1
|
Matalon S. The long road to Ithaca: a physiologist's journey. Am J Physiol Cell Physiol 2025; 328:C1526-C1534. [PMID: 39993005 DOI: 10.1152/ajpcell.00030.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
It was an honor to be asked to deliver the Walter B. Cannon Lecture during the 2024 American Physiological Summit meeting. Dr. Cannon served as president of the American Physiological Society from 1914-1916. He coined the term "fight or flight" to describe an animal's response to threats and the concept of Homeostasis. He was the consummate physician-scientist, an outstanding mentor and teacher, a prolific writer, and a humanitarian. The title of my lecture is based on a poem entitled "Ithaca," written by the Greek poet C. P. Cavafy, who recounts the 10 yr travels of Ulysses, from Troy to his home, Ithaca. Odysseus had to overcome many obstacles to survive this long journey. Like Odysseus, I encountered myriad of professional and health problems. But, I also have experienced the thrill of contributing to scientific knowledge, the satisfaction of watching my mentees develop into independent scientists, the excitement of teaching respiration physiology to medical and professional students, and the pleasure of being of service to my discipline by serving as Editor of the American Journal of Physiology-Lung Cellular and Molecular Physiology and of Physiological Reviews. During my career, I have been interested in identifying the basic mechanisms by which oxidant gases and pathogens damage the blood gas barrier resulting in acute and chronic lung injury. In this brief review, I summarize the results of current studies implicating free heme as a major mediator of acute lung injury and our efforts to develop recombinant forms of human hemopexin, as a countermeasure.
Collapse
Affiliation(s)
- Sadis Matalon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine UAB | The University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Suraci CM, Morrison ML, Roth MB. Oxygen is toxic in the cold in C. elegans. Front Physiol 2024; 15:1471249. [PMID: 39777359 PMCID: PMC11703811 DOI: 10.3389/fphys.2024.1471249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Temperature and oxygen are two factors that profoundly affect survival limits of animals; too much or too little of either is lethal. However, humans and other animals can exhibit exceptional survival when oxygen and temperature are simultaneously low. This research investigates the role of oxygen in the cold shock death of Caenorhabditis elegans. Methods The survival of C. elegans populations in combinations of oxygen concentrations and was assayed. Additionally, the effect of cold acclimatization, mutations in the cold acclimatization pathway, compounds, and antioxidant proteins on survival in low temperatures and high oxygen were investigated. Results We demonstrate that C. elegans have increased survival in 2°C when deprived of oxygen, and an increase to just 0.25 kPa of oxygen decreased survival. Additionally, we show that oxygen toxicity produced by a 35-fold increase above atmospheric oxygen levels was fatal for nematodes in 8 h at room temperature and 2 h at 2°C. We found that cold acclimatization and mutations in the cold acclimatization pathway improve survival in room temperature oxygen toxicity. Furthermore, we found that the compounds glucose, manganese (II), and ascorbate improve both cold shock and high oxygen survival, while the antioxidant proteins catalase and peroxiredoxin are essential to wild type survival in these conditions. Discussion Our results suggest that oxygen toxicity contributes to the death of C. elegans during cold shock. The changes in survival induced by cold acclimatization and mutations in the cold acclimatization pathway suggest that oxygen toxicity in the cold exerts evolutionary pressure, leading to the development of protections against it. Additionally, the resistance provided by diverse compounds and antioxidant proteins in both low temperature and high oxygen suggests these conditions have similar chemical environments. We discuss evidence that similar phenomena may function in humans.
Collapse
Affiliation(s)
| | | | - Mark B. Roth
- Roth Lab, Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
3
|
Brown EF, Mitaera T, Fronius M. COVID-19 and Liquid Homeostasis in the Lung—A Perspective through the Epithelial Sodium Channel (ENaC) Lens. Cells 2022; 11:cells11111801. [PMID: 35681496 PMCID: PMC9180030 DOI: 10.3390/cells11111801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/26/2023] Open
Abstract
Infections with a new corona virus in 2019 lead to the definition of a new disease known as Corona Virus Disease 2019 (COVID-19). The sever cases of COVID-19 and the main cause of death due to virus infection are attributed to respiratory distress. This is associated with the formation of pulmonary oedema that impairs blood oxygenation and hypoxemia as main symptoms of respiratory distress. An important player for the maintenance of a defined liquid environment in lungs needed for normal lung function is the epithelial sodium channel (ENaC). The present article reviews the implications of SARS-CoV-2 infections from the perspective of impaired function of ENaC. The rationale for this perspective is derived from the recognition that viral spike protein and ENaC share a common proteolytic cleavage site. This cleavage site is utilized by the protease furin, that is essential for ENaC activity. Furin cleavage of spike ‘activates’ the virus protein to enable binding to host cell membrane receptors and initiate cell infection. Based on the importance of proteolytic cleavage for ENaC function and activation of spike, it seems feasible to assume that virus infections are associated with impaired ENaC activity. This is further supported by symptoms of COVID-19 that are reminiscent of impaired ENaC function in the respiratory tract.
Collapse
Affiliation(s)
- Emily F. Brown
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Tamapuretu Mitaera
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Martin Fronius
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
- Healthy Hearts for Aotearoa New Zealand, Centre of Research Excellence, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Centre of Research Excellence, New Zealand
- Correspondence: ; Tel.: +64-3-471-6081
| |
Collapse
|
4
|
Liu J, Dean DA. Gene Therapy for Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:786255. [PMID: 35111077 PMCID: PMC8801611 DOI: 10.3389/fphys.2021.786255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - David A. Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
5
|
Londino JD, Lazrak A, Collawn JF, Bebok Z, Harrod KS, Matalon S. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. Am J Physiol Lung Cell Mol Physiol 2017; 313:L845-L858. [PMID: 28775098 DOI: 10.1152/ajplung.00244.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.
Collapse
Affiliation(s)
- James David Londino
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zsuzsanna Bebok
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
6
|
Elias ASNT, Oliveira GP, Ornellas DS, Morales MM, Capelozzi VL, Haddad R, Pelosi P, Rocco PRM, Garcia CSNB. Effects of early and late pneumothorax drainage on the development of pulmonary oedema. Respir Physiol Neurobiol 2014; 195:27-36. [PMID: 24548974 DOI: 10.1016/j.resp.2014.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 11/30/2022]
Abstract
We analyzed the effects of pneumothorax duration and early or late drainage on lung histology and biological markers associated with inflammation, alveolar fluid clearance, and pulmonary oedema formation. Pneumothorax was induced by injecting air into the thorax of anaesthetized rats, which were randomized according to duration of pneumothorax [5 (PTX5) or 30 (PTX30)min] and further divided to be drained (D) or not (ND). ND rats were euthanized at 5 and 30min. In D groups, pneumothorax was drained and rats breathed spontaneously for 30min. PTX30-ND, compared to PTX5-ND, showed higher alveolar collapse and oedema, type III procollagen, caspase-3, epithelial sodium channel-α, and aquaporin (AQP)-1 mRNA expression, and epithelial and endothelial damage, with reduced cystic fibrosis transmembrane conductance regulator (CFTR) and AQP-3 expression. PTX5-D, compared to PTX30-D, showed less alveolar hyperinflation, oedema, and alveolar-capillary damage, with reduced interleukin-6, caspase-3, AQP-5, and Na,K-ATPase-α and -β expression, and increased CFTR expression. In conclusion, longer duration pneumothorax exacerbated lung damage, oedema, and inflammation.
Collapse
Affiliation(s)
- Alessandra S N T Elias
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil; Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Avenida Professor Rodolpho Paulo Rocco, 225, Ilha do Fundão, 21941-913 Rio de Janeiro, Brazil
| | - Gisele P Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil
| | - Débora S Ornellas
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil; Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G2-048, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G2-048, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil
| | - Vera L Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455, 01246-903 São Paulo, Brazil
| | - Rui Haddad
- Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Avenida Professor Rodolpho Paulo Rocco, 225, Ilha do Fundão, 21941-913 Rio de Janeiro, Brazil
| | - Paolo Pelosi
- IRCCS AOU San Martino-IST, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Largo Rosanna Benzi 8, 16132 Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil.
| | - Cristiane S N B Garcia
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, 21941-902 Rio de Janeiro, Brazil; Rio de Janeiro Federal Institute of Education, Science and Technology, Rua Carlos Wenceslau, n° 343, Realengo, 21715-000 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Abstract
Ion channels perform a variety of cellular functions in lung epithelia. Oxidant- and antioxidant-mediated mechanisms (that is, redox regulation) of ion channels are areas of intense research. Significant progress has been made in our understanding of redox regulation of ion channels since the last Experimental Biology report in 2003. Advancements include: 1) identification of nonphagocytic NADPH oxidases as sources of regulated reactive species (RS) production in epithelia, 2) an understanding that excessive treatment with antioxidants can result in greater oxidative stress, and 3) characterization of novel RS signaling pathways that converge upon ion channel regulation. These advancements, as discussed at the 2013 Experimental Biology Meeting in Boston, MA, impact our understanding of oxidative stress in the lung, and, in particular, illustrate that the redox state has profound effects on ion channel and cellular function.
