1
|
Ravindranath MH, Ravindranath NM, Amato-Menker CJ, Hilali FE, Filippone EJ. Conformational Alterations of the Cell Surface of Monomeric and Dimeric β2m-Free HLA-I (Proto-HLA) May Enable Novel Immune Functions in Health and Disease. Curr Issues Mol Biol 2024; 46:6961-6985. [PMID: 39057057 PMCID: PMC11276036 DOI: 10.3390/cimb46070416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Human leukocyte antigens (HLAs) are polymorphic glycoproteins expressed on the cell surface of nucleated cells and consist of two classes, HLA class I and HLA class II. In contrast, in mice, these molecules, known as H-2, are expressed on both nucleated cells and erythrocytes. HLA-I molecules (Face-1) are heterodimers consisting of a polypeptide heavy chain (HC) and a light chain, B2-microglobulin (B2m). The heterodimers bind to antigenic peptides and present them to the T-cell receptors of CD8+ cytotoxic T lymphocytes. The HCs can also independently emerge on the cell surface as B2m-free HC monomers without peptides (Face-2). Early investigators suggested that the occurrence of B2m-free HCs on the cell surface resulted from the dissociation of B2m from Face-1. However, others documented the independent emergence of B2m-free HCs (Face-2) from the endoplasmic reticulum (ER) to the cell surface. The clustering of such HC molecules on either the cell surface or on exosomes resulted in the dimerization of B2m-free HCs to form homodimers (if the same allele, designated as Face-3) or heterodimers (if different alleles, designated as Face-4). Face-2 occurs at low levels on the cell surface of several normal cells but is upregulated on immune cells upon activation by proinflammatory cytokines and other agents such as anti-CD3 antibodies, phytohemagglutinin, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain activated. After activation-induced upregulation, Face-2 molecules undergo homo- and heterodimerization (Face-3 and Face-4). Observations made on the structural patterns of HCs and their dimerization in sharks, fishes, and tetrapod species suggest that the formation of B2m-free HC monomers and dimers is a recapitalization of a phylogenetically conserved event, befitting the term Proto-HLA for the B2m-free HCs. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/+ mice. Anti-HC-specific monoclonal antibodies (mAbs) delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The conformational alterations that occur in the B2m-free HCs enable them to interact with several inhibitory and activating receptors of cellular components of the innate (natural killer (NK) cells) and adaptive (T and B cells) immune systems. The NK cells express killer immunoglobulin-like receptors (KIRs), whereas leukocytes (T and B lymphocytes, monocytes/macrophages, and dendritic cells) express leukocyte immunoglobulin-like receptors (LILRs). The KIRs and LILRs include activating and inhibitory members within their respective groups. This review focuses on the interaction of KIRs and LILRs with B2m-free HC monomers and dimers in patients with spondylarthritis. Several investigations reveal that the conformational alterations occurring in the alpha-1 and alpha-2 domains of B2m-free HCs may facilitate immunomodulation by their interaction with KIR and LILR receptors. This opens new avenues to immunotherapy of autoimmune diseases and even human cancers that express B2m-free HCs.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
2
|
Kormos J, Veres AJ, Imre L, Mátyus L, Benkő S, Szöllősi J, Jenei A. HLA DQ protein changes the cell surface distribution pattern of HLA proteins as monitored by Förster resonance energy transfer and high-resolution electron microscopy. Cytometry A 2023; 103:978-991. [PMID: 37605541 DOI: 10.1002/cyto.a.24787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Peptide presentation by MHC class I and MHC class II molecules plays important roles in the regulation of the immune response. One factor in these displays is the density of antigen, which must exceed a critical threshold for the effective activation of T cells. Nonrandom distribution of MHC class I and class II has already been detected at the nanometer level and at higher hierarchical levels. It is not clear how the absence and reappearance of some protein molecules can influence the nonrandom distribution. Therefore, we performed experiments on HLA II-deficient bare lymphocyte syndrome (BLS1) cells: we created a stable transfected cell line, tDQ6-BLS-1, and were able to detect the effect of the appearance of HLA-DQ6 molecules on the homo and heteroassociation of different cell surface molecules by comparing Förster resonance energy transfer (FRET) efficiency on transfected cells to that on nontransfected BLS-1 and JY human B-cell lines. Our FRET results show a decrease in homoassociation FRET between HLA I chains in HLA-DQ6-transfected tDQ6-BLS-1 cells compared with the parent BLS-1 cell line and an increase in heteroassociation FRET between HLA I and HLA II (compared with JY cells), suggesting a similar pattern of antigen presentation by the HLA-DQ6 allele. Transmission electron microscopy (TEM) revealed that both HLA class I and class II molecules formed clusters at higher hierarchical levels on the tDQ6-BLS-1 cells, and the de novo synthesized HLA DQ molecules did not intersperse with HLA class I islands. These observations could be important in understanding the fine tuning of the immune response.
Collapse
Affiliation(s)
- József Kormos
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Adrienn J Veres
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - László Imre
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - László Mátyus
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group (Eötvös Loránd Research Network-University of Debrecen), Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Jenei
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Ravindranath MH, Ravindranath NM, Selvan SR, Hilali FE, Amato-Menker CJ, Filippone EJ. Cell Surface B2m-Free Human Leukocyte Antigen (HLA) Monomers and Dimers: Are They Neo-HLA Class and Proto-HLA? Biomolecules 2023; 13:1178. [PMID: 37627243 PMCID: PMC10452486 DOI: 10.3390/biom13081178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with two groove domains (G domain) and one constant domain (C-domain) as well as a light chain, B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from the ER. Face-2 occurs at low levels on the normal cell surface of the lung, bronchi, epidermis, esophagus, breast, stomach, ilium, colorectum, gall bladder, urinary bladder, seminal vesicles ovarian epithelia, endometrium, thymus, spleen, and lymphocytes. They are upregulated on immune cells upon activation by proinflammatory cytokines, anti-CD3 antibodies, antibiotics (e.g., ionomycin), phytohemagglutinin, retinoic acid, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain in an activated state. After activation-induced upregulation, the Face-2 molecules undergo homo- and hetero-dimerization (Face-3 and Face-4). Alterations in the redox environment promote dimerization. Heterodimerization can occur among and between the alleles of different haplotypes. The glycosylation of these variants differ from that of Face-1, and they may occur with bound exogenous peptides. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/- mice. The mice with HLA-B27 in Face-2 spontaneous configuration develop symptoms such as changes in nails and joints, hair loss, and swelling in paws, leading to ankyloses. Anti-HC-specific mAbs delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The upregulation of Face-2 in human cancers occurs concomitantly with the downregulation of intact HLAs (Face-1). The HLA monomeric and dimeric variants interact with inhibitory and activating ligands (e.g., KIR), growth factors, cytokines, and neurotransmitters. Similarities in the amino acid sequences of the HLA-I variants and HLA-II β-chain suggest that Face-2 could be the progenitor of both HLA classes. These findings may support the recognition of these variants as a neo-HLA class and proto-HLA.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
4
|
Ruggiero FM, Springer S. Homotypic and heterotypic in cis associations of MHC class I molecules at the cell surface. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:85-99. [PMID: 35647522 PMCID: PMC9133507 DOI: 10.1016/j.crimmu.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Through the presentation of peptide antigens to cytotoxic T lymphocytes, major histocompatibility complex (MHC) class I molecules mediate the adaptive immune response against tumors and viruses. Additional non-immunological functions include the heterotypic association of class I molecules with cell surface receptors, regulating their activities by unknown mechanisms. Also, homotypic associations resulting in class I dimers and oligomers - of unknown function - have been related to pathological outcomes. In this review, we provide an overview of the current knowledge about the occurrence, biochemical nature, and dynamics of homotypic and heterotypic associations of class I molecules at the cell surface with special focus on the molecular species that take part in the complexes and on the evidence that supports novel biological roles for class I molecules. We show that both heterotypic and homotypic class I associations reported in the literature describe not one but several kinds of oligomers with distinctive stoichiometry and biochemical properties. Major histocompatibility complex class I molecules form homotypic and heterotypic associations at the cell surface. Associations show distinctive stoichiometry and biochemical properties. Associations might regulate immunological and non-immunological processes. Heterotypic association with cell surface receptors might regulate receptor's activity. Homotypic associations have been related to pathological outcomes.
