The structures illustrate that Pt-GG disturbs the replicating base pair in the active site, which reduces the catalytic efficiency and fidelity. The in vivo relevance of Dpo4-mediated Pt-GG bypass was addressed by a dpo-4 knockout strain of Sulfolobus solfataricus, which exhibits enhanced sensitivity to cisplatin and proteomic alterations consistent with genomic stress.
Collapse
Affiliation(s)
- Jimson H Y Wong
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Yamtich J, Sweasy JB. DNA polymerase family X: function, structure, and cellular roles. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1136-50. [PMID: 19631767 PMCID: PMC2846199 DOI: 10.1016/j.bbapap.2009.07.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
The X family of DNA polymerases in eukaryotic cells consists of terminal transferase and DNA polymerases beta, lambda, and mu. These enzymes have similar structural portraits, yet different biochemical properties, especially in their interactions with DNA. None of these enzymes possesses a proofreading subdomain, and their intrinsic fidelity of DNA synthesis is much lower than that of a polymerase that functions in cellular DNA replication. In this review, we discuss the similarities and differences of three members of Family X: polymerases beta, lambda, and mu. We focus on biochemical mechanisms, structural variation, fidelity and lesion bypass mechanisms, and cellular roles. Remarkably, although these enzymes have similar three-dimensional structures, their biochemical properties and cellular functions differ in important ways that impact cellular function.
Collapse
Affiliation(s)
- Jennifer Yamtich
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Joann B. Sweasy
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| |
Collapse
|
32
|
Maurmann L, Bose RN. Unwinding of zinc finger domain of DNA polymerase I by cis-diamminedichloroplatinum(ii). Dalton Trans 2010; 39:7968-79. [DOI: 10.1039/c0dt00274g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Minko IG, Kozekov ID, Harris TM, Rizzo CJ, Lloyd RS, Stone MP. Chemistry and biology of DNA containing 1,N(2)-deoxyguanosine adducts of the alpha,beta-unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxynonenal. Chem Res Toxicol 2009; 22:759-78. [PMID: 19397281 PMCID: PMC2685875 DOI: 10.1021/tx9000489] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Indexed: 11/28/2022]
Abstract
The alpha,beta-unsaturated aldehydes (enals) acrolein, crotonaldehyde, and trans-4-hydroxynonenal (4-HNE) are products of endogenous lipid peroxidation, arising as a consequence of oxidative stress. The addition of enals to dG involves Michael addition of the N(2)-amine to give N(2)-(3-oxopropyl)-dG adducts, followed by reversible cyclization of N1 with the aldehyde, yielding 1,N(2)-dG exocyclic products. The 1,N(2)-dG exocyclic adducts from acrolein, crotonaldehyde, and 4-HNE exist in human and rodent DNA. The enal-induced 1,N(2)-dG lesions are repaired by the nucleotide excision repair pathway in both Escherichia coli and mammalian cells. Oligodeoxynucleotides containing structurally defined 1,N(2)-dG adducts of acrolein, crotonaldehyde, and 4-HNE were synthesized via a postsynthetic modification strategy. Site-specific mutagenesis of enal adducts has been carried out in E. coli and various mammalian cells. In all cases, the predominant mutations observed are G-->T transversions, but these adducts are not strongly miscoding. When placed into duplex DNA opposite dC, the 1,N(2)-dG exocyclic lesions undergo ring opening to the corresponding N(2)-(3-oxopropyl)-dG derivatives. Significantly, this places a reactive aldehyde in the minor groove of DNA, and the adducted base possesses a modestly perturbed Watson-Crick face. Replication bypass studies in vitro indicate that DNA synthesis past the ring-opened lesions can be catalyzed by pol eta, pol iota, and pol kappa. It also can be accomplished by a combination of Rev1 and pol zeta acting sequentially. However, efficient nucleotide insertion opposite the 1,N(2)-dG ring-closed adducts can be carried out only by pol iota and Rev1, two DNA polymerases that do not rely on the Watson-Crick pairing to recognize the template base. The N(2)-(3-oxopropyl)-dG adducts can undergo further chemistry, forming interstrand DNA cross-links in the 5'-CpG-3' sequence, intrastrand DNA cross-links, or DNA-protein conjugates. NMR and mass spectrometric analyses indicate that the DNA interstand cross-links contain a mixture of carbinolamine and Schiff base, with the carbinolamine forms of the linkages predominating in duplex DNA. The reduced derivatives of the enal-mediated N(2)-dG:N(2)-dG interstrand cross-links can be processed in mammalian cells by a mechanism not requiring homologous recombination. Mutations are rarely generated during processing of these cross-links. In contrast, the reduced acrolein-mediated N(2)-dG peptide conjugates can be more mutagenic than the corresponding monoadduct. DNA polymerases of the DinB family, pol IV in E. coli and pol kappa in human, are implicated in error-free bypass of model acrolein-mediated N(2)-dG secondary adducts, the interstrand cross-links, and the peptide conjugates.