Collapse
|
8
|
Ji W, Fu J, Nie H, Xue X. Expression and activity of epithelial sodium channel in hyperoxia-induced bronchopulmonary dysplasia in neonatal rats. Pediatr Int 2012; 54:735-42. [PMID: 22591391 DOI: 10.1111/j.1442-200x.2012.03662.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The aim of the present study was to investigate the expression and activity of epithelial sodium channel (ENaC) in hyperoxia-induced bronchopulmonary dysplasia (BPD) in neonatal rats. METHODS Neonatal rats were exposed to hyperoxia to establish BPD models (control group was exposed to air), lung water was measured and Western blot was applied to detect the expression of three homologous subunits: α-, β- and γ-ENaC in the lung tissues. Furthermore, ATII cells were isolated from neonatal rats, and primarily cultured under normoxic or hyperoxic conditions. The ENaC expression was also examined in these cells. In addition, the amiloride-sensitive Na(+) currents induced by hyperoxia were recorded using the whole-cell patch clamp technique. RESULTS The α-ENaC expression was increased after 5 days of hyperoxia in rat lung tissues, whereas not after 1, 3 and 7 days. ATII cells showed α-ENaC expression was reduced after 1 and 2 days' hyperoxia, but no change after 3 days. In contrast, β- and γ-ENaC expression was increased after hyperoxia in both in vivo and in vitro experiments. The amiloride-sensitive Na(+) currents in hyperoxia-exposed ATII cells were also increased, which was consistent with the upregulated expression of β- and γ-ENaC. CONCLUSION Hyperoxia upregulates the expression of ENaC, especially β- and γ-ENaC subunits, in both neonatal rat lung tissues and ATII cells. Hyperoxia also enhanced the activity of ENaC in neonatal rat ATII cells. Dysfunctional transport of Na(+) may not be a key factor involving pulmonary edema at the early stage of BPD.
Collapse
Affiliation(s)
- Weihua Ji
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | |
Collapse
|
9
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
10
|
Lazrak A, Chen L, Jurkuvenaite A, Doran SF, Liu G, Li Q, Lancaster JR, Matalon S. Regulation of alveolar epithelial Na+ channels by ERK1/2 in chlorine-breathing mice. Am J Respir Cell Mol Biol 2011; 46:342-54. [PMID: 21997487 DOI: 10.1165/rcmb.2011-0309oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mechanisms by which the exposure of mice to Cl(2) decreases vectorial Na(+) transport and fluid clearance across their distal lung spaces have not been elucidated. We examined the biophysical, biochemical, and physiological changes of rodent lung epithelial Na(+) channels (ENaCs) after exposure to Cl(2), and identified the mechanisms involved. We measured amiloride-sensitive short-circuit currents (I(amil)) across isolated alveolar Type II (ATII) cell monolayers and ENaC single-channel properties by patching ATII and ATI cells in situ. α-ENaC, γ-ENaC, total and phosphorylated extracellular signal-related kinase (ERK)1/2, and advanced products of lipid peroxidation in ATII cells were measured by Western blot analysis. Concentrations of reactive intermediates were assessed by electron spin resonance (ESR). Amiloride-sensitive Na(+) channels with conductances of 4.5 and 18 pS were evident in ATI and ATII cells in situ of air-breathing mice. At 1 hour and 24 hours after exposure to Cl(2), the open probabilities of these two channels decreased. This effect was prevented by incubating lung slices with inhibitors of ERK1/2 or of proteasomes and lysosomes. The exposure of ATII cell monolayers to Cl(2) increased concentrations of reactive intermediates, leading to ERK1/2 phosphorylation and decreased I(amil) and α-ENaC concentrations at 1 hour and 24 hours after exposure. The administration of antioxidants to ATII cells before and after exposure to Cl(2) decreased concentrations of reactive intermediates and ERK1/2 activation, which mitigated the decrease in I(amil) and ENaC concentrations. The reactive intermediates formed during and after exposure to Cl(2) activated ERK1/2 in ATII cells in vitro and in vivo, leading to decreased ENaC concentrations and activity.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, BMR II 224, 901 19th St. South, Birmingham, AL 35205-3703, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lazrak A, Jurkuvenaite A, Chen L, Keeling KM, Collawn JF, Bedwell DM, Matalon S. Enhancement of alveolar epithelial sodium channel activity with decreased cystic fibrosis transmembrane conductance regulator expression in mouse lung. Am J Physiol Lung Cell Mol Physiol 2011; 301:L557-67. [PMID: 21743028 DOI: 10.1152/ajplung.00094.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We sought to establish whether the cystic fibrosis transmembrane conductance regulator (CFTR) regulates the activity of amiloride-sensitive sodium channels (ENaC) in alveolar epithelial cells of wild-type, heterozygous (Cftr(+/-)), knockout (Cftr(-/-)), and ΔF508-expressing mice in situ. RT-PCR studies confirmed the presence of CFTR message in freshly isolated alveolar type II (ATII) cells from wild-type mice. We patched alveolar type I (ATI) and ATII cells in freshly prepared lung slices from these mice and demonstrated the presence of 4-pS ENaC channels with the following basal open probabilities (P(o)): wild-type=0.21 ± 0.015: Cftr(+/-)=0.4 ± 0.03; ΔF508=0.55 ± 0.01; and Cftr(-/-)=and 0.81 ± 0.016 (means ± SE; n ≥ 9). Forskolin (5 μM) or trypsin (2 μM), applied in the pipette solution, increased the P(o) and number of channels in ATII cells of wild-type, Cftr(+/-), and ΔF508, but not in Cftr(-/-) mice, suggesting that the latter were maximally activated. Western blot analysis showed that lungs of all groups of mice had similar levels of α-ENaC; however, lungs of Cftr(+/-) and Cftr(-/-) mice had significantly higher levels of an α-ENaC proteolytic fragment (65 kDa) that is associated with active ENaC channels. Our results indicate that ENaC activity is inversely correlated to predicted CFTR levels and that CFTR heterozygous and homozygous mice have higher levels of proteolytically processed ENaC fragments in their lungs. This is the first demonstration of functional ENaC-CFTR interactions in alveolar epithelial cells in situ.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, 35205-3703, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Eneling K, Chen J, Welch LC, Takemori H, Sznajder JI, Bertorello AM. Salt-inducible kinase 1 is present in lung alveolar epithelial cells and regulates active sodium transport. Biochem Biophys Res Commun 2011; 409:28-33. [PMID: 21549091 PMCID: PMC3106424 DOI: 10.1016/j.bbrc.2011.04.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
Abstract
Salt-inducible kinase 1 (SIK1) in epithelial cells mediates the increases in active sodium transport (Na(+), K(+)-ATPase-mediated) in response to elevations in the intracellular concentration of sodium. In lung alveolar epithelial cells increases in active sodium transport in response to β-adrenergic stimulation increases pulmonary edema clearance. Therefore, we sought to determine whether SIK1 is present in lung epithelial cells and to examine whether isoproterenol-dependent stimulation of Na(+), K(+)-ATPase is mediated via SIK1 activity. All three SIK isoforms were present in airway epithelial cells, and in alveolar epithelial cells type 1 and type 2 from rat and mouse lungs, as well as from human and mouse cell lines representative of lung alveolar epithelium. In mouse lung epithelial cells, SIK1 associated with the Na(+), K(+)-ATPase α-subunit, and isoproterenol increased SIK1 activity. Isoproterenol increased Na(+), K(+)-ATPase activity and the incorporation of Na(+), K(+)-ATPase molecules at the plasma membrane. Furthermore, those effects were abolished in cells depleted of SIK1 using shRNA, or in cells overexpressing a SIK1 kinase-deficient mutant. These results provide evidence that SIK1 is present in lung epithelial cells and that its function is relevant for the action of isoproterenol during regulation of active sodium transport. As such, SIK1 may constitute an important target for drug discovery aimed at improving the clearance of pulmonary edema.