Collapse
|
5
|
Bitler A, Dover RS, Shai Y. Fractal properties of cell surface structures: A view from AFM. Semin Cell Dev Biol 2018; 73:64-70. [DOI: 10.1016/j.semcdb.2017.07.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
|
6
|
Mocsár G, Volkó J, Rönnlund D, Widengren J, Nagy P, Szöllősi J, Tóth K, Goldman CK, Damjanovich S, Waldmann TA, Bodnár A, Vámosi G. MHC I Expression Regulates Co-clustering and Mobility of Interleukin-2 and -15 Receptors in T Cells. Biophys J 2017; 111:100-12. [PMID: 27410738 DOI: 10.1016/j.bpj.2016.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022] Open
Abstract
MHC glycoproteins form supramolecular clusters with interleukin-2 and -15 receptors in lipid rafts of T cells. The role of highly expressed MHC I in maintaining these clusters is unknown. We knocked down MHC I in FT7.10 human T cells, and studied protein clustering at two hierarchic levels: molecular aggregations and mobility by Förster resonance energy transfer and fluorescence correlation spectroscopy; and segregation into larger domains or superclusters by superresolution stimulated emission depletion microscopy. Fluorescence correlation spectroscopy-based molecular brightness analysis revealed that the studied molecules diffused as tight aggregates of several proteins of a kind. Knockdown reduced the number of MHC I containing molecular aggregates and their average MHC I content, and decreased the heteroassociation of MHC I with IL-2Rα/IL-15Rα. The mobility of not only MHC I but also that of IL-2Rα/IL-15Rα increased, corroborating the general size decrease of tight aggregates. A multifaceted analysis of stimulated emission depletion images revealed that the diameter of MHC I superclusters diminished from 400-600 to 200-300 nm, whereas those of IL-2Rα/IL-15Rα hardly changed. MHC I and IL-2Rα/IL-15Rα colocalized with GM1 ganglioside-rich lipid rafts, but MHC I clusters retracted to smaller subsets of GM1- and IL-2Rα/IL-15Rα-rich areas upon knockdown. Our results prove that changes in expression level may significantly alter the organization and mobility of interacting membrane proteins.
Collapse
Affiliation(s)
- Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Julianna Volkó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Rönnlund
- Department of Applied Physics/Experimental Biomolecular Physics, Royal Institute of Technology, Albanova University Center, Stockholm, Sweden
| | - Jerker Widengren
- Department of Applied Physics/Experimental Biomolecular Physics, Royal Institute of Technology, Albanova University Center, Stockholm, Sweden
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences and the University of Debrecen, Debrecen, Hungary
| | - Katalin Tóth
- German Cancer Research Center, Biophysics of Macromolecules, Heidelberg, Germany
| | - Carolyn K Goldman
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sándor Damjanovich
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea Bodnár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
7
|
Mattila PK, Batista FD, Treanor B. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling. J Cell Biol 2016; 212:267-80. [PMID: 26833785 PMCID: PMC4748574 DOI: 10.1083/jcb.201504137] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival.
Collapse
Affiliation(s)
- Pieta K Mattila
- Institute of Biomedicine, MediCity, University of Turku, 20520 Turku, Finland
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Bebhinn Treanor
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M5T 1C6, Canada
| |
Collapse
|
8
|
Transport and quality control of MHC class I molecules in the early secretory pathway. Curr Opin Immunol 2015; 34:83-90. [PMID: 25771183 DOI: 10.1016/j.coi.2015.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022]
Abstract
Folding and peptide binding of major histocompatibility complex (MHC) class I molecules have been thoroughly researched, but the mechanistic connection between these biochemical events and the progress of class I through the early secretory pathway is much less well understood. This review focuses on the question how the partially assembled forms of class I (which lack high-affinity peptide and/or the light chain beta-2 microglobulin) are retained inside the cell. Such investigations offer researchers exciting chances to understand the connections between class I structure, conformational dynamics, peptide binding kinetics and thermodynamics, intracellular transport, and antigen presentation.
Collapse
|
9
|
Treanor B. B-cell receptor: from resting state to activate. Immunology 2012; 136:21-7. [PMID: 22269039 PMCID: PMC3372753 DOI: 10.1111/j.1365-2567.2012.03564.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 01/28/2023] Open
Abstract
B-cell activation is triggered by the binding of antigen to the B-cell receptor (BCR). The early molecular events triggered by BCR binding of ligand have been well-characterized both biochemically and using optical microscopy techniques to visualize B-cell activation as it happens. However, we understand much less about the BCR before activation. For this reason, this review will address recent advances in our view of the structure, organization and dynamics of the resting, unstimulated BCR. These parameters have important implications for our understanding of the initiation of B-cell activation and will be discussed in the context of current models for BCR activation. These models include the conformation-induced oligomerization model, in which binding of antigen to monomeric BCR induces a pulling or twisting force causing conformational unmasking of a clustering interface in the Cμ4 domain. Conversely, the dissociation activation model proposes that BCRs exist in auto-inhibitory oligomers on the resting B-cell surface and binding of antigen promotes the dissociation of the BCR oligomer exposing phosphorylation residues within Igα/Igβ. Finally, the collision coupling model suggests that BCR are segregated from activating co-receptors or kinases and activation is associated with changes in BCR mobility on the cell surface, which allows for the functional interaction of these elements.
Collapse
Affiliation(s)
- Bebhinn Treanor
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| |
Collapse
|
10
|
Abstract
Ligand binding to cell membrane receptors sets off a series of protein interactions that convey the nuances of ligand identity to the cell interior. The information may be encoded in conformational changes, the interaction kinetics and, in the case of multichain immunoreceptors, by chain rearrangements. The signals may be modulated by dynamic compartmentalization of the cell membrane, cellular architecture, motility, and activation-all of which are difficult to reconstitute for studies of receptor signaling in vitro. In this paper, we will discuss how protein interactions in general and receptor signaling in particular can be studied in living cells by different fluorescence imaging techniques. Particularly versatile are methods that exploit Förster resonance energy transfer (FRET), which is exquisitely sensitive to the nanometer-range proximity and orientation between fluorophores. Fluorescence correlation microscopy (FCM) can provide complementary information about the stoichiometry and diffusion kinetics of large complexes, while bimolecular fluorescence complementation (BiFC) and other complementation techniques can capture transient interactions. A continuing challenge is extracting from the imaging data the quantitative information that is necessary to verify different models of signal transduction.
Collapse
Affiliation(s)
- Tomasz Zal
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Houston TX, USA
| |
Collapse
|
11
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes two RING finger E3 ubiquitin ligases (MIR1 and MIR2) that mediate ubiquitination and degradation of cellular proteins important for the establishment of an efficient antiviral immune response. MIR1 and MIR2 share 30% sequence identity; however, their substrate preferences are varied. MIR1 has been shown to primarily downregulate major histocompatibility complex class I (MHC-I), whereas MIR2 can downregulate a wide range of cell surface proteins. Many of the MIR substrates are thought to be present in lipid raft microdomains, a subregion of the plasma membrane known to be important for a wide range of signal transduction events. Palmitoylation is a posttranslational modification that increases recruitment of transmembrane proteins to lipid rafts. In this study, we investigated the importance of palmitoylation for MIR function. We present evidence that MIR2-mediated downregulation of MHC-I and platelet endothelial cell adhesion molecule 1 (PECAM-1) but not other substrates is inhibited in the presence of the drug 2-bromohexadecanoic acid (2-Br), a chemical inhibitor of palmitoylation. Biochemical analysis indicates that MIR2 is directly palmitoylated on cysteine 146. Mutation of this cysteine to a phenylalanine prevents MIR2 palmitoylation and blocks the ability of MIR2 to downregulate MHC-I and PECAM-I but not B7.2 and intercellular adhesion molecule 1 (ICAM-I), consistent with the phenotype observed after 2-Br treatment. Unpalmitoylated MIR2 does not interact with MHC-I and is thus unable to ubiquitinate and downregulate MHC-I from the cell surface. Furthermore, we observed that MIR2 is palmitoylated in vivo during lytic infection. Palmitoylation may act to regulate MIR2 function and localization during viral infection by allowing MIR2 to properly interact with and downregulate multiple substrates known to play an important role in the host immune response.
