1
|
Drazkowska K, Cieslicka J, Kitowicz M, Pastucha A, Markiewicz L, Szymanek W, Goryca K, Kowalczyk T, Cysewski D, Bausch AR, Sikorski PJ. Effective recognition of double-stranded RNA does not require activation of cellular inflammation. SCIENCE ADVANCES 2025; 11:eads6498. [PMID: 40203104 PMCID: PMC11980852 DOI: 10.1126/sciadv.ads6498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Excess double-stranded RNA (dsRNA) is present in the cytoplasm of human cells, usually following viral infections. Recognition of dsRNAs activates innate immune pathways, leading to cellular inflammation and inhibition of cell growth. Here, we show that an effective dsRNA response may occur without the onset of inflammation. Pro-inflammatory [RLR (retinoic acid-inducible gene I-like receptor)-dependent pathway] and cell growth inhibitory mechanisms [oligoadenylate synthetase (OAS)/ribonuclease L (RNase L)- and dsRNA-activated protein kinase (PKR)-dependent pathways] can act independently. We found that the 5' ends of dsRNA direct the onset of cellular inflammation, whereas the RNA duplex activates the OAS/RNase L and PKR pathways. Unexpectedly, three of the most common human RNA epitranscriptomic marks-i.e., N6-methyladenosine, 5-methylcytosine, and pseudouridine-had almost no influence on the immunogenicity of dsRNA; however, the presence of N6-methyladenosine inhibited the OAS/RNase L pathway. Our observations demonstrate how precisely innate immunity is fine tuned in cells to take appropriate countermeasures when a specific threat arises.
Collapse
Affiliation(s)
- Karolina Drazkowska
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Julia Cieslicka
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Michal Kitowicz
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Anna Pastucha
- Center for Functional Protein Assemblies, Technical University of Munich, Munich, Germany
| | | | - Wiktoria Szymanek
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Krzysztof Goryca
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Andreas R. Bausch
- Center for Functional Protein Assemblies, Technical University of Munich, Munich, Germany
| | - Pawel J. Sikorski
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Kerkhofs K, Guydosh NR, Bayfield MA. Respiratory Syncytial Virus (RSV) optimizes the translational landscape during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606199. [PMID: 39131278 PMCID: PMC11312563 DOI: 10.1101/2024.08.02.606199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Viral infection often triggers eukaryotic initiator factor 2α (eIF2α) phosphorylation, leading to global 5'-cap-dependent translation inhibition. RSV encodes messenger RNAs (mRNAs) mimicking 5'-cap structures of host mRNAs and thus inhibition of cap-dependent translation initiation would likely also reduce viral translation. We confirmed that RSV limits widespread translation initiation inhibition and unexpectedly found that the fraction of ribosomes within polysomes increases during infection, indicating higher ribosome loading on mRNAs during infection. We found that AU-rich host transcripts that are less efficiently translated under normal conditions become more efficient at recruiting ribosomes, similar to RSV transcripts. Viral transcripts are transcribed in cytoplasmic inclusion bodies, where the viral AU-rich binding protein M2-1 has been shown to bind viral transcripts and shuttle them into the cytoplasm. We further demonstrated that M2-1 is found on polysomes, and that M2-1 might deliver host AU-rich transcripts for translation.
Collapse
Affiliation(s)
- Kyra Kerkhofs
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| | - Nicholas R. Guydosh
- Section on mRNA Regulation and Translation, Laboratory of Biochemistry & Genetics. National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A. Bayfield
- Department of Biology, Faculty of Science, York University, Toronto, Ontario N3J 1P3, Canada
| |
Collapse
|
3
|
Zhang R, Karijolich J. RNA recognition by PKR during DNA virus infection. J Med Virol 2024; 96:e29424. [PMID: 38285432 PMCID: PMC10832991 DOI: 10.1002/jmv.29424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Protein kinase R (PKR) is a double-stranded RNA (dsRNA) binding protein that plays a crucial role in innate immunity during viral infection and can restrict both DNA and RNA viruses. The potency of its antiviral function is further reflected by the large number of viral-encoded PKR antagonists. However, much about the regulation of dsRNA accumulation and PKR activation during viral infection remains unknown. Since DNA viruses do not have an RNA genome or RNA replication intermediates like RNA viruses do, PKR-mediated dsRNA detection in the context of DNA virus infection is particularly intriguing. Here, we review the current state of knowledge regarding the regulation of PKR activation and its antagonism during infection with DNA viruses.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| |
Collapse
|
4
|
Polynucleotide phosphorylase protects against renal tubular injury via blocking mt-dsRNA-PKR-eIF2α axis. Nat Commun 2023; 14:1223. [PMID: 36869030 PMCID: PMC9984537 DOI: 10.1038/s41467-023-36664-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Renal tubular atrophy is a hallmark of chronic kidney disease. The cause of tubular atrophy, however, remains elusive. Here we report that reduction of renal tubular cell polynucleotide phosphorylase (PNPT1) causes renal tubular translation arrest and atrophy. Analysis of tubular atrophic tissues from renal dysfunction patients and male mice with ischemia-reperfusion injuries (IRI) or unilateral ureteral obstruction (UUO) treatment shows that renal tubular PNPT1 is markedly downregulated under atrophic conditions. PNPT1 reduction leads to leakage of mitochondrial double-stranded RNA (mt-dsRNA) into the cytoplasm where it activates protein kinase R (PKR), followed by phosphorylation of eukaryotic initiation factor 2α (eIF2α) and protein translational termination. Increasing renal PNPT1 expression or inhibiting PKR activity largely rescues IRI- or UUO-induced mouse renal tubular injury. Moreover, tubular-specific PNPT1-knockout mice display Fanconi syndrome-like phenotypes with impaired reabsorption and significant renal tubular injury. Our results reveal that PNPT1 protects renal tubules by blocking the mt-dsRNA-PKR-eIF2α axis.
Collapse
|
5
|
Kim S, Lee K, Choi YS, Ku J, Kim H, Kharbash R, Yoon J, Lee YS, Kim JH, Lee YJ, Kim Y. Mitochondrial double-stranded RNAs govern the stress response in chondrocytes to promote osteoarthritis development. Cell Rep 2022; 40:111178. [PMID: 35947956 DOI: 10.1016/j.celrep.2022.111178] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/13/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Protein kinase R (PKR) is an immune response protein that becomes activated by double-stranded RNAs (dsRNAs). PKR overactivation is associated with degenerative diseases with inflammation, including osteoarthritis (OA), but the dsRNA activator remains largely unknown. Here, we find that mitochondrial dsRNA (mt-dsRNA) expression and its cytosolic efflux are facilitated in chondrocytes under OA-eliciting conditions, leading to innate immune activation. Moreover, mt-dsRNAs are released to the extracellular space and activate Toll-like receptor 3 at the plasma membrane. Elevated levels of mt-dsRNAs in the synovial fluids and damaged cartilage of OA patients and in the cartilage of surgery-induced OA mice further support our data. Importantly, autophagy prevents PKR activation and protects chondrocytes from mitochondrial stress partly by removing cytosolic mtRNAs. Our study provides a comprehensive understanding of innate immune activation by mt-dsRNAs during stress responses that underlie the development of OA and suggests mt-dsRNAs as a potential target for chondroprotective intervention.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam 13605, South Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyeonkyeong Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Raisa Kharbash
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jimin Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Yong Seuk Lee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13605, South Korea
| | - Jin-Hong Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, South Korea
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13605, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon 34141, South Korea; KAIST Institute for BioCentury, KAIST, Daejeon 34141, South Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, South Korea.
| |
Collapse
|
6
|
Klein P, Kallenberger SM, Roth H, Roth K, Ly-Hartig TBN, Magg V, Aleš J, Talemi SR, Qiang Y, Wolf S, Oleksiuk O, Kurilov R, Di Ventura B, Bartenschlager R, Eils R, Rohr K, Hamprecht FA, Höfer T, Fackler OT, Stoecklin G, Ruggieri A. Temporal control of the integrated stress response by a stochastic molecular switch. SCIENCE ADVANCES 2022; 8:eabk2022. [PMID: 35319985 PMCID: PMC8942376 DOI: 10.1126/sciadv.abk2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Stress granules (SGs) are formed in the cytosol as an acute response to environmental cues and activation of the integrated stress response (ISR), a central signaling pathway controlling protein synthesis. Using chronic virus infection as stress model, we previously uncovered a unique temporal control of the ISR resulting in recurrent phases of SG assembly and disassembly. Here, we elucidate the molecular network generating this fluctuating stress response by integrating quantitative experiments with mathematical modeling and find that the ISR operates as a stochastic switch. Key elements controlling this switch are the cooperative activation of the stress-sensing kinase PKR, the ultrasensitive response of SG formation to the phosphorylation of the translation initiation factor eIF2α, and negative feedback via GADD34, a stress-induced subunit of protein phosphatase 1. We identify GADD34 messenger RNA levels as the molecular memory of the ISR that plays a central role in cell adaptation to acute and chronic stress.
