1
|
Chakrabarti R, Wichmann C. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Int J Mol Sci 2019; 20:E2147. [PMID: 31052288 PMCID: PMC6539712 DOI: 10.3390/ijms20092147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
- Collaborative Research Center 1286 "Quantitative Synaptology", 37099 Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
2
|
Maddox JW, Khorsandi N, Gleason E. TRPC5 is required for the NO-dependent increase in dendritic Ca 2+ and GABA release from chick retinal amacrine cells. J Neurophysiol 2017; 119:262-273. [PMID: 28978766 DOI: 10.1152/jn.00500.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
GABAergic signaling from amacrine cells (ACs) is a fundamental aspect of visual signal processing in the inner retina. We have previously shown that nitric oxide (NO) can elicit release of GABA independently from activation of voltage-gated Ca2+ channels in cultured retinal ACs. This voltage-independent quantal GABA release relies on a Ca2+ influx mechanism with pharmacological characteristics consistent with the involvement of the transient receptor potential canonical (TRPC) channels TRPC4 and/or TRPC5. To determine the identity of these channels, we evaluated the ability of NO to elevate dendritic Ca2+ and to stimulate GABA release from cultured ACs under conditions known to alter the function of TRPC4 and 5. We found that these effects of NO are phospholipase C dependent, have a biphasic dependence on La3+, and are unaffected by moderate concentrations of the TRPC4-selective antagonist ML204. Together, these results suggest that NO promotes GABA release by activating TRPC5 channels in AC dendrites. To confirm a role for TRPC5, we knocked down the expression of TRPC5 using CRISPR/Cas9-mediated gene knockdown and found that both the NO-dependent Ca2+ elevations and increase in GABA release are dependent on the expression of TRPC5. These results demonstrate a novel NO-dependent mechanism for regulating neurotransmitter output from retinal ACs. NEW & NOTEWORTHY Elucidating the mechanisms regulating GABAergic synaptic transmission in the inner retina is key to understanding the flexibility of retinal ganglion cell output. Here, we demonstrate that nitric oxide (NO) can activate a transient receptor potential canonical 5 (TRPC5)-mediated Ca2+ influx, which is sufficient to drive vesicular GABA release from retinal amacrine cells. This NO-dependent mechanism can bypass the need for depolarization and may have an important role in processing the visual signal by enhancing retinal amacrine cell GABAergic inhibitory output.
Collapse
Affiliation(s)
- J Wesley Maddox
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana
| | - Nikka Khorsandi
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana
| |
Collapse
|
3
|
Krächan EG, Fischer AU, Franke J, Friauf E. Synaptic reliability and temporal precision are achieved via high quantal content and effective replenishment: auditory brainstem versus hippocampus. J Physiol 2017; 595:839-864. [PMID: 27673320 PMCID: PMC5285727 DOI: 10.1113/jp272799] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Auditory brainstem neurons involved in sound source localization are equipped with several morphological and molecular features that enable them to compute interaural level and time differences. As sound source localization works continually, synaptic transmission between these neurons should be reliable and temporally precise, even during sustained periods of high-frequency activity. Using patch-clamp recordings in acute brain slices, we compared synaptic reliability and temporal precision in the seconds-minute range between auditory and two types of hippocampal synapses; the latter are less confronted with temporally precise high-frequency transmission than the auditory ones. We found striking differences in synaptic properties (e.g. continually high quantal content) that allow auditory synapses to reliably release vesicles at much higher rate than their hippocampal counterparts. Thus, they are indefatigable and also in a position to transfer information with exquisite temporal precision and their performance appears to be supported by very efficient replenishment mechanisms. ABSTRACT At early stations of the auditory pathway, information is encoded by precise signal timing and rate. Auditory synapses must maintain the relative timing of events with submillisecond precision even during sustained and high-frequency stimulation. In non-auditory brain regions, e.g. telencephalic ones, synapses are activated at considerably lower frequencies. Central to understanding the heterogeneity of synaptic systems is the elucidation of the physical, chemical and biological factors that determine synapse performance. In this study, we used slice recordings from three synapse types in the mouse auditory brainstem and hippocampus. Whereas the auditory brainstem nuclei experience high-frequency activity in vivo, the hippocampal circuits are activated at much lower frequencies. We challenged the synapses with sustained high-frequency stimulation (up to 200 Hz for 60 s) and found significant performance differences. Our results show that auditory brainstem synapses differ considerably from their hippocampal counterparts in several aspects, namely resistance to synaptic fatigue, low failure rate and exquisite temporal precision. Their high-fidelity performance supports the functional demands and appears to be due to the large size of the readily releasable pool and a high release probability, which together result in a high quantal content. In conjunction with very efficient vesicle replenishment mechanisms, these properties provide extremely rapid and temporally precise signalling required for neuronal communication at early stations of the auditory system, even during sustained activation in the minute range.
Collapse
Affiliation(s)
- Elisa G Krächan
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Alexander U Fischer
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Jürgen Franke
- Chair for Applied Mathematical Statistics, Department of MathematicsUniversity of KaiserslauternD‐67663KaiserslauternGermany
| | - Eckhard Friauf
- Animal Physiology Group, Department of BiologyUniversity of KaiserslauternD‐67663KaiserslauternGermany
| |
Collapse
|
4
|
Moore-Dotson JM, Klein JS, Mazade RE, Eggers ED. Different types of retinal inhibition have distinct neurotransmitter release properties. J Neurophysiol 2015; 113:2078-90. [PMID: 25568157 DOI: 10.1152/jn.00447.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/06/2015] [Indexed: 01/27/2023] Open
Abstract
Neurotransmitter release varies between neurons due to differences in presynaptic mechanisms such as Ca(2+) sensitivity and timing. Retinal rod bipolar cells respond to brief dim illumination with prolonged glutamate release that is tuned by the differential release of GABA and glycine from amacrine cells in the inner retina. To test if differences among types of GABA and glycine release are due to inherent amacrine cell release properties, we directly activated amacrine cell neurotransmitter release by electrical stimulation. We found that the timing of electrically evoked inhibitory currents was inherently slow and that the timecourse of inhibition from slowest to fastest was GABAC receptors > glycine receptors > GABAA receptors. Deconvolution analysis showed that the distinct timing was due to differences in prolonged GABA and glycine release from amacrine cells. The timecourses of slow glycine release and GABA release onto GABAC receptors were reduced by Ca(2+) buffering with EGTA-AM and BAPTA-AM, but faster GABA release on GABAA receptors was not, suggesting that release onto GABAA receptors is tightly coupled to Ca(2+). The differential timing of GABA release was detected from spiking amacrine cells and not nonspiking A17 amacrine cells that form a reciprocal synapse with rod bipolar cells. Our results indicate that release from amacrine cells is inherently asynchronous and that the source of nonreciprocal rod bipolar cell inhibition differs between GABA receptors. The slow, differential timecourse of inhibition may be a mechanism to match the prolonged rod bipolar cell glutamate release and provide a way to temporally tune information across retinal pathways.
Collapse
Affiliation(s)
- Johnnie M Moore-Dotson
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| | - Justin S Klein
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| | - Reece E Mazade
- Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, Arizona
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona; and
| |
Collapse
|
5
|
Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data. Brain Res 2014; 1599:67-84. [PMID: 25527399 DOI: 10.1016/j.brainres.2014.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 11/22/2022]
Abstract
Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology.
Collapse
|
6
|
Freed MA, Liang Z. Synaptic noise is an information bottleneck in the inner retina during dynamic visual stimulation. J Physiol 2013; 592:635-51. [PMID: 24297850 DOI: 10.1113/jphysiol.2013.265744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In daylight, noise generated by cones determines the fidelity with which visual signals are initially encoded. Subsequent stages of visual processing require synapses from bipolar cells to ganglion cells, but whether these synapses generate a significant amount of noise was unknown. To characterize noise generated by these synapses, we recorded excitatory postsynaptic currents from mammalian retinal ganglion cells and subjected them to a computational noise analysis. The release of transmitter quanta at bipolar cell synapses contributed substantially to the noise variance found in the ganglion cell, causing a significant loss of fidelity from bipolar cell array to postsynaptic ganglion cell. Virtually all the remaining noise variance originated in the presynaptic circuit. Circuit noise had a frequency content similar to noise shared by ganglion cells but a very different frequency content from noise from bipolar cell synapses, indicating that these synapses constitute a source of independent noise not shared by ganglion cells. These findings contribute a picture of daylight retinal circuits where noise from cones and noise generated by synaptic transmission of cone signals significantly limit visual fidelity.