Collapse
|
12
|
Treanor B, Batista FD. Organisation and dynamics of antigen receptors: implications for lymphocyte signalling. Curr Opin Immunol 2010; 22:299-307. [DOI: 10.1016/j.coi.2010.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
|
13
|
Rafts and the battleships of defense: The multifaceted microdomains for positive and negative signals in immune cells. Immunol Lett 2010; 130:2-12. [DOI: 10.1016/j.imlet.2009.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 12/13/2009] [Accepted: 12/13/2009] [Indexed: 11/20/2022]
|
14
|
|
15
|
Roszik J, Szöllosi J, Vereb G. AccPbFRET: an ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images. BMC Bioinformatics 2008; 9:346. [PMID: 18713453 PMCID: PMC2571114 DOI: 10.1186/1471-2105-9-346] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 08/19/2008] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The acceptor photobleaching fluorescence resonance energy transfer (FRET) method is widely used for monitoring molecular interactions in cells. This method of FRET, while among those with the simplest mathematics, is robust, self-controlled and independent of fluorophore amounts and ratios. RESULTS AccPbFRET is a user-friendly, efficient ImageJ plugin which allows fully corrected, pixel-wise calculation and detailed, ROI (region of interest)-based analysis of FRET efficiencies in microscopic images. Furthermore, automatic registration and semi-automatic analysis of large image sets is provided, which are not available in any existing FRET evaluation software. CONCLUSION Despite of the widespread applicability of the acceptor photobleaching FRET technique, this is the first paper where all possible sources of major errors of the measurement and analysis are considered, and AccPbFRET is the only program which provides the complete suite of corrections--for registering image pairs, for unwanted photobleaching of the donor, for cross-talk of the acceptor and/or its photoproduct to the donor channel and for partial photobleaching of the acceptor. The program efficiently speeds up the analysis of large image sets even for novice users and is freely available.
Collapse
Affiliation(s)
- János Roszik
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary.
| | | | | |
Collapse
|
16
|
Kiss E, Nagy P, Balogh A, Szöllosi J, Matkó J. Cytometry of raft and caveola membrane microdomains: from flow and imaging techniques to high throughput screening assays. Cytometry A 2008; 73:599-614. [PMID: 18473380 DOI: 10.1002/cyto.a.20572] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The evolutionarily developed microdomain structure of biological membranes has gained more and more attention in the past decade. The caveolin-free "membrane rafts," the caveolin-expressing rafts (caveolae), as well as other membrane microdomains seem to play an essential role in controlling and coordinating cell-surface molecular recognition, internalization/endocytosis of the bound molecules or pathogenic organisms and in regulation of transmembrane signal transduction processes. Therefore, in many research fields (e.g. neurobiology and immunology), there is an ongoing need to understand the nature of these microdomains and to quantitatively characterize their lipid and protein composition under various physiological and pathological conditions. Flow and image cytometry offer many sophisticated and routine tools to study these questions. In this review, we give an overview of the past efforts to detect and characterize these membrane microdomains by the use of classical cytometric technologies, and finally we will discuss the results and perspectives of a new line of raft cytometry, the "high throughput screening assays of membrane microdomains," based on "lipidomic" and "proteomic" approaches.
Collapse
Affiliation(s)
- Endre Kiss
- Immunology Research Group of the Hungarian Academy of Sciences at Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
17
|
Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements. Biophys J 2008; 95:2086-96. [PMID: 18487307 DOI: 10.1529/biophysj.108.133371] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The association of receptor tyrosine kinases is a key step in the initiation of growth factor-mediated signaling. Although the ligand-induced dimerization of inactive, monomeric receptors was the central dogma of receptor tyrosine kinase activation for decades, the existence of larger oligomers is now accepted. Both homoassociations and heteroassociations are of extreme importance in the epidermal growth factor (EGF) receptor family, leading to diverse and robust signaling. We present a statistically reliable, flow-cytometric homo-fluorescence resonance energy transfer method for the quantitative characterization of large-scale receptor clusters. We assumed that a fraction of a certain protein species is monomeric, whereas the rest are present in homoclusters of N-mers. We measured fluorescence anisotropy as a function of the saturation of fluorescent antibody binding, and fitted the model to the anisotropy data yielding the fraction of monomers and the cluster size. We found that ErbB2 formed larger homoclusters than ErbB1. Stimulation with EGF and heregulin led to a decrease in ErbB2 homocluster size, whereas ErbB1 homoclusters became larger after EGF stimulation. The activation level of ErbB2 was inversely proportional to its homocluster size. We conclude that homoclusters of ErbB1 and ErbB2 behave in a fundamentally different way. Whereas huge ErbB2 clusters serve as a reservoir of inactive coreceptors and dissociate upon stimulation, small ErbB1 homoclusters form higher-order oligomers after ligand binding.
Collapse
|
18
|
Zal T. Visualization of protein interactions in living cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:183-97. [PMID: 19065792 PMCID: PMC5788009 DOI: 10.1007/978-0-387-09789-3_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ligand binding to cell membrane receptors sets off a series of protein interactions that convey the nuances ofligand identity to the cell interior. The information may be encoded in conformational changes, the interaction kinetics and, in the case of multichain immunoreceptors, by chain rearrangements. The signals may be modulated by dynamic compartmentalization of the cell membrane, cellular architecture, motility, and activation--all of which are difficult to reconstitute for studies of receptor signaling in vitro. In this chapter, we will discuss how protein interactions in general and receptor signaling in particular can be studied in living cells by different fluorescence imaging techniques. Particularly versatile are methods that exploit Förster resonance energy transfer (FRET), which is exquisitely sensitive to the nanometer-range proximity and orientation between fluorophores. Fluorescence correlation microscopy (FCM) can provide complementary information about the stoichiometry and diffusion kinetics of large complexes, while bimolecular fluorescence complementation (BiFC) and other complementation techniques can capture transient interactions. A continuing challenge is extracting from the imaging data the quantitative information that is necessary to verify different models of signal transduction.
Collapse
Affiliation(s)
- Tomasz Zal
- Department of Immunology, University of Texas, MD Anderson Cancer Center, Unit 902, 7455 Fannin, Houston TX, USA.
| |
Collapse
|
19
|
Bene L, Kanyári Z, Bodnár A, Kappelmayer J, Waldmann TA, Vámosi G, Damjanovich L. Colorectal carcinoma rearranges cell surface protein topology and density in CD4+ T cells. Biochem Biophys Res Commun 2007; 361:202-7. [PMID: 17658476 DOI: 10.1016/j.bbrc.2007.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 11/24/2022]
Abstract
Previously, we described conserved protein clusters including MHC I and II glycoproteins, ICAM-1 adhesion molecules, and interleukin-2 and -15 receptors in lipid rafts of several human cell types. Differential protein-protein interactions can modulate function, thus influence cell fate. Therefore, we analyzed supramolecular clusters of CD4(+) T cells from draining lymph nodes and peripheral blood of colorectal carcinoma patients, and compared these to healthy controls. Superclusters of MHC I and II with IL-2/15 receptors were identified by confocal microscopy on all cell types. Flow-cytometric FRET revealed molecular associations of these proteins with each other and with ICAM-1 as well. In draining lymph nodes expression levels of all these proteins were lower, and interactions, particularly between IL-2/15 receptors and MHC molecules weakened or disappeared as compared to the control. Stimuli/local conditions can rearrange cell surface protein patterns on the same cell type in the same patient, having important implications on further function and cell fate.
Collapse
Affiliation(s)
- László Bene
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
20
|
Damjanovich S, Bene L, Matkó J, Mátyus L, Krasznai Z, Szabó G, Pieri C, Gáspár R, Szöllösi J. Two-dimensional receptor patterns in the plasma membrane of cells. A critical evaluation of their identification, origin and information content. Biophys Chem 2007; 82:99-108. [PMID: 17030342 DOI: 10.1016/s0301-4622(99)00109-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1999] [Accepted: 09/15/1999] [Indexed: 10/18/2022]
Abstract
A concise review is presented on the nature, possible origin and functional significance of cell surface receptor patterns in the plasma membrane of lymphoid cells. A special emphasize has been laid on the available methodological approaches, their individual virtues and sources of errors. Fluorescence energy transfer is one of the oldest available means for studying non-randomized co-distribution patterns of cell surface receptors. A detailed and critical description is given on the generation of two-dimensional cell surface receptor patterns based on pair-wise energy transfer measurements. A second hierarchical-level of receptor clusters have been described by electron and scanning force microscopies after immuno-gold-labeling of distinct receptor kinds. The origin of these receptor islands at a nanometer scale and island groups at a higher hierarchical (mum) level, has been explained mostly by detergent insoluble glycolipid-enriched complexes known as rafts, or detergent insoluble glycolipids (DIGs). These rafts are the most-likely organizational forces behind at least some kind of receptor clustering [K. Simons et al., Nature 387 (1997) 569]. These models, which have great significance in trans-membrane signaling and intra-membrane and intracellular trafficking, are accentuating the necessity to revisit the Singer-Nicolson fluid mosaic membrane model and substitute the free protein diffusion with a restricted diffusion concept [S.J. Singer et al., Science 175 (1972) 720].