Collapse
Affiliation(s)
- Philipp Klein
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Stefan M. Kallenberger
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany
- Medical Oncology, National Center for Tumor Diseases, Heidelberg University, Heidelberg, Germany
| | - Hanna Roth
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Karsten Roth
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Thi Bach Nga Ly-Hartig
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Magg
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Janez Aleš
- HCI/IWR, Heidelberg University, Heidelberg, Germany
| | - Soheil Rastgou Talemi
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu Qiang
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | - Steffen Wolf
- HCI/IWR, Heidelberg University, Heidelberg, Germany
| | - Olga Oleksiuk
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Roma Kurilov
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Di Ventura
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin, Germany
| | - Karl Rohr
- Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany
| | | | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Integrative Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- Corresponding author.
| |
Collapse
|
7
|
Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 2021; 288:6365-6391. [PMID: 33387379 PMCID: PMC9248962 DOI: 10.1111/febs.15691] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth T. Farabaugh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
8
|
Won SY, Seol IC, Yoo HR, Kim YS. Antiviral Effect of Hyunggaeyungyo-Tang on A549 Cells Infected with Human Coronavirus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4494389. [PMID: 34659433 PMCID: PMC8514924 DOI: 10.1155/2021/4494389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Herbal medicine is widely recommended to treat viral infectious diseases. Over 123,000,000 individuals have been infected with the coronavirus since a worldwide pandemic was declared in March 2020. We conducted this research to confirm the potential of herbal medicine as a treatment for coronavirus. METHODS We infected the A549 cell line with betacoronavirus OC43 and then treated it with 100 μg/mL Hyunggaeyungyo-tang (HGYGT) or distilled water with a control of HGYGT. We measured the mRNA expression levels of proinflammatory cytokines and interferon stimulated genes (ISGs) to confirm the effectiveness of HGYGT upon coronavirus infection. RESULTS We found that the effects of HYGYT decrease the expression level of pPKR, peIF2α, IFI6, IFI44, IFI44L, IFI27, IRF7, OASL, and ISG15 when administered to cells with coronavirus infection. The expressions of IL-1, TNF-α, COX-2, NF-κB, iNOS, and IKK mRNA were also significantly decreased in the HGYGT group than in the control group. CONCLUSION Through the reduction of the amount of coronavirus RNA, our research indicates that HGYGT has antiviral effects. The reduction of IKK and iNOS mRNA levels indicate that HGYGT reduces coronavirus RNA expression and may inhibit the replication of coronavirus by acting on NF-kB/Rel pathways to protect oxidative injury. In addition, decreases in mRNA expression levels of proinflammatory cytokines indicate that the HGYGT may relieve the symptoms of coronavirus infections.
Collapse
Affiliation(s)
- Seo-Young Won
- Department of Korean Internal Medicine, College of Korean Medicine Daejeon University, Daejeon KS015, Republic of Korea
- Department of Korean Internal Medicine, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan-Si KS002, Republic of Korea
| | - In-Chan Seol
- Department of Korean Internal Medicine, College of Korean Medicine Daejeon University, Daejeon KS015, Republic of Korea
- Department of Korean Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon KS015, Republic of Korea
| | - Ho-Ryong Yoo
- Department of Korean Internal Medicine, College of Korean Medicine Daejeon University, Daejeon KS015, Republic of Korea
- Department of Korean Internal Medicine, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon KS015, Republic of Korea
| | - Yoon-Sik Kim
- Department of Korean Internal Medicine, College of Korean Medicine Daejeon University, Daejeon KS015, Republic of Korea
- Department of Korean Internal Medicine, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan-Si KS002, Republic of Korea
| |
Collapse
|
9
|
Ukhueduan B, Chukwurah E, Patel RC. Regulation of PKR activation and apoptosis during oxidative stress by TRBP phosphorylation. Int J Biochem Cell Biol 2021; 137:106030. [PMID: 34174402 DOI: 10.1016/j.biocel.2021.106030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Transactivation response element RNA-binding protein (TRBP or TARBP2) originally identified as a pro-viral cellular protein in human immunodeficiency virus (HIV) replication is also a regulator of microRNA biogenesis and cellular stress response. TRBP inhibits the catalytic activity of interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) during viral infections and cell stress thereby regulating stress-induced signaling pathways. During cellular stress, PKR is catalytically activated transiently by its protein activator PACT and TRBP inhibits PKR to bring about a timely cellular recovery. We have previously established that TRBP phosphorylated after oxidative stress binds to and inhibits PKR more efficiently promoting cell survival. In this study, we investigated if phosphorylation of TRBP enhances its interaction with PACT to bring about additional PKR inhibition. Our data establishes that phosphorylation of TRBP has no effect on PACT-TRBP interaction and TRBP's inhibitory actions on PKR are mediated exclusively by its enhanced interaction with PKR. Cells lacking TRBP are more sensitive to apoptosis in response to oxidative stress and show persistent PKR activation. These results establish that PKR inhibition by stress-induced TRBP phosphorylation occurs by its direct binding to PKR and is important for preventing apoptosis due to sustained PKR activation.
Collapse
Affiliation(s)
- Benedicth Ukhueduan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Rekha C Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
10
|
Noncanonical immune response to the inhibition of DNA methylation by Staufen1 via stabilization of endogenous retrovirus RNAs. Proc Natl Acad Sci U S A 2021; 118:2016289118. [PMID: 33762305 DOI: 10.1073/pnas.2016289118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
DNA-methyltransferase inhibitors (DNMTis), such as azacitidine and decitabine, are used clinically to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Decitabine activates the transcription of endogenous retroviruses (ERVs), which can induce immune response by acting as cellular double-stranded RNAs (dsRNAs). Yet, the posttranscriptional regulation of ERV dsRNAs remains uninvestigated. Here, we find that the viral mimicry and subsequent cell death in response to decitabine require the dsRNA-binding protein Staufen1 (Stau1). We show that Stau1 directly binds to ERV RNAs and stabilizes them in a genome-wide manner. Furthermore, Stau1-mediated stabilization requires a long noncoding RNA TINCR, which enhances the interaction between Stau1 and ERV RNAs. Analysis of a clinical patient cohort reveals that MDS and AML patients with lower Stau1 and TINCR expressions exhibit inferior treatment outcomes to DNMTi therapy. Overall, our study reveals the posttranscriptional regulatory mechanism of ERVs and identifies the Stau1-TINCR complex as a potential target for predicting the efficacy of DNMTis and other drugs that rely on dsRNAs.
Collapse
|
11
|
Vaughn LS, Chukwurah E, Patel RC. Opposite actions of two dsRNA-binding proteins PACT and TRBP on RIG-I mediated signaling. Biochem J 2021; 478:493-510. [PMID: 33459340 PMCID: PMC7919947 DOI: 10.1042/bcj20200987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
An integral aspect of innate immunity is the ability to detect foreign molecules of viral origin to initiate antiviral signaling via pattern recognition receptors (PRRs). One such receptor is the RNA helicase retinoic acid inducible gene 1 (RIG-I), which detects and is activated by 5'triphosphate uncapped double stranded RNA (dsRNA) as well as the cytoplasmic viral mimic dsRNA polyI:C. Once activated, RIG-I's CARD domains oligomerize and initiate downstream signaling via mitochondrial antiviral signaling protein (MAVS), ultimately inducing interferon (IFN) production. Another dsRNA binding protein PACT, originally identified as the cellular protein activator of dsRNA-activated protein kinase (PKR), is known to enhance RIG-I signaling in response to polyI:C treatment, in part by stimulating RIG-I's ATPase and helicase activities. TAR-RNA-binding protein (TRBP), which is ∼45% homologous to PACT, inhibits PKR signaling by binding to PKR as well as by sequestration of its' activators, dsRNA and PACT. Despite the extensive homology and similar structure of PACT and TRBP, the role of TRBP has not been explored much in RIG-I signaling. This work focuses on the effect of TRBP on RIG-I signaling and IFN production. Our results indicate that TRBP acts as an inhibitor of RIG-I signaling in a PACT- and PKR-independent manner. Surprisingly, this inhibition is independent of TRBP's post-translational modifications that are important for other signaling functions of TRBP, but TRBP's dsRNA-binding ability is essential. Our work has major implications on viral susceptibility, disease progression, and antiviral immunity as it demonstrates the regulatory interplay between PACT and TRBP IFN production.