Collapse
Affiliation(s)
- Kristina Eneling
- Membrane Signaling Networks, Atherosclerosis Research Unit, Department of Medicine, CMM, Karolinska Institutet, Karolinska University Hospital-Solna, 171 76 Stockholm, Sweden
| | - Jiwang Chen
- Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Lynn C. Welch
- Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolism, National Institute for Biomedical Innovation, Osaka, Japan
| | - Jacob I. Sznajder
- Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alejandro M. Bertorello
- Membrane Signaling Networks, Atherosclerosis Research Unit, Department of Medicine, CMM, Karolinska Institutet, Karolinska University Hospital-Solna, 171 76 Stockholm, Sweden
| |
Collapse
|
13
|
Matalon S, Eaton DC. Dale J. Benos, Ph.D. (1950-2010). Am J Physiol Lung Cell Mol Physiol 2011; 300:L509-11. [PMID: 21296896 DOI: 10.1152/ajplung.00022.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Bove PF, Grubb BR, Okada SF, Ribeiro CMP, Rogers TD, Randell SH, O'Neal WK, Boucher RC. Human alveolar type II cells secrete and absorb liquid in response to local nucleotide signaling. J Biol Chem 2010; 285:34939-49. [PMID: 20801871 PMCID: PMC2966108 DOI: 10.1074/jbc.m110.162933] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/23/2010] [Indexed: 12/21/2022] Open
Abstract
A balance sheet describing the integrated homeostasis of secretion, absorption, and surface movement of liquids on pulmonary surfaces has remained elusive. It remains unclear whether the alveolus exhibits an intra-alveolar ion/liquid transport physiology or whether it secretes ions/liquid that may communicate with airway surfaces. Studies employing isolated human alveolar type II (AT2) cells were utilized to investigate this question. Human AT2 cells exhibited both epithelial Na(+) channel-mediated Na(+) absorption and cystic fibrosis transmembrane conductance regulator-mediated Cl(-) secretion, both significantly regulated by extracellular nucleotides. In addition, we observed in normal AT2 cells an absence of cystic fibrosis transmembrane conductance regulator regulation of epithelial Na(+) channel activity and an absence of expression/activity of reported calcium-activated chloride channels (TMEM16A, Bestrophin-1, ClC2, and SLC26A9), both features strikingly different from normal airway epithelial cells. Measurements of alveolar surface liquid volume revealed that normal AT2 cells: 1) achieved an extracellular nucleotide concentration-dependent steady state alveolar surface liquid height of ∼4 μm in vitro; 2) absorbed liquid when the lumen was flooded; and 3) secreted liquid when treated with UTP or forskolin or subjected to cyclic compressive stresses mimicking tidal breathing. Collectively, our studies suggest that human AT2 cells in vitro have the capacity to absorb or secrete liquid in response to local alveolar conditions.
Collapse
Affiliation(s)
- Peter F. Bove
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Barbara R. Grubb
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Seiko F. Okada
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Carla M. P. Ribeiro
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Troy D. Rogers
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Scott H. Randell
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Wanda K. O'Neal
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Richard C. Boucher
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
15
|
Adler KB, Matalon S. Highlights of the December Issue. Am J Respir Cell Mol Biol 2009. [DOI: 10.1165/rcmb.2009-2012ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Lazrak A, Nita I, Subramaniyam D, Wei S, Song W, Ji HL, Janciauskiene S, Matalon S. Alpha(1)-antitrypsin inhibits epithelial Na+ transport in vitro and in vivo. Am J Respir Cell Mol Biol 2009; 41:261-70. [PMID: 19131639 PMCID: PMC2742747 DOI: 10.1165/rcmb.2008-0384oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 12/17/2008] [Indexed: 12/31/2022] Open
Abstract
A variety of studies have shown that Na(+) reabsorption across epithelial cells depends on the protease-antiprotease balance. Herein, we investigate the mechanisms by which alpha(1)-antitrypsin (A1AT), a major anti-serine protease in human plasma and lung epithelial fluid and lacking a Kunitz domain, regulates amiloride-sensitive epithelial Na(+) channel (ENaC) function in vitro and in vivo. A1AT (0.05 mg/ml = 1 microM) decreased ENaC currents across Xenopus laevis oocytes injected with human alpha,beta,gamma-ENaC (hENaC) cRNAs, and human lung Clara-like (H441) cells expressing native ENaC, in a partially irreversible fashion. A1AT also decreased ENaC single-channel activity when added in the pipette but not in the bath solutions of ENaC-expressing oocytes patched in the cell-attached mode. Incubation of A1AT with peroxynitrite (ONOO(-)), an oxidizing and nitrating agent, abolished its antiprotease activity and significantly decreased its ability to inhibit ENaC. Intratracheal instillation of normal but not ONOO(-)-treated A1AT (1 microM) in C57BL/6 mice also decreased Na(+)-dependent alveolar fluid clearance to the same level as amiloride. Incubation of either H441 cells or ENaC-expressing oocytes with normal but not ONOO(-)-treated A1AT decreased their ability to cleave a substrate of serine proteases. A1AT had no effect on amiloride-sensitive currents of oocytes injected with hENaC bearing Liddle mutations, presumably because these channels remain at the surface longer than the wild-type channels. These data indicate that A1AT may be an important modulator of ENaC activity and of Na(+)-dependent fluid clearance across the distal lung epithelium in vivo by decreasing endogenous protease activity needed to activate silent ENaC.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology, University of Alabama at Birmingham, 224 BMR II, 901 South 19th Street, Birmingham, AL 35205-3703, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lazrak A, Iles KE, Liu G, Noah DL, Noah JW, Matalon S. Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J 2009; 23:3829-42. [PMID: 19596899 DOI: 10.1096/fj.09-135590] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The mechanisms by which replicating influenza viruses decrease the expression and function of amiloride-sensitive epithelial sodium channels (ENaCs) have not been elucidated. We show that expression of M2, a transmembrane influenza protein, decreases ENaC membrane levels and amiloride-sensitive currents in both Xenopus oocytes, injected with human alpha-, beta-, and gamma-ENaCs, and human airway cells (H441 and A549), which express native ENaCs. Deletion of a 10-aa region within the M2 C terminus prevented 70% of this effect. The M2 ENaC down-regulation occurred at normal pH and was prevented by MG-132, a proteasome and lysosome inhibitor. M2 had no effect on Liddle ENaCs, which have decreased affinity for Nedd4-2. H441 and A549 cells transfected with M2 showed higher levels of reactive oxygen species, as shown by the activation of redox-sensitive dyes. Pretreatment with glutathione ester, which increases intracellular reduced thiol concentrations, or protein kinase C (PKC) inhibitors prevented the deleterious effects of M2 on ENaCs. The data suggest that M2 protein increases steady-state concentrations of reactive oxygen intermediates that simulate PKC and decrease ENaCs by enhancing endocytosis and its subsequent destruction by the proteasome. These novel findings suggest a mechanism for the influenza-induced rhinorrhea and life-threatening alveolar edema in humans.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology, Schools of Medicine and Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
18
|
Maron MB, Luther DJ, Pilati CF, Ohanyan V, Li T, Koshy S, Horne WI, Meszaros JG, Walro JM, Folkesson HG. Beta-adrenoceptor stimulation of alveolar fluid clearance is increased in rats with heart failure. Am J Physiol Lung Cell Mol Physiol 2009; 297:L487-95. [PMID: 19592457 DOI: 10.1152/ajplung.90629.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The alveolar epithelium plays a critical role in resolving pulmonary edema. We thus hypothesized that its function might be upregulated in rats with heart failure, a condition that severely challenges the lung's ability to maintain fluid balance. Heart failure was induced by left coronary artery ligation. Echocardiographic and cardiovascular hemodynamics confirmed its development at 16 wk postligation. At that time, alveolar fluid clearance was measured by an increase in protein concentration over 1 h of a 5% albumin solution instilled into the lungs. Baseline alveolar fluid clearance was similar in heart failure and age-matched control rats. Terbutaline was added to the instillate to determine whether heart failure rats responded to beta-adrenoceptor stimulation. Alveolar fluid clearance in heart failure rats was increased by 194% after terbutaline stimulation compared with a 153% increase by terbutaline in control rats. To determine the mechanisms responsible for this accelerated alveolar fluid clearance, we measured ion transporter expression (ENaC, Na-K- ATPase, CFTR). No significant upregulation was observed for these ion transporters in the heart failure rats. Lung morphology showed significant alveolar epithelial type II cell hyperplasia in heart failure rats. Thus, alveolar epithelial type II cell hyperplasia is the likely explanation for the increased terbutaline-stimulated alveolar fluid clearance in heart failure rats. These data provide evidence for previously unrecognized mechanisms that can protect against or hasten resolution of alveolar edema in heart failure.
Collapse
Affiliation(s)
- Michael B Maron
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, PO Box 95, Rootstown, OH 44272-0095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Clerici C, Planès C. Gene regulation in the adaptive process to hypoxia in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 296:L267-74. [PMID: 19118091 DOI: 10.1152/ajplung.90528.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung alveolar epithelial cells are normally very well oxygenated but may be exposed to hypoxia in many pathological conditions such as pulmonary edema, acute respiratory distress syndrome, chronic obstructive pulmonary diseases, or in some environmental conditions such ascent to high altitude. The ability of alveolar epithelial cells to cope with low oxygen tensions is crucial to maintain the structural and functional integrity of the alveolar epithelium. Alveolar epithelial cells appear to be remarkably tolerant to oxygen deprivation as they are able to maintain adequate cellular ATP content during prolonged hypoxic exposure when mitochondrial oxidative phosphorylation is limited. This property mostly relies on the ability of the cells to rapidly modify their gene expression program, stimulating the expression of genes involved in anaerobic energy supply and repressing expression of genes involved in some ATP-consuming cellular processes. This adaptive strategy of the cells is mostly, but not entirely, dependent on the expression of hypoxia-inducible factors (HIFs), known to be responsible for orchestrating a large number of hypoxia-sensitive genes. This review focuses on the role of HIF isoforms expressed in alveolar epithelial cells exposed to hypoxia and on the specific hypoxic gene regulation that takes place in alveolar epithelial cells either through HIF-dependent or -independent pathways.