Collapse
Affiliation(s)
- S Damjanovich
- Department of Biophysics and Cell Biology, University Medical School, University of Debrecen, 4012 Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Eggeling C, Widengren J, Brand L, Schaffer J, Felekyan S, Seidel CAM. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. J Phys Chem A 2007; 110:2979-95. [PMID: 16509620 DOI: 10.1021/jp054581w] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dye photobleaching is a major constraint of fluorescence readout within a range of applications. In this study, we investigated the influence of photobleaching in fluorescence experiments applying multicolor laser as well as Förster resonance energy transfer (FRET) mediated excitation using several red-emitting dyes frequently used in multicolor experiments or as FRET acceptors. The chosen dyes (cyanine 5 (Cy5), MR121, Alexa660, Alexa680, Atto647N, Atto655) have chemically distinct chromophore systems and can be excited at 650 nm. Several fluorescence analysis techniques have been applied to detect photobleaching and to disclose the underlying photophysics, all of which are based on single-molecule detection: (1) fluorescence correlation spectroscopy (FCS) of bulk solutions, (2) fluorescence cross-correlation of single-molecule trajectories, and (3) multiparameter fluorescence detection (MFD) of single-molecule events. The maximum achievable fluorescence signals as well as the survival times of the red dyes were markedly reduced under additional laser irradiation in the range of 500 nm. Particularly at excitation levels at or close to saturation, the 500 nm irradiation effectively induced transitions to higher excited electronic states on already excited dye molecules, leading to a pronounced bleaching reactivity. A theoretical model for the observed laser irradiance dependence of the fluorescence brightness of a Cy5 FRET acceptor dye has been developed introducing the full description of the underlying photophysics. The model takes into account acceptor as well as donor photobleaching from higher excited electronic states, population of triplet states, and energy transfer to both the ground and excited states of the acceptor dye. Also, photoinduced reverse intersystem crossing via higher excited triplet states is included, which was found to be very efficient for Cy5 attached to DNA. Comparing continuous wave (cw) and pulsed donor excitation, a strong enhancement of acceptor photobleaching by a factor of 5 was observed for the latter. Thus, in the case of fluorescence experiments utilizing multicolor pulsed laser excitation, the application of the appropriate timing of synchronized green and red laser pulses in an alternating excitation mode can circumvent excessive photobleaching. Moreover, important new single-molecule analysis diagnosis tools are presented: (1) For the case of excessive acceptor photobleaching, cross-correlation analysis of single-molecule trajectories of the fluorescence signal detected in the donor and acceptor detection channels and vice versa shows an anticorrelated exponential decay and growth, respectively. (2) The time difference, Tg - Tr, of the mean observation times of all photons detected for the donor and acceptor detection channels within a single-molecule fluorescence burst allows one to identify and exclude molecules with an event of acceptor photobleaching. The presented single-molecule analysis methods can be constrained to, for example, FRET-active subpopulations, reducing bias from FRET-inactive molecules. The observations made are of strong relevance for and demand a careful choice of laser action in multicolor and FRET experiments, in particular when performed at or close to saturation.
Collapse
Affiliation(s)
- Christian Eggeling
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Nagy P, Vámosi G, Damjanovich S, Damjanovich L. ICAM-1 inhibits the homocluster formation of MHC-I in colon carcinoma cells. Biochem Biophys Res Commun 2006; 347:758-63. [PMID: 16844085 DOI: 10.1016/j.bbrc.2006.06.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 06/25/2006] [Indexed: 11/23/2022]
Abstract
ICAM-1 and MHC-I proteins play fundamental roles in antigen presentation, activation of T lymphocytes, and immune responses against tumor cells. Both of them participate in the formation of lipid raft-associated membrane protein clusters. We found significant colocalization between ICAM-1 and MHC-I at the level of large-scale associations. We combined RNA interference and fluorescence resonance energy transfer studies to show that ICAM-1 promotes the partial disassembly of MHC-I homoclusters on LS-174T colon carcinoma cells. Interferon-gamma (IFN-gamma) treatment induced an increase in the expression of MHC-I and ICAM-1 resulting in decreased MHC-I homoassociation. Small interfering RNAs directed against ICAM-1 restored the homoassociation of MHC-I without influencing the expression level of MHC-I by eliminating ICAM-1 molecules interspersed in MHC-I clusters. We conclude that the composition of membrane protein clusters is dynamically altered in response to both physiological and experimentally elicited changes in antigen expression levels.
Collapse
Affiliation(s)
- Peter Nagy
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Hungary
| | | | | | | |
Collapse
|
23
|
Vámosi G, Bodnár A, Damjanovich S, Nagy P, Varga Z, Damjanovich L. The role of supramolecular protein complexes and membrane potential in transmembrane signaling processes of lymphocytes. Immunol Lett 2006; 104:53-8. [PMID: 16378646 DOI: 10.1016/j.imlet.2005.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 10/25/2022]
Abstract
The formation of protein patterns in lymphocyte plasma membranes is analyzed in the light of past and, also, very recent experiments. The analysis surveys the lateral organization of major histocompatibility complex glycoproteins, intercellular adhesion molecule-1, interleukin-2 and -15 receptors, Kv1.3 K+ ion channels and the T-cell receptor as well as their behavior under different conditions. These molecules form small- and large-scale clusters in the membrane of human lymphocytes. Many of the association motifs occur in other investigated cell types. The conclusions point toward a possible role for ion channel activities, membrane potential changes and alterations of the lateral organization of proteins in transmembrane signaling and cytotoxic interactions. In our outlook new factors that potentially affect membrane protein cluster formation and interactions are discussed. A role for MHC glycoproteins in concentrating membrane proteins and organizing protein patterns is suggested, and the possibility that the membrane potential may modulate protein conformation and, thereby, affect protein-protein interactions is pointed out. A well-defined role for the presence of ion channels in the immune synapse is offered, which could explain the significance of ion channel accumulation in the immune synapse together with the T-cell receptor.
Collapse
Affiliation(s)
- György Vámosi
- Cell Biophysics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Nagyerdei krt. 98, H-4012 Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
24
|
Gombos I, Kiss E, Detre C, László G, Matkó J. Cholesterol and sphingolipids as lipid organizers of the immune cells’ plasma membrane: Their impact on the functions of MHC molecules, effector T-lymphocytes and T-cell death. Immunol Lett 2006; 104:59-69. [PMID: 16388855 DOI: 10.1016/j.imlet.2005.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 11/20/2005] [Accepted: 11/20/2005] [Indexed: 12/11/2022]
Abstract
The possible regulatory mechanisms by which glycosphingolipid- and cholesterol-rich membrane microdomains, caveolar and non-caveolar lipid rafts, control the immune response are continuously expanding. In the present overview we will focus on how these membrane-organizing lipids are involved, in collaboration with tetraspanin proteins, in the formation of distinct MHC-I and MHC-II microdomains at the cell surface and will analyze the possible roles of MHC compartmentation in the processes of antigen presentation and regulation of various stages of the cellular immune response. Some basic, lipid raft- and tetraspan mediated mechanisms involved in the formation and function of immunological synapses between various APCs and T-cells will also be discussed. Finally, a new aspect of immune regulation by sphingolipids will be briefly described, namely how can the death or stress signals, leading to ceramide accumulation, result in raft-associated regulatory platforms controlling cell death or antigen-induced, TCRmediated signaling of T-lymphocytes. The influence of these signals and their cross-talk on the fate (death or survival) of T-cells and the outcome of T-cell response will also be discussed.
Collapse
Affiliation(s)
- Imre Gombos
- Institute of Biology, Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
25
|
Mátyus L, Szöllosi J, Jenei A. Steady-state fluorescence quenching applications for studying protein structure and dynamics. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 83:223-36. [PMID: 16488620 DOI: 10.1016/j.jphotobiol.2005.12.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
Fluorescence quenching methods are useful to obtain information about the conformational and/or dynamic changes of proteins in complex macromolecular systems. In this review steady-state methods are described and the data interpretation is thoroughly discussed. As a special case of fluorescence quenching mechanism, fluorescence resonance energy transfer (FRET) phenomenon is also presented. Application of a FRET based method to characterize the temperature dependence of the flexibility of protein matrix is clearly demonstrated.
