1
|
Kovács ZM, Horváth B, Dienes C, Óvári J, Kiss D, Hézső T, Szentandrássy N, Magyar J, Bányász T, Nánási PP. Beta-Adrenergic Activation of the Inward Rectifier K + Current Is Mediated by the CaMKII Pathway in Canine Ventricular Cardiomyocytes. Int J Mol Sci 2024; 25:11609. [PMID: 39519160 PMCID: PMC11546480 DOI: 10.3390/ijms252111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Several ion currents in the mammalian ventricular myocardium are substantially regulated by the sympathetic nervous system via β-adrenergic receptor activation, including the slow delayed rectifier K+ current and the L-type calcium current. This study investigated the downstream mechanisms of β-adrenergic receptor stimulation by isoproterenol (ISO) on the inward rectifier (IK1) and the rapid delayed rectifier (IKr) K+ currents using action potential voltage clamp (APVC) and conventional voltage clamp techniques in isolated canine left ventricular cardiomyocytes. IK1 and IKr were dissected by 50 µM BaCl2 and 1 µM E-4031, respectively. Acute application of 10 nM ISO significantly increased IK1 under the plateau phase of the action potential (0-+20 mV) using APVC, and similar results were obtained with conventional voltage clamp. However, β-adrenergic receptor stimulation did not affect the peak current density flowing during terminal repolarization or the overall IK1 integral. The ISO-induced enhancement of IK1 was blocked by the calcium/calmodulin kinase II (CaMKII) inhibitor KN-93 (1 µM) but not by the protein kinase A inhibitor H-89 (3 µM). Neither KN-93 nor H-89 affected the IK1 density under baseline conditions (in the absence of ISO). In contrast, parameters of the IKr current were not affected by β-adrenergic receptor stimulation with ISO. These findings suggest that sympathetic activation enhances IK1 in canine left ventricular cells through the CaMKII pathway, while IKr remains unaffected under the experimental conditions used.
Collapse
Affiliation(s)
- Zsigmond Máté Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Csaba Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - József Óvári
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Dénes Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
- Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
| | - Péter Pál Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.M.K.); (C.D.); (J.Ó.); (D.K.); (T.H.); (N.S.); (J.M.); (T.B.); (P.P.N.)
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Liu Q, Sun J, Dong Y, Li P, Wang J, Wang Y, Xu Y, Tian X, Wu B, He P, Yu Q, Lu X, Cao J. Tetramisole is a new I K1 channel agonist and exerts I K1 -dependent cardioprotective effects in rats. Pharmacol Res Perspect 2022; 10:e00992. [PMID: 35880674 PMCID: PMC9316008 DOI: 10.1002/prp2.992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiac ischemia, hypoxia, arrhythmias, and heart failure share the common electrophysiological changes featured by the elevation of intracellular Ca2+ (Ca2+ overload) and inhibition of the inward rectifier potassium (IK1 ) channel. IK1 channel agonists have been considered a new type of anti-arrhythmia and cardioprotective agents. We predicted using a drug repurposing strategy that tetramisole (Tet), a known anthelminthic agent, was a new IK1 channel agonist. The present study aimed to experimentally identify the above prediction and further demonstrate that Tet has cardioprotective effects. Results of the whole-cell patch clamp technique showed that Tet at 1-100 μmol/L enhanced IK1 current, hyperpolarized resting potential (RP), and shortened action potential duration (APD) in isolated rat cardiomyocytes, while without effects on other ion channels or transporters. In adult Sprague-Dawley (SD) rats in vivo, Tet showed anti-arrhythmia and anticardiac remodeling effects, respectively, in the coronary ligation-induced myocardial infarction model and isoproterenol (Iso, i.p., 3 mg/kg/day, 10 days) infusion-induced cardiac remodeling model. Tet also showed anticardiomyocyte remodeling effect in Iso (1 μmol/L) infused adult rat ventricular myocytes or cultured H9c2 (2-1) cardiomyocytes. Tet at 0.54 mg/kg in vivo or 30 μmol/L in vitro showed promising protections on acute ischemic arrhythmias, myocardial hypertrophy, and fibrosis. Molecular docking was performed and identified the selective binding of Tet with Kir2.1. The cardioprotection of Tet was associated with the facilitation of IK1 channel forward trafficking, deactivation of PKA signaling, and inhibition of intracellular calcium overload. Enhancing IK1 may play dual roles in anti-arrhythmia and antiventricular remodeling mediated by restoration of Ca2+ homeostasis.