Collapse
Affiliation(s)
- Christine Clerici
- Service de Physiologie-Explorations Fonctionnelles, Paris cedex 18, France.
| | | |
Collapse
|
20
|
Ji HL, Song W, Gao Z, Su XF, Nie HG, Jiang Y, Peng JB, He YX, Liao Y, Zhou YJ, Tousson A, Matalon S. SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms. Am J Physiol Lung Cell Mol Physiol 2008; 296:L372-83. [PMID: 19112100 DOI: 10.1152/ajplung.90437.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Among the multiple organ disorders caused by the severe acute respiratory syndrome coronavirus (SARS-CoV), acute lung failure following atypical pneumonia is the most serious and often fatal event. We hypothesized that two of the hydrophilic structural coronoviral proteins (S and E) would regulate alveolar fluid clearance by decreasing the cell surface expression and activity of amiloride-sensitive epithelial sodium (Na(+)) channels (ENaC), the rate-limiting protein in transepithelial Na(+) vectorial transport across distal lung epithelial cells. Coexpression of either S or E protein with human alpha-, beta-, and gamma-ENaC in Xenopus oocytes led to significant decreases of both amiloride-sensitive Na(+) currents and gamma-ENaC protein levels at their plasma membranes. S and E proteins decreased the rate of ENaC exocytosis and either had no effect (S) or decreased (E) rates of endocytosis. No direct interactions among SARS-CoV E protein with either alpha- or gamma-ENaC were indentified. Instead, the downregulation of ENaC activity by SARS proteins was partially or completely restored by administration of inhibitors of PKCalpha/beta1 and PKCzeta. Consistent with the whole cell data, expression of S and E proteins decreased ENaC single-channel activity in oocytes, and these effects were partially abrogated by PKCalpha/beta1 inhibitors. Finally, transfection of human airway epithelial (H441) cells with SARS E protein decreased whole cell amiloride-sensitive currents. These findings indicate that lung edema in SARS infection may be due at least in part to activation of PKC by SARS proteins, leading to decreasing levels and activity of ENaC at the apical surfaces of lung epithelial cells.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Anesthesiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35233-6810, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jin N, Guo Y, Sun P, Bell A, Chintagari NR, Bhaskaran M, Rains K, Baviskar P, Chen Z, Weng T, Liu L. Ionotropic GABA receptor expression in the lung during development. Gene Expr Patterns 2008; 8:397-403. [PMID: 18539546 PMCID: PMC2581461 DOI: 10.1016/j.gep.2008.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 04/04/2008] [Accepted: 04/27/2008] [Indexed: 11/28/2022]
Abstract
Cl(-) transport is essential for lung development. Because gamma-aminobutyric acid (GABA) receptors allow the flow of negatively-charged Cl(-) ions across the cell membrane, we hypothesized that the expression of ionotropic GABA receptors are regulated in the lungs during development. We identified 17 GABA receptor subunits in the lungs by real-time PCR. These subunits were categorized into four groups: Group 1 had high mRNA expression during fetal stages and low in adults; Group 2 had steady expression to adult stages with a slight up-regulation at birth; Group 3 showed an increasing expression from fetal to adult lungs; and Group 4 displayed irregular mRNA fluctuations. The protein levels of selected subunits were also determined by Western blots and some subunits had protein levels that corresponded to mRNA levels. Further studied subunits were primarily localized in epithelial cells in the developing lung with differential mRNA expression between isolated cells and whole lung tissues. Our results add to the knowledge of GABA receptor expression in the lung during development.
Collapse
Affiliation(s)
- Nili Jin
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Yujie Guo
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Peng Sun
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Anna Bell
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | | | - Manoj Bhaskaran
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Kimberly Rains
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Pradyumna Baviskar
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Zhongming Chen
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Tingting Weng
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Lin Liu
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, U.S.A
| |
Collapse
|
22
|
Chamorro-Marín V, García-Delgado M, Touma-Fernández A, Aguilar-Alonso E, Fernández-Mondejar E. Intratracheal dopamine attenuates pulmonary edema and improves survival after ventilator-induced lung injury in rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:R39. [PMID: 18331631 PMCID: PMC2447566 DOI: 10.1186/cc6829] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 11/14/2007] [Accepted: 03/10/2008] [Indexed: 11/15/2022]
Abstract
Intoduction Clearance of alveolar oedema depends on active transport of sodium across the alveolar-epithelial barrier. β-Adrenergic agonists increase clearance of pulmonary oedema, but it has not been established whether β-agonist stimulation achieves sufficient oedema clearance to improve survival in animals. The objective of this study was to determine whether the increased pulmonary oedema clearance produced by intratracheal dopamine improves the survival of rats after mechanical ventilation with high tidal volume (HVT). Methods This was a randomized, controlled, experimental study. One hundred and thirty-two Wistar-Kyoto rats, weighing 250 to 300 g, were anaesthetized and cannulated via endotracheal tube. Pulmonary oedema was induced by endotracheal instillation of saline solution and mechanical ventilation with HVT. Two types of experiment were carried out. The first was an analysis of pulmonary oedema conducted in six groups of 10 rats ventilated with low (8 ml/kg) or high (25 ml/kg) tidal volume for 30 or 60 minutes with or without intratracheally instilled dopamine. At the end of the experiment the animals were exsanguinated and pulmonary oedema analysis performed. The second experiment was a survival analysis, which was conducted in two groups of 36 animals ventilated with HVT for 60 minutes with or without intratracheal dopamine; survival of the animals was monitored for up to 7 days after extubation. Results In animals ventilated at HVT with or without intratracheal dopamine, oxygen saturation deteriorated over time and was significantly higher at 30 minutes than at 60 minutes. After 60 minutes, a lower wet weight/dry weight ratio was observed in rats ventilated with HVT and instilled with dopamine than in rats ventilated with HVT without dopamine (3.9 ± 0.27 versus 4.9 ± 0.29; P = 0.014). Survival was significantly (P = 0.013) higher in animals receiving intratracheal dopamine and ventilated with HVT, especially at 15 minutes after extubation, when 11 of the 36 animals in the HVT group had died as compared with only one out of the 36 animals in the HVT plus dopamine group. Conclusion Intratracheal dopamine instillation increased pulmonary oedema clearance in rats ventilated with HVT, and this greater clearance was associated with improved survival.
Collapse
Affiliation(s)
- Virginia Chamorro-Marín
- Unidad Experimental, Hospital Universitario Virgen de las Nieves, C/Dr, Azpitarte n4, 18014, Granada, Spain.
| | | | | | | | | |
Collapse
|
23
|
Shlyonsky V, Goolaerts A, Mies F, Naeije R. Electrophysiological characterization of rat type II pneumocytes in situ. Am J Respir Cell Mol Biol 2008; 39:36-44. [PMID: 18276797 DOI: 10.1165/rcmb.2007-0227oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Optimal aeration of the lungs is dependent on an alveolar fluid clearance, a process that is governed by Na+ and Cl- transport. However, the specific contribution of various ion channels in different alveolar cell types under basal or stimulated conditions is not exactly known. We established a novel functional model of rat lung slices suitable for nystatin-perforated whole-cell patch-clamp experiments. Lung slices retained a majority of live cells for up to 72 hours. Type II pneumocytes in situ had a mean capacitance of 8.8 +/- 2.5 pF and a resting membrane potential of -4.4 +/- 1.9 mV. Bath replacement of Na+ with NMDG+ decreased inward whole-cell currents by 70%, 21% and 52% of which were sensitive to 10 microM and 1 mM of amiloride, respectively. Exposure of slices to 0.5 microM dexamethasone for 1 hour did not affect ion currents, while chronic exposure (0.5 microM, 24-72 h) induced an increase in both total Na+-entry currents and amiloride-sensitive currents. Under acute exposure to 100 microM cpt-cAMP, Type II cells in situ rapidly hyperpolarized by 25-30 mV, due to activation of whole-cell Cl- currents sensitive to 0.1 mM of 5-Nitro-2-(3-phenylpropylamino)benzoic acid. In addition, in the presence of cpt-cAMP, total sodium currents and currents sensitive to 10 microM amiloride increased by 32% and 70%, respectively. Thus, in Type II pneumocytes in situ: (1) amiloride-sensitive sodium channels contribute to only half of total Na+-entry and are stimulated by chronic exposure to glucocorticoids; (2) acute increase in cellular cAMP content simultaneously stimulates the entry of Cl- and Na+ ions.