Collapse
Affiliation(s)
| | | | | | - Carmelo J. Rizzo
- To whom correspondence should be addressed. (C.J.R.) Tel: 615-322-6100. Fax: 615-343-1234. E-mail: . (R.S.L.) Tel: 503-494-9957. Fax: 503-494-6831. E-mail: . (M.P.S.) Tel: 615-322-2589. Fax: 615-322-7591. E-mail:
| | - R. Stephen Lloyd
- To whom correspondence should be addressed. (C.J.R.) Tel: 615-322-6100. Fax: 615-343-1234. E-mail: . (R.S.L.) Tel: 503-494-9957. Fax: 503-494-6831. E-mail: . (M.P.S.) Tel: 615-322-2589. Fax: 615-322-7591. E-mail:
| | - Michael P. Stone
- To whom correspondence should be addressed. (C.J.R.) Tel: 615-322-6100. Fax: 615-343-1234. E-mail: . (R.S.L.) Tel: 503-494-9957. Fax: 503-494-6831. E-mail: . (M.P.S.) Tel: 615-322-2589. Fax: 615-322-7591. E-mail:
| |
Collapse
|
34
|
Lewis KA, Lilly KK, Reynolds EA, Sullivan WP, Kaufmann SH, Cliby WA. Ataxia telangiectasia and rad3-related kinase contributes to cell cycle arrest and survival after cisplatin but not oxaliplatin. Mol Cancer Ther 2009; 8:855-63. [PMID: 19372558 PMCID: PMC2690640 DOI: 10.1158/1535-7163.mct-08-1135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The DNA cross-linking agents cisplatin and oxaliplatin are widely used in the treatment of human cancer. Lesions produced by these agents are widely known to activate the G1 and G2 cell cycle checkpoints. Less is known about the role of the intra-S-phase checkpoint in the response to these agents. In the present study, two different cell lines expressing a dominant-negative kinase dead (kd) version of the ataxia telangiectasia and rad3-related (ATR) kinase in an inducible fashion were examined for their responses to these two platinating agents and a variety of other DNA cross-linking drugs. The expression of the kdATR allele markedly sensitized the cells to cisplatin, but not to oxaliplatin, as assessed by inhibition of colony formation, induction of apoptosis, and cell cycle analysis. Similar differences in survival were noted for melphalan (ATR dependent) and 4-hydroperoxycyclophosphamide (ATR independent). Further experiments showed that ATR function is not necessary for removal of Pt-DNA adducts. The predominant difference between the responses to the two platinum drugs was the presence of a drug-specific ATR-dependent S-phase arrest after cisplatin but not oxaliplatin. These results indicate that involvement of ATR in the response to DNA cross-linking agents is lesion specific. This observation might need to be taken into account in the development and use of ATR or Chk1 inhibitors.