Collapse
Affiliation(s)
- Michael A Freed
- University of Pennsylvania, 123 Anatomy-Chemistry Building, Philadelphia, PA 19104-6058, USA.
| | | |
Collapse
|
7
|
Eggers ED, Klein JS, Moore-Dotson JM. Slow changes in Ca2(+) cause prolonged release from GABAergic retinal amacrine cells. J Neurophysiol 2013; 110:709-19. [PMID: 23657284 DOI: 10.1152/jn.00913.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The timing of neurotransmitter release from neurons can be modulated by many presynaptic mechanisms. The retina uses synaptic ribbons to mediate slow graded glutamate release from bipolar cells that carry photoreceptor inputs. However, many inhibitory amacrine cells, which modulate bipolar cell output, spike and do not have ribbons for graded release. Despite this, slow glutamate release from bipolar cells is modulated by slow GABAergic inputs that shorten the output of bipolar cells, changing the timing of visual signaling. The time course of light-evoked inhibition is slow due to a combination of receptor properties and prolonged neurotransmitter release. However, the light-evoked release of GABA requires activation of neurons upstream from the amacrine cells, so it is possible that prolonged release is due to slow amacrine cell activation, rather than slow inherent release properties of the amacrine cells. To test this idea, we directly activated primarily action potential-dependent amacrine cell inputs to bipolar cells with electrical stimulation. We found that the decay of GABAC receptor-mediated electrically evoked inhibitory currents was significantly longer than would be predicted by GABAC receptor kinetics, and GABA release, estimated by deconvolution analysis, was inherently slow. Release became more transient after increasing slow Ca(2+) buffering or blocking prolonged L-type Ca(2+) channels and Ca(2+) release from intracellular stores. Our results suggest that GABAergic amacrine cells have a prolonged buildup of Ca(2+) in their terminals that causes slow, asynchronous release. This could be a mechanism of matching the time course of amacrine cell inhibition to bipolar cell glutamate release.
Collapse
Affiliation(s)
- Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
8
|
Chiang CW, Chen YC, Lu JC, Hsiao YT, Chang CW, Huang PC, Chang YT, Chang PY, Wang CT. Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains. PLoS One 2012; 7:e47465. [PMID: 23091625 PMCID: PMC3472990 DOI: 10.1371/journal.pone.0047465] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/12/2012] [Indexed: 12/24/2022] Open
Abstract
Background In neonatal binocular animals, the developing retina displays patterned spontaneous activity termed retinal waves, which are initiated by a single class of interneurons (starburst amacrine cells, SACs) that release neurotransmitters. Although SACs are shown to regulate wave dynamics, little is known regarding how altering the proteins involved in neurotransmitter release may affect wave dynamics. Synaptotagmin (Syt) family harbors two Ca2+-binding domains (C2A and C2B) which serve as Ca2+ sensors in neurotransmitter release. However, it remains unclear whether SACs express any specific Syt isoform mediating retinal waves. Moreover, it is unknown how Ca2+ binding to C2A and C2B of Syt affects wave dynamics. Here, we investigated the expression of Syt I in the neonatal rat retina and examined the roles of C2A and C2B in regulating wave dynamics. Methodology/Principal Findings Immunostaining and confocal microscopy showed that Syt I was expressed in neonatal rat SACs and cholinergic synapses, consistent with its potential role as a Ca2+ sensor mediating retinal waves. By combining a horizontal electroporation strategy with the SAC-specific promoter, we specifically expressed Syt I mutants with weakened Ca2+-binding ability in C2A or C2B in SACs. Subsequent live Ca2+ imaging was used to monitor the effects of these molecular perturbations on wave-associated spontaneous Ca2+ transients. We found that targeted expression of Syt I C2A or C2B mutants in SACs significantly reduced the frequency, duration, and amplitude of wave-associated Ca2+ transients, suggesting that both C2 domains regulate wave temporal properties. In contrast, these C2 mutants had relatively minor effects on pairwise correlations over distance for wave-associated Ca2+ transients. Conclusions/Significance Through Ca2+ binding to C2A or C2B, the Ca2+ sensor Syt I in SACs may regulate patterned spontaneous activity to shape network activity during development. Hence, modulating the releasing machinery in presynaptic neurons (SACs) alters wave dynamics.
Collapse
Affiliation(s)
- Chung-Wei Chiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chieh Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Juu-Chin Lu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Yu-Tien Hsiao
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Che-Wei Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Pin-Chien Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Tzu Chang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Payne Y. Chang
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Chih-Tien Wang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Ortiz AN, Oien DB, Moskovitz J, Johnson MA. Quantification of reserve pool dopamine in methionine sulfoxide reductase A null mice. Neuroscience 2011; 177:223-9. [PMID: 21219974 DOI: 10.1016/j.neuroscience.2011.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/13/2010] [Accepted: 01/03/2011] [Indexed: 11/18/2022]
Abstract
Methionine sulfoxide reductase A knockout (MsrA-/-) mice, which serve as a potential model for neurodegeneration, suffer from increased oxidative stress and have previously been found to have chronically elevated brain dopamine (DA) content levels relative to control mice. Additionally, these high levels parallel the increased presynaptic DA release. In this study, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to quantify striatal reserve pool DA in knockout mice and wild-type control mice. Reserve pool DA efflux, induced by amphetamine (AMPH), was measured in brain slices from knockout and wild type (WT) mice in the presence of α-methyl-p-tyrosine, a DA synthesis inhibitor. Additionally, the stimulated release of reserve pool DA, mobilized by cocaine (COC), was measured. Both efflux and stimulated release measurements were enhanced in slices from knockout mice, suggesting that these mice have greater reserve pool DA stores than wild-type and that these stores are effectively mobilized. Moreover, dopamine transporter (DAT) labeling data indicate that the difference in measured DA efflux was likely not caused by altered DAT protein expression. Additionally, slices from MsrA-/- and wild-type mice were equally responsive to increasing extracellular calcium concentrations, suggesting that potential differences in either calcium entry or intracellular calcium handling are not responsible for increased reserve pool DA release. Collectively, these results demonstrate that MsrA-/- knockout mice maintain a larger DA reserve pool than wild-type control mice, and that this pool is readily mobilized.
Collapse
Affiliation(s)
- A N Ortiz
- Department of Chemistry and R. N. Adams Institute of Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
10
|
Ke JB, Chen W, Yang XL, Wang Z. Characterization of spontaneous inhibitory postsynaptic currents in cultured rat retinal amacrine cells. Neuroscience 2010; 165:395-407. [DOI: 10.1016/j.neuroscience.2009.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/04/2009] [Indexed: 11/29/2022]
|
11
|
Wang X, Pinter MJ, Rich MM. Ca2+ dependence of the binomial parameters p and n at the mouse neuromuscular junction. J Neurophysiol 2009; 103:659-66. [PMID: 19939953 DOI: 10.1152/jn.00708.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca(2+) dependence of synaptic quantal release is generally thought to be restricted to probability of vesicular release. However, some studies have suggested that the number of release sites (n) at the neuromuscular junction (NMJ) is also Ca(2+) dependent. In this study, we recorded endplate currents over a wide range of extracellular Ca(2+) concentrations and found the expected Ca(2+) dependency of release. A graphical technique was used to estimate p (probability of release) and n using standard binomial assumptions. The results suggested n was Ca(2+) dependent. The data were simulated using compound binomial statistics with variable n (Ca(2+) dependent) or fixed n (Ca(2+) independent). With fixed n, successful simulation of increasing Ca(2+) required that p increase abruptly at some sites from very low to high values. Successful simulation with variable n required the introduction of previously silent release sites (p = 0) with high values of p. Thus the success of both simulations required abrupt, large increases of p at a subset of release sites with initially low or zero p. Estimates of the time course of release obtained by deconvolving evoked endplate currents with average miniature endplate currents decreased slightly as Ca(2+) increased, thus arguing against sequential release of multiple quanta at higher Ca(2+) levels. Our results suggest that the apparent Ca(2+) dependence of n at the NMJ can be explained by an underlying Ca(2+) dependence of a spatially variable p such that p increases abruptly at a subset of sites as Ca(2+) is increased.
Collapse
Affiliation(s)
- Xueyong Wang
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio 45435, USA
| | | | | |
Collapse
|
12
|
Wittig JH, Parsons TD. Synaptic ribbon enables temporal precision of hair cell afferent synapse by increasing the number of readily releasable vesicles: a modeling study. J Neurophysiol 2008; 100:1724-39. [PMID: 18667546 DOI: 10.1152/jn.90322.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic ribbons are classically associated with mediating indefatigable neurotransmitter release by sensory neurons that encode persistent stimuli. Yet when hair cells lack anchored ribbons, the temporal precision of vesicle fusion and auditory nerve discharges are degraded. A rarified statistical model predicted increasing precision of first-exocytosis latency with the number of readily releasable vesicles. We developed an experimentally constrained biophysical model to test the hypothesis that ribbons enable temporally precise exocytosis by increasing the readily releasable pool size. Simulations of calcium influx, buffered calcium diffusion, and synaptic vesicle exocytosis were stochastic (Monte Carlo) and yielded spatiotemporal distributions of vesicle fusion consistent with experimental measurements of exocytosis magnitude and first-spike latency of nerve fibers. No single vesicle could drive the auditory nerve with requisite precision, indicating a requirement for multiple readily releasable vesicles. However, plasmalemma-docked vesicles alone did not account for the nerve's precision--the synaptic ribbon was required to retain a pool of readily releasable vesicles sufficiently large to statistically ensure first-exocytosis latency was both short and reproducible. The model predicted that at least 16 readily releasable vesicles were necessary to match the nerve's precision and provided insight into interspecies differences in synaptic anatomy and physiology. We confirmed that ribbon-associated vesicles were required in disparate calcium buffer conditions, irrespective of the number of vesicles required to trigger an action potential. We conclude that one of the simplest functions ascribable to the ribbon--the ability to hold docked vesicles at an active zone--accounts for the synapse's temporal precision.