Collapse
Affiliation(s)
- Lauren S. Vaughn
- Department of Biology, University of South Carolina, Columbia, SC 29210
| | | | - Rekha C Patel
- Department of Biology, University of South Carolina, Columbia, SC 29210
| |
Collapse
|
12
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
13
|
Kim S, Ku Y, Ku J, Kim Y. Evidence of Aberrant Immune Response by Endogenous Double-Stranded RNAs: Attack from Within. Bioessays 2019; 41:e1900023. [PMID: 31099409 DOI: 10.1002/bies.201900023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Many innate immune response proteins recognize foreign nucleic acids from invading pathogens to initiate antiviral signaling. These proteins mostly rely on structural characteristics of the nucleic acids rather than their specific sequences to distinguish self and nonself. One feature utilized by RNA sensors is the extended stretch of double-stranded RNA (dsRNA) base pairs. However, the criteria for recognizing nonself dsRNAs are rather lenient, and hairpin structure of self-RNAs can also trigger an immune response. Consequently, aberrant activation of RNA sensors has been reported in numerous human diseases. Yet, in most cases, the activating antigens remain unknown. Recent studies have developed sequencing techniques tailored to specifically capture dsRNAs and identified that various noncoding elements in the nuclear and the mitochondrial genome can generate dsRNAs. Here, the identity of endogenous dsRNAs, their recognition by dsRNA sensors, and their implications in the pathogenesis of human diseases ranging from inflammatory to degenerative are presented.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yongsuk Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
14
|
Zhao Z, Zhu X, Wu N, Qin X, Huang C, Wu G, Zhang Q, Zhang Z. Species-specific inhibition of capripoxvirus replication by host antiviral protein kinase R. Ann N Y Acad Sci 2018; 1438:3-17. [PMID: 30381842 PMCID: PMC7379242 DOI: 10.1111/nyas.13976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/17/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
Abstract
The role of interferon (IFN)‐induced protein kinase R (PKR) in capripoxvirus (CaPV)‐infected cells remains unknown. In this study, we show that CaPV infection triggered PKR and eukaryotic translation initiation factor 2 alpha (eIF2α) protein phosphorylation in a dose‐dependent manner, and that this leads to decreased CaPV replication. Overexpression of PKR compromised viral gene expression and inhibited sheeppox virus (SPPV) replication. Downregulation of PKR with siRNAs significantly decreased eIF2α phosphorylation and reduced the mRNA level of IFN‐β, which increased virus replication. In luciferase assays, species‐different CaPVs K3L proteins inhibited sheep PKR (sPKR): goatpox virus K3L strongly inhibited sPKR and goat PKR (gPKR), but SPPV K3L only partially inhibited gPKR. These results are the first to show that SPPV infection induces phosphorylation of eIF2α through PKR activation, which then results in restriction of CaPV replication. Furthermore, our data show that CaPV K3L inhibits PKR in a species‐specific manner. The results presented are consistent with the hypothesis that different levels of PKR inhibition by K3L orthologs from various viruses could potentially contribute to the host range function of K3L.
Collapse
Affiliation(s)
- Zhixun Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xueliang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Na Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Caiyun Huang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guohua Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhidong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
15
|
PKR Senses Nuclear and Mitochondrial Signals by Interacting with Endogenous Double-Stranded RNAs. Mol Cell 2018; 71:1051-1063.e6. [PMID: 30174290 DOI: 10.1016/j.molcel.2018.07.029] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/14/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Protein kinase RNA-activated (PKR) induces immune response by sensing viral double-stranded RNAs (dsRNAs). However, growing evidence suggests that PKR can also be activated by endogenously expressed dsRNAs. Here, we capture these dsRNAs by formaldehyde-mediated crosslinking and immunoprecipitation sequencing and find that various noncoding RNAs interact with PKR. Surprisingly, the majority of the PKR-interacting RNA repertoire is occupied by mitochondrial RNAs (mtRNAs). MtRNAs can form intermolecular dsRNAs owing to bidirectional transcription of the mitochondrial genome and regulate PKR and eIF2α phosphorylation to control cell signaling and translation. Moreover, PKR activation by mtRNAs is counteracted by PKR phosphatases, disruption of which causes apoptosis from PKR overactivation even in uninfected cells. Our work unveils dynamic regulation of PKR even without infection and establishes PKR as a sensor for nuclear and mitochondrial signaling cues in regulating cellular metabolism.
Collapse
|
16
|
Stress-induced TRBP phosphorylation enhances its interaction with PKR to regulate cellular survival. Sci Rep 2018; 8:1020. [PMID: 29348664 PMCID: PMC5773696 DOI: 10.1038/s41598-018-19360-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022] Open
Abstract
Transactivation response element RNA-binding protein (TRBP or TARBP2) initially identified to play an important role in human immunodeficiency virus (HIV) replication also has emerged as a regulator of microRNA biogenesis. In addition, TRBP functions in signaling pathways by negatively regulating the interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) during viral infections and cell stress. During cellular stress, PKR is activated and phosphorylates the α subunit of the eukaryotic translation factor eIF2, leading to the cessation of general protein synthesis. TRBP inhibits PKR activity by direct interaction as well as by binding to PKR’s two known activators, dsRNA and PACT, thus preventing their interaction with PKR. In this study, we demonstrate for the first time that TRBP is phosphorylated in response to oxidative stress and upon phosphorylation, inhibits PKR more efficiently promoting cell survival. These results establish that PKR regulation through stress-induced TRBP phosphorylation is an important mechanism ensuring cellular recovery and preventing apoptosis due to sustained PKR activation.
Collapse
|
17
|
Chukwurah E, Willingham V, Singh M, Castillo-Azofeifa D, Patel RC. Contribution of the two dsRBM motifs to the double-stranded RNA binding and protein interactions of PACT. J Cell Biochem 2018; 119:3598-3607. [PMID: 29231267 DOI: 10.1002/jcb.26561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/01/2017] [Indexed: 11/12/2022]
Abstract
PACT is a stress-modulated activator of protein kinase PKR (protein kinase, RNA activated), which is involved in antiviral innate immune responses and stress-induced apoptosis. Stress-induced phosphorylation of PACT is essential for PACT's increased association with PKR leading to PKR activation, phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. PACT-induced PKR activation is negatively regulated by TRBP (transactivation response element RNA-binding protein), which dissociates from PACT after PACT phosphorylation in response to stress signals. The conserved double-stranded RNA binding motifs (dsRBMs) in PKR, PACT, and TRBP mediate protein-protein interactions, and the stress-dependent phosphorylation of PACT changes the relative strengths of PKR-PACT, PACT-TRBP, and PACT-PACT interactions to bring about a timely and transient PKR activation. This regulates the general kinetics as well as level of eIF2α phosphorylation, thereby influencing the cellular response to stress either as recovery and survival or elimination by apoptosis. In the present study, we evaluated the effect of specific mutations within PACT's two evolutionarily conserved dsRBMs on dsRNA-binding, and protein-protein interactions between PKR, PACT, and TRBP. Our data show that the two motifs contribute to varying extents in dsRNA binding, and protein interactions. These findings indicate that although the dsRBM motifs have high sequence conservation, their functional contribution in the context of the whole proteins needs to be determined by mutational analysis. Furthermore, using a PACT mutant that is deficient in PACT-PACT interaction but competent for PACT-PKR interaction, we demonstrate that PACT-PACT interaction is essential for efficient PKR activation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Victoria Willingham
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Madhurima Singh
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | | | - Rekha C Patel
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
18
|
Diao Y, Liu J, Ma Y, Su M, Zhang H, Hao X. A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo. Cancer Biol Ther 2016; 17:498-506. [PMID: 26954374 DOI: 10.1080/15384047.2016.1156266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Specific and efficient delivery of siRNA into intended tumor cells remains as a challenge, even though RNAi has been exploited as a new strategy for prostate cancer therapy. This work aims to address both specificity and efficiency of SURVIVIN-siRNA delivery by constructing a therapeutic complex using combinatorial strategies. A fusion protein STD was first expressed to serve as a backbone, consisting of streptavidin, a cell-penetrating peptide called Trans-Activator of Transcription (TAT) and a double-stranded RNA binding domain. A biotinylated Prostate Specific Membrane Antigen (PSMA) specific aptamer A10 and SURVIVIN-siRNA were then linked to STD protein to form the therapeutic complex. This complex could specifically targeted PSMA(+) tumor cells. Compared to lipofectamine and A10-siRNA chimera, it demonstrated higher efficiency in delivering siRNA into target cells by 19.2% and 59.9%, and increased apoptosis by 16.8% and 26.1% respectively. Upon systemic administration, this complex also showed significant efficacy in suppressing tumor growth in athymic mice (p <0.001). We conclude that this therapeutic complex could specifically and efficiently deliver SURVIVIN-siRNA to target cells and suppressed tumor growth in vivo, which indicates its potential to be used as a new strategy in prostate cancer therapy.
Collapse
Affiliation(s)
- Yanjun Diao
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China.,b Public Health England Clinical Microbiology & Public Health Laboratory Cambridge, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital , UK
| | - Jiayun Liu
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Yueyun Ma
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Mingquan Su
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Hongyi Zhang
- b Public Health England Clinical Microbiology & Public Health Laboratory Cambridge, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital , UK
| | - Xiaoke Hao
- a Department of Clinical Laboratory Medicine , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| |
Collapse
|
19
|
Sunita S, Schwartz SL, Conn GL. The Regulatory and Kinase Domains but Not the Interdomain Linker Determine Human Double-stranded RNA-activated Kinase (PKR) Sensitivity to Inhibition by Viral Non-coding RNAs. J Biol Chem 2015; 290:28156-28165. [PMID: 26432638 DOI: 10.1074/jbc.m115.679738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 12/18/2022] Open
Abstract
Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is an important component of the innate immune system that presents a crucial first line of defense against viral infection. PKR has a modular architecture comprising a regulatory N-terminal dsRNA binding domain and a C-terminal kinase domain interposed by an unstructured ∼80-residue interdomain linker (IDL). Guided by sequence alignment, we created IDL deletions in human PKR (hPKR) and regulatory/kinase domain swap human-rat chimeric PKRs to assess the contributions of each domain and the IDL to regulation of the kinase activity by RNA. Using circular dichroism spectroscopy, limited proteolysis, kinase assays, and isothermal titration calorimetry, we show that each PKR protein is properly folded with similar domain boundaries and that each exhibits comparable polyinosinic-cytidylic (poly(rI:rC)) dsRNA activation profiles and binding affinities for adenoviral virus-associated RNA I (VA RNAI) and HIV-1 trans-activation response (TAR) RNA. From these results we conclude that the IDL of PKR is not required for RNA binding or mediating changes in protein conformation or domain interactions necessary for PKR regulation by RNA. In contrast, inhibition of rat PKR by VA RNAI and TAR RNA was found to be weaker than for hPKR by 7- and >300-fold, respectively, and each human-rat chimeric domain-swapped protein showed intermediate levels of inhibition. These findings indicate that PKR sequence or structural elements in the kinase domain, present in hPKR but absent in rat PKR, are exploited by viral non-coding RNAs to accomplish efficient inhibition of PKR.