Collapse
Affiliation(s)
- Qinghua Liu
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Jiaxing Sun
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Yangdou Dong
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Pan Li
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Jin Wang
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Yulan Wang
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Yanwu Xu
- Department of BiochemistryShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xinrui Tian
- Department of Respiratory and Critical Care MedicineSecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Bowei Wu
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Peifeng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, School of ManagementShanxi Medical UniversityTaiyuanChina
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, School of ManagementShanxi Medical UniversityTaiyuanChina
| | - Xuechun Lu
- Department of Hematology, The Second Medical Center, Chinese PLA General HospitalNational clinical research center for geriatric diseaseBeijingChina
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
3
|
Brown KA, Anderson C, Reilly L, Sondhi K, Ge Y, Eckhardt LL. Proteomic Analysis of the Functional Inward Rectifier Potassium Channel (Kir) 2.1 Reveals Several Novel Phosphorylation Sites. Biochemistry 2021; 60:3292-3301. [PMID: 34676745 DOI: 10.1021/acs.biochem.1c00555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane proteins represent a large family of proteins that perform vital physiological roles and represent key drug targets. Despite their importance, bioanalytical methods aiming to comprehensively characterize the post-translational modification (PTM) of membrane proteins remain challenging compared to other classes of proteins in part because of their inherent low expression and hydrophobicity. The inward rectifier potassium channel (Kir) 2.1, an integral membrane protein, is critical for the maintenance of the resting membrane potential and phase-3 repolarization of the cardiac action potential in the heart. The importance of this channel to cardiac physiology is highlighted by the recognition of several sudden arrhythmic death syndromes, Andersen-Tawil and short QT syndromes, which are associated with loss or gain of function mutations in Kir2.1, often triggered by changes in the β-adrenergic tone. Therefore, understanding the PTMs of this channel (particularly β-adrenergic tone-driven phosphorylation) is important for arrhythmia prevention. Here, we developed a proteomic method, integrating both top-down (intact protein) and bottom-up (after enzymatic digestion) proteomic analyses, to characterize the PTMs of recombinant wild-type and mutant Kir2.1, successfully mapping five novel sites of phosphorylation and confirming a sixth site. Our study provides a framework for future work to assess the role of PTMs in regulating Kir2.1 functions.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Corey Anderson
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kunal Sondhi
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Reilly L, Eckhardt LL. Cardiac potassium inward rectifier Kir2: Review of structure, regulation, pharmacology, and arrhythmogenesis. Heart Rhythm 2021; 18:1423-1434. [PMID: 33857643 PMCID: PMC8328935 DOI: 10.1016/j.hrthm.2021.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Potassium inward rectifier channel Kir2 is an important component of terminal cardiac repolarization and resting membrane stability. This functionality is part of balanced cardiac excitability and is a defining feature of excitable cardiac membranes. “Gain-of-function” or “loss-of-function” mutations in KCNJ2, the gene encoding Kir2.1, cause genetic sudden cardiac death syndromes, and loss of the Kir2 current IK1 is a major contributing factor to arrhythmogenesis in failing human hearts. Here we provide a contemporary review of the functional structure, physiology, and pharmacology of Kir2 channels. Beyond the structure and functional relationships, we will focus on the elements of clinically used drugs that block the channel and the implications for treatment of atrial fibrillation with IK1-blocking agents. We will also review the clinical disease entities associated with KCNJ2 mutations and the growing area of research into associated arrhythmia mechanisms. Lastly, the presence of Kir2 channels has become a tipping point for electrical maturity in induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) and highlights the significance of understanding why Kir2 in iPS-CMs is important to consider for Comprehensive In Vitro Proarrhythmia Assay and drug safety testing.
Collapse
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
5
|
Trum M, Islam MMT, Lebek S, Baier M, Hegner P, Eaton P, Maier LS, Wagner S. Inhibition of cardiac potassium currents by oxidation-activated protein kinase A contributes to early afterdepolarizations in the heart. Am J Physiol Heart Circ Physiol 2020; 319:H1347-H1357. [PMID: 33035439 PMCID: PMC7792712 DOI: 10.1152/ajpheart.00182.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have been shown to prolong cardiac action potential duration resulting in afterdepolarizations, the cellular basis of triggered arrhythmias. As previously shown, protein kinase A type I (PKA I) is readily activated by oxidation of its regulatory subunits. However, the relevance of this mechanism of activation for cardiac pathophysiology is still elusive. In this study, we investigated the effects of oxidation-activated PKA I on cardiac electrophysiology. Ventricular cardiomyocytes were isolated from redox-dead PKA-RI Cys17Ser knock-in (KI) and wild-type (WT) mice and exposed to H2O2 (200 µmol/L) or vehicle (Veh) solution. In WT myocytes, exposure to H2O2 significantly increased oxidation of the regulatory subunit I (RI) and thus its dimerization (threefold increase in PKA RI dimer). Whole cell current clamp and voltage clamp were used to measure cardiac action potentials (APs), transient outward potassium current (Ito) and inward rectifying potassium current (IK1), respectively. In WT myocytes, H2O2 exposure significantly prolonged AP duration due to significantly decreased Ito and IK1 resulting in frequent early afterdepolarizations (EADs). Preincubation with the PKA-specific inhibitor Rp-8-Br-cAMPS (10 µmol/L) completely abolished the H2O2-dependent decrease in Ito and IK1 in WT myocytes. Intriguingly, H2O2 exposure did not prolong AP duration, nor did it decrease Ito, and only slightly enhanced EAD frequency in KI myocytes. Treatment of WT and KI cardiomyocytes with the late INa inhibitor TTX (1 µmol/L) completely abolished EAD formation. Our results suggest that redox-activated PKA may be important for H2O2-dependent arrhythmias and could be important for the development of specific antiarrhythmic drugs.NEW & NOTEWORTHY Oxidation-activated PKA type I inhibits transient outward potassium current (Ito) and inward rectifying potassium current (IK1) and contributes to ROS-induced APD prolongation as well as generation of early afterdepolarizations in murine ventricular cardiomyocytes.