Collapse
Affiliation(s)
- John H Wittig
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 382 West Street Road, Kennett Square, PA 19348, USA
| | | |
Collapse
|
13
|
Sakaba T. Two Ca(2+)-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal. Neuron 2008; 57:406-19. [PMID: 18255033 DOI: 10.1016/j.neuron.2007.11.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 09/23/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
Cerebellar basket cells inhibit postsynaptic Purkinje cells in a rapid and precise manner. To investigate the mechanisms of transmitter release underlying this rapid inhibition, Ca(2+) uncaging was employed to measure the intracellular Ca(2+) dependence of transmitter release and the kinetics of synaptic vesicle pool transitions in immature basket cell synapses at room temperature. Vesicle release properties distinct from those previously observed at excitatory synapses were seen, including a relatively high intracellular Ca(2+) sensitivity of vesicle fusion, rapid vesicle pool mobilization with few reluctant vesicles, and vesicle replenishment driven by unusually high Ca(2+) levels from both local and residual Ca(2+) sources during action potential trains. These results suggest that inhibitory basket cell synapses are optimized for rapid and precise temporal and spatial Ca(2+) coordination of synaptic vesicle fusion and replenishment, which may contribute to the unique physiology of inhibitory synaptic transmission, including phasic release during action potential trains and tonic release by residual intracellular Ca(2+).
Collapse
Affiliation(s)
- Takeshi Sakaba
- Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
14
|
Postlethwaite M, Hennig MH, Steinert JR, Graham BP, Forsythe ID. Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of Held. J Physiol 2007; 579:69-84. [PMID: 17138605 PMCID: PMC2075387 DOI: 10.1113/jphysiol.2006.123612] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/31/2006] [Accepted: 11/27/2006] [Indexed: 11/08/2022] Open
Abstract
It is well established that synaptic transmission declines at temperatures below physiological, but many in vitro studies are conducted at lower temperatures. Recent evidence suggests that temperature-dependent changes in presynaptic mechanisms remain in overall equilibrium and have little effect on transmitter release at low transmission frequencies. Our objective was to examine the postsynaptic effects of temperature. Whole-cell patch-clamp recordings from principal neurons in the medial nucleus of the trapezoid body showed that a rise from 25 degrees C to 35 degrees C increased miniature EPSC (mEPSC) amplitude from -33 +/- 2.3 to -46 +/- 5.7 pA (n=6) and accelerated mEPSC kinetics. Evoked EPSC amplitude increased from -3.14 +/- 0.59 to -4.15 +/- 0.73 nA with the fast decay time constant accelerating from 0.75 +/- 0.09 ms at 25 degrees C to 0.56 +/- 0.08 ms at 35 degrees C. Direct application of glutamate produced currents which similarly increased in amplitude from -0.76 +/- 0.10 nA at 25 degrees C to -1.11 +/- 0.19 nA 35 degrees C. Kinetic modelling of fast AMPA receptors showed that a temperature-dependent scaling of all reaction rate constants by a single multiplicative factor (Q10=2.4) drives AMPA channels with multiple subconductances into the higher-conducting states at higher temperature. Furthermore, Monte Carlo simulation and deconvolution analysis of transmission at the calyx of Held showed that this acceleration of the receptor kinetics explained the temperature dependence of both the mEPSC and evoked EPSC. We propose that acceleration in postsynaptic AMPA receptor kinetics, rather than altered presynaptic release, is the primary mechanism by which temperature changes alter synaptic responses at low frequencies.
Collapse
Affiliation(s)
- M Postlethwaite
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
15
|
Warrier A, Borges S, Dalcino D, Walters C, Wilson M. Calcium From Internal Stores Triggers GABA Release From Retinal Amacrine Cells. J Neurophysiol 2005; 94:4196-208. [PMID: 16293593 DOI: 10.1152/jn.00604.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca2+ that promotes transmitter release is generally thought to enter presynaptic terminals through voltage-gated Ca2+channels. Using electrophysiology and Ca2+ imaging, we show that, in amacrine cell dendrites, at least some of the Ca2+ that triggers transmitter release comes from endoplasmic reticulum Ca2+ stores. We show that both inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) are present in these dendrites and both participate in the elevation of cytoplasmic [Ca2+] during the brief depolarization of a dendrite. Only the Ca2+ released through IP3Rs, however, seems to promote the release of transmitter. Antagonists for the IP3R reduced transmitter release, whereas RyR blockers had no effect. Application of an agonist for metabotropic glutamate receptor, known to liberate Ca2+ from internal stores, enhanced both spontaneous and evoked transmitter release.
Collapse
Affiliation(s)
- Ajithkumar Warrier
- Section of Neurobiology, Physiology and Behavior, Division of Biological Sciences, University of California, Davis, 95616, USA
| | | | | | | | | |
Collapse
|
16
|
Vigh J, Lasater EM. L-type calcium channels mediate transmitter release in isolated,
wide-field retinal amacrine cells. Vis Neurosci 2004; 21:129-34. [PMID: 15259564 DOI: 10.1017/s095252380404204x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transmitter release in neurons is triggered by intracellular
Ca2+ increase via the opening of voltage-gated
Ca2+ channels. Here we investigated the voltage-gated
Ca2+ channels in wide-field amacrine cells (WFACs) isolated
from the white-bass retina that are functionally coupled to transmitter
release. We monitored transmitter release through the measurement of
the membrane capacitance (Cm). We found
that 500-ms long depolarizations of WFACs from −70 mV to 0 mV
elicited about a 6% transient increase in the
Cm or membrane surface area. This
Cm jump could be eliminated either by
intracellular perfusion with 10 mM BAPTA or by extracellular
application of 4 mM cobalt. WFACs possess N-type and L-type
voltage-gated Ca2+ channels. Depolarization-evoked
Cm increases were unaffected by the
specific N-type channel blocker ω-conotoxin GVIA, but they were
markedly reduced by the L-type blocker diltiazem, suggesting a role for
the L-type channel in synaptic transmission. Further supporting this
notion, in WFACs the synaptic protein syntaxin always colocalized with
the pore-forming subunit of the retinal specific L-type channels
(CaV1.4 or α1F), but never with that of the N-type
channels (CaV2.2 or α1B).
Collapse
Affiliation(s)
- Jozsef Vigh
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Health Sciences Center, Salt Lake City 84132, USA
| | | |
Collapse
|
17
|
Bekkers JM. Convolution of mini distributions for fitting evoked synaptic amplitude histograms. J Neurosci Methods 2004; 130:105-14. [PMID: 14667540 DOI: 10.1016/j.jneumeth.2003.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
According to a basic formulation of the quantal model, evoked synaptic currents are made up of a linear summation of uniquantal synaptic currents, which in turn are equivalent to the spontaneous miniature synaptic currents ('minis') that often persist when evoked neurotransmitter release is blocked. Here I describe a convolution method for calculating linear summations of the 'mini' amplitude distribution, which can then be fitted to the measured amplitude distribution for evoked synaptic currents. Provided certain conditions are satisfied, this method can give information about the statistics of neurotransmitter release even when clear quantal peaks are not apparent in the evoked amplitude distribution. The method is illustrated by an experiment in which the appropriate minis are identified with the asynchronous excitatory postsynaptic currents that follow synaptic stimulation when the cell is bathed in strontium. Finally, I discuss the assumptions behind the convolution method, and the conditions under which the properties of the minis are likely to be appropriate for an analysis of this type.