Collapse
Affiliation(s)
- Kriste A. Lewis
- Department of Obstetrics and Gynecology (K.A.L., K.K.L., E.A.R., W.P.S., W.A.C.); and Division of Oncology Research (S.H.K.), Mayo Clinic, Rochester, MN 55905
| | - Kia K. Lilly
- Department of Obstetrics and Gynecology (K.A.L., K.K.L., E.A.R., W.P.S., W.A.C.); and Division of Oncology Research (S.H.K.), Mayo Clinic, Rochester, MN 55905
| | - Evelyn A. Reynolds
- Department of Obstetrics and Gynecology (K.A.L., K.K.L., E.A.R., W.P.S., W.A.C.); and Division of Oncology Research (S.H.K.), Mayo Clinic, Rochester, MN 55905
| | - William P. Sullivan
- Department of Obstetrics and Gynecology (K.A.L., K.K.L., E.A.R., W.P.S., W.A.C.); and Division of Oncology Research (S.H.K.), Mayo Clinic, Rochester, MN 55905
| | | | - William A. Cliby
- Please address correspondence to Dr. William A. Cliby at the Division of Obstetrics and Gynecology, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905
| |
Collapse
|
35
|
Non-DNA-binding platinum anticancer agents: Cytotoxic activities of platinum-phosphato complexes towards human ovarian cancer cells. Proc Natl Acad Sci U S A 2008; 105:18314-9. [PMID: 19020081 DOI: 10.1073/pnas.0803094105] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA is believed to be the molecular target for the cytotoxic activities of platinum (Pt) anticancer drugs. We report here a class of platinum(II)- and platinum(IV)-pyrophosphato complexes that exhibit cytotoxicity comparable with and, in some cases, better than cisplatin in ovarian cell lines (A2780, A2780/C30, and CHO), yet they do not show any evidence of covalent binding to DNA. Moreover, some of these compounds are quite effective in cisplatin- and carboplatin-resistant cell line A2780/C30. The lack of DNA binding was demonstrated by the absence of a detectable Pt signal by atomic absorption spectroscopy using isolated DNA from human ovarian cells treated with a platinum(II)-pyrophosphato complex, (trans-1,2-cyclohexanediamine)(dihydrogen pyrophosphato) platinum(II), (pyrodach-2) and from NMR experiments using a variety of nucleotides including single- and double-stranded DNA. Furthermore, pyrodach-2 exhibited reduced cellular accumulations compared with cisplatin in cisplatin- and carboplatin-resistant human ovarian cells, yet the IC(50) value for the pyrophosphato complex was much less than that of cisplatin. Moreover, unlike cisplatin, pyrodach-2 treated cells overexpressed fas and fas-related transcription factors and some proapoptotic genes such as Bak and Bax. Data presented in this report collectively indicate that pyrodach-2 follows different cytotoxic mechanisms than does cisplatin. Unlike cisplatin, pyrodach-2 does not undergo aquation during 1 week and is quite soluble and stable in aqueous solutions. Results presented in this article represent a clear paradigm shift not only in expanding the molecular targets for Pt anticancer drugs but also in strategic development for more effective anticancer drugs.
Collapse
|
36
|
Brown JA, Newmister SA, Fiala KA, Suo Z. Mechanism of double-base lesion bypass catalyzed by a Y-family DNA polymerase. Nucleic Acids Res 2008; 36:3867-78. [PMID: 18499711 PMCID: PMC2475632 DOI: 10.1093/nar/gkn309] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As a widely used anticancer drug, cis-diamminedichloroplatinum(II) (cisplatin) reacts with adjacent purine bases in DNA to form predominantly cis-[Pt(NH3)2{d(GpG)-N7(1),-N7(2)}] intrastrand cross-links. Drug resistance, one of the major limitations of cisplatin therapy, is partially due to the inherent ability of human Y-family DNA polymerases to perform translesion synthesis in the presence of DNA-distorting damage such as cisplatin–DNA adducts. To better understand the mechanistic basis of translesion synthesis contributing to cisplatin resistance, this study investigated the bypass of a single, site-specifically placed cisplatin-d(GpG) adduct by a model Y-family DNA polymerase, Sulfolobus solfataricus DNA polymerase IV (Dpo4). Dpo4 was able to bypass this double-base lesion, although, the incorporation efficiency of dCTP opposite the first and second cross-linked guanine bases was decreased by 72- and 860-fold, respectively. Moreover, the fidelity at the lesion decreased up to two orders of magnitude. The cisplatin-d(GpG) adduct affected six downstream nucleotide incorporations, but interestingly the fidelity was essentially unaltered. Biphasic kinetic analysis supported a universal kinetic mechanism for the bypass of DNA lesions catalyzed by various translesion DNA polymerases. In conclusion, if human Y-family DNA polymerases adhere to this bypass mechanism, then translesion synthesis by these error-prone enzymes is likely accountable for cisplatin resistance observed in cancer patients.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
37
|
Hazan C, Boudsocq F, Gervais V, Saurel O, Ciais M, Cazaux C, Czaplicki J, Milon A. Structural insights on the pamoic acid and the 8 kDa domain of DNA polymerase beta complex: towards the design of higher-affinity inhibitors. BMC STRUCTURAL BIOLOGY 2008; 8:22. [PMID: 18416825 PMCID: PMC2375893 DOI: 10.1186/1472-6807-8-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 04/16/2008] [Indexed: 11/17/2022]
Abstract
BACKGROUND DNA polymerase beta (pol beta), the error-prone DNA polymerase of single-stranded DNA break repair as well as base excision repair pathways, is overexpressed in several tumors and takes part in chemotherapeutic agent resistance, like that of cisplatin, through translesion synthesis. For this reason pol beta has become a therapeutic target. Several inhibitors have been identified, but none of them presents a sufficient affinity and specificity to become a drug. The fragment-based inhibitor design allows an important improvement in affinity of small molecules. The initial and critical step for setting up the fragment-based strategy consists in the identification and structural characterization of the first fragment bound to the target. RESULTS We have performed docking studies of pamoic acid, a 9 micromolar pol beta inhibitor, and found that it binds in a single pocket at the surface of the 8 kDa domain of pol beta. However, docking studies provided five possible conformations for pamoic acid in this site. NMR experiments were performed on the complex to select a single conformation among the five retained. Chemical Shift Mapping data confirmed pamoic acid binding site found by docking while NOESY and saturation transfer experiments provided distances between pairs of protons from the pamoic acid and those of the 8 kDa domain that allowed the identification of the correct conformation. CONCLUSION Combining NMR experiments on the complex with docking results allowed us to build a three-dimensional structural model. This model serves as the starting point for further structural studies aimed at improving the affinity of pamoic acid for binding to DNA polymerase beta.