Collapse
Affiliation(s)
- M. Trum
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - M. M. T. Islam
- 2Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
- 3Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - S. Lebek
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - M. Baier
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - P. Hegner
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - P. Eaton
- 4The William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - L. S. Maier
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - S. Wagner
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Reilly L, Alvarado FJ, Lang D, Abozeid S, Van Ert H, Spellman C, Warden J, Makielski JC, Glukhov AV, Eckhardt LL. Genetic Loss of IK1 Causes Adrenergic-Induced Phase 3 Early Afterdepolariz ations and Polymorphic and Bidirectional Ventricular Tachycardia. Circ Arrhythm Electrophysiol 2020; 13:e008638. [PMID: 32931337 PMCID: PMC7574954 DOI: 10.1161/circep.120.008638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arrhythmia syndromes associated with KCNJ2 mutations have been described clinically; however, little is known of the underlying arrhythmia mechanism. We create the first patient inspired KCNJ2 transgenic mouse and study effects of this mutation on cardiac function, IK1, and Ca2+ handling, to determine the underlying cellular arrhythmic pathogenesis. METHODS A cardiac-specific KCNJ2-R67Q mouse was generated and bred for heterozygosity (R67Q+/-). Echocardiography was performed at rest, under anesthesia. In vivo ECG recording and whole heart optical mapping of intact hearts was performed before and after adrenergic stimulation in wild-type (WT) littermate controls and R67Q+/- mice. IK1 measurements, action potential characterization, and intracellular Ca2+ imaging from isolated ventricular myocytes at baseline and after adrenergic stimulation were performed in WT and R67Q+/- mice. RESULTS R67Q+/- mice (n=17) showed normal cardiac function, structure, and baseline electrical activity compared with WT (n=10). Following epinephrine and caffeine, only the R67Q+/- mice had bidirectional ventricular tachycardia, ventricular tachycardia, frequent ventricular ectopy, and/or bigeminy and optical mapping demonstrated high prevalence of spontaneous and sustained ventricular arrhythmia. Both R67Q+/- (n=8) and WT myocytes (n=9) demonstrated typical n-shaped IK1IV relationship; however, following isoproterenol, max outward IK1 increased by ≈20% in WT but decreased by ≈24% in R67Q+/- (P<0.01). R67Q+/- myocytes (n=5) demonstrated prolonged action potential duration at 90% repolarization and after 10 nmol/L isoproterenol compared with WT (n=7; P<0.05). Ca2+ transient amplitude, 50% decay rate, and sarcoplasmic reticulum Ca2+ content were not different between WT (n=18) and R67Q+/- (n=16) myocytes. R67Q+/- myocytes (n=10) under adrenergic stimulation showed frequent spontaneous development of early afterdepolarizations that occurred at phase 3 of action potential repolarization. CONCLUSIONS KCNJ2 mutation R67Q+/- causes adrenergic-dependent loss of IK1 during terminal repolarization and vulnerability to phase 3 early afterdepolarizations. This model clarifies a heretofore unknown arrhythmia mechanism and extends our understanding of treatment implications for patients with KCNJ2 mutation.