Collapse
Affiliation(s)
- John M Bekkers
- Division of Neuroscience, John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
18
|
Axmacher N, Stemmler M, Engel D, Draguhn A, Ritz R. Transmitter Metabolism as a Mechanism of Synaptic Plasticity: A Modeling Study. J Neurophysiol 2004; 91:25-39. [PMID: 13679396 DOI: 10.1152/jn.00797.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nervous system adapts to experience by changes in synaptic strength. The mechanisms of synaptic plasticity include changes in the probability of transmitter release and in postsynaptic responsiveness. Experimental and neuropharmacological evidence points toward a third variable in synaptic efficacy: changes in presynaptic transmitter concentration. Several groups, including our own, have reported changes in the amplitude and frequency of postsynaptic (miniature) events indicating that alterations in transmitter content cause alterations in vesicular transmitter content and vesicle dynamics. It is, however, not a priori clear how transmitter metabolism will affect vesicular transmitter content and how this in turn will affect pre- and postsynaptic functions. We therefore have constructed a model of the presynaptic terminal incorporating vesicular transmitter loading and the presynaptic vesicle cycle. We hypothesize that the experimentally observed synaptic plasticity after changes in transmitter metabolism puts predictable restrictions on vesicle loading, cytoplasmic–vesicular transmitter concentration gradient, and on vesicular cycling or release. The results of our model depend on the specific mechanism linking presynaptic transmitter concentration to vesicular dynamics, that is, alteration of vesicle maturation or alteration of release. It also makes a difference whether differentially filled vesicles are detected and differentially processed within the terminal or whether vesicle filling acts back onto the terminal by presynaptic autoreceptors. Therefore, the model allows one to decide, at a given synapse, how transmitter metabolism is linked to presynaptic function and efficacy.
Collapse
Affiliation(s)
- Nikolai Axmacher
- Johannes-Müller-Institut für Physiologie, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Neher E, Sakaba T. Combining deconvolution and fluctuation analysis to determine quantal parameters and release rates. J Neurosci Methods 2003; 130:143-57. [PMID: 14667543 DOI: 10.1016/j.jneumeth.2003.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Analysis methods are described which integrate information from fluctuation analysis with that from deconvolution. Together the two approaches allow to derive a consistent quantitative description of quantal release (both evoked, spontaneous and asynchronous) under conditions in which quantal parameters may change during a repetitively applied stimulation protocol. Specifically, our methods take into account the effects of accumulating transmitter in the synaptic cleft and postsynaptic receptor desensitization, which may develop during strong stimulation. Several ways to handle non-stationarities are described. Examples are provided for the Calyx of Held, a glutamatergic synapse, in which both the pre- and the postsynaptic compartments can be voltage-clamped.
Collapse
Affiliation(s)
- Erwin Neher
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | |
Collapse
|
20
|
Abstract
Depletion and replenishment of pools of synaptic vesicles are important determinants of short-term synaptic plasticity, but the underlying molecular mechanisms are not yet clear. As a first step toward understanding the process of vesicle recruitment, we have applied various specific agents directly to the presynaptic terminal of the calyx of Held synapse. Here we show that the nonhydrolyzable ATP analog ATP-gammaS retards the recovery from vesicle pool depletion, as does latrunculin A. Phalloidin has no effects on recovery, suggesting that dynamic actin reorganization is not necessary. Unexpectedly, neither N-ethylmaleimide nor staurosporine affected the recovery, calling into question the role of N-ethylmaleimide-sensitive factor and protein kinases. The results suggest that intact actin polymerization is involved in vesicle recruitment.
Collapse
|
21
|
Sakaba T, Neher E. Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse. J Neurosci 2003; 23:837-46. [PMID: 12574412 PMCID: PMC6741913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Depletion and replenishment of pools of synaptic vesicles are important determinants of short-term synaptic plasticity, but the underlying molecular mechanisms are not yet clear. As a first step toward understanding the process of vesicle recruitment, we have applied various specific agents directly to the presynaptic terminal of the calyx of Held synapse. Here we show that the nonhydrolyzable ATP analog ATP-gammaS retards the recovery from vesicle pool depletion, as does latrunculin A. Phalloidin has no effects on recovery, suggesting that dynamic actin reorganization is not necessary. Unexpectedly, neither N-ethylmaleimide nor staurosporine affected the recovery, calling into question the role of N-ethylmaleimide-sensitive factor and protein kinases. The results suggest that intact actin polymerization is involved in vesicle recruitment.
Collapse
Affiliation(s)
- Takeshi Sakaba
- Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, D-37077, Germany
| | | |
Collapse
|
22
|
Rich MM, Wang X, Cope TC, Pinter MJ. Reduced neuromuscular quantal content with normal synaptic release time course and depression in canine motor neuron disease. J Neurophysiol 2002; 88:3305-14. [PMID: 12466448 DOI: 10.1152/jn.00271.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hereditary canine spinal muscular atrophy is an autosomal dominant version of motor neuron disease in which motor units exhibit extensive dysfunction before motor terminal or axonal degeneration appear. We showed in a previous paper that motor endplate currents (EPCs) are reduced and that failures of nerve-evoked EPCs appear in the homozygote medial gastrocnemius (MG) muscle in which failing motor units are also found, suggesting a presynaptic deficit of ACh release. To examine this further, we performed a detailed analysis of synaptic release properties in the MG muscle of homozygotes and compared the results with data from genetically normal control animals. We found that the amplitude of miniature EPCs (mEPC) did not differ between homozygote and normal synapses, indicating that quantal content is reduced at homozygote motor terminals. Consistent with this, deconvolution analysis showed that the maximum release rates at homozygote motor terminals were significantly reduced relative to normal. This analysis also demonstrated that the time course of quantal release at homozygote synapses did not differ from normal. The extent of quantal release depression during high-frequency activation in homozygotes did not differ from normal despite the significant reduction of quantal content and maximum release rate. Surprisingly, the absolute amount of posttetanic potentiation was not decreased at homozygotes motor terminals despite the differences in quantal content. We conclude that failure of homozygote motor unit force during repetitive activity is due to a unique combination of low quantal content and normal release depression and suggest that the primary deficit in homozygote motor terminals is a reduced supply of readily releasable quanta.
Collapse
Affiliation(s)
- Mark M Rich
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Synaptic transmission is a dynamic process. Postsynaptic responses wax and wane as presynaptic activity evolves. This prominent characteristic of chemical synaptic transmission is a crucial determinant of the response properties of synapses and, in turn, of the stimulus properties selected by neural networks and of the patterns of activity generated by those networks. This review focuses on synaptic changes that result from prior activity in the synapse under study, and is restricted to short-term effects that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation, augmentation, and post-tetanic potentiation, are usually attributed to effects of a residual elevation in presynaptic [Ca(2+)]i, acting on one or more molecular targets that appear to be distinct from the secretory trigger responsible for fast exocytosis and phasic release of transmitter to single action potentials. We discuss the evidence for this hypothesis, and the origins of the different kinetic phases of synaptic enhancement, as well as the interpretation of statistical changes in transmitter release and roles played by other factors such as alterations in presynaptic Ca(2+) influx or postsynaptic levels of [Ca(2+)]i. Synaptic depression dominates enhancement at many synapses. Depression is usually attributed to depletion of some pool of readily releasable vesicles, and various forms of the depletion model are discussed. Depression can also arise from feedback activation of presynaptic receptors and from postsynaptic processes such as receptor desensitization. In addition, glial-neuronal interactions can contribute to short-term synaptic plasticity. Finally, we summarize the recent literature on putative molecular players in synaptic plasticity and the effects of genetic manipulations and other modulatory influences.
Collapse
Affiliation(s)
- Robert S Zucker
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
24
|
Abstract
We survey the primary roles of calcium in retinal function, including photoreceptor transduction, transmitter release by different classes of retinal neuron, calcium-mediated regulation of gap-junctional conductance, activation of certain voltage-gated channels for K+ and Cl-, and modulation of postsynaptic potentials in retinal ganglion cells. We discuss three mechanisms for changing [Ca2+]i, which include flux through voltage-gated calcium channels, through ligand-gated channels, and by release from stores. The neuromodulatory pathways affecting each of these routes of entry are considered. The many neuromodulatory mechanisms in which calcium is a player are described and their effects upon retinal function discussed.
Collapse
Affiliation(s)
- Abram Akopian
- Department of Ophthalmology, New York University School of Medicine, New York University Medical Center, New York 10016, USA.
| | | |
Collapse
|
25
|
Leitinger G, Simmons PJ. The organization of synaptic vesicles at tonically transmitting connections of locust visual interneurons. JOURNAL OF NEUROBIOLOGY 2002; 50:93-105. [PMID: 11793357 DOI: 10.1002/neu.10018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Large, second-order neurons of locust ocelli, or L-neurons, make some output connections that transmit small changes in membrane potential and can sustain transmission tonically. The synaptic connections are made from the axons of L-neurons in the lateral ocellar tracts, and are characterized by bar-shaped presynaptic densities and densely packed clouds of vesicles near to the cell membrane. A cloud of vesicles can extend much of the length of this synaptic zone, and there is no border between the vesicles that are associated with neighboring presynaptic densities. In some axons, presynaptic densities are associated with discrete small clusters of vesicles. Up to 6% of the volume of a length of axon in a synaptic zone can be occupied with a vesicle cloud, packed with 4.5 to 5.5 thousand vesicles per microm(3). Presynaptic densities vary in length, from less than 70 nm to 1.5 microm, with shorter presynaptic densities being most frequent. The distribution of vesicles around short presynaptic densities was indistinguishable from that around long presynaptic densities, and vesicles were distributed in a similar way right along the length of a presynaptic density. Within the cytoplasm, vesicles are homogeneously distributed within a cloud. We found no differences in the distribution of vesicles in clouds between locusts that had been dark-adapted and locusts that had been light-adapted before fixation.