Collapse
Affiliation(s)
- László Mátyus
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Nagyerdei krt 98, P.O. Box 39, H-4012 Debrecen, Hungary.
| | | | | |
Collapse
|
26
|
Tuttle PV, Rundell AE, Webster TJ. Influence of biologically inspired nanometer surface roughness on antigen-antibody interactions for immunoassay-biosensor applications. Int J Nanomedicine 2006; 1:497-505. [PMID: 17722282 PMCID: PMC2676634 DOI: 10.2147/nano.2006.1.4.497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Current research efforts to improve immunoassay-biosensor functionality have centered on detection through the optimal design of microfluidic chambers, electrical circuitry, optical sensing elements, and so on. To date, little attention has been paid to the immunoassay-biosensor membrane surface on which interactions between antibodies and antigens must occur. For this reason, the objective of the present study was to manipulate the nanometer surface roughness of a model immunoassay-biosensor membrane to determine its role on sensitivity and specificity. It was hypothesized that surface roughness characteristics similar to those used by the body's own immune system with B-lymphocyte cell membranes would promote antigen-antibody interactions and minimize non-specific binding. To test this hypothesis, polystyrene 96-well plate surfaces were modified to possess similar topographies as those of B-lymphocyte cell membranes. This was accomplished by immobilizing Protein A conjugated gold particles and Protein A conjugated polystyrene particles ranging in sizes from 40 to 860 nm to the bottom of polystyrene wells. Atomic force microscopy results provided evidence of well-dispersed immunoassay-biosensor surfaces for all particles tested with high degrees of biologically inspired nanometer roughness. Testing the functionality of these immunosurfaces using antigenic fluorescent microspheres showed that specific antigen capture increased with greater nanometer surface roughness while nonspecific antigen capture did not correlate with surface roughness. In this manner, results from this study suggest that large degrees of biologically inspired nanometer surface roughness not only increases the amount of immobilized antibodies onto the immunosurface membrane, but it also enhances the functionality of those antibodies for optimal antigen capture, criteria critical for improving immunoassay-biosensor sensitivity and specificity.
Collapse
Affiliation(s)
| | | | - Thomas J Webster
- Weldon School of Biomedical Engineering and
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Present address: Division of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
27
|
Lebedeva T, Anikeeva N, Kalams SA, Walker BD, Gaidarov I, Keen JH, Sykulev Y. Major histocompatibility complex class I-intercellular adhesion molecule-1 association on the surface of target cells: implications for antigen presentation to cytotoxic T lymphocytes. Immunology 2005; 113:460-71. [PMID: 15554924 PMCID: PMC1782605 DOI: 10.1111/j.1365-2567.2004.01985.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Polarization and segregation of the T-cell receptor (TCR) and integrins upon productive cytotoxic T-lymphocyte (CTL) target cell encounters are well documented. Much less is known about the redistribution of major histocompatibility complex class I (MHC-I) and intercellular adhesion molecule-1 (ICAM-1) proteins on target cells interacting with CTLs. Here we show that human leucocyte antigen-A2 (HLA-A2) MHC-I and ICAM-1 are physically associated and recovered from both the raft fraction and the fraction of soluble membranes of target cells. Conjugation of target cells with surrogate CTLs, i.e. polystyrene beads loaded with antibodies specific for HLA-A2 and ICAM-1, induced the accumulation of membrane rafts, and beads loaded with ICAM-1-specific antibodies caused the selective recruitment of HLA-A2 MHC-I at the contact area of the target cells. Disruption of raft integrity on target cells led to a release of HLA-A2 and ICAM-1 from the raft fraction, abatement of HLA-A2 polarization, and diminished the ability of target cells bearing viral peptides to induce a Ca(2+) flux in virus-specific CTLs. These data suggest that productive engagement of ICAM-1 on target cells facilitates the polarization of MHC-I at the CTL-target cell interface, augmenting presentation of cognate peptide-MHC (pMHC) complexes to CTLs. We propose that ICAM-1-MHC-I association on the cell membrane is a mechanism that enhances the linkage between antigen recognition and early immunological synapse formation.
Collapse
Affiliation(s)
- Tatiana Lebedeva
- Department of Microbiology and Immunology and Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Photobleaching FRET Microscopy. Mol Imaging 2005. [DOI: 10.1016/b978-019517720-6.50017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
29
|
Szentesi G, Vereb G, Horváth G, Bodnár A, Fábián A, Matkó J, Gáspár R, Damjanovich S, Mátyus L, Jenei A. Computer program for analyzing donor photobleaching FRET image series. Cytometry A 2005; 67:119-28. [PMID: 16163694 DOI: 10.1002/cyto.a.20175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The photobleaching fluorescence resonance energy transfer (pbFRET) technique is a spectroscopic method to measure proximity relations between fluorescently labeled macromolecules using digital imaging microscopy. To calculate the energy transfer values one has to determine the bleaching time constants in pixel-by-pixel fashion from the image series recorded on the donor-only and donor and acceptor double-labeled samples. Because of the large number of pixels and the time-consuming calculations, this procedure should be assisted by powerful image data processing software. There is no commercially available software that is able to fulfill these requirements. METHODS New evaluation software was developed to analyze pbFRET data for Windows platform in National Instrument LabVIEW 6.1. This development environment contains a mathematical virtual instrument package, in which the Levenberg-Marquardt routine is also included. As a reference experiment, FRET efficiency between the two chains (beta2-microglobulin and heavy chain) of major histocompatibility complex (MHC) class I glycoproteins and FRET between MHC I and MHC II molecules were determined in the plasma membrane of JY, human B lymphoma cells. RESULTS The bleaching time constants calculated on pixel-by-pixel basis can be displayed as a color-coded map or as a histogram from raw image format. CONCLUSION In this report we introduce a new version of pbFRET analysis and data processing software that is able to generate a full analysis pattern of donor photobleaching image series under various conditions. .
Collapse
Affiliation(s)
- Gergely Szentesi
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Horváth G, Petrás M, Szentesi G, Fábián A, Park JW, Vereb G, Szöllosi J. Selecting the right fluorophores and flow cytometer for fluorescence resonance energy transfer measurements. Cytometry A 2005; 65:148-57. [PMID: 15825180 DOI: 10.1002/cyto.a.20142] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Fluorescence resonance energy transfer applied in flow cytometry (FCET) is an excellent tool for determining supramolecular organization of biomolecules at the cell surface or inside the cell. Availability of new fluorophores and cytometers requires the establishment of fluorophore dye pairs most suitable for FCET measurements. METHODS A gastric tumor cell line (N87) was labeled for major histocompatibility complex class I heavy chain and beta2-microglobulin with antibodies conjugated with fluorescein- and indocarbocyanine-like fluorophores and analyzed in FCET measurements on a cell-by-cell basis using three flow cytometers: FACSCalibur, FACSDiVa, and FACSArray. RESULTS Normalized fluorescence intensity values were measured and normalized energy transfer efficiencies, spectral overlap integrals, and crucial dye- and instrument-dependent parameters were calculated for all matching pairs of seven fluorophores on the three commercial cytometers. The most crucial parameter in determining the applicability of the donor-acceptor pairs was the normalized fluorescence intensity and the least important one was the spectral overlap. CONCLUSIONS On the basis of available laser lines, the optimal dye pair for all three cytometers is the Alexa546-Alexa647 pair, which produces high energy transfer efficiency values and has the best spectral characteristics with regard to laser excitation, detection of emission, and spectral overlap.
Collapse
Affiliation(s)
- Gábor Horváth
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
31
|
Bene L, Bodnár A, Damjanovich S, Vámosi G, Bacsó Z, Aradi J, Berta A, Damjanovich J. Membrane topography of HLA I, HLA II, and ICAM-1 is affected by IFN-γ in lipid rafts of uveal melanomas. Biochem Biophys Res Commun 2004; 322:678-83. [PMID: 15325283 DOI: 10.1016/j.bbrc.2004.07.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Indexed: 12/01/2022]
Abstract
The lateral distribution and colocalization of HLA I, HLA-DR, and ICAM-1 proteins was studied for the first time in the plasma membrane of two human uveal melanoma cell lines, OCM-1 and OCM-3. Our fluorescence resonance energy transfer and confocal laser scanning microscopic experiments revealed that these molecules are mostly confined to the same membrane regions, where they form similar protein patterns (homo- and hetero-associates) to those found previously on other cell types of lymphoid as well as colorectal carcinoma origin. Confocal microscopic colocalization experiments with GM(1) gangliosides and the GPI-anchored CD59 molecules showed enrichment of HLA I, HLA-DR, and ICAM-1 molecules in specific membrane domains (lipid rafts) excluding the transferrin receptor. IFN-gamma remarkably increased the expression levels of these molecules and rearranged their association patterns, which can affect the adoptive immune response of effector cells.