Collapse
Affiliation(s)
- Vadim Shlyonsky
- Université Libre de Bruxelles, Laboratoire de Physiologie et Physiopathologie, Campus Erasme, CP 604, 808 Route de Lennik, 1070 Bruxelles, Belgium.
| | | | | | | |
Collapse
|
24
|
Song W, Lazrak A, Wei S, McArdle P, Matalon S. Chapter 3 Modulation of Lung Epithelial Sodium Channel Function by Nitric Oxide. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Yu L, Bao HF, Self JL, Eaton DC, Helms MN. Aldosterone-induced increases in superoxide production counters nitric oxide inhibition of epithelial Na channel activity in A6 distal nephron cells. Am J Physiol Renal Physiol 2007; 293:F1666-77. [PMID: 17804482 DOI: 10.1152/ajprenal.00444.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxygen radicals play an important role in signal transduction and have been shown to influence epithelial sodium channel (ENaC) activity. We show that aldosterone, the principal hormone regulating renal ENaC activity, increases superoxide (O2*) production in A6 distal nephron cells. Aldosterone (50 nM to 1.5 microM) induced increases in dihydroethidium fluorescence in a dose-dependent manner in confluent A6 epithelial cells. Using single-channel measurements, we showed that sequestering endogenous O2* (with the O2* scavenger 2,2,6,6-tetramethylpiperidine 1-oxyl) significantly decreased ENaC open probability from 0.10 +/- 0.03 to 0.03 +/- 0.01. We also found that increasing endogenous O2* in A6 cells, by applying a superoxide dismutase inhibitor, prevented nitric oxide (NO) inhibition of ENaC activity. ENaC open probability values did not significantly change from control values (0.23 +/- 0.05) after superoxide dismutase and 1.5 microM NO coincubation (0.21 +/- 0.04). We report that xanthine oxidase and hypoxanthine compounds increase local concentrations of O2* by approximately 30%; with this mix, an increase in ENaC number of channels times the open probability (from 0.1 to 0.3) can be achieved in a cell-attached patch. Our data also suggest that O2* alters NO activity in a cGMP-independent mechanism, since pretreating A6 cells with ODQ compound (a selective inhibitor of NO-sensitive guanylyl cyclase) failed to block 2,2,6,6-tetramethylpiperidine 1-oxyl inhibition of ENaC activity.
Collapse
Affiliation(s)
- Ling Yu
- The Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine, Whitehead Biomedical Research Bldg., 615 Michael St., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
26
|
Song W, Matalon S. Modulation of alveolar fluid clearance by reactive oxygen-nitrogen intermediates. Am J Physiol Lung Cell Mol Physiol 2007; 293:L855-8. [PMID: 17693483 DOI: 10.1152/ajplung.00305.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
27
|
Dobbs LG, Johnson MD. Alveolar epithelial transport in the adult lung. Respir Physiol Neurobiol 2007; 159:283-300. [PMID: 17689299 DOI: 10.1016/j.resp.2007.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 05/31/2007] [Accepted: 06/18/2007] [Indexed: 01/11/2023]
Abstract
The alveolar surface comprises >99% of the internal surface area of the lungs. At birth, the fetal lung rapidly converts from a state of net fluid secretion, which is necessary for normal fetal lung development, to a state in which there is a minimal amount of alveolar liquid. The alveolar surface epithelium facing the air compartment is composed of TI and TII cells. The morphometric characteristics of both cell types are fairly constant over a range of mammalian species varying in body weight by a factor of approximately 50,000. From the conservation of size and shape across species, one may infer that both TI and TII cells also have important conserved functions. The regulation of alveolar ion and liquid transport has been extensively investigated using a variety of experimental models, including whole animal, isolated lung, isolated cell, and cultured cell model systems, each with their inherent strengths and weaknesses. The results obtained with different model systems and a variety of different species point to both interesting parallels and some surprising differences. Sometimes it has been difficult to reconcile results obtained with different model systems. In this section, the primary focus will be on aspects of alveolar ion and liquid transport under normal physiologic conditions, emphasizing newer data and describing evolving paradigms of lung ion and fluid transport. We will highlight some of the unanswered questions, outline the similarities and differences in results obtained with different model systems, and describe some of the complex and interweaving regulatory networks.
Collapse
Affiliation(s)
- Leland G Dobbs
- Department of Medicine, University of California San Francisco, San Francisco, CA 94118, USA.
| | | |
Collapse
|
28
|
Morty RE, Eickelberg O, Seeger W. Alveolar fluid clearance in acute lung injury: what have we learned from animal models and clinical studies? Intensive Care Med 2007; 33:1229-1240. [PMID: 17525842 PMCID: PMC7095514 DOI: 10.1007/s00134-007-0662-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 03/05/2007] [Indexed: 01/11/2023]
Abstract
Background Acute lung injury and the acute respiratory distress syndrome continue to be significant causes of morbidity and mortality in the intensive care setting. The failure of patients to resolve the alveolar edema associated with these conditions is a major contributing factor to mortality; hence there is continued interest to understand the mechanisms of alveolar edema fluid clearance. Discussion The accompanying review by Vadász et al. details our current understanding of the signaling mechanisms and cellular processes that facilitate clearance of edema fluid from the alveolar compartment, and how these signaling processes may be exploited in the development of novel therapeutic strategies. To complement that report this review focuses on how intact organ and animal models and clinical studies have facilitated our understanding of alveolar edema fluid clearance in acute lung injury and acute respiratory distress syndrome. Furthermore, it considers how what we have learned from these animal and organ models and clinical studies has suggested novel therapeutic avenues to pursue.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Klinikstrasse 36, 35392, Giessen, Germany.
| | - Oliver Eickelberg
- Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Klinikstrasse 36, 35392, Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Klinikstrasse 36, 35392, Giessen, Germany
| |
Collapse
|
29
|
Ader F, Le Berre R, Lancel S, Faure K, Viget NB, Nowak E, Nevière R, Guery BP. Inhaled nitric oxide increases endothelial permeability in Pseudomonas aeruginosa pneumonia. Intensive Care Med 2007; 33:503-10. [PMID: 17219196 DOI: 10.1007/s00134-006-0497-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Pneumonia is a frequent cause of acute respiratory distress syndrome (ARDS), and Pseudomonas aeruginosa is a leading pathogen in nosocomial pneumonia. The management of ARDS remains a major problem, and only a limited number of options can improve the oxygenation. Inhaled nitric oxide (iNO) has been widely used, although this molecule is a free radical potentially harmful through the generation of toxic radical derivatives. The goal of our study was to assess the consequences of iNO (10 ppm) in a rat model of P. aeruginosa-induced lung injury. DESIGN The animals were exposed for 24 h to iNO after instillation of the pathogen. Distal alveolar fluid clearance (DAFC) and epithelial and endothelial permeability were measured with a double flux of radio-labeled albumin. RESULTS DAFC and epithelial permeability were increased in pneumonia but not influenced by iNO. In contrast, endothelial permeability was statistically significantly higher in the pneumonic animals exposed to iNO than in the pneumonic group without iNO (0.24+/-0.03 vs 0.47+/-0.1, p<0.05). This increase was not related to the production of nitrate/nitrite, nor to the increase of the inflammatory response evaluated by cytokine levels in the bronchoalveolar lavage fluid (TNF-alpha, IL-6, IL-10). The alveolar recruitment of polymorphonuclear neutrophils was comparable in the pneumonic group exposed to iNO and the pneumonic group without iNO. CONCLUSION iNO increases the endothelial permeability in P. aeruginosa pneumonia. The mechanism is not related to the production of nitrate/nitrite or to a greater inflammatory response.
Collapse
Affiliation(s)
- Florence Ader
- EA 2689, Faculté de Médecine de Lille, Université de Lille II, 59045, Lille Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
This highlight article summarizes the current published literature of ion channels and ion transport in type I cells. Twenty years ago, the general theory of ion and fluid transport in the lung was that the alveolar type II cells, known to contain ion channels, governed ion transport and that the type I cells, believed to be incapable of ion transport, only allowed passive movement of water. Unable to reconcile the extraordinarily large surface area covered by type I cells (95% of the internal surface area of the lung) with such minimal biological activity, investigators set out to demonstrate that type I cells were capable of ion transport and played a role in regulating lung fluid balance. Various methods were employed to show that type I cells contained ENaC (HSC and NSC channels), CNG and K(+) channels, and CFTR, further necessitating a revision of the current theories of ion and fluid transport in the lung.
Collapse
Affiliation(s)
- Meshell D Johnson
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Abstract
The mechanisms of pulmonary edema resolution are different from those regulating edema formation. Absorption of excess alveolar fluid is an active process that involves vectorial transport of Na+out of alveolar air spaces with water following the Na+osmotic gradient. Active Na+transport across the alveolar epithelium is regulated via apical Na+and chloride channels and basolateral Na-K-ATPase in normal and injured lungs. During lung injury, mechanisms regulating alveolar fluid reabsorption are inhibited by yet unclear pathways and can be upregulated by pharmacological means. Better understanding of the mechanisms that regulate edema clearance may lead to therapeutic interventions to improve the ability of lungs to clear fluid, which is of clinical significance.