Collapse
Affiliation(s)
- Gerd Leitinger
- Department of Neuroscience, University of Newcastle upon Tyne, The Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
26
|
Abstract
A method is presented that allows one to estimate transmitter release rates from fluctuations of postsynaptic current records under conditions of stationary or slowly varying release. For experimental applications, we used the calyx of Held, a glutamatergic synapse, in which "residual current," i.e., current attributable to residual glutamate in the synaptic cleft, is present. For a characterization of synaptic transmission, several postsynaptic parameters, such as the mean amplitude of the miniature postsynaptic current and an apparent single channel conductance, have to be known. These were obtained by evaluating variance and two more higher moments of the current fluctuations. In agreement with Fesce et al. (1986), we found both by simulations and by analyzing experimental records that high-pass filtering of postsynaptic currents renders the estimates remarkably tolerant against nonstationarities. We also found that release rates and postsynaptic parameters can be reliably obtained when release rates are low ( approximately 10 events/msec). Furthermore, during a long-lasting stimulus, the transmitter release at the calyx of Held was found to decay to a low, stationary rate of 10 events/msec after depletion of the "releasable pool" of synaptic vesicles. This stationary release rate is compatible with the expected rate of recruitment of new vesicles to the release-ready pool of vesicles. MiniatureEPSC (mEPSC) size is estimated to be similar to the value of spontaneously occurring mEPSC under this condition.
Collapse
|
27
|
Neher E, Sakaba T. Estimating transmitter release rates from postsynaptic current fluctuations. J Neurosci 2001; 21:9638-54. [PMID: 11739574 PMCID: PMC6763024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
A method is presented that allows one to estimate transmitter release rates from fluctuations of postsynaptic current records under conditions of stationary or slowly varying release. For experimental applications, we used the calyx of Held, a glutamatergic synapse, in which "residual current," i.e., current attributable to residual glutamate in the synaptic cleft, is present. For a characterization of synaptic transmission, several postsynaptic parameters, such as the mean amplitude of the miniature postsynaptic current and an apparent single channel conductance, have to be known. These were obtained by evaluating variance and two more higher moments of the current fluctuations. In agreement with Fesce et al. (1986), we found both by simulations and by analyzing experimental records that high-pass filtering of postsynaptic currents renders the estimates remarkably tolerant against nonstationarities. We also found that release rates and postsynaptic parameters can be reliably obtained when release rates are low ( approximately 10 events/msec). Furthermore, during a long-lasting stimulus, the transmitter release at the calyx of Held was found to decay to a low, stationary rate of 10 events/msec after depletion of the "releasable pool" of synaptic vesicles. This stationary release rate is compatible with the expected rate of recruitment of new vesicles to the release-ready pool of vesicles. MiniatureEPSC (mEPSC) size is estimated to be similar to the value of spontaneously occurring mEPSC under this condition.
Collapse
Affiliation(s)
- E Neher
- Max Planck Institute for Biophysical Chemistry, Department of Membrane Biophysics, D-37077 Göttingen, Germany.
| | | |
Collapse
|
28
|
Heidelberger R. Electrophysiological approaches to the study of neuronal exocytosis and synaptic vesicle dynamics. Rev Physiol Biochem Pharmacol 2001; 143:1-80. [PMID: 11428263 DOI: 10.1007/bfb0115592] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- R Heidelberger
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, University of Texas, Houston Health Science Center, Houston, Texas 77025, USA
| |
Collapse
|
29
|
Abstract
A newly developed deconvolution method (Neher and Sakaba, 2001) allowed us to resolve the time course of neurotransmitter release at the calyx of Held synapse and to quantify some basic aspects of transmitter release. First, we identified a readily releasable pool (RRP) of synaptic vesicles. We found that the size of the RRP, when tested with trains of strong stimuli, was constant regardless of the exact stimulus patterns, if stimuli were confined to a time interval of approximately 60 msec. For longer-lasting stimulus patterns, recruitment of new vesicles to the RRP made a substantial contribution to the total release. Second, the cooperativity of transmitter release as a function of Ca(2+) current was estimated to be 3-4, which confirmed previous results (Borst and Sakmann, 1999; Wu et al., 1999). Third, an initial small Ca(2+) influx increased the efficiency of Ca(2+) currents in subsequent transmitter release. This type of facilitation was blocked by a high concentration of EGTA (0.5 mm). Fourth, the release rates of synaptic vesicles at this synapse turned out to be heterogeneous: once a highly Ca(2+)-sensitive population of vesicles was consumed, the remaining vesicles released at lower rates. These components of release were more clearly separated in the presence of 0.5 mm EGTA, which prevented the buildup of residual Ca(2+). Conversely, raising the extracellular Ca(2+) concentration facilitated the slower population such that its release characteristics became more similar to those of the faster population under standard conditions. Heterogeneous release probabilities are expected to support the maintenance of synaptic transmission during high-frequency stimulation.
Collapse
|
30
|
Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of held. J Neurosci 2001. [PMID: 11160425 DOI: 10.1523/jneurosci.21-02-00444.2001] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The deconvolution method has been used in the past to estimate release rates of synaptic vesicles, but it cannot be applied to synapses where nonlinear interactions of quanta occur. We have extended this method to take into account a nonlinear current component resulting from the delayed clearance of glutamate from the synaptic cleft. We applied it to the calyx of Held and verified the important assumption of constant miniature EPSC (mEPSC) size by combining deconvolution with a variant of nonstationary fluctuation analysis. We found that amplitudes of mEPSCs decreased strongly after extended synaptic activity. Cyclothiazide (CTZ), an inhibitor of glutamate receptor desensitization, eliminated this reduction, suggesting that postsynaptic receptor desensitization occurs during strong synaptic activity at the calyx of Held. Constant mEPSC sizes could be obtained in the presence of CTZ and kynurenic acid (Kyn), a low-affinity blocker of AMPA-receptor channels. CTZ and Kyn prevented postsynaptic receptor desensitization and saturation and also minimized voltage-clamp errors. Therefore, we conclude that in the presence of these drugs, release rates at the calyx of Held can be reliably estimated over a wide range of conditions. Moreover, the method presented should provide a convenient way to study the kinetics of transmitter release at other synapses.
Collapse
|
31
|
Sun JY, Wu LG. Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 2001; 30:171-82. [PMID: 11343653 DOI: 10.1016/s0896-6273(01)00271-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The rate of release from nerve terminals depends on both the number of release sites and the rate of release at each site. The latter remains largely unknown at central synapses. We addressed this issue by simultaneously measuring the nerve terminal membrane capacitance and the postsynaptic current at single calyceal synapses in rat brainstem. We found that a 10 ms presynaptic step depolarization depleted a releasable pool containing 3300-5200 vesicles. Released vesicles were endocytosed with a time constant of a few seconds to tens of seconds. Release of only one third of this pool saturated both postsynaptic AMPA and NMDA receptors. A release site can release more than three vesicles in 10 ms (>300 vesicles per second). We conclude that both a large number of release sites and a fast release rate at each site enable synapses to release at a high rate.
Collapse
Affiliation(s)
- J Y Sun
- Department of Anesthesiology, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|
32
|
Sakaba T, Neher E. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse. J Neurosci 2001; 21:462-76. [PMID: 11160426 PMCID: PMC6763832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
A newly developed deconvolution method (Neher and Sakaba, 2001) allowed us to resolve the time course of neurotransmitter release at the calyx of Held synapse and to quantify some basic aspects of transmitter release. First, we identified a readily releasable pool (RRP) of synaptic vesicles. We found that the size of the RRP, when tested with trains of strong stimuli, was constant regardless of the exact stimulus patterns, if stimuli were confined to a time interval of approximately 60 msec. For longer-lasting stimulus patterns, recruitment of new vesicles to the RRP made a substantial contribution to the total release. Second, the cooperativity of transmitter release as a function of Ca(2+) current was estimated to be 3-4, which confirmed previous results (Borst and Sakmann, 1999; Wu et al., 1999). Third, an initial small Ca(2+) influx increased the efficiency of Ca(2+) currents in subsequent transmitter release. This type of facilitation was blocked by a high concentration of EGTA (0.5 mm). Fourth, the release rates of synaptic vesicles at this synapse turned out to be heterogeneous: once a highly Ca(2+)-sensitive population of vesicles was consumed, the remaining vesicles released at lower rates. These components of release were more clearly separated in the presence of 0.5 mm EGTA, which prevented the buildup of residual Ca(2+). Conversely, raising the extracellular Ca(2+) concentration facilitated the slower population such that its release characteristics became more similar to those of the faster population under standard conditions. Heterogeneous release probabilities are expected to support the maintenance of synaptic transmission during high-frequency stimulation.