Collapse
Affiliation(s)
- S Sunita
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|
20
|
Vaughn LS, Bragg DC, Sharma N, Camargos S, Cardoso F, Patel RC. Altered activation of protein kinase PKR and enhanced apoptosis in dystonia cells carrying a mutation in PKR activator protein PACT. J Biol Chem 2015; 290:22543-57. [PMID: 26231208 DOI: 10.1074/jbc.m115.669408] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/21/2022] Open
Abstract
PACT is a stress-modulated activator of the interferon-induced double-stranded RNA-activated protein kinase (PKR). Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation leads to phosphorylation of translation initiation factor eIF2α inhibition of protein synthesis and apoptosis. A recessively inherited form of early-onset dystonia DYT16 has been recently identified to arise due to a homozygous missense mutation P222L in PACT. To examine if the mutant P222L protein alters the stress-response pathway, we examined the ability of mutant P222L to interact with and activate PKR. Our results indicate that the substitution mutant P222L activates PKR more robustly and for longer duration albeit with slower kinetics in response to the endoplasmic reticulum stress. In addition, the affinity of PACT-PACT and PACT-PKR interactions is enhanced in dystonia patient lymphoblasts, thereby leading to intensified PKR activation and enhanced cellular death. P222L mutation also changes the affinity of PACT-TRBP interaction after cellular stress, thereby offering a mechanism for the delayed PKR activation in response to stress. Our results demonstrate the impact of a dystonia-causing substitution mutation on stress-induced cellular apoptosis.
Collapse
Affiliation(s)
- Lauren S Vaughn
- From the University of South Carolina, Department of Biological Sciences, Columbia, South Carolina 29208
| | - D Cristopher Bragg
- Massachusetts General Hospital, Department of Neurology, Charlestown, Massachusetts 02129, and
| | - Nutan Sharma
- Massachusetts General Hospital, Department of Neurology, Charlestown, Massachusetts 02129, and
| | - Sarah Camargos
- Federal University of Minas Gerais, Department of Internal Medicine, 31270-901 Belo Horizonte, MG, Brazil
| | - Francisco Cardoso
- Federal University of Minas Gerais, Department of Internal Medicine, 31270-901 Belo Horizonte, MG, Brazil
| | - Rekha C Patel
- From the University of South Carolina, Department of Biological Sciences, Columbia, South Carolina 29208,
| |
Collapse
|
21
|
Heyam A, Lagos D, Plevin M. Dissecting the roles of TRBP and PACT in double-stranded RNA recognition and processing of noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:271-89. [PMID: 25630541 PMCID: PMC7169789 DOI: 10.1002/wrna.1272] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022]
Abstract
HIV TAR RNA-binding protein (TRBP) and Protein Activator of PKR (PACT) are double-stranded (ds) RNA-binding proteins that participate in both small regulatory RNA biogenesis and the response to viral dsRNA. Despite considerable progress toward understanding the structure-function relationship of TRBP and PACT, their specific roles in these seemingly distinct cellular pathways remain unclear. Both proteins are composed of three copies of the double-stranded RNA-binding domain, two of which interact with dsRNA, while the C-terminal copy mediates protein-protein interactions. PACT and TRBP are found in a complex with the endonuclease Dicer and facilitate processing of immature microRNAs. Their precise contribution to the Dicing step has not yet been defined: possibilities include precursor recruitment, rearrangement of dsRNA within the complex, loading the processed microRNA into the RNA-induced silencing complex, and distinguishing different classes of small dsRNA. TRBP and PACT also interact with the viral dsRNA sensors retinoic acid-inducible gene I (RIG-I) and double-stranded RNA-activated protein kinase (PKR). Current models suggest that PACT enables RIG-I to detect a wider range of viral dsRNAs, while TRBP and PACT exert opposing regulatory effects on PKR. Here, the evidence that implicates TRBP and PACT in regulatory RNA processing and viral dsRNA sensing is reviewed and discussed in the context of their molecular structure. The broader implications of a link between microRNA biogenesis and the innate antiviral response pathway are also considered.
Collapse
MESH Headings
- Amino Acid Sequence
- Carboxypeptidases/chemistry
- Carboxypeptidases/metabolism
- Carboxypeptidases/physiology
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Protein Structure, Tertiary
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/immunology
- RNA, Double-Stranded/metabolism
- RNA, Untranslated/metabolism
- RNA, Viral/chemistry
- RNA, Viral/immunology
- RNA, Viral/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Ribonuclease III/chemistry
- Ribonuclease III/metabolism
- Ribonuclease III/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Alex Heyam
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
22
|
Kim Y, Yeo J, Lee JH, Cho J, Seo D, Kim JS, Kim VN. Deletion of human tarbp2 reveals cellular microRNA targets and cell-cycle function of TRBP. Cell Rep 2014; 9:1061-74. [PMID: 25437560 DOI: 10.1016/j.celrep.2014.09.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022] Open
Abstract
TRBP functions as both a Dicer cofactor and a PKR inhibitor. However, the role of TRBP in microRNA (miRNA) biogenesis is controversial and its regulation of PKR in mitosis remains unexplored. Here, we generate TRBP knockout cells and find altered Dicer-processing sites in a subset of miRNAs but no effect on Dicer stability, miRNA abundance, or Argonaute loading. By generating PACT, another Dicer interactor, and TRBP/PACT double knockout (KO) cells, we further show that TRBP and PACT do not functionally compensate for one another and that only TRBP contributes to Dicer processing. We also report that TRBP is hyperphosphorylated by JNK in M phase when PKR is activated by cellular double-stranded RNAs (dsRNAs). Hyperphosphorylation potentiates the inhibitory activity of TRBP on PKR, suppressing PKR in M-G1 transition. By generating human TRBP KO cells, our study clarifies the role of TRBP and unveils negative feedback regulation of PKR through TRBP phosphorylation.
Collapse
Affiliation(s)
- Yoosik Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jinah Yeo
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jung Hyun Lee
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jun Cho
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Daekwan Seo
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|
23
|
Yamashiro LH, Oliveira SC, Báfica A. Innate immune sensing of nucleic acids from mycobacteria. Microbes Infect 2014; 16:991-7. [PMID: 25284681 DOI: 10.1016/j.micinf.2014.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/16/2023]
Abstract
Endosomal and cytosolic receptors engage recognition of mycobacterial-derived nucleic acids (MyNAs). In contrast, virulent mycobacteria may utilize nucleic acid recognition pathways to escape the host immune system. This short review will summarize the mechanisms by which MyNAs are sensed and how they influence host protective responses.
Collapse
Affiliation(s)
- Lívia Harumi Yamashiro
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Brazil; Pharmacology Graduate Program, Federal University of Santa Catarina, Brazil
| | - Sérgio Costa Oliveira
- Laboratory of Immunology and Infectious Diseases, Federal University of Minas Gerais, Brazil
| | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Brazil; Pharmacology Graduate Program, Federal University of Santa Catarina, Brazil.
| |
Collapse
|
24
|
de la Cruz-Herrera CF, Campagna M, García MA, Marcos-Villar L, Lang V, Baz-Martínez M, Gutiérrez S, Vidal A, Rodríguez MS, Esteban M, Rivas C. Activation of the double-stranded RNA-dependent protein kinase PKR by small ubiquitin-like modifier (SUMO). J Biol Chem 2014; 289:26357-26367. [PMID: 25074923 PMCID: PMC4176227 DOI: 10.1074/jbc.m114.560961] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/11/2014] [Indexed: 01/07/2023] Open
Abstract
The dsRNA-dependent kinase PKR is an interferon-inducible protein with ability to phosphorylate the α subunit of the eukaryotic initiation factor (eIF)-2 complex, resulting in a shut-off of general translation, induction of apoptosis, and inhibition of virus replication. Here we analyzed the modification of PKR by the small ubiquitin-like modifiers SUMO1 and SUMO2 and evaluated the consequences of PKR SUMOylation. Our results indicate that PKR is modified by both SUMO1 and SUMO2, in vitro and in vivo. We identified lysine residues Lys-60, Lys-150, and Lys-440 as SUMOylation sites in PKR. We show that SUMO is required for efficient PKR-dsRNA binding, PKR dimerization, and eIF2α phosphorylation. Furthermore, we demonstrate that SUMO potentiates the inhibition of protein synthesis induced by PKR in response to dsRNA, whereas a PKR SUMOylation mutant is impaired in its ability to inhibit protein synthesis and shows reduced capability to control vesicular stomatitis virus replication and to induce apoptosis in response to vesicular stomatitis virus infection. In summary, our data demonstrate the important role of SUMO in processes mediated by the activation of PKR.