Collapse
Affiliation(s)
- Gökhan M Mutlu
- Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
32
|
Matalon S, Ji HL. Oleic Acid Damages Ion Transport and Promotes Alveolar Edema. Am J Respir Crit Care Med 2005; 171:424-5. [PMID: 15722419 DOI: 10.1164/rccm.2411005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
33
|
Dagenais A, Gosselin D, Guilbault C, Radzioch D, Berthiaume Y. Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa. Respir Res 2005; 6:2. [PMID: 15636635 PMCID: PMC546414 DOI: 10.1186/1465-9921-6-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 01/06/2005] [Indexed: 01/28/2023] Open
Abstract
Background The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC) and the catalytic subunit of Na+-K+-ATPase. Methods Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c) and susceptible (DBA/2, C57BL/6 and A/J) mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. Results The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p < 0.05). The relative expression of βENaC mRNA was transiently increased to a median of 241%, 24 h post-infection before decreasing to a median of 43% and 54% of control on days 3 and 7 post-infection (p < 0.05). No significant modulation of γENaC mRNA was detected although the general pattern of expression of the subunit was similar to α and β subunits. No modulation of α1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. Conclusions These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.
Collapse
Affiliation(s)
- André Dagenais
- Centre de recherche, Centre hospitalier de l'Université de Montréal/ Hôtel-Dieu, Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Diane Gosselin
- Present address: Fonds de solidarité FTQ, Montreal, Quebec, Canada
| | - Claudine Guilbault
- Departments of Experimental Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Danuta Radzioch
- Departments of Experimental Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Centre de recherche, Centre hospitalier de l'Université de Montréal/ Hôtel-Dieu, Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Zemans RL, Matthay MA. Bench-to-bedside review: the role of the alveolar epithelium in the resolution of pulmonary edema in acute lung injury. Crit Care 2004; 8:469-77. [PMID: 15566618 PMCID: PMC1065044 DOI: 10.1186/cc2906] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clearance of pulmonary edema fluid is accomplished by active ion transport, predominantly by the alveolar epithelium. Various ion pumps and channels on the surface of the alveolar epithelial cell generate an osmotic gradient across the epithelium, which in turn drives the movement of water out of the airspaces. Here, the mechanisms of alveolar ion and fluid clearance are reviewed. In addition, many factors that regulate the rate of edema clearance, such as catecholamines, steroids, cytokines, and growth factors, are discussed. Finally, we address the changes to the alveolar epithelium and its transport processes during acute lung injury (ALI). Since relevant clinical outcomes correlate with rates of edema clearance in ALI, therapies based on our understanding of the mechanisms and regulation of fluid transport may be developed.
Collapse
Affiliation(s)
- Rachel L Zemans
- Department of Medicine, University of California, San Francisco, California, USA.
| | | |
Collapse
|
35
|
Ma HP, Al-Khalili O, Ramosevac S, Saxena S, Liang YY, Warnock DG, Eaton DC. Steroids and exogenous gamma-ENaC subunit modulate cation channels formed by alpha-ENaC in human B lymphocytes. J Biol Chem 2004; 279:33206-12. [PMID: 15187080 DOI: 10.1074/jbc.m405455200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies using whole-cell recording methods suggest that human B lymphocytes express an amiloride-sensitive, sodium-permeable channel. The present studies aim to determine whether this channel has biophysical properties and a molecular structure related to the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC). Reverse transcriptase polymerase chain reaction and Northern blots showed that human B lymphocytes express messages for both alpha- and beta- but not gamma-ENaC. Western blots showed that both alpha- and beta- but not gamma-ENaC proteins are expressed and strongly reduced by antisense oligonucleotides. Patch clamp experiments demonstrated that lymphocyte sodium channels are not active in cell-attached patches. However, membrane stretch can activate a 21-pS nonselective cation channel. The frequency of observance of this channel was significantly reduced by antisense oligonucleotide against alpha-ENaC but not by antisense oligonucleotide against beta-ENaC, indicating that only the alpha subunit of ENaC is necessary to form stretch-activated cation channels. Aldosterone (1.5 microm) reduced the frequency of observance of 21-pS alpha-ENaC channels and simultaneously induced the appearance of spontaneously active 10-pS channels. Antisense oligonucleotide experiments showed that this 10-pS channel is formed from alpha- and beta-ENaC. After expression of exogenous gamma-ENaC, aldosterone again reduced the frequency of observance of the 21-pS alpha-ENaC channel but induced the appearance of a 5-pS channel, presumably a alphabetagamma-ENaC channel. In the absence of aldosterone, the alpha subunit forms an alpha-cryptic channel that is activated by stretch, and in the presence of aldosterone, beta and alpha subunits together form an active channel that is modulated by aldosterone.
Collapse
Affiliation(s)
- He-Ping Ma
- Center for Cell and Molecular Signaling and Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Sakuma T, Zhao Y, Sugita M, Sagawa M, Toga H, Ishibashi T, Nishio M, Matthay MA. Malnutrition impairs alveolar fluid clearance in rat lungs. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1268-74. [PMID: 14977628 DOI: 10.1152/ajplung.00229.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inadequate nutrition complicates the clinical course of critically ill patients, and many of these patients develop pulmonary edema. However, little is known about the effect of malnutrition on the mechanisms that resolve alveolar edema. Therefore, we studied the mechanisms responsible for the decrease in alveolar fluid clearance in rats exposed to malnutrition. Rats were allowed access to water, but not to food, for 120 h. Then, the left and right lungs were isolated for the measurement of lung water volume and alveolar fluid clearance, respectively. The rate of alveolar fluid clearance was measured by the progressive increase in the concentration of Evans blue dye that was instilled into the distal air spaces with an isosmolar 5% albumin solution over 1 h. Malnutrition decreased alveolar fluid clearance by 38% compared with controls. Amiloride (10−3M) abolished alveolar fluid clearance in malnourished rats. Either refeeding for 120 h following nutritional deprivation for 120 h or an oral supply of sodium glutamate during nutritional deprivation for 120 h restored alveolar fluid clearance to 91 and 86% of normal, respectively. Dibutyryl-cGMP, a cyclic nucleotide-gated cation channel agonist, increased alveolar fluid clearance in malnourished rats supplied with sodium glutamate. Terbutaline, a β2-adrenergic agonist, increased alveolar fluid clearance in rats under all conditions (control, malnutrition, refeeding, and glutamate-treated). These results indicate that malnutrition impairs primarily amiloride-insensitive and dibutyryl-cGMP-sensitive alveolar fluid clearance, but this effect is partially reversible by refeeding, treatment with sodium glutamate, or β-adrenergic agonist therapy.
Collapse
Affiliation(s)
- Tsutomu Sakuma
- Department of Thoracic Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hardiman KM, McNicholas-Bevensee CM, Fortenberry J, Myles CT, Malik B, Eaton DC, Matalon S. Regulation of amiloride-sensitive Na(+) transport by basal nitric oxide. Am J Respir Cell Mol Biol 2003; 30:720-8. [PMID: 14607816 DOI: 10.1165/rcmb.2003-0325oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We investigated the mechanisms of endogenous nitric oxide (NO) modulation of lung sodium (Na(+)) transport. C57BL/6 mice injected intraperitoneally with the specific inducible NO synthase (iNOS) inhibitor 1400W (10 mg/kg every 8 h for 72 h) exhibited decreased alveolar nitrite levels and Na(+)-dependent amiloride-sensitive alveolar fluid clearance as compared with mice injected with vehicle. Similarly, pretreatment of mouse tracheal epithelial cells with 1400W abolished the inhibitory effects of amiloride on their Na(+) short circuit currents. On the other hand, mouse tracheal epithelial cells pretreated with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a specific inhibitor of guanylate cyclase, had lower levels of cGMP, but normal values of amiloride-sensitive Na(+) currents. Amiloride also inhibited whole-cell Na(+) currents across A549 cells treated with vehicle (K(i) = 249 nM), but had no effect in A549 cells treated with 1400W. Western blotting studies showed significantly lower levels of alpha and gammaENaC in lung tissues and alveolar type II (ATII) cells from iNOS(-/-) as well as iNOS(+/+) mice treated with 1400W, as compared with the corresponding values from vehicle-treated iNOS(+/+) mice. Similar values for ratios of alpha, beta, and gammaenac to gapdh were obtained by real-time polymerase chain reaction for iNOS(+/+) mice and iNOS(-/-) mice. We concluded that NO derived from iNOS under basal conditions is necessary for amiloride-sensitive Na(+) transport across lung epithelial cells and modulates the amount of alpha and gammaENaC via post-transcriptional, cGMP-independent mechanisms.