Collapse
Affiliation(s)
- T Sakaba
- Max-Planck-Institute for Biophysical Chemistry, Department of Membrane Biophysics, D-37077, Göttingen, Germany
| | | |
Collapse
|
33
|
Neher E, Sakaba T. Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of held. J Neurosci 2001; 21:444-61. [PMID: 11160425 PMCID: PMC6763797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The deconvolution method has been used in the past to estimate release rates of synaptic vesicles, but it cannot be applied to synapses where nonlinear interactions of quanta occur. We have extended this method to take into account a nonlinear current component resulting from the delayed clearance of glutamate from the synaptic cleft. We applied it to the calyx of Held and verified the important assumption of constant miniature EPSC (mEPSC) size by combining deconvolution with a variant of nonstationary fluctuation analysis. We found that amplitudes of mEPSCs decreased strongly after extended synaptic activity. Cyclothiazide (CTZ), an inhibitor of glutamate receptor desensitization, eliminated this reduction, suggesting that postsynaptic receptor desensitization occurs during strong synaptic activity at the calyx of Held. Constant mEPSC sizes could be obtained in the presence of CTZ and kynurenic acid (Kyn), a low-affinity blocker of AMPA-receptor channels. CTZ and Kyn prevented postsynaptic receptor desensitization and saturation and also minimized voltage-clamp errors. Therefore, we conclude that in the presence of these drugs, release rates at the calyx of Held can be reliably estimated over a wide range of conditions. Moreover, the method presented should provide a convenient way to study the kinetics of transmitter release at other synapses.
Collapse
Affiliation(s)
- E Neher
- Max-Planck-Institute for Biophysical Chemistry, Department of Membrane Biophysics, D-37077, Göttingen, Germany
| | | |
Collapse
|
34
|
Masland RH, Raviola E. Confronting complexity: strategies for understanding the microcircuitry of the retina. Annu Rev Neurosci 2000; 23:249-84. [PMID: 10845065 DOI: 10.1146/annurev.neuro.23.1.249] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mammalian retina contains upward of 50 distinct functional elements, each carrying out a specific task. Such diversity is not rare in the central nervous system, but the retina is privileged because its physical location, the distinctive morphology of its neurons, the regularity of its architecture, and the accessibility of its inputs and outputs permit a unique variety of experiments. Recent strategies for confronting the retina's complexity attempt to marry genetic approaches to new kinds of anatomical and electrophysiological techniques.
Collapse
Affiliation(s)
- R H Masland
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston 02114, USA.
| | | |
Collapse
|
35
|
Chvanov MA, Boychuk YA, Melnick IV, Belan PV, Kostyuk PG. Distributions of interevent intervals for miniature inhibitory and excitatory postsynaptic currents in cultured hippocampal neurons. NEUROPHYSIOLOGY+ 2000. [DOI: 10.1007/bf02506552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Steffensen SC, Henriksen SJ, Wilson MC. Transgenic rescue of SNAP-25 restores dopamine-modulated synaptic transmission in the coloboma mutant. Brain Res 1999; 847:186-95. [PMID: 10575087 DOI: 10.1016/s0006-8993(99)02023-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many of the molecular components constituting the exocytotic machinery responsible for neurotransmitter release have been identified, yet the precise role played by these proteins in synaptic transmission, and their impact on neural function, has not been resolved. The mouse mutation coloboma is a contiguous gene defect that leads to electrophysiological and behavioral deficits and includes the gene-encoding SNAP-25, an integral component of the synaptic vesicle-docking/fusion core complex. The involvement of SNAP-25 in the hyperactive behavior of coloboma mice, which can be ameliorated by the indirect dopaminergic agonist, amphetamine, has been demonstrated by genetic rescue using a SNAP-25 transgene. Coloboma mice also exhibit increased recurrent inhibition, reduced theta rhythm by tail-pinch and reduced long-term potentiation in the hippocampal dentate gyrus that, as the hyperkinesis seen in these mutants suggests, may reflect impaired monoaminergic modulation. We sought to identify neurophysiological correlates of the rescued hyperactivity within hippocampal synaptic circuitry of SNAP-25 transgenic coloboma mutant mice. In contrast to the differences between coloboma and wild-type mice, there was no significant difference in the duration or amplitude of theta rhythmic activity (4-6 Hz) induced by tail-pinch (10 s), afferent-evoked field potentials, or paired-pulse responses recorded in the dentate gyrus of SNAP-25 transgenic coloboma and wild-type mice. Amphetamine (3.0 mg/kg, i.p.) produced disinhibition of dentate paired-pulse responses in both SNAP-25 transgenic and wild-type mice but increased inhibition in non-transgenic coloboma mice. These findings support the hypothesis that alteration of monoaminergic neurotransmission, which can be reversed by the indirect agonist, amphetamine, is particularly sensitive to alterations in the expression of SNAP-25.
Collapse
Affiliation(s)
- S C Steffensen
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
37
|
Abstract
Waves of spontaneous activity sweep across the developing mammalian retina and influence the pattern of central connections made by ganglion cell axons. These waves are driven by synaptic input from amacrine cells. We show that cholinergic synaptic transmission during waves is not blocked by TTX, indicating that release from starburst amacrine cells is independent of sodium action potentials. The spatiotemporal properties of the waves are regulated by endogenous release of adenosine, which sets intracellular cAMP levels through activation of A2 receptors present on developing amacrine and ganglion cells. Increasing cAMP levels increase the size, speed, and frequency of the waves. Conversely, inhibiting adenylate cyclase or PKA prevents wave activity. Together, these results imply a novel mechanism in which levels of cAMP within an immature retinal circuit regulate the precise spatial and temporal patterns of spontaneous neural activity.
Collapse
Affiliation(s)
- D Stellwagen
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA.
| | | | | |
Collapse
|
38
|
Wu LG, Borst JG. The reduced release probability of releasable vesicles during recovery from short-term synaptic depression. Neuron 1999; 23:821-32. [PMID: 10482247 DOI: 10.1016/s0896-6273(01)80039-8] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recovery from synaptic depression is believed to depend mainly on replenishment of the releasable pool of vesicles. We observed that during recovery from depression in a calyx-type synapse, part of the releasable pool was replenished rapidly. Half recovery occurred within 1 s, even in the absence of residual calcium. Vesicles that had recently entered the releasable pool had a 7- to 8-fold lower release probability than those that had been in the pool for more than 30 s. These results suggest that the reduction in the release probability of releasable vesicles contributes greatly to the level of depression. How synapses maintain transmission during repetitive firing is in debate. We propose that during repetitive firing, accumulation of intracellular Ca2+ may facilitate release of the rapidly replenished but reluctant vesicles, making them available for sustaining synaptic transmission.
Collapse
Affiliation(s)
- L G Wu
- Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany.
| | | |
Collapse
|
39
|
Abstract
Patch-clamp capacitance measurements can monitor in real time the kinetics of exocytosis and endocytosis in living cells. We review the application of this technique to the giant presynaptic terminals of goldfish bipolar cells. These terminals secrete glutamate via the fusion of small, clear-core vesicles at specialized, active zones of release called synaptic ribbons. We compare the functional characteristics of transmitter release at ribbon-type and conventional synapses, both of which have a unique capacity for fast and focal vesicle fusion. Subsequent rapid retrieval and recycling of fused synaptic vesicle membrane allow presynaptic terminals to function independently of the cell soma and, thus, as autonomous computational units. Together with the mobilization of reserve vesicle pools, local cycling of synaptic vesicles may delay the onset of vesicle pool depletion and sustain neuronal output during high stimulation frequencies.