Collapse
Affiliation(s)
- Carlos F de la Cruz-Herrera
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Michela Campagna
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Maria A García
- Unidad de Investigación, Hospital Universitario Virgen de las Nieves, 18014 Granada
| | - Laura Marcos-Villar
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Valerie Lang
- Ubiquitylation and Cancer Molecular Biology Laboratory, Inbiomed, San Sebastian-Donostia, 20009 Gipuzkoa, Spain
| | - Maite Baz-Martínez
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782
| | - Sylvia Gutiérrez
- Confocal Service of Centro Nacional de Biotecnología-CSIC, Darwin 3, Madrid 28049, and
| | - Anxo Vidal
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782, Spain
| | - Manuel S Rodríguez
- Ubiquitylation and Cancer Molecular Biology Laboratory, Inbiomed, San Sebastian-Donostia, 20009 Gipuzkoa, Spain
| | - Mariano Esteban
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Carmen Rivas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049,; Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782,.
| |
Collapse
|
25
|
Kim Y, Lee JH, Park JE, Cho J, Yi H, Kim VN. PKR is activated by cellular dsRNAs during mitosis and acts as a mitotic regulator. Genes Dev 2014; 28:1310-22. [PMID: 24939934 PMCID: PMC4066401 DOI: 10.1101/gad.242644.114] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
dsRNA-dependent protein kinase R (PKR) plays a key role in innate immunity. PKR binds viral dsRNA and undergoes autophosphorylation, which leads to translational repression and signaling pathway modulation in infected cells. Kim et al. now show that PKR is activated during mitosis in uninfected cells. PKR interacts with dsRNAs formed by inverted Alu repeats, which become accessible to PKR during mitosis. Phosphorylated PKR then suppresses translation and coordinates mitosis. This study unveils a novel function of PKR and endogenous dsRNA mitosis in uninfected cells. dsRNA-dependent protein kinase R (PKR) is a ubiquitously expressed enzyme well known for its roles in immune response. Upon binding to viral dsRNA, PKR undergoes autophosphorylation, and the phosphorylated PKR (pPKR) regulates translation and multiple signaling pathways in infected cells. Here, we found that PKR is activated in uninfected cells, specifically during mitosis, by binding to dsRNAs formed by inverted Alu repeats (IRAlus). While PKR and IRAlu-containing RNAs are segregated in the cytosol and nucleus of interphase cells, respectively, they interact during mitosis when nuclear structure is disrupted. Once phosphorylated, PKR suppresses global translation by phosphorylating the α subunit of eukaryotic initiation factor 2 (eIF2α). In addition, pPKR acts as an upstream kinase for c-Jun N-terminal kinase and regulates the levels of multiple mitotic factors such as CYCLINS A and B and POLO-LIKE KINASE 1 and phosphorylation of HISTONE H3. Disruption of PKR activation via RNAi or expression of a transdominant-negative mutant leads to misregulation of the mitotic factors, delay in mitotic progression, and defects in cytokinesis. Our study unveils a novel function of PKR and endogenous dsRNAs as signaling molecules during the mitosis of uninfected cells.
Collapse
Affiliation(s)
- Yoosik Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jung Hyun Lee
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jong-Eun Park
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jun Cho
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyerim Yi
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
26
|
Zhang P, Li Y, Xia J, He J, Pu J, Xie J, Wu S, Feng L, Huang X, Zhang P. IPS-1 plays an essential role in dsRNA-induced stress granule formation by interacting with PKR and promoting its activation. J Cell Sci 2014; 127:2471-82. [PMID: 24659800 DOI: 10.1242/jcs.139626] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The formation of cytoplasmic stress granules and the innate immune response are two distinct cellular stress responses. Our study investigated the involvement of four innate immune proteins - retinoic-acid-inducible gene I (RIG-I, also known as DDX58), melanoma differentiation-associated gene 5 (MDA5, also known as IFIH1), IFN-β promoter stimulator (IPS-1, also known as MAVS) and protein kinase regulated by dsRNA (PKR, also known as EIF2AK2) in the formation of stress granules. Knockdown of IPS-1 or PKR significantly decreased the formation of stress granules induced by double-stranded (ds)RNA. IPS-1 depletion markedly attenuated the phosphorylation of PKR and eIF2α that was triggered by dsRNA, and IPS-1 facilitated the in vitro autophosphorylation of PKR. In IPS-1-depleted cells, the dsRNA-mediated dimerization of PKR through its dsRNA-binding domains was significantly abrogated, suggesting that IPS-1 might be involved in PKR dimerization. By co-immunoprecipitation and pulldown assays, our data demonstrate that IPS-1 directly binds to PKR through the IPS-1 caspase activation and recruitment domain (CARD), suggesting that the effect of IPS-1 on the formation of stress granules might be exerted through interacting with PKR and mediating its activation. PKR was recruited into stress granules upon activation, whereas the majority of IPS-1 protein formed clusters on mitochondrial membranes. Our work provides the first evidence that the innate signaling molecule IPS-1 plays an essential role in stress granule formation.
Collapse
Affiliation(s)
- Peifen Zhang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yuye Li
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jun Xia
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Junfang He
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jieying Pu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jiong Xie
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Siyu Wu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Lianqiang Feng
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Xi Huang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Ping Zhang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
27
|
Dey M, Mann BR, Anshu A, Mannan MAU. Activation of protein kinase PKR requires dimerization-induced cis-phosphorylation within the activation loop. J Biol Chem 2013; 289:5747-57. [PMID: 24338483 DOI: 10.1074/jbc.m113.527796] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protein kinase R (PKR) functions in a plethora of cellular processes, including viral and cellular stress responses, by phosphorylating the translation initiation factor eIF2α. The minimum requirements for PKR function are homodimerization of its kinase and RNA-binding domains, and autophosphorylation at the residue Thr-446 in a flexible loop called the activation loop. We investigated the interdependence between dimerization and Thr-446 autophosphorylation using the yeast Saccharomyces cerevisiae model system. We showed that an engineered PKR that bypassed the need for Thr-446 autophosphorylation (PKR(T446∼P)-bypass mutant) could function without a key residue (Asp-266 or Tyr-323) that is essential for PKR dimerization, suggesting that dimerization precedes and stimulates activation loop autophosphorylation. We also showed that the PKR(T446∼P)-bypass mutant was able to phosphorylate eIF2α even without its RNA-binding domains. These two significant findings reveal that PKR dimerization and activation loop autophosphorylation are mutually exclusive yet interdependent processes. Also, we provide evidence that Thr-446 autophosphorylation during PKR activation occurs in a cis mechanism following dimerization.
Collapse
Affiliation(s)
- Madhusudan Dey
- From the Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | | | | | | |
Collapse
|
28
|
Chen T, Cui P, Chen H, Ali S, Zhang S, Xiong L. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis. PLoS Genet 2013; 9:e1003875. [PMID: 24146632 PMCID: PMC3798263 DOI: 10.1371/journal.pgen.1003875] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. Pre-mRNA processing, including 5′ capping, splicing, and 3′ polyadenylation, is critical for gene expression and is closely coupled with transcription. Phosphorylated carboxyl terminal domain (CTD) of RNA Polymerase II (RNAP II) serves as a platform for the recruitment of pre-mRNA processing factors, yet other components involved in the recruitment are less known. In a genetic study of stress signal transduction in Arabidopsis, we isolated a KH-domain RNA-binding protein HOS5 that plays important roles in stress gene regulation and stress tolerance. We found that HOS5 interacts with FIERY2/CTD phosphatase-like 1 (FRY2/CPL1) and they both also interact with two novel splicing factors, RS40 and RS41, in nuclear speckles. In fry2 mutants, HOS5 was unable to be recruited to nuclear speckles but rather was mainly localized in the nucleoplasm. Mutants in these genes have similar stress-sensitive phenotypes. Transcriptome analyses identified significant intron retention in many stress-related genes in these mutants under salt stress conditions. Our study reveals that, in addition to RNAP II, the CTD phosphatase may also recruit specific splicing factors and RNA binding proteins to regulate the co-transcriptional processing of certain transcripts to deal with environmental stresses.
Collapse
Affiliation(s)
- Tao Chen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Peng Cui
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hao Chen
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shahjahan Ali
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Shoudong Zhang
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Liming Xiong
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- * E-mail:
| |
Collapse
|
29
|
NF90 in posttranscriptional gene regulation and microRNA biogenesis. Int J Mol Sci 2013; 14:17111-21. [PMID: 23965975 PMCID: PMC3759954 DOI: 10.3390/ijms140817111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022] Open
Abstract
Gene expression patterns are effectively regulated by turnover and translation regulatory (TTR) RNA-binding proteins (RBPs). The TTR-RBPs control gene expression at posttranscriptional levels, such as pre-mRNA splicing, mRNA cytoplasmic export, turnover, storage, and translation. Double-stranded RNA binding proteins (DSRBPs) are known to regulate many processes of cellular metabolism, including transcriptional control, translational control, mRNA processing and localization. Nuclear factor 90 (NF90), one of the DSRBPs, is abundantly expressed in vertebrate tissue and participates in many aspects of RNA metabolism. NF90 was originally purified as a component of a DNA binding complex which binds to the antigen recognition response element 2 in the interleukin 2 promoter. Recent studies have provided us with interesting insights into its possible physiological roles in RNA metabolism, including transcription, degradation, and translation. In addition, it was shown that NF90 regulates microRNA expression. In this review, we try to focus on the function of NF90 in posttranscriptional gene regulation and microRNA biogenesis.