Collapse
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Francisco J Alvarado
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Di Lang
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Sara Abozeid
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Hannah Van Ert
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Cordell Spellman
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Jarrett Warden
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Jonathan C Makielski
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Alexey V Glukhov
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison
| |
Collapse
|
7
|
Abstract
Modern stem cell research has mainly focused on protein expression and transcriptional networks. However, transmembrane voltage gradients generated by ion channels and transporters have demonstrated to be powerful regulators of cellular processes. These physiological cues exert influence on cell behaviors ranging from differentiation and proliferation to migration and polarity. Bioelectric signaling is a fundamental element of living systems and an untapped reservoir for new discoveries. Dissecting these mechanisms will allow for novel methods of controlling cell fate and open up new opportunities in biomedicine. This review focuses on the role of ion channels and the resting membrane potential in the proliferation and differentiation of skeletal muscle progenitor cells. In addition, findings relevant to this topic are presented and potential implications for tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Colin Fennelly
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
8
|
Jackson WF. Boosting the signal: Endothelial inward rectifier K + channels. Microcirculation 2018; 24. [PMID: 27652592 DOI: 10.1111/micc.12319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of KIR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K+ channel (KIR ) currents display a region of negative slope conductance at membrane potentials positive to the K+ equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting KIR to amplify hyperpolarization induced by other K+ channels and ion transporters. Increases in extracellular K+ concentration activate KIR allowing them to sense extracellular K+ concentration and transduce this change into membrane hyperpolarization. These properties position KIR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of KIR in capillaries in electrically active tissues may allow KIR to sense extracellular K+ , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial KIR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Chiamvimonvat N, Chen-Izu Y, Clancy CE, Deschenes I, Dobrev D, Heijman J, Izu L, Qu Z, Ripplinger CM, Vandenberg JI, Weiss JN, Koren G, Banyasz T, Grandi E, Sanguinetti MC, Bers DM, Nerbonne JM. Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. J Physiol 2017; 595:2229-2252. [PMID: 27808412 DOI: 10.1113/jp272883] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022] Open
Abstract
This is the second of the two White Papers from the fourth UC Davis Cardiovascular Symposium Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias (3-4 March 2016), a biennial event that brings together leading experts in different fields of cardiovascular research. The theme of the 2016 symposium was 'K+ channels and regulation', and the objectives of the conference were severalfold: (1) to identify current knowledge gaps; (2) to understand what may go wrong in the diseased heart and why; (3) to identify possible novel therapeutic targets; and (4) to further the development of systems biology approaches to decipher the molecular mechanisms and treatment of cardiac arrhythmias. The sessions of the Symposium focusing on the functional roles of the cardiac K+ channel in health and disease, as well as K+ channels as therapeutic targets, were contributed by Ye Chen-Izu, Gideon Koren, James Weiss, David Paterson, David Christini, Dobromir Dobrev, Jordi Heijman, Thomas O'Hara, Crystal Ripplinger, Zhilin Qu, Jamie Vandenberg, Colleen Clancy, Isabelle Deschenes, Leighton Izu, Tamas Banyasz, Andras Varro, Heike Wulff, Eleonora Grandi, Michael Sanguinetti, Donald Bers, Jeanne Nerbonne and Nipavan Chiamvimonvat as speakers and panel discussants. This article summarizes state-of-the-art knowledge and controversies on the functional roles of cardiac K+ channels in normal and diseased heart. We endeavour to integrate current knowledge at multiple scales, from the single cell to the whole organ levels, and from both experimental and computational studies.
Collapse
Affiliation(s)
- Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, 95655, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA.,Department of Biomedical Engineering, University of California, Davis, Genome and Biomedical Science Facility, Rm 2303, Davis, CA, 95616, USA
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Isabelle Deschenes
- Department of Physiology and Biophysics, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44109, USA.,Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, 44109, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leighton Izu
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Zhilin Qu
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - James N Weiss
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Gideon Koren
- Cardiovascular Research Center, Rhode Island Hospital and the Cardiovascular Institute, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Tamas Banyasz
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research & Training Institute, Salt Lake City, UT, 84112, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jeanne M Nerbonne
- Departments of Developmental Biology and Internal Medicine, Cardiovascular Division, Washington University Medical School, St Louis, MO, 63110, USA
| |
Collapse
|
10
|
Fluid flow facilitates inward rectifier K + current by convectively restoring [K +] at the cell membrane surface. Sci Rep 2016; 6:39585. [PMID: 28004830 PMCID: PMC5177964 DOI: 10.1038/srep39585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 11/24/2016] [Indexed: 01/25/2023] Open
Abstract
The inward rectifier Kir2.1 current (IKir2.1) was reported to be facilitated by fluid flow. However, the mechanism underlying this facilitation remains uncertain. We hypothesized that during K+ influx or efflux, [K+] adjacent to the outer mouth of the Kir2.1 channel might decrease or increase, respectively, compared with the average [K+] of the bulk extracellular solution, and that fluid flow could restore the original [K+] and result in the apparent facilitation of IKir2.1. We recorded the IKir2.1 in RBL-2H3 cells and HEK293T cells that were ectopically over-expressed with Kir2.1 channels by using the whole-cell patch-clamp technique. Fluid-flow application immediately increased the IKir2.1, which was not prevented by either the pretreatment with inhibitors of various protein kinases or the modulation of the cytoskeleton and caveolae. The magnitudes of the increases of IKir2.1 by fluid flow were driving force-dependent. Simulations performed using the Nernst-Planck mass equation indicated that [K+] near the membrane surface fell markedly below the average [K+] of the bulk extracellular solution during K+ influx, and, notably, that fluid flow restored the decreased [K+] at the cell surface in a flow rate-dependent manner. These results support the “convection-regulation hypothesis” and define a novel interpretation of fluid flow-induced modulation of ion channels.