Collapse
Affiliation(s)
- Karin M Hardiman
- Department of Physiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 901 19th Street S, Birmingham, AL 35205-3703, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Dagenais A, Fréchette R, Yamagata Y, Yamagata T, Carmel JF, Clermont ME, Brochiero E, Massé C, Berthiaume Y. Downregulation of ENaC activity and expression by TNF-alpha in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 286:L301-11. [PMID: 14514522 DOI: 10.1152/ajplung.00326.2002] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sodium absorption by an amiloride-sensitive channel is the main driving force of lung liquid clearance at birth and lung edema clearance in adulthood. In this study, we tested whether tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine involved in several lung pathologies, could modulate sodium absorption in cultured alveolar epithelial cells. We found that TNF-alpha decreased the expression of the alpha-, beta-, and gamma-subunits of epithelial sodium channel (ENaC) mRNA to 36, 43, and 16% of the controls after 24-h treatment and reduced to 50% the amount of alpha-ENaC protein in these cells. There was no impact, however, on alpha(1) and beta(1) Na(+)-K(+)-ATPase mRNA expression. Amiloride-sensitive current and ouabain-sensitive Rb(+) uptake were reduced, respectively, to 28 and 39% of the controls. A strong correlation was found at different TNF-alpha concentrations between the decrease of amiloride-sensitive current and alpha-ENaC mRNA expression. All these data show that TNF-alpha, a proinflammatory cytokine present during lung infection, has a profound influence on the capacity of alveolar epithelial cells to transport sodium.
Collapse
Affiliation(s)
- André Dagenais
- Centre de recherche, CHUM-Hôtel-Dieu, 3850 St-Urbain, Montreal, Quebec, Canada H2W 1T7.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lazrak A, Matalon S. cAMP-induced changes of apical membrane potentials of confluent H441 monolayers. Am J Physiol Lung Cell Mol Physiol 2003; 285:L443-50. [PMID: 12704021 DOI: 10.1152/ajplung.00412.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded apical membrane potentials (Va) of H441 cells [a human lung cell line exhibiting both epithelial Na+ (ENaC) and CFTR-type channels] grown as confluent monolayers, using the microelectrode technique in current-clamp mode before, during, and after perfusion of the apical membranes with 10 microM forskolin. When perfused with normal Ringer solution, the cells had a Va of -43 +/- 10 mV (means +/- SD; n = 31). Perfusion with forskolin resulted in sustained depolarization by 25.0 +/- 3.5 mV (means +/- SD; n = 23) and increased the number, open time, and the open probability of a 4.2-pS ENaC. In contrast to a previous report (Jiang J, Song C, Koller BH, Matthay MA, and Verkman AS. Am J Physiol Cell Physiol 275: C1610-C1620, 1998), no transient hyperpolarization was observed. The forskolin-induced depolarization of Va was almost totally prevented by pretreatment of monolayers with 10 microM amiloride or by substitution of Na+ ions in the bath solution with N-methyl-d-glucamine. These findings indicate that cAMP stimulation of Na+ influx across H441 confluent monolayers results from activation of an amiloride-sensitive apical Na+ conductance and not from Va hyperpolarization due to Cl- influx through CFTR-type channels.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA
| | | |
Collapse
|
40
|
Matalon S, Davis IC. Vectorial sodium transport across the mammalian alveolar epithelium: it occurs but through which cells? Circ Res 2003; 92:348-9. [PMID: 12623872 DOI: 10.1161/01.res.0000061793.14540.2b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Thome UH, Davis IC, Nguyen SV, Shelton BJ, Matalon S. Modulation of sodium transport in fetal alveolar epithelial cells by oxygen and corticosterone. Am J Physiol Lung Cell Mol Physiol 2003; 284:L376-85. [PMID: 12533313 DOI: 10.1152/ajplung.00218.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of active Na(+) transport across fetal distal lung epithelial cells (FDLE) by corticosterone (CST), corticotropin-releasing hormone (CRH), and oxygen tension may be crucial for postnatal adaptation. FDLE isolated from 19-day rat fetuses (term: 22 days) were grown on permeable supports to confluent monolayers (duration 3 days) in 2.5, 5, 12, or 20% O(2) with 5% CO(2)-balance N(2) and mounted in Ussing chambers for measurement of short-circuit currents (I(sc)). FDLE monolayers grown in 20% O(2) had significantly higher levels of total I(sc) and of their amiloride-sensitive (I(amil)) and ouabain-sensitive (I(ouab)) components than hypoxic cells. Values (microA/cm(2) +/- SE) for 2.5-5% O(2) and 20% O(2) were, respectively, I(sc) 5.3 +/- 0.2 vs. 8.4 +/- 0.3 (P < 0.001), I(amil) 3.4 +/- 0.2 vs. 4.3 +/- 0.2 (P < 0.01), and I(ouab) 3.4 +/- 0.6 vs. 9.1 +/- 0.6 (P < 0.001). Addition of CST but not CRH to the culture medium at any O(2) concentration increased I(amil). FDLE cells grown at 5% O(2) expressed significantly lower levels of alpha-, beta-, and gamma-epithelial Na(+) channel (ENaC), and of the alpha(1)-Na(+)-K(+)-ATPase, as determined by Western blotting. We conclude that higher O(2) concentrations increased total vectorial Na(+) transport, and the function of Na(+)-K(+)-ATPase and apical amiloride-sensitive Na(+) conductance, whereas CST only increased ENaC function.
Collapse
Affiliation(s)
- Ulrich H Thome
- Department of Pediatrics, University of Alabama at Birmingham, 901 19th Street South, Birmingham, AL 35226, USA
| | | | | | | | | |
Collapse
|
42
|
Berthiaume Y, Folkesson HG, Matthay MA. Lung edema clearance: 20 years of progress: invited review: alveolar edema fluid clearance in the injured lung. J Appl Physiol (1985) 2002; 93:2207-13. [PMID: 12433940 DOI: 10.1152/japplphysiol.01201.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Resolution of pulmonary edema involved active transepithelial sodium transport. Although several of the cellular and molecular mechanisms involved are relatively well understood, it is only recently that the regulation of these mechanisms in injured lung are being evaluated. Interestingly, in mild-to-moderate lung injury, alveolar edema fluid clearance is often preserved. This preserved or enhanced alveolar fluid clearance is mediated by catecholamine-dependent or -independent mechanisms. This stimulation of alveolar liquid clearance is related to activation or increased expression of sodium transport molecules such as the epithelial sodium channel or the Na(+)-K(+)-ATPase pump and may also involve the cystic fibrosis transmembrane conductance regulator. When severe lung injury occurs, the decrease in alveolar liquid clearance may be related to changes in alveolar permeability or to changes in activity or expression of sodium or chloride transport molecules. Multiple pharmacological tools such as beta-adrenergic agonists, vasoactive drugs, or gene therapy may prove effective in stimulating the resolution of alveolar edema in the injured lung.
Collapse
Affiliation(s)
- Yves Berthiaume
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Quebec, Canada H2W 1T7.
| | | | | |
Collapse
|
43
|
Matalon S, Lazrak A, Jain L, Eaton DC. Invited review: biophysical properties of sodium channels in lung alveolar epithelial cells. J Appl Physiol (1985) 2002; 93:1852-9. [PMID: 12381774 DOI: 10.1152/japplphysiol.01241.2001] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Amiloride-sensitive sodium channels in the lung play an important role in lung fluid balance. Particularly in the alveoli, sodium transport is closely regulated to maintain an appropriate fluid layer on the surface of the alveoli. Alveolar type II cells appear to play an important role in this sodium transport, with the role of alveolar type I cells being less clear. In alveolar type II cells, there are a variety of different amiloride-sensitive, sodium-permeable channels. This significant diversity appears to play a role in both normal lung physiology and in pathological states. In many epithelial tissues, amiloride-sensitive epithelial sodium channels (ENaC) are formed from three subunit proteins, designated alpha-, beta-, and gamma-ENaC. At least part of the diversity of sodium-permeable channels in lung arises from the assembling of different combinations of these subunits to form channels with different biophysical properties and different mechanisms for regulation. This leads to epithelial tissue in the lung, which has enormous flexibility to alter the magnitude and regulation of salt and water transport. In this review, we discuss the biophysical properties and occurrence of these various channels and some of the mechanisms for their regulation.
Collapse
Affiliation(s)
- Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
44
|
Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82:569-600. [PMID: 12087129 DOI: 10.1152/physrev.00003.2002] [Citation(s) in RCA: 499] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery of mechanisms that regulate salt and water transport by the alveolar and distal airway epithelium of the lung has generated new insights into the regulation of lung fluid balance under both normal and pathological conditions. There is convincing evidence that active sodium and chloride transporters are expressed in the distal lung epithelium and are responsible for the ability of the lung to remove alveolar fluid at the time of birth as well as in the mature lung when pathological conditions lead to the development of pulmonary edema. Currently, the best described molecular transporters are the epithelial sodium channel, the cystic fibrosis transmembrane conductance regulator, Na+-K+-ATPase, and several aquaporin water channels. Both catecholamine-dependent and -independent mechanisms can upregulate isosmolar fluid transport across the distal lung epithelium. Experimental and clinical studies have made it possible to examine the role of these transporters in the resolution of pulmonary edema.