Collapse
|
30
|
Yoshida K, Okamura H, Hoshino Y, Shono M, Yoshioka M, Hinode D, Yoshida H. Interaction between PKR and PACT mediated by LPS-inducible NF-κB in human gingival cells. J Cell Biochem 2012; 113:165-73. [PMID: 21882225 DOI: 10.1002/jcb.23340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The double-stranded RNA-dependent protein kinase (PKR) is a serine/threonine kinase expressed constitutively in mammalian cells. PKR is activated upon virus infection by double-stranded RNA (dsRNA), and plays a critical role in host antiviral defense mechanisms. PKR is also known to regulate various biological responses, including cell differentiation and apoptosis. However, whether PKR is involved in the progress of periodontitis is not clear. The present study explained the phosphorylation of PKR by LPS in the human gingival cell line, Sa3. Expression of genes encoding LPS receptors was detected in Sa3 cells and treatment of cells with 1 µg/mL LPS for 6 h caused PKR phosphorylation. LPS elevated the expression of the protein activator of PKR (PACT) mRNA and protein, followed by the enhanced association between PACT and PKR within 3 h. In addition, LPS treatment induced the translocation of NF-κB to the nucleus after 30 min, and inhibition of NF-κB decreased the PACT-PKR interaction induced by LPS. The level of pro-inflammatory cytokine mRNA, including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), appeared within 45 min and reached at the maximal levels by 90 min after the addition of LPS. This induction of pro-inflammatory cytokines was not affected by RNAi-mediated silencing of PKR and a pharmacological inhibitor of PKR, whereas the inhibition of NF-κB decreased it. These results indicated that LPS induces PKR phosphorylation and the PACT-PKR association in Sa3 cells. Our results also suggest that NF-κB is involved in the PACT-PKR interaction and the production of pro-inflammatory cytokines in periodontitis.
Collapse
Affiliation(s)
- Kaya Yoshida
- Departments of Fundamental Oral Health Science, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Singh M, Patel RC. Increased interaction between PACT molecules in response to stress signals is required for PKR activation. J Cell Biochem 2012; 113:2754-64. [DOI: 10.1002/jcb.24152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Singh M, Castillo D, Patel CV, Patel RC. Stress-induced phosphorylation of PACT reduces its interaction with TRBP and leads to PKR activation. Biochemistry 2011; 50:4550-60. [PMID: 21526770 DOI: 10.1021/bi200104h] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PACT is a stress-modulated activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) and is an important regulator of PKR-dependent signaling pathways. Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation by PACT leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. In addition to positive regulation by PACT, PKR activity in cells is also negatively regulated by TRBP. In this study, we demonstrate for the first time that stress-induced phosphorylation at serine 287 significantly increases PACT's ability to activate PKR by weakening PACT's interaction with TRBP. A non-phosphorylatable alanine substitution mutant at this position causes enhanced interaction of PACT with TRBP and leads to a loss of PKR activation. Furthermore, TRBP overexpression in cells is unable to block apoptosis induced by a phospho-mimetic, constitutively active PACT mutant. These results demonstrate for the first time that stress-induced PACT phosphorylation functions to free PACT from the inhibitory interaction with TRBP and also to enhance its interaction with PKR.
Collapse
Affiliation(s)
- Madhurima Singh
- Department of Biological Sciences, Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
33
|
Sadler AJ. Orchestration of the activation of protein kinase R by the RNA-binding motif. J Interferon Cytokine Res 2010; 30:195-204. [PMID: 20377414 DOI: 10.1089/jir.2010.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The protein kinase R (PKR) constitutes part of the host antiviral response. PKR activation is regulated by the N-terminus of protein, which encodes tandem RNA-binding motifs (RBMs). The full capabilities of RBMs from PKR and other proteins have surpassed the narrow specificities initially determined as merely binding double-stranded RNA. Recognition of the increased affinity of the RBM for additional RNA species has established an immunological distinction by which PKR can detect exogenous RNAs, as well as identified PKR-mediated expression of specific endogenous genes. Furthermore, as RBMs also mediate interactions with other proteins, including PKR itself, this motif connects PKR to the broader RNA metabolism. Given the fundamental importance of protein-RNA interactions, not only in the innate immune response to intracellular pathogens, but also to coordinate the cellular replication machinery, there is considerable interest in the mechanisms by which proteins recognize and respond to RNA. This review appraises our understanding of how PKR activity is modulated by the RBMs.
Collapse
Affiliation(s)
- Anthony J Sadler
- Monash Institute of Medical Research, Monash University, Melbourne, Australia
| |
Collapse
|
34
|
Abstract
Protein kinase R (PKR) is a central component of the interferon antiviral defense pathway. Upon binding to dsRNA, PKR undergoes autophosphorylation reactions that activate the kinase, resulting in the inhibition of protein synthesis in virally-infected cells. We have used analytical ultracentrifugation and related biophysical methods to quantitatively characterize the stoichiometries, affinities, and free energy couplings that govern the assembly of the macromolecular complexes in the PKR activation pathway. These studies demonstrate that PKR dimerization play a key role in enzymatic activation and support a model where the role of dsRNA is to bring two or more PKR monomers in close proximity to enhance dimerization.
Collapse
Affiliation(s)
- James L Cole
- Department of Molecular and Cell Biology, National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
35
|
Blalock WL, Bavelloni A, Piazzi M, Faenza I, Cocco L. A role for PKR in hematologic malignancies. J Cell Physiol 2010; 223:572-91. [PMID: 20232306 DOI: 10.1002/jcp.22092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The double-stranded RNA-dependent kinase PKR has been described for many years as strictly a pro-apoptotic kinase. Recent data suggest that the main purpose of this kinase is damage control and repair following stress and, if all else fails, apoptosis. Aberrant activation of PKR has been reported in numerous neurodegenerative diseases and cancer. Although a subset of myelodysplastic syndromes (MDS) and chronic lymphocytic leukemia contain low levels of PKR expression and activity, elevated PKR activity and/or expression have been detected in a wide range of hematologic malignancies, from bone marrow failure disorders to acute leukemia. With the recent findings that cancers containing elevated PKR activity are highly sensitive to PKR inhibition, we explore the role of PKR in hematologic malignancies, signal transduction pathways affected by PKR, and how PKR may contribute to leukemic transformation.
Collapse
Affiliation(s)
- William L Blalock
- Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
36
|
Abstract
Many extracellular stresses cause inhibition of translation initiation by triggering phosphorylation of the initiation factor, eIF-2alpha. A major protein kinase responsible for this phosphorylation is PKR, a latent kinase which itself needs to be activated by autophosphorylation. In stressed cells, this activation occurs when PACT, a PKR-binding protein, is phosphorylated and activates PKR. We have previously demonstrated that the presence of specific residues in domain 3 of PACT is necessary for its ability to activate PKR in vivo. Here, we analyze the biochemical properties of the inactive PACT mutants by assessing their ability to bind and activate PKR in vitro. Among the essential residues, two serines need to be phosphorylated in vivo for PACT's ability to activate PKR. We substituted those serines with aspartic acids, mimics of phosphoserines, and investigated the properties of the corresponding mutant PACTs. In vitro, they activate PKR more efficiently because they bind to PKR more tightly. These results indicate that stress-induced phosphorylation of specific serine residues in domain 3 of PACT increases its affinity for PKR, which leads to better activation of PKR and resultant eIF-2alpha phosphorylation.
Collapse
Affiliation(s)
- Gregory A Peters
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
37
|
VanOudenhove J, Anderson E, Kreuger S, Cole JL. Analysis of PKR structure by small-angle scattering. J Mol Biol 2009; 387:910-20. [PMID: 19232355 PMCID: PMC2663012 DOI: 10.1016/j.jmb.2009.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/05/2009] [Accepted: 02/10/2009] [Indexed: 11/20/2022]
Abstract
Protein kinase R (PKR) is a key component of the interferon antiviral defense pathway. Upon binding double-stranded RNA, PKR undergoes autophosphorylation reactions that activate the kinase. PKR contains an N-terminal double-stranded RNA binding domain, which consists of two tandem double-stranded RNA binding motifs, and a C-terminal kinase domain. We have used small-angle X-ray scattering and small-angle neutron scattering to define the conformation of latent PKR in solution. Guinier analysis indicates a radius of gyration of about 35 A. The p(r) distance distribution function exhibits a peak near 30 A, with a broad shoulder extending to longer distances. Good fits to the scattering data require models that incorporate multiple compact and extended conformations of the two interdomain linker regions. Thus, PKR belongs to the growing family of proteins that contain intrinsically unstructured regions. We propose that the flexible linkers may allow PKR to productively dimerize upon interaction with RNA activators that have diverse structures.