Collapse
|
11
|
Leem YE, Jeong HJ, Kim HJ, Koh J, Kang K, Bae GU, Cho H, Kang JS. Cdo Regulates Surface Expression of Kir2.1 K+ Channel in Myoblast Differentiation. PLoS One 2016; 11:e0158707. [PMID: 27380411 PMCID: PMC4933383 DOI: 10.1371/journal.pone.0158707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/21/2016] [Indexed: 01/28/2023] Open
Abstract
A potassium channel Kir2.1-associated membrane hyperpolarization is required for myogenic differentiation. However the molecular regulatory mechanisms modulating Kir2.1 channel activities in early stage of myogenesis are largely unknown. A cell surface protein, Cdo functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that Cdo forms a complex with Kir2.1 during myogenic differentiation, and is required for the channel activity by enhancing the surface expression of Kir2.1 in the early stage of differentiation. The expression of a constitutively active form of the upstream kinase for p38MAPK, MKK6(EE) can restore Kir2.1 activities in Cdo-depleted C2C12 cells, while the treatment with a p38MAPK inhibitor, SB203580 exhibits a similar effect of Cdo depletion on Kir2.1 surface expression. Furthermore, Cdo-/- primary myoblasts, which display a defective differentiation program, exhibit a defective Kir2.1 activity. Taken together, our results suggest that a promyogenic Cdo signaling is critical for Kir2.1 activities in the induction of myogenic differentiation.
Collapse
Affiliation(s)
- Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Hyun-Ji Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Jewoo Koh
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - KyeongJin Kang
- Department of Anatomy, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
- * E-mail: (JSK); (HC)
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Samsung Biomedical Research Institute, Suwon, Republic of Korea
- * E-mail: (JSK); (HC)
| |
Collapse
|
12
|
Brandalise F, Lujan R, Leone R, Lodola F, Cesaroni V, Romano C, Gerber U, Rossi P. Distinct expression patterns of inwardly rectifying potassium currents in developing cerebellar granule cells of the hemispheres and the vermis. Eur J Neurosci 2016; 43:1460-73. [DOI: 10.1111/ejn.13219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Federico Brandalise
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
- Brain Research Institute; University of Zurich; Zurich Switzerland
| | - Rafael Lujan
- Instituto de Investigación en Discapacidades Neurológicas (IDINE); Department of Ciencias Médicas; Facultad de Medicina; Universidad Castilla-La Mancha; Albacete Spain
| | - Roberta Leone
- Brain Research Institute; University of Zurich; Zurich Switzerland
| | - Francesco Lodola
- Molecular Cardiology; IRCCS Fondazione Salvatore Maugeri; Pavia Italy
| | - Valentina Cesaroni
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
| | - Chiara Romano
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
| | - Urs Gerber
- Brain Research Institute; University of Zurich; Zurich Switzerland
| | - Paola Rossi
- Department of Biology and Biotechnology; University of Pavia; via Ferrata 9 27100 Pavia Italy
| |
Collapse
|
13
|
Hoffmann B, Klöcker N, Benndorf K, Biskup C. Visualization of the dynamics of PSD-95 and Kir2.1 interaction by fluorescence lifetime-based resonance energy transfer imaging. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.medpho.2014.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
15
|
KCNJ2 mutation causes an adrenergic-dependent rectification abnormality with calcium sensitivity and ventricular arrhythmia. Heart Rhythm 2014; 11:885-94. [PMID: 24561538 DOI: 10.1016/j.hrthm.2014.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND KCNJ2 mutations are associated with a variety of inherited arrhythmia syndromes including catecholaminergic polymorphic ventricular tachycardia 3. OBJECTIVE To characterize the detailed cellular mechanisms of the clinically recognized KCNJ2 mutation R67Q. METHODS Kir2.1 current density was measured from COS-1 cells transiently transfected with wild-type human Kir-2.1 (WT-Kir2.1) and/or a heterozygous missense mutation in KCNJ2 (R67Q-Kir2.1) by using the whole-cell voltage clamp technique. Catecholamine activity was simulated with protein kinase A-stimulating cocktail exposure. Phosphorylation-deficient mutants, S425N-Kir2.1 and S425N-Kir2.1/R67Q-S425N-Kir2.1, were used in a separate set of experiments. HA- or Myc-Tag-WT-Kir2.1 and HA-Tag-R67Q-Kir2.1 were used for confocal imaging. RESULTS A 33-year-old woman presented with a catecholaminergic polymorphic ventricular tachycardia-like clinical phenotype and was found to have KCNJ2 missense mutation R67Q. Treatment with nadolol and flecainide resulted in the complete suppression of arrhythmias and symptom resolution. Under baseline conditions, R67Q-Kir2.1 expressed alone did not produce inward rectifier current while cells coexpressing WT-Kir2.1 and R67Q-Kir2.1 demonstrated the rectification index (RI) similar to that of WT-Kir2.1. After PKA stimulation, R67Q-Kir2.1/WT-Kir2.1 failed to increase peak outward current density; WT-Kir2.1 increased by 46% (n = 5), while R67Q-Kir2.1/WT-Kir2.1 decreased by 6% (n = 6) (P = .002). Rectification properties in R67Q-Kir2.1/WT-Kir2.1 demonstrated sensitivity to calcium with a decreased RI in the high-calcium pipette solution (RI 20.3% ± 4.1%) than in the low-calcium pipette solution (RI 36.5% ± 5.7%) (P < .05). Immunostaining of WT-Kir2.1 and R67Q-Kir2.1 individually and together showed a normal membrane expression pattern and colocalization by using the Pearson correlation coefficient. CONCLUSIONS R67Q-Kir2.1 is associated with an adrenergic-dependent clinical and cellular phenotype with rectification abnormality enhanced by increased calcium. These findings are a significant advancement of our knowledge and understanding of the phenotype-genotype relationship of arrhythmia syndromes related to KCNJ2 mutations.