Collapse
Affiliation(s)
- H von Gersdorff
- Max Planck Institute for Biophysical Chemistry, Department of Membrane Biophysics, Göttingen, Germany.
| | | |
Collapse
|
40
|
Neves G, Lagnado L. The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells. J Physiol 1999; 515 ( Pt 1):181-202. [PMID: 9925888 PMCID: PMC2269128 DOI: 10.1111/j.1469-7793.1999.181ad.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
1. The kinetics of exocytosis and endocytosis were studied in the giant synaptic terminal of depolarizing bipolar cells from the goldfish retina. Two techniques were applied: capacitance measurements of changes in membrane surface area, and fluorescence measurements of exocytosis using the membrane dye FM1-43. 2. Three phases of exocytosis occurred during maintained depolarization to 0 mV. The first component was complete within about 10 ms and involved a pool of 1200-1800 vesicles (with a total membrane area equivalent to about 1.6 % of the surface of the terminal). The second component of exocytosis involved the release of about 4400 vesicles over 1 s. The third component of exocytosis was stimulated continuously at a rate of about 1000 vesicles s-1. 3. After short depolarizations (< 200 ms), neither the FM1-43 signal nor the capacitance signal continued to rise, indicating that exocytosis stopped rapidly after closure of Ca2+ channels. The fall in capacitance could therefore be used to monitor endocytosis independently of exocytosis. The capacitance measured after brief stimuli began to fall immediately, recovering to the pre-stimulus baseline with a rate constant of 0.8 s-1. 4. The amount of exocytosis measured using the capacitance and FM1-43 techniques was similar during the first 200 ms of depolarization, suggesting that the most rapidly released vesicles could be detected by either method. 5. After a few seconds of continuous stimulation, the net increase in membrane surface area reached a plateau at about 5 %, even though continuous exocytosis occurred at a rate of 0.9 % s-1. Under these conditions of balanced exocytosis and endocytosis, the rate constant of endocytosis was about 0.2 s-1. The average rate of endocytosis during maintained depolarization was therefore considerably slower than the rate observed after a brief stimulus. 6. After longer depolarizations (> 500 ms), both the capacitance and FM1-43 signals continued to rise for periods of seconds after closure of Ca2+ channels. The continuation of exocytosis was correlated with a persistent increase in [Ca2+]i in the synaptic terminal, as indicated by the activation of a Ca2+-dependent conductance and measurements of [Ca2+]i using the fluorescent indicator furaptra. 7. The delayed fall in membrane capacitance after longer depolarizations occurred along a double exponential time course indicating the existence of two endocytic processes: fast endocytosis, with a rate constant of 0.8 s-1, and slow endocytosis, with a rate constant of 0.1 s-1. 8. Increasing the duration of depolarization caused an increase in the fraction of membrane recovered by slow endocytosis. After a 100 ms stimulus, all the membrane was recycled by fast endocytosis, but after a 5 s depolarization, about 50 % of the membrane was recycled by slow endocytosis. 9. These results demonstrate the existence of fast and slow endocytic mechanisms at a synapse and support the idea that prolonged stimulation leads to an increase in the amount of membrane retrieved by the slower route. The rise in cytoplasmic Ca2+ that occurred during longer depolarizations was correlated with stimulation of continuous exocytosis and inhibition of fast endocytosis. The results also confirm that transient and continuous components of exocytosis coexist in the synaptic terminal of depolarizing bipolar cells.
Collapse
Affiliation(s)
- G Neves
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
41
|
Abstract
We used electron tomography to map the three-dimensional architecture of the ribbon-class afferent synapses in frog saccular hair cells. The synaptic body (SB) at each synapse was nearly spherical (468 +/- 65 nm diameter; mean +/- SD) and was covered by a monolayer of synaptic vesicles (34.3 nm diameter; 8.8% coefficient of variation), many of them tethered to it by approximately 20-nm-long filaments, at an average density of 55% of close-packed (376 +/- 133 vesicles per SB). These vesicles could support approximately 900 msec of exocytosis at the reported maximal rate, which the cells can sustain for at least 2 sec, suggesting that replenishment of vesicles on the SB is not rate limiting. Consistent with this interpretation, prolonged K+ depolarization did not deplete vesicles on the SB. The monolayer of SB-associated vesicles remained after cell lysis in the presence of 4 mM Ca2+, indicating that the association is tight and Ca2+-resistant. The space between the SB and the plasma membrane contained numerous vesicles, many of which ( approximately 32 per synapse) were in contact with the plasma membrane. This number of docked vesicles could support maximal exocytosis for at most approximately 70 msec. Additional docked vesicles were seen within a few hundred nanometers of the synapse and occasionally at greater distances. The presence of omega profiles on the plasma membrane around active zones, in the same locations as coated pits and coated vesicles labeled with an extracellular marker, suggests that local membrane recycling may contribute to the three- to 14-fold greater abundance of vesicles in the cytoplasm (not associated with the SB) near synapses than in nonsynaptic regions.
Collapse
|
42
|
Lenzi D, Runyeon JW, Crum J, Ellisman MH, Roberts WM. Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J Neurosci 1999; 19:119-32. [PMID: 9870944 PMCID: PMC6782356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Revised: 09/10/1998] [Accepted: 10/12/1998] [Indexed: 02/09/2023] Open
Abstract
We used electron tomography to map the three-dimensional architecture of the ribbon-class afferent synapses in frog saccular hair cells. The synaptic body (SB) at each synapse was nearly spherical (468 +/- 65 nm diameter; mean +/- SD) and was covered by a monolayer of synaptic vesicles (34.3 nm diameter; 8.8% coefficient of variation), many of them tethered to it by approximately 20-nm-long filaments, at an average density of 55% of close-packed (376 +/- 133 vesicles per SB). These vesicles could support approximately 900 msec of exocytosis at the reported maximal rate, which the cells can sustain for at least 2 sec, suggesting that replenishment of vesicles on the SB is not rate limiting. Consistent with this interpretation, prolonged K+ depolarization did not deplete vesicles on the SB. The monolayer of SB-associated vesicles remained after cell lysis in the presence of 4 mM Ca2+, indicating that the association is tight and Ca2+-resistant. The space between the SB and the plasma membrane contained numerous vesicles, many of which ( approximately 32 per synapse) were in contact with the plasma membrane. This number of docked vesicles could support maximal exocytosis for at most approximately 70 msec. Additional docked vesicles were seen within a few hundred nanometers of the synapse and occasionally at greater distances. The presence of omega profiles on the plasma membrane around active zones, in the same locations as coated pits and coated vesicles labeled with an extracellular marker, suggests that local membrane recycling may contribute to the three- to 14-fold greater abundance of vesicles in the cytoplasm (not associated with the SB) near synapses than in nonsynaptic regions.
Collapse
Affiliation(s)
- D Lenzi
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Modulation of the size of the readily releasable vesicle pool has recently come under scrutiny as a candidate for the regulation of synaptic strength. Using electrophysiological and optical measurement techniques, we show that phorbol esters increase the size of the readily releasable pool at glutamatergic hippocampal synapses in culture through a protein kinase C (PKC)-dependent mechanism. Phorbol ester activation of PKC also increases the rate at which the pool refills. These results identify two powerful ways that activation of the PKC pathway may regulate synaptic strength by modulating the readily releasable pool of vesicles.
Collapse
Affiliation(s)
- C F Stevens
- Molecular Neurobiology Laboratory and Howard Hughes Medical Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
44
|
Santos PF, Carvalho AL, Carvalho AP, Duarte CB. Differential acetylcholine and GABA release from cultured chick retina cells. Eur J Neurosci 1998; 10:2723-30. [PMID: 9767402 DOI: 10.1046/j.1460-9568.1998.00281.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present work we investigated the mechanisms controlling the release of acetylcholine (ACh) and of gamma-aminobutyric acid (GABA) from cultures of amacrine-like neurons, containing a subpopulation of cells which are simultaneously GABAergic and cholinergic. We found that 81.2 +/- 2.8% of the cells present in the culture were stained immunocytochemically with an antibody against choline acetyltransferase, and 38.5 +/- 4.8% of the cells were stained with an antibody against GABA. Most of the cells containing GABA (87.0 +/- 2.9%) were cholinergic. The release of acetylcholine and GABA was mostly Ca2+-dependent, although a significant release of [3H]GABA occurred by reversal of its transporter. Potassium evoked the Ca2+-dependent release of [3H]GABA and [3H]acetylcholine, with EC50 of 31.0 +/- 1.0 mm and 21.6 +/- 1.1 mm, respectively. The Ca2+-dependent release of [3H]acetylcholine was significantly inhibited by 1 micrometer tetrodotoxin and by low (30 nm) omega-conotoxin GVIA (omega-CgTx GVIA) concentrations, or by high (300 nm) nitrendipine (Nit) concentrations. On the contrary, the release of [14C]GABA was reduced by 30 nm nitrendipine, or by 500 nm omega-CgTx GVIA, but not by this toxin at 30 nm. The release of either transmitters was unaffected by 200 nm omega-Agatoxin IVA (omega-Aga IVA), a toxin that blocks P/Q-type voltage-sensitive Ca2+ channels (VSCC). The results show that Ca2+-influx through omega-CgTx GVIA-sensitive N-type VSCC and through Nit-sensitive L-type VSCC induce the release of ACh and GABA. However, the significant differences observed regarding the Ca2+ channels involved in the release of each neurotransmitter suggest that in amacrine-like neurons containing simultaneously GABA and acetylcholine the two neurotransmitters may be released in distinct regions of the cells, endowed with different populations of VSCC.