Collapse
Affiliation(s)
- Jennifer VanOudenhove
- Department of Molecular and Cell Biology, University of Connecticut Storrs, Connecticut 06269, USA
| | - Eric Anderson
- Department of Molecular and Cell Biology, University of Connecticut Storrs, Connecticut 06269, USA
| | - Susan Kreuger
- NIST Center for Neutron Research National Institutes of Standards and Technology Gaithersburg, MD 21702-1201, USA
| | - James L. Cole
- Department of Molecular and Cell Biology, University of Connecticut Storrs, Connecticut 06269, USA
- Deparment of Chemistry University of Connecticut Storrs, Connecticut 06269, USA
| |
Collapse
|
38
|
Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome. Retrovirology 2009; 6:8. [PMID: 19166625 PMCID: PMC2657110 DOI: 10.1186/1742-4690-6-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 01/24/2009] [Indexed: 12/14/2022] Open
Abstract
Retroviruses have evolved multiple strategies to direct the synthesis of a complex proteome from a single primary transcript. Their mechanisms are modulated by a breadth of virus-host interactions, which are of significant fundamental interest because they ultimately affect the efficiency of virus replication and disease pathogenesis. Motifs located within the untranslated region (UTR) of the retroviral RNA have established roles in transcriptional trans-activation, RNA packaging, and genome reverse transcription; and a growing literature has revealed a necessary role of the UTR in modulating the efficiency of viral protein synthesis. Examples include a 5' UTR post-transcriptional control element (PCE), present in at least eight retroviruses, that interacts with cellular RNA helicase A to facilitate cap-dependent polyribosome association; and 3' UTR constitutive transport element (CTE) of Mason-Pfizer monkey virus that interacts with Tap/NXF1 and SR protein 9G8 to facilitate RNA export and translational utilization. By contrast, nuclear protein hnRNP E1 negatively modulates HIV-1 Gag, Env, and Rev protein synthesis. Alternative initiation strategies by ribosomal frameshifting and leaky scanning enable polycistronic translation of the cap-dependent viral transcript. Other studies posit cap-independent translation initiation by internal ribosome entry at structural features of the 5' UTR of selected retroviruses. The retroviral armamentarium also commands mechanisms to counter cellular post-transcriptional innate defenses, including protein kinase R, 2',5'-oligoadenylate synthetase and the small RNA pathway. This review will discuss recent and historically-recognized insights into retrovirus translational control. The expanding knowledge of retroviral post-transcriptional control is vital to understanding the biology of the retroviral proteome. In a broad perspective, each new insight offers a prospective target for antiviral therapy and strategic improvement of gene transfer vectors.
Collapse
|
39
|
Ding S, Bond AE, Lemière F, Tuytten R, Esmans EL, Brenton AG, Dudley E, Newton RP. Online immobilized metal affinity chromatography/mass spectrometric analysis of changes elicited by cCMP in the murine brain phosphoproteome. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:4129-4138. [PMID: 19023864 DOI: 10.1002/rcm.3834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An automated online immobilized metal affinity chromatography/high-performance liquid chromatography mass spectrometric (IMAC-HPLC/MS/MS) method was developed to study cytidine 3',5'-cyclic monophosphate (cCMP)-specific protein phosphorylation, analogous to a previously successful offline IMAC method using microvolume IMAC pipette tips. The optimized method identified murine brain phosphoproteins selectively modified by challenge with cCMP, using manual interpretation of the results to confirm both phosphorylation and selectivity of response to cCMP. A number of proteins identified by this strategy have potential roles in hyperproliferation, a previously reported response to elevated levels of cCMP.
Collapse
Affiliation(s)
- S Ding
- Department of Environmental and Molecular Biosciences, Swansea University, SOTEAS, Singleton Park, Swansea SA2 8PP, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Specific inhibition of the PKR-mediated antiviral response by the murine cytomegalovirus proteins m142 and m143. J Virol 2008; 83:1260-70. [PMID: 19019949 DOI: 10.1128/jvi.01558-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR and OAS/RNase L pathways. The murine cytomegalovirus (MCMV) proteins m142 and m143 have been characterized as dsRNA binding proteins that inhibit PKR activation, phosphorylation of the translation initiation factor eIF2alpha, and a subsequent protein synthesis shutoff. In the present study we analyzed the contribution of the PKR- and the OAS-dependent pathways to the control of MCMV replication in the absence or presence of m142 and m143. We show that the induction of eIF2alpha phosphorylation during infection with an m142- and m143-deficient MCMV is specifically mediated by PKR, not by the related eIF2alpha kinases PERK or GCN2. PKR antagonists of vaccinia virus (E3L) or herpes simplex virus (gamma34.5) rescued the replication defect of an MCMV strain with deletions of both m142 and m143. Moreover, m142 and m143 bound to each other and interacted with PKR. By contrast, an activation of the OAS/RNase L pathway by MCMV was not detected in the presence or absence of m142 and m143, suggesting that these viral proteins have little or no influence on this pathway. Consistently, an m142- and m143-deficient MCMV strain replicated to high titers in fibroblasts lacking PKR but did not replicate in cells lacking RNase L. Hence, the PKR-mediated antiviral response is responsible for the essentiality of m142 and m143.
Collapse
|
41
|
Singh M, Fowlkes V, Handy I, Patel CV, Patel RC. Essential role of PACT-mediated PKR activation in tunicamycin-induced apoptosis. J Mol Biol 2008; 385:457-68. [PMID: 19007793 DOI: 10.1016/j.jmb.2008.10.068] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/08/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Cellular stresses such as disruption of calcium homeostasis, inhibition of protein glycosylation, and reduction of disulfide bonds result in accumulation of misfolded proteins in the endoplasmic reticulum (ER) and lead to cell death by apoptosis. Tunicamycin, which is an inhibitor of protein glycosylation, induces ER stress and apoptosis. In this study, we examined the involvement of double-stranded RNA (dsRNA)-activated protein kinase (PKR) and its protein activator PACT in tunicamycin-induced apoptosis. We demonstrate for the first time that PACT is phosphorylated in response to tunicamycin and is responsible for PKR activation by direct interaction. Furthermore, PACT-induced PKR activation is essential for tunicamycin-induced apoptosis, since PACT as well as PKR null cells are markedly resistant to tunicamycin and show defective eIF2alpha phosphorylation and C/EBP homologous protein (CHOP, also known as GADD153) induction especially at low concentrations of tunicamycin. Reconstitution of PKR and PACT expression in the null cells renders them sensitive to tunicamycin, thus demonstrating that PACT-induced PKR activation plays an essential function in induction of apoptosis.
Collapse
Affiliation(s)
- Madhurima Singh
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
42
|
Bang WY, Kim SW, Jeong IS, Koiwa H, Bahk JD. The C-terminal region (640-967) of Arabidopsis CPL1 interacts with the abiotic stress- and ABA-responsive transcription factors. Biochem Biophys Res Commun 2008; 372:907-12. [PMID: 18541146 DOI: 10.1016/j.bbrc.2008.05.161] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Accepted: 05/27/2008] [Indexed: 10/22/2022]
Abstract
Proteins in CPL1 family are unique to plants and contain a phosphatase catalytic domain and double-stranded RNA (dsRNA)-binding motifs (DRMs) in a single peptide. Though DRMs are important for the function of Arabidopsis CPL1 in vivo, the role of CPL1 DRM has been obscure. We have isolated two transcription factors, ANAC019 (At1g52890) and AtMYB3 (At1g22640), which specifically interact with the C-terminal region (640-967) of AtCPL1 containing two DRMs. Detailed interaction analysis indicated that AtMYB3 specifically interacted with the first DRM but not with the second DRM in CPL1 C-terminal fragment. GFP-fusion analysis indicated that AtMYB3 localized in nuclei-like CPL1, and its expression is induced by abiotic stress and ABA treatment. These results suggest that AtMYB3 function in abiotic stress signaling in concert with CPL1.
Collapse
Affiliation(s)
- Woo Young Bang
- Division of Applied Life Sciences (BK21-EBNCRC), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | |
Collapse
|
43
|
Mechanism of PKR Activation by dsRNA. J Mol Biol 2008; 381:351-60. [PMID: 18599071 DOI: 10.1016/j.jmb.2008.05.056] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 05/20/2008] [Accepted: 05/23/2008] [Indexed: 01/20/2023]
Abstract
Protein kinase R (PKR) is a central component of the interferon antiviral defense pathway. Upon binding double-stranded RNA (dsRNA), PKR undergoes autophosphorylation reactions that activate the kinase. PKR then phosphorylates eukaryotic initiation factor 2alpha, thus inhibiting protein synthesis in virally infected cells. Using a series of dsRNAs of increasing length, we define the mechanism of PKR activation. A minimal dsRNA of 30 bp is required to bind two PKR monomers and 30 bp is the smallest dsRNA that elicits autophosphorylation activity. Thus, the ability of dsRNAs to function as PKR activators is correlated with binding of two or more PKR monomers. Sedimentation velocity data fit a model where PKR monomers sequentially attach to a single dsRNA. These results support an activation mechanism where the role of the dsRNA is to bring two or more PKR monomers in close proximity to enhance dimerization via the kinase domain. This model explains the inhibition observed at high dsRNA concentrations and the strong dependence of maximum activation on dsRNA binding affinity. Binding affinities increase dramatically upon reducing the salt concentration from 200 to 75 mM NaCl and we observe that a second PKR can bind to the 20-bp dsRNA. Nonspecific assembly of PKR on dsRNA occurs stochastically without apparent cooperativity.