Collapse
|
16
|
Beta-adrenergic stimulation reverses the I Kr-I Ks dominant pattern during cardiac action potential. Pflugers Arch 2014; 466:2067-76. [PMID: 24535581 DOI: 10.1007/s00424-014-1465-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/06/2014] [Accepted: 01/28/2014] [Indexed: 12/21/2022]
Abstract
β-Adrenergic stimulation differentially modulates different K(+) channels and thus fine-tunes cardiac action potential (AP) repolarization. However, it remains unclear how the proportion of I Ks, I Kr, and I K1 currents in the same cell would be altered by β-adrenergic stimulation, which would change the relative contribution of individual K(+) current to the total repolarization reserve. In this study, we used an innovative AP-clamp sequential dissection technique to directly record the dynamic I Ks, I Kr, and I K1 currents during the AP in guinea pig ventricular myocytes under physiologically relevant conditions. Our data provide quantitative measures of the magnitude and time course of I Ks, I Kr, and I K1 currents in the same cell under its own steady-state AP, in a physiological milieu, and with preserved Ca(2+) homeostasis. We found that isoproterenol treatment significantly enhanced I Ks, moderately increased I K1, but slightly decreased I Kr in a dose-dependent manner. The dominance pattern of the K(+) currents was I Kr > I K1 > I Ks at the control condition, but reversed to I Kr < I K1 < I Ks following β-adrenergic stimulation. We systematically determined the changes in the relative contribution of I Ks, I Kr, and I K1 to cardiac repolarization during AP at different adrenergic states. In conclusion, the β-adrenergic stimulation fine-tunes the cardiac AP morphology by shifting the power of different K(+) currents in a dose-dependent manner. This knowledge is important for designing antiarrhythmic drug strategies to treat hearts exposed to various sympathetic tones.
Collapse
|
17
|
Zhang L, Liu Q, Liu C, Zhai X, Feng Q, Xu R, Cui X, Zhao Z, Cao J, Wu B. Zacopride selectively activates the Kir2.1 channel via a PKA signaling pathway in rat cardiomyocytes. SCIENCE CHINA-LIFE SCIENCES 2013; 56:788-96. [PMID: 23929001 DOI: 10.1007/s11427-013-4531-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
We recently reported that zacopride is a selective inward rectifier potassium current (I K1) channel agonist, suppressing ventricular arrhythmias without affecting atrial arrhythmias. The present study aimed to investigate the unique pharmacological properties of zacopride. The whole-cell patch-clamp technique was used to study I K1 currents in rat atrial myocytes and Kir2.x currents in human embryonic kidney (HEK)-293 cells transfected with inward rectifier potassium channel (Kir)2.1, Kir2.2, Kir2.3, or mutated Kir2.1 (at phosphorylation site S425L). Western immunoblots were performed to estimate the relative protein expression levels of Kir2.x in rat atria and ventricles. Results showed that zacopride did not affect the IK1 and transmembrane potential of atrial myocytes. In HEK293 cells, zacopride increased Kir2.1 homomeric channels by 40.7%±9.7% at -50 mV, but did not affect Kir2.2 and Kir2.3 homomeric channels, and Kir2.1-Kir2.2, Kir2.1-Kir2.3 and Kir2.2-Kir2.3 heteromeric channels. Western immunoblots showed that similar levels of Kir2.3 protein were expressed in rat atria and ventricles, but atrial Kir2.1 protein level was only 25% of that measured in the ventricle. In addition, 5-hydroxytryptamine (5-HT)3 receptor was undetectable, whereas 5-HT4 receptor was weakly expressed in HEK293 cells. The Kir2.1-activating effect of zacopride in these cells was abolished by inhibition of protein kinase A (PKA), but not PKC or PKG. Furthermore, zacopride did not activate the mutant Kir2.1 channel in HEK293 cells but selectively activated the Kir2.1 homomeric channel via a PKA-dependent pathway, independent to that of the 5-HT receptor.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology and the Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc Natl Acad Sci U S A 2012; 109:5469-74. [PMID: 22431635 DOI: 10.1073/pnas.1112345109] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fifty years ago, increased whole-blood serotonin levels, or hyperserotonemia, first linked disrupted 5-HT homeostasis to Autism Spectrum Disorders (ASDs). The 5-HT transporter (SERT) gene (SLC6A4) has been associated with whole blood 5-HT levels and ASD susceptibility. Previously, we identified multiple gain-of-function SERT coding variants in children with ASD. Here we establish that transgenic mice expressing the most common of these variants, SERT Ala56, exhibit elevated, p38 MAPK-dependent transporter phosphorylation, enhanced 5-HT clearance rates and hyperserotonemia. These effects are accompanied by altered basal firing of raphe 5-HT neurons, as well as 5HT(1A) and 5HT(2A) receptor hypersensitivity. Strikingly, SERT Ala56 mice display alterations in social function, communication, and repetitive behavior. Our efforts provide strong support for the hypothesis that altered 5-HT homeostasis can impact risk for ASD traits and provide a model with construct and face validity that can support further analysis of ASD mechanisms and potentially novel treatments.