Collapse
Affiliation(s)
- László Bene
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- György Vereb
- Department of Biophysics and Cell Biology, Cell Biophysics Research Group, Hungarian Academy of Sciences, University of Debrecen, Debrecen H-4012, Hungary
| | | | | |
Collapse
|
33
|
Michalet X, Kapanidis AN, Laurence T, Pinaud F, Doose S, Pflughoefft M, Weiss S. The power and prospects of fluorescence microscopies and spectroscopies. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:161-82. [PMID: 12598370 DOI: 10.1146/annurev.biophys.32.110601.142525] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent years have witnessed a renaissance of fluorescence microscopy techniques and applications, from live-animal multiphoton confocal microscopy to single-molecule fluorescence spectroscopy and imaging in living cells. These achievements have been made possible not so much because of improvements in microscope design, but rather because of development of new detectors, accessible continuous wave and pulsed laser sources, sophisticated multiparameter analysis on one hand, and the development of new probes and labeling chemistries on the other. This review tracks the lineage of ideas and the evolution of thinking that have led to the actual developments, and presents a comprehensive overview of the field, with emphasis put on our laboratory's interest in single-molecule microscopy and spectroscopy.
Collapse
Affiliation(s)
- Xavier Michalet
- Department of Chemistry and Biochemistry, UCLA, Young Hall, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Vereb G, Szöllősi J, Matkó J, Nagy P, Farkas T, Vígh L, Mátyus L, Waldmann TA, Damjanovich S. Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci U S A 2003; 100:8053-8. [PMID: 12832616 PMCID: PMC166180 DOI: 10.1073/pnas.1332550100] [Citation(s) in RCA: 361] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The fluid mosaic membrane model proved to be a very useful hypothesis in explaining many, but certainly not all, phenomena taking place in biological membranes. New experimental data show that the compartmentalization of membrane components can be as important for effective signal transduction as is the fluidity of the membrane. In this work, we pay tribute to the Singer-Nicolson model, which is near its 30th anniversary, honoring its basic features, "mosaicism" and "diffusion," which predict the interspersion of proteins and lipids and their ability to undergo dynamic rearrangement via Brownian motion. At the same time, modifications based on quantitative data are proposed, highlighting the often genetically predestined, yet flexible, multilevel structure implementing a vast complexity of cellular functions. This new "dynamically structured mosaic model" bears the following characteristics: emphasis is shifted from fluidity to mosaicism, which, in our interpretation, means nonrandom codistribution patterns of specific kinds of membrane proteins forming small-scale clusters at the molecular level and large-scale clusters (groups of clusters, islands) at the submicrometer level. The cohesive forces, which maintain these assemblies as principal elements of the membranes, originate from within a microdomain structure, where lipid-lipid, protein-protein, and protein-lipid interactions, as well as sub- and supramembrane (cytoskeletal, extracellular matrix, other cell) effectors, many of them genetically predestined, play equally important roles. The concept of fluidity in the original model now is interpreted as permissiveness of the architecture to continuous, dynamic restructuring of the molecular- and higher-level clusters according to the needs of the cell and as evoked by the environment.
Collapse
Affiliation(s)
- G. Vereb
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - J. Szöllősi
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - J. Matkó
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - P. Nagy
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - T. Farkas
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - L. Vígh
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - L. Mátyus
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - T. A. Waldmann
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
| | - S. Damjanovich
- Department of Biophysics and Cell Biology and
Cell Biophysical Research Group of the
Hungarian Academy of Sciences, Research Center for Molecular Medicine, Medical
and Health Science Center, University of Debrecen, H-4012, Debrecen, Hungary;
Department of Immunology, Loránd
Eötvös University, H-1117, Budapest, Hungary;
Institute of Biochemistry, Biological Research
Center, Hungarian Academy of Sciences, H-6701, Szeged, Hungary; and
Metabolism Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892-1374
- To whom correspondence should be sent at the * address. E-mail:
| |
Collapse
|
35
|
Damjanovich S, Vámosi G, Bodnár A, Bene L. New trends in studying structure and function of biological membranes. ACTA PHYSIOLOGICA HUNGARICA 2003; 89:415-25. [PMID: 12489751 DOI: 10.1556/aphysiol.89.2002.4.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thirty years ago Singer and Nicolson constructed the "fluid mosaic model" of the membrane, which described the structural and functional characteristics of the plasma membrane of non-polarized cells like circulating blood lymphocytes as a fluid lipid phase accommodating proteins with a relatively free mobility. It is a rare phenomenon in biology that such a model could survive 30 years and even today it has a high degree of validity. However, in the light of new data it demands some modifications. In this minireview we present a new concept, which revives the SN model, by shifting the emphasis from fluidity to mosaicism, i.e. to lipid microdomains and rafts. A concise summary of data and key methods is given, proving the existence of non-random co-distribution patterns of different receptor kinds in the microdomain system of the plasma membrane. Furthermore we present evidence that proteins are not only accommodated by the lipid phase, but they are integral structural elements of it. Novel suggestions to the SN model help to develop a modernized version of the old paradigm in the light of new data.
Collapse
Affiliation(s)
- S Damjanovich
- Cell Biophysics Research Group of the Hungarian Academy of Sciences, University of Debrecen.
| | | | | | | |
Collapse
|
36
|
Panyi G, Bagdány M, Bodnár A, Vámosi G, Szentesi G, Jenei A, Mátyus L, Varga S, Waldmann TA, Gáspar R, Damjanovich S. Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes. Proc Natl Acad Sci U S A 2003; 100:2592-7. [PMID: 12604782 PMCID: PMC151385 DOI: 10.1073/pnas.0438057100] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2002] [Accepted: 12/31/2002] [Indexed: 12/15/2022] Open
Abstract
Distribution and lateral organization of Kv1.3 potassium channels and CD3 molecules were studied by using electron microscopy, confocal laser scanning microscopy, and fluorescence resonance energy transfer. Immunogold labeling and electron microscopy showed that the distribution of FLAG epitope-tagged Kv1.3 channels (Kv1.3/FLAG) significantly differs from the stochastic Poisson distribution in the plasma membrane of human T lymphoma cells. Confocal laser scanning microscopy images showed that Kv1.3/FLAG channels and CD3 molecules accumulated in largely overlapping membrane areas. The numerical analysis of crosscorrelation of the spatial intensity distributions yielded a high correlation coefficient (C = 0.64). A different hierarchical level of molecular proximity between Kv1.3/FLAG and CD3 proteins was reported by a high fluorescence resonance energy transfer efficiency (E = 51%). These findings implicate that reciprocal regulation of ion-channel activity, membrane potential, and the function of receptor complexes may contribute to the proper functioning of the immunological synapse.
Collapse
Affiliation(s)
- G Panyi
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, H-4012, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Triantafilou M, Miyake K, Golenbock DT, Triantafilou K. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 2002; 115:2603-11. [PMID: 12045230 DOI: 10.1242/jcs.115.12.2603] [Citation(s) in RCA: 466] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The plasma membrane of cells is composed of lateral heterogeneities,patches and microdomains. These membrane microdomains or lipid rafts are enriched in glycosphingolipids and cholesterol and have been implicated in cellular processes such as membrane sorting and signal transduction. In this study we investigated the importance of lipid raft formation in the innate immune recognition of bacteria using biochemical and fluorescence imaging techniques. We found that receptor molecules that are implicated in lipopolysaccharide (LPS)-cellular activation, such as CD14, heat shock protein(hsp) 70, 90, Chemokine receptor 4 (CXCR4), growth differentiation factor 5(GDF5) and Toll-like receptor 4 (TLR4), are present in microdomains following LPS stimulation. Lipid raft integrity is essential for LPS-cellular activation, since raft-disrupting drugs, such as nystatin or MCD, inhibit LPS-induced TNF-α secretion. Our results suggest that the entire bacterial recognition system is based around the ligation of CD14 by bacterial components and the recruitment of multiple signalling molecules, such as hsp70, hsp90, CXCR4, GDF5 and TLR4, at the site of CD14-LPS ligation, within the lipid rafts.
Collapse
Affiliation(s)
- Martha Triantafilou
- University of Portsmouth, School of Biological Sciences, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK
| | | | | | | |
Collapse
|
38
|
Matkó J, Szöllõsi J. Landing of immune receptors and signal proteins on lipid rafts: a safe way to be spatio-temporally coordinated? Immunol Lett 2002; 82:3-15. [PMID: 12008028 DOI: 10.1016/s0165-2478(02)00011-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the past decade one of the cell biology's breakthroughs was discovery of membrane microdomains (rafts, caveolae) and recognition of their important in cellular signaling and protein traffic. In the present minireview a short comprehensive overview is given about physico-chemical, structural and functional properties of rafts. In addition to the classical immunochemical techniques the latest physcial and biophysical technologies that can be used to study these microdomains are also described briefly. The funcational significance of rafts in signaling of multichain immune recognition receptors (MIRRs), the IL-2R and ErbB family factor receptors is also discussed herein together with the still open questions and future prospects of the raft hypothesis.