Collapse
|
44
|
Anderson E, Cole JL. Domain stabilities in protein kinase R (PKR): evidence for weak interdomain interactions. Biochemistry 2008; 47:4887-97. [PMID: 18393532 DOI: 10.1021/bi702211j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PKR (protein kinase R) is induced by interferon and is a key component of the innate immunity antiviral pathway. Upon binding dsRNA, PKR undergoes autophosphorylation reactions that activate the kinase, leading it to phosphorylate eIF2alpha, thus inhibiting protein synthesis in virally infected cells. PKR contains a dsRNA-binding domain (dsRBD) and a kinase domain. The dsRBD is composed of two tandem dsRNA-binding motifs. An autoinhibition model for PKR has been proposed, whereby dsRNA binding activates the enzyme by inducing a conformational change that relieves the latent enzyme of the inhibition that is mediated by the interaction of the dsRBD with the kinase. However, recent biophysical data support an open conformation for the latent enzyme, where activation is mediated by dimerization of PKR induced upon binding dsRNA. We have probed the importance of interdomain contacts by comparing the relative stabilities of isolated domains with the same domain in the context of the intact enzyme using equilibrium chemical denaturation experiments. The two dsRNA-binding motifs fold independently, with the C-terminal motif exhibiting greater stability. The kinase domain is stabilized by about 1.5 kcal/mol in the context of the holenzyme, and we detect low-affinity binding of the kinase and dsRBD constructs in solution, indicating that these domains interact weakly. Limited proteolysis measurements confirm the expected domain boundaries and reveal that the activation loop in the kinase is accessible to cleavage and unstructured. Autophosphorylation induces a conformation change that blocks proteolysis of the activation loop.
Collapse
Affiliation(s)
- Eric Anderson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | |
Collapse
|
45
|
Mittelstadt M, Frump A, Khuu T, Fowlkes V, Handy I, Patel CV, Patel RC. Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. Nucleic Acids Res 2007; 36:998-1008. [PMID: 18096616 PMCID: PMC2241914 DOI: 10.1093/nar/gkm1129] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PKR is an interferon (IFN)-induced protein kinase, which is involved in regulation of antiviral innate immunity, stress signaling, cell proliferation and programmed cell death. Although a low amount of PKR is expressed ubiquitously in all cell types in the absence of IFNs, PKR expression is induced at transcriptional level by IFN. PKR's enzymatic activity is activated by its binding to one of its activators. Double-stranded (ds) RNA, protein activator PACT and heparin are the three known activators of PKR. Activation of PKR in cells leads to a general block in protein synthesis due to phosphorylation of eIF2α on serine 51 by PKR. PKR activation is regulated very tightly in mammalian cells and a prolonged activation of PKR leads to apoptosis. Thus, positive and negative regulation of PKR activation is important for cell viability and function. The studies presented here describe human dihydrouridine synthase-2 (hDUS2) as a novel regulator of PKR. We originally identified hDUS2 as a protein interacting with PACT in a yeast two-hybrid screen. Further characterization revealed that hDUS2 also interacts with PKR through its dsRNA binding/dimerization domain and inhibits its kinase activity. Our results suggest that hDUS2 may act as a novel inhibitor of PKR in cells.
Collapse
Affiliation(s)
- Megan Mittelstadt
- Department of Biological Sciences, University of South Carolina Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Virus-infection of mammalian cells causes transcriptional induction of many cellular genes, collectively called as "viral stress-inducible genes." The proteins encoded by these genes are essential to maintain cell-virus homeostasis, which is required for both virus replication and host survival. Many viral products, including RNA, DNA, and proteins, can induce these genes by using distinct, but partially overlapping, signaling pathways. Type I interferons, direct products of virus infection, can also induce many of these genes, thus providing a positive feedback loop. Double-stranded RNA, a common by-product of virus replication, can induce them by multiple signaling pathways initiated by Toll-like receptor 3 or RIG-I/Mda-5. Several viral stress-inducible proteins inhibit protein synthesis. Proteins of the P56 family bind to the translation initiation factor, eIF-3, and block translation initiation. PKR, a protein kinase, phosphorylates a different initiation factor, eIF-2, and inhibits translation initiation. However, unlike P56, PKR needs to be first activated by dsRNA or PACT, another cellular protein. Another family of enzymes, the 2'-5' oligoadenylate synthetases, synthesizes 2'-5' linked oligoadenylates [2-5(A)] in the presence of dsRNA; 2-5(A) activates the latent ribonuclease, RNase L, which degrades mRNA. Many viruses have evolved mechanisms to evade these genes by blocking their induction or actions; often more than one strategy is used by the same virus to achieve this goal. Thus, in an infected cell, equilibrium is reached between the virus and the cell with regards to the viral stress-inducible genes.
Collapse
Affiliation(s)
- Ganes C Sen
- Department of Molecular Genetics, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
47
|
Cole JL. Activation of PKR: an open and shut case? Trends Biochem Sci 2006; 32:57-62. [PMID: 17196820 PMCID: PMC2703476 DOI: 10.1016/j.tibs.2006.12.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/16/2006] [Accepted: 12/18/2006] [Indexed: 11/15/2022]
Abstract
The double-stranded (ds) RNA-activated protein kinase, PKR, has a key role in the innate immunity response to viral infection in higher eukaryotes. PKR contains an N-terminal dsRNA-binding domain and a C-terminal kinase domain. In the prevalent autoinhibition model for PKR activation, dsRNA binding induces a conformational change that leads to the release of the dsRNA-binding domain from the kinase, thus relieving the inhibition of the latent enzyme. Structural and biophysical data now favor a model whereby dsRNA principally functions to induce dimerization of PKR via the kinase domain. This dimerization model has implications for other PKR regulatory mechanisms and represents a new structural paradigm for control of protein kinase activity.
Collapse
Affiliation(s)
- James L Cole
- Department of Molecular and Cell Biology, 91 N. Eagleville Road, U-3125 University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
48
|
Peters GA, Li S, Sen GC. Phosphorylation of Specific Serine Residues in the PKR Activation Domain of PACT Is Essential for Its Ability to Mediate Apoptosis. J Biol Chem 2006; 281:35129-36. [PMID: 16982605 DOI: 10.1074/jbc.m607714200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the latent protein kinase, PKR, by extracellular stresses and triggering of resultant cellular apoptosis are mediated by the protein, PACT, which itself gets phosphorylated in stressed cells. We have analyzed the underlying biochemical mechanism by carrying out alanine-scanning mutagenesis of the PKR activation domain of PACT. Among the indispensable residues identified were two serine residues, whose phosphorylation was essential for the cellular actions of PACT. Two-dimensional gel analysis, Western analysis using phosphoamino acid-specific antiserum, and in vivo 32P labeling of PACT demonstrated that constitutive phosphorylation of one of the two residues, Ser246, was required for stress-induced phosphorylation of the other, Ser287. Substitution of either of them by threonine or aspartic acid, but not alanine, was tolerated. Substitution of both residues with the phosphoserine mimetic, aspartic acid, produced a mutant PACT that, unlike the wild-type protein, caused PKR activation and apoptosis, even in unstressed cells. These results indicate that phosphorylation of specific serine residues in the activation domain of PACT is the major mode of transmission of cellular stress response to PKR.
Collapse
Affiliation(s)
- Gregory A Peters
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
49
|
Fasciano S, Kaufman A, Patel RC. Expression of PACT is regulated by Sp1 transcription factor. Gene 2006; 388:74-82. [PMID: 17125937 PMCID: PMC1855191 DOI: 10.1016/j.gene.2006.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 11/15/2022]
Abstract
PACT is a stress-modulated, cellular activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) and is an important regulator of PKR-dependent signaling pathways. The research presented here is aimed at understanding the regulation of PACT expression in mammalian cells. PACT is expressed ubiquitously in different cell types at varying abundance. We have characterized the sequence elements in PACT promoter region that are required for its expression. Using deletion analysis of the promoter we have identified the minimal basal promoter of PACT to be within 101 nucleotides upstream of its transcription start site. Further mutational analyses within this region, followed by electrophoretic mobility shift analyses (EMSAs) and chromatin immunoprecipitation (ChiP) analysis have shown that Specificity protein 1 (Sp1) is the major transcription factor responsible for PACT promoter activity.
Collapse
Affiliation(s)
- Stephen Fasciano
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, United States
| | | | | |
Collapse
|
50
|
Hakki M, Marshall EE, De Niro KL, Geballe AP. Binding and nuclear relocalization of protein kinase R by human cytomegalovirus TRS1. J Virol 2006; 80:11817-26. [PMID: 16987971 PMCID: PMC1642616 DOI: 10.1128/jvi.00957-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes block the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) and the consequent shutoff of cellular protein synthesis that occur during infection with vaccinia virus (VV) deleted of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). To further define the underlying mechanism, we first evaluated the effect of pTRS1 on protein kinase R (PKR), the double-stranded RNA (dsRNA)-dependent eIF2alpha kinase. Immunoblot analyses revealed that pTRS1 expression in the context of a VVDeltaE3L recombinant decreased levels of PKR in the cytoplasm and increased its levels in the nucleus of infected cells, an effect not seen with wild-type VV or a VVDeltaE3L recombinant virus expressing E3L. This effect of pTRS1 was confirmed by visualizing the nuclear relocalization of PKR-EGFP expressed by transient transfection. PKR present in both the nuclear and cytoplasmic fractions was nonphosphorylated, indicating that it was unactivated when TRS1 was present. PKR also accumulated in the nucleus during HCMV infection as determined by indirect immunofluorescence and immunoblot analysis. Binding assays revealed that pTRS1 interacted with PKR in mammalian cells and in vitro. This interaction required the same carboxy-terminal region of pTRS1 that is necessary to rescue VVDeltaE3L replication in HeLa cells. The carboxy terminus of pIRS1 was also required for rescue of VVDeltaE3L and for mediating an interaction of pIRS1 with PKR. These results suggest that these HCMV genes directly interact with PKR and inhibit its activation by sequestering it in the nucleus, away from both its activator, cytoplasmic dsRNA, and its substrate, eIF2alpha.
Collapse
Affiliation(s)
- Morgan Hakki
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | | | |
Collapse
|