Collapse
Affiliation(s)
- Corinne Hazan
- University of Toulouse, UPS; IPBS (Institute of Pharmacology and Structural Biology), 205 route de Narbonne, 31077 Toulouse, France
- CNRS, IPBS, UMR5089, Toulouse, France
| | - François Boudsocq
- University of Toulouse, UPS; IPBS (Institute of Pharmacology and Structural Biology), 205 route de Narbonne, 31077 Toulouse, France
- CNRS, IPBS, UMR5089, Toulouse, France
| | - Virginie Gervais
- University of Toulouse, UPS; IPBS (Institute of Pharmacology and Structural Biology), 205 route de Narbonne, 31077 Toulouse, France
- CNRS, IPBS, UMR5089, Toulouse, France
| | - Olivier Saurel
- University of Toulouse, UPS; IPBS (Institute of Pharmacology and Structural Biology), 205 route de Narbonne, 31077 Toulouse, France
- CNRS, IPBS, UMR5089, Toulouse, France
| | - Marion Ciais
- University of Toulouse, UPS; IPBS (Institute of Pharmacology and Structural Biology), 205 route de Narbonne, 31077 Toulouse, France
- CNRS, IPBS, UMR5089, Toulouse, France
| | - Christophe Cazaux
- University of Toulouse, UPS; IPBS (Institute of Pharmacology and Structural Biology), 205 route de Narbonne, 31077 Toulouse, France
- CNRS, IPBS, UMR5089, Toulouse, France
| | - Jerzy Czaplicki
- University of Toulouse, UPS; IPBS (Institute of Pharmacology and Structural Biology), 205 route de Narbonne, 31077 Toulouse, France
- CNRS, IPBS, UMR5089, Toulouse, France
| | - Alain Milon
- University of Toulouse, UPS; IPBS (Institute of Pharmacology and Structural Biology), 205 route de Narbonne, 31077 Toulouse, France
- CNRS, IPBS, UMR5089, Toulouse, France
| |
Collapse
|
38
|
Gao Z, Maloney DJ, Dedkova LM, Hecht SM. Inhibitors of DNA polymerase beta: activity and mechanism. Bioorg Med Chem 2008; 16:4331-40. [PMID: 18343122 DOI: 10.1016/j.bmc.2008.02.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 02/20/2008] [Accepted: 02/22/2008] [Indexed: 11/30/2022]
Abstract
Bioassay-guided fractionation of extracts prepared from Couepia polyandra and Edgeworthia gardneri resulted in the isolation of the DNA polymerase beta (pol beta) inhibitors oleanolic acid (1), edgeworin (2), betulinic acid (3), and stigmasterol (4). Study of these pol beta inhibitors revealed that three of them inhibited both the lyase and polymerase activities of DNA polymerase beta, while stigmasterol inhibited only the lyase activity. Further investigation indicated that the four inhibitors had substantially different effects on the DNA-pol beta binary complex that is believed to be an obligatory intermediate in the lyase reaction. It was found that the inhibitors potentiated the inhibitory action of the anticancer drug bleomycin in cultured A549 cells, without any influence on the expression of pol beta in the cells. The results of the unscheduled DNA synthesis assay support the thesis that the potentiation of bleomycin cytotoxicity by DNA pol beta inhibitors was a result of an inhibition of DNA repair synthesis.