Collapse
Affiliation(s)
- János Matkó
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary.
| | | |
Collapse
|
39
|
Damjanovich S, Mátyus L, Damjanovich L, Bene L, Jenei A, Matkó J, Gáspár R, Szöllösi J. Does mosaicism of the plasma membrane at molecular and higher hierarchical levels in human lymphocytes carry information on the immediate history of cells? Immunol Lett 2002; 82:93-9. [PMID: 12008040 DOI: 10.1016/s0165-2478(02)00024-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A theoretical analysis of experimental data is presented in this mini-review on non-random homo- and hetero-associations of cell surface receptors, which can be recruited in the plasma membrane or at the surface of the rough endoplasmic reticulum during the protein synthesis. In the latter case, the likely genetic origin of these supramolecular formations is analyzed, contrasting this concept to the mobility of the cell surface proteins. A model is offered which, on the one hand, allows the mobility in a restricted way even among microdomain-confined receptor proteins through 'swapping partners'. On the other hand, the lack of mixing molecular components of protein clusters will be analyzed, when homo-and hetero-associations are studied through cell fusion experiments. The most frequently studied cell surface patterns have included lipid raft organized HLA class I and II, ICAM-1, tetraspan molecules, IL2 and IL15 and other receptors, as well. On the contrary coated pit-associated transferrin receptors would not mix with the above lipid raft associated receptor patterns, although transferrin receptor would readily oligomerize into homo-associates. The functional consequences of these superstructures are also analyzed. On the 30th anniversary of the Singer-Nicolson fluid mosaic membrane model one has to pay tribute to the authors, because of their deep insight emphasizing also the mosaicism of the membranes in general and that of the plasma membrane, in particular.
Collapse
Affiliation(s)
- Sándor Damjanovich
- Department of Biophysics and Cell Biology, Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Novák L, Deckmyn H, Damjanovich S, Hársfalvi J. Shear-dependent morphology of von Willebrand factor bound to immobilized collagen. Blood 2002; 99:2070-6. [PMID: 11877281 DOI: 10.1182/blood.v99.6.2070] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed an immunogold von Willebrand factor (VWF) detection method that permits almost complete coverage of individual VWF molecules, and by this unequivocal localization and morphologic analysis of collagen-bound VWF by atomic force microscopy (AFM). Perfusion of gel filtration-purified VWF in parallel plate perfusion chambers over glass coverslips coated with calf skin collagen, followed by AFM imaging in air, enabled us to assess possible morphologic differences between VWF bound at low (0.07 N/m(2) = 0.7 dynes/cm(2)) and high (4.55 N/m(2) = 45.5 dynes/cm(2)) shear stresses. No significant differences in VWF morphology were found, the molecules were oriented almost randomly, and there were no clear signs of VWF "uncoiling" either at a high or at a low shear regime. After perfusing 1 microg/mL VWF for 5 minutes, surface coverage at high shear was almost twice the one seen at low shear, and some larger and more irregularly shaped VWF molecules could be seen at high shear. This difference disappeared, however, at 15 minutes of perfusion and was probably caused by diffusion kinetics. Moreover, the presence of 68 x 10(9)/L washed fixed platelets in the perfusate did not have any visible effect on VWF morphology at high versus low shear stress. These findings suggest that shear stress does not influence significantly the overall molecular morphology of VWF during its binding to collagen-coated surface and are consistent with a constitutively expressed affinity of collagen-bound VWF for glycoprotein Ib.
Collapse
Affiliation(s)
- Levente Novák
- Department of Clinical Biochemistry and Molecular Pathology, Medical and Health Science Center, University of Debrecen, Debrecen, H-4012, Hungary
| | | | | | | |
Collapse
|
42
|
de Lange F, Cambi A, Huijbens R, de Bakker B, Rensen W, Garcia-Parajo M, van Hulst N, Figdor CG. Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J Cell Sci 2001; 114:4153-60. [PMID: 11739648 DOI: 10.1242/jcs.114.23.4153] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Throughout the years, fluorescence microscopy has proven to be an extremely versatile tool for cell biologists to study live cells. Its high sensitivity and non-invasiveness, together with the ever-growing spectrum of sophisticated fluorescent indicators, ensure that it will continue to have a prominent role in the future. A drawback of light microscopy is the fundamental limit of the attainable spatial resolution – ∼250 nm – dictated by the laws of diffraction. The challenge to break this diffraction limit has led to the development of several novel imaging techniques. One of them, near-field scanning optical microscopy (NSOM), allows fluorescence imaging at a resolution of only a few tens of nanometers and, because of the extremely small near-field excitation volume, reduces background fluorescence from the cytoplasm to the extent that single-molecule detection sensitivity becomes within reach. NSOM allows detection of individual fluorescent proteins as part of multimolecular complexes on the surface of fixed cells, and similar results should be achievable under physiological conditions in the near future.
Collapse
Affiliation(s)
- F de Lange
- Department of Tumor Immunology, University Medical Center Nijmegen, NCMLS/187 TIL, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nagy P, Mátyus L, Jenei A, Panyi G, Varga S, Matkó J, Szöllosi J, Gáspár R, Jovin TM, Damjanovich S. Cell fusion experiments reveal distinctly different association characteristics of cell-surface receptors. J Cell Sci 2001; 114:4063-71. [PMID: 11739638 DOI: 10.1242/jcs.114.22.4063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The existence of small- and large-scale membrane protein clusters, containing dimers, oligomers and hundreds of proteins, respectively, has become widely accepted. However, it is largely unknown whether the internal structure of these formations is dynamic or static. Cell fusion was used to perturb the distribution of existing membrane protein clusters, and to investigate their mobility and associations. Scanning near-field optical microscopy, confocal and electron microscopy were applied to detect the exchange of proteins between large-scale protein clusters, whereas photobleaching fluorescence energy transfer was used to image the redistribution of existing small-scale membrane protein clusters. Large-scale clusters of major histocompatibility complex (MHC)-I exchanged proteins with each other and with MHC-II clusters. Similarly to MHC-I, large-scale MHC-II clusters were also dynamic. Exchange of components between small-scale protein clusters was not universal: intermixing did not take place in the case of MHC-II homoclusters; however, it was observed for homoclusters of MHC-I and for heteroclusters of MHC-I and MHC-II. These processes required a fluid state of the plasma membrane, and did not depend on endocytosis-mediated recycling of proteins. The redistribution of large-scale MHC-I clusters precedes the intermixing of small-scale clusters of MHC-I indicating a hierarchy in protein association. Investigation of a set of other proteins (α subunit of the interleukin 2 receptor, CD48 and transferrin receptor) suggested that a large-scale protein cluster usually exchanges components with the same type of clusters. These results offer new insight into processes requiring time-dependent changes in membrane protein interactions.
Collapse
Affiliation(s)
- P Nagy
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kenworthy AK. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods 2001; 24:289-96. [PMID: 11403577 DOI: 10.1006/meth.2001.1189] [Citation(s) in RCA: 405] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.
Collapse
Affiliation(s)
- A K Kenworthy
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| |
Collapse
|
45
|
Lippincott-Schwartz J, Snapp E, Kenworthy A. Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2001; 2:444-56. [PMID: 11389468 DOI: 10.1038/35073068] [Citation(s) in RCA: 879] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the advent of the green fluorescent protein, the subcellular localization, mobility, transport routes and binding interactions of proteins can be studied in living cells. Live cell imaging, in combination with photobleaching, energy transfer or fluorescence correlation spectroscopy are providing unprecedented insights into the movement of proteins and their interactions with cellular components. Remarkably, these powerful techniques are accessible to non-specialists using commercially available microscope systems.