Collapse
Affiliation(s)
- Michael A Matthay
- Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco, California 94143-0624, USA.
| | | | | |
Collapse
|
45
|
Sartori C, Matthay MA, Scherrer U. Transepithelial sodium and water transport in the lung. Major player and novel therapeutic target in pulmonary edema. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 502:315-38. [PMID: 11950147 DOI: 10.1007/978-1-4757-3401-0_21] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Active transepithelial transport of sodium from the airspaces to the lung interstitium is a primary mechanism driving alveolar fluid clearance. This mechanism depends on sodium uptake by amiloride-sensitive sodium channels on the apical membrane of alveolar type II cells followed by extrusion of sodium on the basolateral surface by the Na-K-ATPase. Injury to the alveolar epithelium can disrupt the integrity of the alveolar barrier or downregulate ion transport pathways thus reducing net alveolar fluid reabsorption, and enhancing the extent of alveolar edema. Endogenous catecholamines upregulate alveolar fluid clearance in several experimental models of acute lung injury, but this upregulation is short-term and often not sufficient to counterbalance alveolar flooding. There is new evidence, however, that pharmacological treatment with beta-adrenergic agonists and/or epithelial growth factors may induce a more sustained stimulation of alveolar fluid reabsorption and in turn facilitate recovery from experimental pulmonary edema. Similar results have been achieved experimentally by gene transfer enhancing the abundance of sodium transporters in the alveolar epithelium. Clinical studies show that impaired alveolar fluid transport mechanisms contribute to the development, severity and outcome of pulmonary edema in humans. Very recent data suggest that mechanisms that augment transepithelial sodium transport and enhance the clearance of alveolar edema may lead to more effective prevention or treatment for pulmonary edema and acute lung injury.
Collapse
Affiliation(s)
- C Sartori
- Department of Internal Medicine and Botnar Center of Clinical Research, CHUV, Lausanne, Switzerland
| | | | | |
Collapse
|
46
|
Johnson MD, Widdicombe JH, Allen L, Barbry P, Dobbs LG. Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. Proc Natl Acad Sci U S A 2002; 99:1966-71. [PMID: 11842214 PMCID: PMC122303 DOI: 10.1073/pnas.042689399] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transport of lung liquid is essential for both normal pulmonary physiologic processes and for resolution of pathologic processes. The large internal surface area of the lung is lined by alveolar epithelial type I (TI) and type II (TII) cells; TI cells line >95% of this surface, TII cells <5%. Fluid transport is regulated by ion transport, with water movement following passively. Current concepts are that TII cells are the main sites of ion transport in the lung. TI cells have been thought to provide only passive barrier, rather than active, functions. Because TI cells line most of the internal surface area of the lung, we hypothesized that TI cells could be important in the regulation of lung liquid homeostasis. We measured both Na(+) and K(+) (Rb(+)) transport in TI cells isolated from adult rat lungs and compared the results to those of concomitant experiments with isolated TII cells. TI cells take up Na(+) in an amiloride-inhibitable fashion, suggesting the presence of Na(+) channels; TI cell Na(+) uptake, per microgram of protein, is approximately 2.5 times that of TII cells. Rb(+) uptake in TI cells was approximately 3 times that in TII cells and was inhibited by 10(-4) M ouabain, the latter observation suggesting that TI cells exhibit Na(+)-, K(+)-ATPase activity. By immunocytochemical methods, TI cells contain all three subunits (alpha, beta, and gamma) of the epithelial sodium channel ENaC and two subunits of Na(+)-, K(+)-ATPase. By Western blot analysis, TI cells contain approximately 3 times the amount of alphaENaC/microg protein of TII cells. Taken together, these studies demonstrate that TI cells not only contain molecular machinery necessary for active ion transport, but also transport ions. These results modify some basic concepts about lung liquid transport, suggesting that TI cells may contribute significantly in maintaining alveolar fluid balance and in resolving airspace edema.
Collapse
Affiliation(s)
- Meshell D Johnson
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
47
|
Clerici C, Uchida T, Planès C, Matthay MA. Regulation of Gene Expression by Hypoxia in Lung Alveolar Epithelial Cells. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1568-1254(02)80004-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
48
|
Hardiman KM, Matalon S. Modification of sodium transport and alveolar fluid clearance by hypoxia: mechanisms and physiological implications. Am J Respir Cell Mol Biol 2001; 25:538-41. [PMID: 11713094 DOI: 10.1165/ajrcmb.25.5.f219] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- K M Hardiman
- Department of Physiology, Schools of Medicine and Dentistry, University of Alabama at Birmingham, 35294-0006, USA
| | | |
Collapse
|
49
|
Vivona ML, Matthay M, Chabaud MB, Friedlander G, Clerici C. Hypoxia reduces alveolar epithelial sodium and fluid transport in rats: reversal by beta-adrenergic agonist treatment. Am J Respir Cell Mol Biol 2001; 25:554-61. [PMID: 11713096 DOI: 10.1165/ajrcmb.25.5.4420] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In cultured alveolar epithelial cells, hypoxia induces a downregulation of the two main Na proteins, the epithelial Na channel (ENaC) and the Na,K-ATPase. However, the in vivo effects of hypoxia on alveolar epithelial transport have not been well studied. Therefore, the objectives of this study were to investigate in an in vivo rat model if hypoxia induces a reduction in vectorial Na and fluid transport across the alveolar epithelium in vivo, and if a change in net fluid transport is associated with modification in the expression and/or activity of Na transport proteins. Rats were exposed to 8% O(2) from 3 to 24 h. Hypoxia induced a progressive decrease in alveolar liquid clearance (ALC) reaching 50% at 24 h, an effect that was related primarily to a decrease in amiloride-sensitive transepithelial Na transport. On RNase protection assay of alveolar type II (ATII) cells isolated immediately after hypoxic exposure, steady state levels of mRNA were increased for alpha-rENaC and beta(1)-Na, K-ATPase, whereas the levels of gamma-rENaC and alpha(1)-Na,K-ATPase were unchanged. On Western blots of ATII cell membranes, alpha-ENaC subunit protein slightly increased, whereas the amount of alpha(1)- and beta(1)-Na,K-ATPase protein were unchanged with hypoxia. Thus, the decrease in transepithelial Na transport was not explained by a parallel change in gene expression or the quantity of transport proteins. Interestingly, hypoxia-induced decrease in ALC was completely reversed by intra-alveolar administration of the beta(2) agonist, terbutaline (10(-4) M). These results suggest that hypoxia-induced decrease in Na transport is not simply related to a downregulation of Na transport proteins but rather to a decrease in Na protein activity by either internalization of the proteins and/or direct alteration of the protein in the membrane. The dramatic increase of ALC with beta(2)-agonist therapy indicates that the decrease of transepithelial Na and fluid transport during hypoxia is rapidly reversible, a finding of major clinical significance.
Collapse
Affiliation(s)
- M L Vivona
- Department of Physiology, Faculté de Médecine Léonard de Vinci, Université Paris. France
| | | | | | | | | |
Collapse
|
50
|
Hardiman KM, Lindsey JR, Matalon S. Lack of amiloride-sensitive transport across alveolar and respiratory epithelium of iNOS(-/-) mice in vivo. Am J Physiol Lung Cell Mol Physiol 2001; 281:L722-31. [PMID: 11504701 DOI: 10.1152/ajplung.2001.281.3.l722] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The extent to which endogenously generated nitric oxide alters Na(+) transport across the mammalian alveolar epithelium in vivo has not been documented. Herein we measured alveolar fluid clearance and nasal potential differences in mice lacking the inducible form of nitric oxide synthase [iNOS; iNOS(-/-)] and their corresponding wild-type controls [iNOS(+/+)]. Alveolar fluid clearance values in iNOS(+/+) and iNOS(-/-) anesthetized mice with normal oxygenation and acid-base balance were ~30% of instilled fluid/30 min. In both groups of mice, fluid absorption was dependent on vectorial Na(+) movement. Amiloride (1.5 mM) decreased alveolar fluid clearance in iNOS(+/+) mice by 61%, whereas forskolin (50 microM) increased alveolar fluid clearance by 55% by stimulating amiloride-insensitive pathways. Neither agent altered alveolar fluid clearance in iNOS(-/-) mice. Hyperoxia upregulated iNOS expression in iNOS(+/+) mice and decreased their amiloride-sensitive component of alveolar fluid clearance but had no effect on the corresponding values in iNOS(-/-) mice. Nasal potential difference measurements were consistent with alveolar fluid clearance in that both groups of mice had similar baseline values, which were amiloride sensitive in the iNOS(+/+) but not in the iNOS(-/-) mice. These data suggest that nitric oxide produced by iNOS under basal conditions plays an important role in regulating amiloride-sensitive Na(+) channels in alveolar and airway epithelia.
Collapse
Affiliation(s)
- K M Hardiman
- Department of Physiology and Biophysics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|