Collapse
Affiliation(s)
- Zhijie Gao
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | |
Collapse
|
39
|
Maga G, Villani G, Crespan E, Wimmer U, Ferrari E, Bertocci B, Hübscher U. 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature 2007; 447:606-8. [PMID: 17507928 DOI: 10.1038/nature05843] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 03/22/2007] [Indexed: 11/09/2022]
Abstract
Specialized DNA polymerases (DNA pols) are required for lesion bypass in human cells. Auxiliary factors have an important, but so far poorly understood, role. Here we analyse the effects of human proliferating cell nuclear antigen (PCNA) and replication protein A (RP-A) on six different human DNA pols--belonging to the B, Y and X classes--during in vitro bypass of different lesions. The mutagenic lesion 8-oxo-guanine (8-oxo-G) has high miscoding potential. A major and specific effect was found for 8-oxo-G bypass with DNA pols lambda and eta. PCNA and RP-A allowed correct incorporation of dCTP opposite a 8-oxo-G template 1,200-fold more efficiently than the incorrect dATP by DNA pol lambda, and 68-fold by DNA pol eta, respectively. Experiments with DNA-pol-lambda-null cell extracts suggested an important role for DNA pol lambda. On the other hand, DNA pol iota, together with DNA pols alpha, delta and beta, showed a much lower correct bypass efficiency. Our findings show the existence of an accurate mechanism to reduce the deleterious consequences of oxidative damage and, in addition, point to an important role for PCNA and RP-A in determining a functional hierarchy among different DNA pols in lesion bypass.
Collapse
Affiliation(s)
- Giovanni Maga
- Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, I-27100 Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Li D, Li Y, Jiao L, Chang DZ, Beinart G, Wolff RA, Evans DB, Hassan MM, Abbruzzese JL. Effects of base excision repair gene polymorphisms on pancreatic cancer survival. Int J Cancer 2007; 120:1748-54. [PMID: 17230526 PMCID: PMC1892183 DOI: 10.1002/ijc.22301] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To explore the association between single nucleotide polymorphisms of DNA repair genes and overall survival of patients with pancreatic cancer, we conducted a study in 378 cases of pancreatic adenocarcinoma who were treated at The University of Texas M. D. Anderson Cancer Center between February 1999 and October 2004 and were followed up to April 2006. Genotypes were determined using genomic DNA and the MassCode method. Overall survival was analyzed using the Kaplan-Meier plot, log-rank test and Cox regression. We observed a strong effect of the POLB A165G and T2133C genotypes on overall survival. The median survival time (MST) was 35.7 months for patients carrying at least 1 of the 2 homozygous variant POLB GG or CC genotypes, compared with 14.8 months for those carrying the AA/AG or TT/TC genotypes (p = 0.02, log rank test). The homozygous variants of hOGG1 G2657A, APEX1 D148E and XRCC1 R194W polymorphisms all showed a weak but significant effect on overall survival as demonstrated by either log rank test or multivariate COX regression after adjusting for other potential confounders. In combined genotype analysis, a predominant effect of the POLB homozygous variants on survival was observed. When POLB was not included in the model, a slightly better survival was observed among those carrying none of the adverse genotypes than those carrying at least one of the adverse genotypes. These observations suggest that polymorphisms of base excision repair genes significantly affect the clinical outcome of patients with pancreatic cancer. These observations need to be confirmed in a larger study of homogenous patient population.
Collapse
Affiliation(s)
- Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-1402, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lehoczký P, McHugh PJ, Chovanec M. DNA interstrand cross-link repair in Saccharomyces cerevisiae. FEMS Microbiol Rev 2006; 31:109-33. [PMID: 17096663 DOI: 10.1111/j.1574-6976.2006.00046.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA interstrand cross-links (ICL) present a formidable challenge to the cellular DNA repair apparatus. For Escherichia coli, a pathway which combines nucleotide excision repair (NER) and homologous recombination repair (HRR) to eliminate ICL has been characterized in detail, both genetically and biochemically. Mechanisms of ICL repair in eukaryotes have proved more difficult to define, primarily as a result of the fact that several pathways appear compete for ICL repair intermediates, and also because these competing activities are regulated in the cell cycle. The budding yeast Saccharomyces cerevisiae has proven a powerful tool for dissecting ICL repair. Important roles for NER, HRR and postreplication/translesion synthesis pathways have all been identified. Here we review, with reference to similarities and differences in higher eukaryotes, what has been discovered to date concerning ICL repair in this simple eukaryote.