Collapse
Affiliation(s)
- P F Santos
- Center for Neuroscience of Coimbra, Department of Zoology, University of Coimbra, 3000 Coimbra, Portugal
| | | | | | | |
Collapse
|
45
|
Excitatory synaptic transmission in the inner retina: paired recordings of bipolar cells and neurons of the ganglion cell layer. J Neurosci 1998. [PMID: 9614227 DOI: 10.1523/jneurosci.18-12-04500.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Properties of glutamatergic synaptic transmission were investigated by simultaneously voltage-clamping a pair of connected bipolar cells and cells in the ganglion cell layer (GLCs) in the newt retinal slice preparation. Activation of the Ca2+ current in a single bipolar cell was essential for evoking the glutamatergic postsynaptic current in the GLC. Depolarization for as short as 15 msec activated both NMDA and non-NMDA receptors. On the other hand, analysis of the spontaneous glutamatergic synaptic currents of GLCs revealed that these currents consisted of mainly non-NMDA receptor activation with little contribution from NMDA receptors. This suggests that non-NMDA receptors of GLCs are clustered in postsynaptic membrane regions immediately beneath the release sites of bipolar cells and that NMDA receptors have lower accessibility to the released transmitter than non-NMDA receptors. Glutamate that is spilled over from the release sites may activate the NMDA receptors. When a prolonged depolarizing pulse was applied to a bipolar cell, the response induced by non-NMDA receptors was limited greatly by their fast desensitization, whereas NMDA receptors were able to produce a maintained response. The relationship between the pulse duration applied to the bipolar cell and the integrated charge of the response evoked in the GLC was almost linear. Therefore, we propose that both non-NMDA and NMDA receptors cooperate to transfer the graded photoresponses of bipolar cells proportionally to GLCs.
Collapse
|
46
|
Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 1998. [PMID: 9634551 DOI: 10.1523/jneurosci.18-13-04854.1998] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whether neurotransmitters are restricted to the synaptic cleft (participating only in hard-wired neurotransmission) or diffuse to remote receptor sites (participating in what has been termed volume or paracrine transmission) depends on a number of factors. These include (1) the location of release sites with respect to the receptors, (2) the number of molecules released, (3) the diffusional rate away from the release site, determined by both the geometry near the release site as well as binding interactions, and (4) the removal of transmitter by the relevant transporter. Fast-scan cyclic voltammetry allows for the detection of extrasynaptic concentrations of many biogenic amines, permitting direct access to many of these parameters. In this study the hypothesis that 5-hydroxytryptamine (5-HT) transmission is primarily extrasynaptic in the substantia nigra reticulata, a terminal region with identified synaptic contacts, and the dorsal raphe nucleus, a somatodendritic region with rare synaptic incidence, was tested in brain slices prepared from the rat. Using carbon fiber microelectrodes, we found the concentration of 5-HT released per stimulus pulse in both regions to be identical when elicited by single pulse stimulations or trains at high frequency. 5-HT efflux elicited by a single stimulus pulse was unaffected by uptake inhibition or receptor antagonism. Thus, synaptic efflux is not restricted by binding to intrasynaptic receptors or transporters. The number of 5-HT molecules released per terminal was estimated in the substantia nigra reticulata and was considerably less than the number of 5-HT transporter and receptor sites, reinforcing the hypothesis that these sites are extrasynaptic. Furthermore, the detected extrasynaptic concentrations closely match the affinity for the predominant 5-HT receptor in each region. Although they do not disprove the existence of classical synaptic transmission, our results support the existence of paracrine neurotransmission in both serotonergic regions.
Collapse
|
47
|
Bunin MA, Wightman RM. Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 1998; 18:4854-60. [PMID: 9634551 PMCID: PMC6792557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1997] [Revised: 04/15/1998] [Accepted: 04/16/1998] [Indexed: 02/07/2023] Open
Abstract
Whether neurotransmitters are restricted to the synaptic cleft (participating only in hard-wired neurotransmission) or diffuse to remote receptor sites (participating in what has been termed volume or paracrine transmission) depends on a number of factors. These include (1) the location of release sites with respect to the receptors, (2) the number of molecules released, (3) the diffusional rate away from the release site, determined by both the geometry near the release site as well as binding interactions, and (4) the removal of transmitter by the relevant transporter. Fast-scan cyclic voltammetry allows for the detection of extrasynaptic concentrations of many biogenic amines, permitting direct access to many of these parameters. In this study the hypothesis that 5-hydroxytryptamine (5-HT) transmission is primarily extrasynaptic in the substantia nigra reticulata, a terminal region with identified synaptic contacts, and the dorsal raphe nucleus, a somatodendritic region with rare synaptic incidence, was tested in brain slices prepared from the rat. Using carbon fiber microelectrodes, we found the concentration of 5-HT released per stimulus pulse in both regions to be identical when elicited by single pulse stimulations or trains at high frequency. 5-HT efflux elicited by a single stimulus pulse was unaffected by uptake inhibition or receptor antagonism. Thus, synaptic efflux is not restricted by binding to intrasynaptic receptors or transporters. The number of 5-HT molecules released per terminal was estimated in the substantia nigra reticulata and was considerably less than the number of 5-HT transporter and receptor sites, reinforcing the hypothesis that these sites are extrasynaptic. Furthermore, the detected extrasynaptic concentrations closely match the affinity for the predominant 5-HT receptor in each region. Although they do not disprove the existence of classical synaptic transmission, our results support the existence of paracrine neurotransmission in both serotonergic regions.
Collapse
Affiliation(s)
- M A Bunin
- Curriculum in Neurobiology and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
48
|
Matsui K, Hosoi N, Tachibana M. Excitatory synaptic transmission in the inner retina: paired recordings of bipolar cells and neurons of the ganglion cell layer. J Neurosci 1998; 18:4500-10. [PMID: 9614227 PMCID: PMC6792684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Properties of glutamatergic synaptic transmission were investigated by simultaneously voltage-clamping a pair of connected bipolar cells and cells in the ganglion cell layer (GLCs) in the newt retinal slice preparation. Activation of the Ca2+ current in a single bipolar cell was essential for evoking the glutamatergic postsynaptic current in the GLC. Depolarization for as short as 15 msec activated both NMDA and non-NMDA receptors. On the other hand, analysis of the spontaneous glutamatergic synaptic currents of GLCs revealed that these currents consisted of mainly non-NMDA receptor activation with little contribution from NMDA receptors. This suggests that non-NMDA receptors of GLCs are clustered in postsynaptic membrane regions immediately beneath the release sites of bipolar cells and that NMDA receptors have lower accessibility to the released transmitter than non-NMDA receptors. Glutamate that is spilled over from the release sites may activate the NMDA receptors. When a prolonged depolarizing pulse was applied to a bipolar cell, the response induced by non-NMDA receptors was limited greatly by their fast desensitization, whereas NMDA receptors were able to produce a maintained response. The relationship between the pulse duration applied to the bipolar cell and the integrated charge of the response evoked in the GLC was almost linear. Therefore, we propose that both non-NMDA and NMDA receptors cooperate to transfer the graded photoresponses of bipolar cells proportionally to GLCs.
Collapse
Affiliation(s)
- K Matsui
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
49
|
Abstract
Synaptic vesicle recycling is a critical feature of neuronal communication as it ensures a constant supply of releasable transmitter at the nerve terminal. Physiological studies predict that vesicle recycling is rapid and recent studies with fluorescent dyes have confirmed that the entire process may occur in less than a minute. Two competing hypotheses have been proposed for the first step in the process comprising endocytosis of vesicular membrane. The coated vesicle model proposes that vesicular membrane components merge with the plasma membrane and are subsequently recovered and possibly sorted in coated pits. These pinch off as coated vesicles that either fuse with a sorting endosome from which new vesicles emerge or uncoat to become synaptic vesicles directly. The alternative "kiss-and-run" model proposes that "empty" vesicles are retrieved intact from the plasma membrane after secretion occurs via a fusion pore; they are then immediately refilled with transmitter and re-enter the secretion-competent pool. This article summarizes the data for both models and focusses on new information that supports the kiss-and-run model. In particular, the phenomenon of rapid endocytosis, which may represent the key endocytotic step in recycling, is discussed. Rapid endocytosis has time-constants in the order of a few seconds, thus is temporally consistent with the rate of vesicle recycling. Moreover, rapid endocytosis appears to be clathrin-independent, thus does not involve the coated vesicle pathway. We present a model that accommodates both types of endocytosis, which appear to coexist in many secretory tissues including neurons. Rapid endocytosis may reflect the principal mechanism operative under normal physiological rates of stimulation while coated vesicles may come into play at higher rates of stimulation. These two processes may feed into different populations of vesicles corresponding to distinct pools defined by studies of the kinetics of transmitter release.
Collapse
Affiliation(s)
- H C Palfrey
- Department of Pharmacological and Physiological Sciences, University of Chicago, IL 60637, USA
| | | |
Collapse
|
50
|
Neher E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 1998; 20:389-99. [PMID: 9539117 DOI: 10.1016/s0896-6273(00)80983-6] [Citation(s) in RCA: 801] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- E Neher
- Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Federal Republic of Germany
| |
Collapse
|