Collapse
|
19
|
Kito H, Yamazaki D, Ohya S, Yamamura H, Asai K, Imaizumi Y. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells. Biochem Biophys Res Commun 2011; 411:293-8. [DOI: 10.1016/j.bbrc.2011.06.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 06/20/2011] [Indexed: 12/20/2022]
|
20
|
Yamazaki D, Kito H, Yamamoto S, Ohya S, Yamamura H, Asai K, Imaizumi Y. Contribution of K(ir)2 potassium channels to ATP-induced cell death in brain capillary endothelial cells and reconstructed HEK293 cell model. Am J Physiol Cell Physiol 2010; 300:C75-86. [PMID: 20980552 DOI: 10.1152/ajpcell.00135.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular turnover of brain capillary endothelial cells (BCECs) by the balance of cell proliferation and death is essential for maintaining the homeostasis of the blood-brain barrier. Stimulation of metabotropic ATP receptors (P2Y) transiently increased intracellular Ca²(+) concentration ([Ca²(+)](i)) in t-BBEC 117, a cell line derived from bovine BCECs. The [Ca²(+)](i) rise induced membrane hyperpolarization via the activation of apamin-sensitive small-conductance Ca²(+)-activated K(+) channels (SK2) and enhanced cell proliferation in t-BBEC 117. Here, we found anomalous membrane hyperpolarization lasting for over 10 min in response to ATP in ∼15% of t-BBEC 117, in which inward rectifier K(+) channel (K(ir)2.1) was extensively expressed. Once anomalous hyperpolarization was triggered by ATP, it was removed by Ba²(+) but not by apamin. Prolonged exposure to ATPγS increased the relative population of t-BBEC 117, in which the expression of K(ir)2.1 mRNAs was significantly higher and Ba²(+)-sensitive anomalous hyperpolarization was observed. The cultivation of t-BBEC 117 in serum-free medium also increased this population and reduced the cell number. The reduction of cell number was enhanced by the addition of ATPγS and the enhancement was antagonized by Ba²(+). In the human embryonic kidney 293 cell model, where SK2 and K(ir)2.1 were heterologously coexpressed, [Ca²(+)](i) rise by P2Y stimulation triggered anomalous hyperpolarization and cell death. In conclusion, P2Y stimulation in BCECs enhances cell proliferation by SK2 activation in the majority of cells but also triggers cell death in a certain population showing a substantial expression of K(ir)2.1. This dual action of P2Y stimulation may effectively facilitate BCEC turnover.