Collapse
Affiliation(s)
- Peter Lehoczký
- Department of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | | | | |
Collapse
|
42
|
Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2006; 33:9-23. [PMID: 17084534 PMCID: PMC1855222 DOI: 10.1016/j.ctrv.2006.09.006] [Citation(s) in RCA: 1197] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/06/2006] [Accepted: 09/11/2006] [Indexed: 12/17/2022]
Abstract
Platinating agents, including cisplatin, carboplatin, and oxaliplatin, have been used clinically for nearly 30years as part of the treatment of many types of cancers, including head and neck, testicular, ovarian, cervical, lung, colorectal and relapsed lymphoma. The cytotoxic lesion of platinating agents is thought to be the platinum intrastrand crosslink that forms on DNA, although treatment activates a number of signal transduction pathways. Treatment with these agents is characterized by resistance, both acquired and intrinsic. This resistance can be caused by a number of cellular adaptations, including reduced uptake, inactivation by glutathione and other anti-oxidants, and increased levels of DNA repair or DNA tolerance. Here we investigate the pathways that treatment with platinating agents activate, the mechanisms of resistance, potential candidate genes involved in the development of resistance, and associated clinical toxicities. Although the purpose of this review is to provide an overview of cisplatin, carboplatin, and oxaliplatin, we have focused primarily on preclinical data that has clinical relevance generated over the past five years.
Collapse
Affiliation(s)
- Cara A Rabik
- Department of Medicine, Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, 5841 S. Maryland Avenue, Box MC2115, Section of Hem-Onc, Chicago, IL 60637, United States
| | | |
Collapse
|
43
|
|
44
|
Krutyakov VM. Eukaryotic error-prone DNA polymerases: The presumed roles in replication, repair, and mutagenesis. Mol Biol 2006. [DOI: 10.1134/s0026893306010018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Albertella MR, Green CM, Lehmann AR, O'Connor MJ. A role for polymerase eta in the cellular tolerance to cisplatin-induced damage. Cancer Res 2005; 65:9799-806. [PMID: 16267001 DOI: 10.1158/0008-5472.can-05-1095] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutation of the POLH gene encoding DNA polymerase eta (pol eta) causes the UV-sensitivity syndrome xeroderma pigmentosum-variant (XP-V) which is linked to the ability of pol eta to accurately bypass UV-induced cyclobutane pyrimidine dimers during a process termed translesion synthesis. Pol eta can also bypass other DNA damage adducts in vitro, including cisplatin-induced intrastrand adducts, although the physiological relevance of this is unknown. Here, we show that independent XP-V cell lines are dramatically more sensitive to cisplatin than the same cells complemented with functional pol eta. Similar results were obtained with the chemotherapeutic agents, carboplatin and oxaliplatin, thus revealing a general requirement for pol eta expression in providing tolerance to these platinum-based drugs. The level of sensitization observed was comparable to that of XP-A cells deficient in nucleotide excision repair, a recognized and important mechanism for repair of cisplatin adducts. However, unlike in XP-A cells, the absence of pol eta expression resulted in a reduced ability to overcome cisplatin-induced S phase arrest, suggesting that pol eta is involved in translesion synthesis past these replication-blocking adducts. Subcellular localization studies also highlighted an accumulation of nuclei with pol eta foci that correlated with the formation of monoubiquitinated proliferating cell nuclear antigen following treatment with cisplatin, reminiscent of the response to UV irradiation and further indicating a role for pol eta in dealing with cisplatin-induced damage. Together, these data show that pol eta represents an important determinant of cellular responses to cisplatin, which could have implications for acquired or intrinsic resistance to this key chemotherapeutic agent.