Collapse
Affiliation(s)
- J Lippincott-Schwartz
- Cell Biology and Metabolism Branch, 18 Library Drive, NICHD, NIH Bethesda, Maryland 20892-5430 USA.
| | | | | |
Collapse
|
46
|
Gáspár R, Bagossi P, Bene L, Matkó J, Szöllosi J, Tozsér J, Fésüs L, Waldmann TA, Damjanovich S. Clustering of class I HLA oligomers with CD8 and TCR: three-dimensional models based on fluorescence resonance energy transfer and crystallographic data. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5078-86. [PMID: 11290789 DOI: 10.4049/jimmunol.166.8.5078] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fluorescence resonance energy transfer (FRET) data, in accordance with lateral mobility measurements, suggested the existence of class I HLA dimers and oligomers at the surface of live human cells, including the B lymphoblast cell line (JY) used in the present study. Intra- and intermolecular class I HLA epitope distances were measured on JY B cells by FRET using fluorophore-conjugated Ag-binding fragments of mAbs W6/32 and L368 directed against structurally well-characterized heavy and light chain epitopes, respectively. Out-of-plane location of these epitopes relative to the membrane-bound BODIPY-PC (2-(4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine) was also determined by FRET. Computer-simulated docking of crystallographic structures of class I HLA and epitope-specific Ag-binding fragments, with experimentally determined interepitope and epitope to cell surface distances as constraints, revealed several sterically allowed and FRET-compatible class I HLA dimeric and tetrameric arrangements. Extension of the tetrameric class I HLA model with interacting TCR and CD8 resulted in a model of a supramolecular cluster that may exist physiologically and serve as a functionally significant unit for a network of CD8-HLA-I complexes providing enhanced signaling efficiency even at low MHC-peptide concentrations at the interface of effector and APCs.
Collapse
Affiliation(s)
- R Gáspár
- Department of Biophysics, Biophysics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Triantafilou K, Triantafilou M, Wilson KM. Phycobiliprotein-Fab conjugates as probes for single particle fluorescence imaging. CYTOMETRY 2000; 41:226-34. [PMID: 11042621 DOI: 10.1002/1097-0320(20001101)41:3<226::aid-cyto11>3.0.co;2-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND METHODS Single particle fluorescence imaging (SPFI) is a recently developed method that has provided a powerful approach to observing receptor movement and associations at high spatial resolution. It provides a noninvasive alternative to the existing biochemical techniques. It can also quantify and resolve molecular interactions at the cell surface at a nanometer scale. Probes that have been used in the past to study mobility and associations of cell surface receptors have many limitations. These include concerns about the specificity of the probes, the possibility that their size interferes with the receptor once bound to it, the nonuniform fluorescence, and the questionable stoichiometry. RESULTS In this study, we have generated phycobiliprotein-Fab conjugates, and have shown that they are a significant advance on existing probes for SPFI studies. They are small in size, highly specific, highly fluorescent, of known stoichiometry, photostable, emit uniform fluorescence, and are generally well defined. CONCLUSIONS It is highly important that when studying receptor mobility or associations, fully characterized probes are used. Phycoerythrin(PE)-Fab probes provide us with the perfect tool for SPFI, and a system with a wide range of applicability to study any cell surface receptor against which a monoclonal antibody exists.
Collapse
Affiliation(s)
- K Triantafilou
- Department of Biological Sciences, University of Essex, Central Campus, Colchester, United Kingdom.
| | | | | |
Collapse
|
48
|
Jenski LJ, Nanda PK, Jiricko P, Stillwell W. Docosahexaenoic acid-containing phosphatidylcholine affects the binding of monoclonal antibodies to purified Kb reconstituted into liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:293-306. [PMID: 11030589 DOI: 10.1016/s0005-2736(00)00227-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Class I major histocompatibility complex (MHC I) molecules are transmembrane proteins that bind and present peptides to T-cell antigen receptors. The role of membrane lipids in controlling MHC I structure and function is not understood, although membrane lipid composition influences cell surface expression of MHC I. We reconstituted liposomes with purified MHC I (Kb) and probed the effect of lipid composition on MHC I structure (monoclonal anti-MHC I antibody binding). Four phospholipids were compared; each had a phosphocholine head group, stearic acid in the sn-1 position, and either oleic, alpha-linolenic, arachidonic, or docosahexaenoic acid (DHA) in the sn-2 position. The greatest binding of monoclonal antibody AF6-88.5, which detects a conformationally sensitive epitope in the extracellular region of the MHC I alpha-chain, was achieved with DHA-containing proteoliposomes. Other epitopes (CTKb, 5041.16.1) showed some sensitivity to lipid composition. The addition of beta2-microglobulin, which associates non-covalently with the alpha-chain and prevents alpha-chain aggregation, did not equalize antibody binding to proteoliposomes of different lipid composition, suggesting that free alpha-chain aggregation was not responsible for disparate antibody binding. Thus, DHA-containing membrane lipids may facilitate conformational change in the extracellular domains of the alpha-chain, thereby modulating MHC I function through effects on that protein's structure.
Collapse
Affiliation(s)
- L J Jenski
- Department of Biology, Indiana University-Purdue University at Indianapolis, 46202-5132, USA.
| | | | | | | |
Collapse
|
49
|
Vereb G, Matkó J, Vámosi G, Ibrahim SM, Magyar E, Varga S, Szöllosi J, Jenei A, Gáspár R, Waldmann TA, Damjanovich S. Cholesterol-dependent clustering of IL-2Ralpha and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc Natl Acad Sci U S A 2000; 97:6013-8. [PMID: 10823948 PMCID: PMC18550 DOI: 10.1073/pnas.97.11.6013] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunogold staining and electron microscopy show that IL-2 receptor alpha-subunits exhibit nonrandom surface distribution on human T lymphoma cells. Analysis of interparticle distances reveals that this clustering on the scale of a few hundred nanometers is independent of the presence of IL-2 and of the expression of the IL-2R beta-subunit. Clustering of IL-2Ralpha is confirmed by confocal microscopy, yielding the same average cluster size, approximately 600-800 nm, as electron microscopy. HLA class I and II and CD48 molecules also form clusters of the same size. Disruption of cholesterol-rich lipid rafts with filipin or depletion of membrane cholesterol with methyl-beta-cyclodextrin results in the blurring of cluster boundaries and an apparent dispersion of clusters for all four proteins. Interestingly, the transferrin receptor, which is thought to be located outside lipid rafts, exhibits clusters that are only 300 nm in size and are less affected by modifying the membrane cholesterol content. Furthermore, transferrin receptor clusters hardly colocalize with IL-2Ralpha, HLA, and CD48 molecules (crosscorrelation coefficient is 0.05), whereas IL-2Ralpha colocalizes with both HLA and CD48 (crosscorrelation coefficient is between 0.37 and 0.46). This coclustering is confirmed by electron microscopy. The submicron clusters of IL-2Ralpha chains and their coclustering with HLA and CD48, presumably associated with lipid rafts, could underlie the efficiency of signaling in lymphoid cells.
Collapse
Affiliation(s)
- G Vereb
- Department of Biophysics and Cell Biology, University of Debrecen, Medical and Health Sciences Center, P.O.B. 39, 4012 Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nagy P, Jenei A, Damjanovich S, Jovin TM, Szölôsi J. Complexity of signal transduction mediated by ErbB2: clues to the potential of receptor-targeted cancer therapy. Pathol Oncol Res 2000; 5:255-71. [PMID: 10607920 DOI: 10.1053/paor.1999.0255] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The erbB2 oncogene belongs to the type I trans-membrane tyrosine kinase family of receptors. Its medical importance stems from its widespread over-expression in breast cancer. This review will focus on the signal transduction through this protein, and explains how the overexpression of erbB2 may result in poor prognosis of breast cancer, and finally it will summerize our current understanding about the therapeutic potential of receptor-targeted therapy in breast cancer. ErbB2 does not have any known ligand which is able to bind to it with high affinity. However the kinase activity of erbB2 can be activated without any ligand, if it is overexpressed, and by heteroassociation with other members of the erbB family (erbB1 or epidermal growth factor receptor, erbB3 and erbB4). This interaction substantially increases the efficiency and diversity of signal transduction through these receptor complexes. In addition, erbB2 forms large scale receptor clusters containing hundreds of proteins. These receptor islands may take part in recruiting cytosolic factors which relay the signal towards the nucleus or the cytoplasm. Overexpression of erbB2 was linked to higher transforming activity, increased metastatic potential, angiogenesis and drug resistence of breast tumor in laboratory experiments. As a corollary of these properties, erbB2 amplification is generally thought to be associated with a poor prognosis in breast cancer patients. These early findings lead to the development of antibodies that down-regulate erbB2. Such a therapeutic approach has already been found effective in experimental tumor models and in clinical trials as well. Further understanding of the importance of erbB2 and growth factor receptors in the transformation of normal cells to malignant ones may once give us a chance to cure erbB2 over-expressing breast cancer.
Collapse
Affiliation(s)
- P Nagy
- Hungarian Academy of Sciences, Biophysical Workgroup, Budapest, Hungary.
| | | | | | | | | |
Collapse
|