Collapse
|
46
|
Belousova EA, Rechkunova NI, Lavrik OI. Thermostable DNA polymerases can perform translesion synthesis using 8-oxoguanine and tetrahydrofuran-containing DNA templates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1764:97-104. [PMID: 16338185 DOI: 10.1016/j.bbapap.2005.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/31/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
The translesion synthesis (TLS) capacity of the thermostable DNA polymerases Taq, Tte and Tte-seq utilizing a synthetic abasic site, tetrahydrofuran (THF), and an 8-oxoguanine-containing DNA template was investigated. Measurements with human DNA polymerase beta were used as a "positive control". Thermostable DNA polymerases were observed to perform TLS with different specificities on both substrates. With a THF-containing template, dGMP was preferentially inserted by all the DNA polymerases. In the presence of Mn(II) as a cofactor, all the polymerases incorporated dCMP opposite 8-oxoguanine whereas, in the presence of Mg(II) ions, dAMP was incorporated. It was found that none of the thermophilic DNA polymerases utilized dTTP with either an 8-oxoguanine or a THF-containing template. In all cases, DNA duplex containing THF as damage was processed to full length less effectively than DNA duplex containing 8-oxoguanine.
Collapse
Affiliation(s)
- Ekaterina A Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentieva Prospect 8, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
47
|
Diggle CP, Bentley J, Knowles MA, Kiltie AE. Inhibition of double-strand break non-homologous end-joining by cisplatin adducts in human cell extracts. Nucleic Acids Res 2005; 33:2531-9. [PMID: 15872216 PMCID: PMC1088968 DOI: 10.1093/nar/gki528] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The effect of cis-diaminedichloroplatinum(II) (cisplatin) DNA damage on the repair of double-strand breaks by non-homologous end-joining (NHEJ) was determined using cell-free extracts. NHEJ was dramatically decreased when plasmid DNA was damaged to contain multiple types of DNA adducts, along the molecule and at the termini, by incubation of DNA with cisplatin; this was a cisplatin concentration-dependent effect. We investigated the effect a single GTG cisplatination site starting 10 bp from the DNA termini would have when surrounded by the regions of AT-rich DNA which were devoid of the major adduct target sequences. Cisplatination of a substrate containing short terminal 13-15 bp AT-rich sequences reduced NHEJ to a greater extent than that of a substrate with longer (31-33 bp) AT-rich sequences. However, cisplatination at the single GTG site within the AT sequence had no significant effect on NHEJ, owing to the influence of additional minor monoadduct and dinucleotide adduct sites within the AT-rich region and owing to the influence of cisplatination at sites upstream of the AT-rich regions. We then studied the effect on NHEJ of one cis-[Pt(NH3)2{d(GpTpG)-N7(1),-N7(3)} [abbreviated as 1,3-d(GpTpG)] cisplatin adduct in the entire DNA molecule, which is more reflective of the situation in vivo during concurrent chemoradiation. The presence of a single 1,3-d(GpTpG) cisplatin adduct 10 bases from each of the two DNA ends to be joined resulted in a small (30%) but significant decrease in NHEJ efficiency. This process, which was DNA-dependent protein kinase and Ku dependent, may in part explain the radiosensitizing effect of cisplatin administered during concurrent chemoradiation.
Collapse
Affiliation(s)
| | | | | | - A. E. Kiltie
- To whom correspondence should be addressed. Tel: +44 113 206 4908; Fax: +44 113 242 9886;
| |
Collapse
|
48
|
Boudsocq F, Benaim P, Canitrot Y, Knibiehler M, Ausseil F, Capp JP, Bieth A, Long C, David B, Shevelev I, Frierich-Heinecken E, Hübscher U, Amalric F, Massiot G, Hoffmann JS, Cazaux C. Modulation of cellular response to cisplatin by a novel inhibitor of DNA polymerase beta. Mol Pharmacol 2005; 67:1485-92. [PMID: 15703384 DOI: 10.1124/mol.104.001776] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA polymerase beta (Pol beta) is an error-prone enzyme whose up-regulation has been shown to be a genetic instability enhancer as well as a contributor to cisplatin resistance in tumor cells. In this work, we describe the isolation of new Pol beta inhibitors after high throughput screening of 8448 semipurified natural extracts. In vitro, the selected molecules affect specifically Pol beta-mediated DNA synthesis compared with replicative extracts from cell nuclei. One of them, masticadienonic acid (MA), is particularly attractive because it perturbs neither the activity of the purified replicative Pol delta nor that of nuclear HeLa cell extracts. With an IC50 value of 8 microM, MA is the most potent of the Pol beta inhibitors found so far. Docking simulation revealed that this molecule could substitute for single-strand DNA in the binding site of Pol beta by binding Lys35, Lys68, and Lys60, which are the main residues involved in the interaction Pol beta/single-strand DNA. Selected inhibitors also affect the Pol beta-mediated translesion synthesis (TLS) across cisplatin adducts; MA was still the most efficient. Therefore, masticadienonic acid sensitized the cisplatin-resistant 2008C13*5.25 human tumor cells. Our data suggest that molecules such as masticadienonic acid could be suitable in conjunction with cisplatin to enhance anticancer treatments.
Collapse
Affiliation(s)
- F Boudsocq
- Equipe Instabilité Génétique et Cancer, Institut de Pharmacologie et de Biologie Structurale, Unité Mixte Recherche Centre National de la Recherche Scientifique 5089, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Arana ME, Song L, Tanguy Le Gac N, Parris DS, Villani G, Boehmer PE. On the role of proofreading exonuclease in bypass of a 1,2 d(GpG) cisplatin adduct by the herpes simplex virus-1 DNA polymerase. DNA Repair (Amst) 2004; 3:659-69. [PMID: 15135733 DOI: 10.1016/j.dnarep.2004.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2004] [Indexed: 11/26/2022]
Abstract
UL30, the herpes simplex virus type-1 DNA polymerase, stalls at the base preceding a cisplatin crosslinked 1,2 d(GpG) dinucleotide and engages in a futile cycle of incorporation and excision by virtue of its 3'-5' exonuclease. Therefore, we examined the translesion synthesis (TLS) potential of an exonuclease-deficient UL30 (UL30D368A). We found that UL30D368A did not perform complete translesion synthesis but incorporated one nucleotide opposite the first base of the adduct. This addition was affected by the propensity of the enzyme to dissociate from the damaged template. Consequently, addition of the polymerase processivity factor, UL42, increased nucleotide incorporation opposite the lesion. The addition of Mn(2+), which was previously shown to support translesion synthesis by wild-type UL30, also enabled limited bypass of the adduct by UL30D368A. We show that the primer terminus opposite the crosslinked d(GpG) dinucleotide and at least three bases downstream of the lesion is unpaired and not extended by the enzyme. These data indicate that the primer terminus opposite the lesion may be sequestered into the exonuclease site of the enzyme. Consequently, elimination of exonuclease activity alone, without disrupting binding, is insufficient to permit bypass of a bulky lesion by this enzyme.
Collapse
Affiliation(s)
- Mercedes E Arana
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
50
|
Bassett E, King NM, Bryant MF, Hector S, Pendyala L, Chaney SG, Cordeiro-Stone M. The Role of DNA Polymerase η in Translesion Synthesis Past Platinum–DNA Adducts in Human Fibroblasts. Cancer Res 2004; 64:6469-75. [PMID: 15374956 DOI: 10.1158/0008-5472.can-04-1328] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cisplatin, a widely used chemotherapeutic agent, has been implicated in the induction of secondary tumors in cancer patients. This drug is presumed to be mutagenic because of error-prone translesion synthesis of cisplatin adducts in DNA. Oxaliplatin is effective in cisplatin-resistant tumors, but its mutagenicity in humans has not been reported. The polymerases involved in bypass of cisplatin and oxaliplatin adducts in vivo are not known. DNA polymerase eta is the most efficient polymerase for bypassing platinum adducts in vitro. We evaluated the role of polymerase eta in translesion synthesis past platinum adducts by determining cytotoxicity and induced mutation frequencies at the hypoxanthine guanine phosphoribosyltransferase (HPRT) locus in diploid human fibroblasts. Normal human fibroblasts (NHF1) were compared with xeroderma pigmentosum variant (XPV) cells (polymerase eta-null) after treatment with cisplatin. In addition, XPV cells complemented for polymerase eta expression were compared with the isogenic cells carrying the empty expression vector. Cytotoxicity and induced mutagenicity experiments were measured in parallel in UVC-irradiated fibroblasts. We found that equitoxic doses of cisplatin induced mutations in fibroblasts lacking polymerase eta at frequencies 2- to 2.5-fold higher than in fibroblasts with either normal or high levels of polymerase eta. These results indicate that polymerase eta is involved in error-free translesion synthesis past some cisplatin adducts. We also found that per lethal event, cisplatin was less mutagenic than UVC. Treatment with a wide range of cytotoxic doses of oxaliplatin did not induce mutations above background levels in cells either expressing or lacking polymerase eta, suggesting that oxaliplatin is nonmutagenic in human fibroblasts.
Collapse
Affiliation(s)
- Ekaterina Bassett
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7525, USA
| | | | | | | | | | | | | |
Collapse
|