Collapse
Affiliation(s)
- Daiju Yamazaki
- Department of Molecular and Cellular Pharmacology, Nagoya City University, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Yao Y, Bergold PJ, Penington NJ. Acute Ca(2+)-dependent desensitization of 5-HT(1A) receptors is mediated by activation of protein kinase A (PKA) in rat serotonergic neurons. Neuroscience 2010; 169:87-97. [PMID: 20423724 DOI: 10.1016/j.neuroscience.2010.04.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/15/2010] [Accepted: 03/19/2010] [Indexed: 11/27/2022]
Abstract
This report investigates acute changes in the sensitivity of 5-HT(1A) receptors in dorsal raphe (dr) neurons in response to elevated serotonin. DR neurons were isolated from adult rats and measurements of inhibition of Ca(2+) current by 5-HT were obtained using the whole cell patch clamp technique. During a 10-min application of 5-HT (with normal [Ca(2+)](i) approximately 100 nM) a desensitization occurred. The response to 20 nM 5-HT decreased by 66% relative to control and remained depressed for about 30 min. When the internal [Ca(2+)] was buffered to <1 nM only a weak transient desensitization occurred that was surmountable with higher [5-HT]. Adenylyl cyclase activation with forskolin mimicked the desensitization and selective inhibition of protein kinase A (PKA), but not protein kinase C (PKC), partially antagonized the desensitization induced by 5-HT. To measure the activity of PKA and phosphatase enzymes, dr slices were incubated with the selective agonist dipropyl-5-carboxamidotryptamine (DP-5-CT, 1 microM) for 10 min and the phosphorylation of the PKA substrate Kemptide was followed using ATP-gamma(32)P. DP-5-CT inhibited the cAMP stimulated maximal activity of PKA but raised basal PKA activity, thus increasing the percentage of PKA in the active state (activity ratio), an effect that was prevented by the selective 5-HT(1A) antagonist WAY100635. DP-5-CT also caused a significant inhibition of phosphatase activity. These data support a model in the dr where 5-HT(1A)-receptor stimulation of PKA promotes phosphorylation of a target and phosphatase inhibition leading to heterologous desensitization. The effect would be expected to have physiological consequences for 5-HT-mediated inhibitory post synaptic potentials and the Ca(2+) component of the action potentials of dr neurons.
Collapse
Affiliation(s)
- Y Yao
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | | | | |
Collapse
|
22
|
Vega AL, Tester DJ, Ackerman MJ, Makielski JC. Protein kinase A-dependent biophysical phenotype for V227F-KCNJ2 mutation in catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol 2009; 2:540-7. [PMID: 19843922 DOI: 10.1161/circep.109.872309] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND KCNJ2 encodes Kir2.1, a pore-forming subunit of the cardiac inward rectifier current, I(K1). KCNJ2 mutations are associated with Andersen-Tawil syndrome and catecholaminergic polymorphic ventricular tachycardia. The aim of this study was to characterize the biophysical and cellular phenotype of a KCNJ2 missense mutation, V227F, found in a patient with catecholaminergic polymorphic ventricular tachycardia. METHODS AND RESULTS Kir2.1-wild-type (WT) and V227F channels were expressed individually and together in Cos-1 cells to measure I(K1) by voltage clamp. Unlike typical Andersen-Tawil syndrome-associated KCNJ2 mutations, which show dominant negative loss of function, Kir2.1WT+V227F coexpression yielded I(K1) indistinguishable from Kir2.1-WT under basal conditions. To simulate catecholamine activity, a protein kinase A (PKA)-stimulating cocktail composed of forskolin and 3-isobutyl-1-methylxanthine was used to increase PKA activity. This PKA-simulated catecholaminergic stimulation caused marked reduction of outward I(K1) compared with Kir2.1-WT. PKA-induced reduction in I(K1) was eliminated by mutating the phosphorylation site at serine 425 (S425N). CONCLUSIONS Heteromeric Kir2.1-V227F and WT channels showed an unusual latent loss of function biophysical phenotype that depended on PKA-dependent Kir2.1 phosphorylation. This biophysical phenotype, distinct from typical Andersen-Tawil syndrome mutations, suggests a specific mechanism for PKA-dependent I(K1) dysfunction for this KCNJ2 mutation, which correlates with adrenergic conditions underlying the clinical arrhythmia.
Collapse
Affiliation(s)
- Amanda L Vega
- Department of Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
23
|
Chung JJ, Okamoto Y, Coblitz B, Li M, Qiu Y, Shikano S. PI3K/Akt signalling-mediated protein surface expression sensed by 14-3-3 interacting motif. FEBS J 2009; 276:5547-58. [PMID: 19691494 DOI: 10.1111/j.1742-4658.2009.07241.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The regulation of protein expression on the cell surface membrane is an important component of the cellular response to extracellular signalling. The translation of extracellular signalling into specific protein localization often involves the post-translational modification of cargo proteins. Using a genetic screen of random peptides, we have previously identified a group of C-terminal sequences, represented by RGRSWTY-COOH (termed'SWTY'), which are capable of overriding an endoplasmic reticulum localization signal and directing membrane proteins to the cell surface via specific binding to 14-3-3 proteins. The identity of the kinase signalling pathways that drive phosphorylation and 14-3-3 binding of the SWTY sequence is not known. In this study, we report that the activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway by the over-expression of active kinases, stimulation with fetal bovine serum or growth factors can: (a) phosphorylate the SWTY sequence; (b) recruit 14-3-3 proteins to SWTY; and (c) promote surface expression of the chimeric potassium channel fused with the SWTY sequence. The expression of the dominant negative Akt inhibited the enhancement of surface expression by fetal bovine serum. In addition, the activation of PI3K significantly enhanced the 14-3-3 association and cell surface expression of GPR15, a G protein-coupled receptor which carries an endogenous SWTY-like, C-terminal, 14-3-3 binding sequence and is known to serve as a HIV co-receptor. Given the wealth and specificity of both kinase activity and 14-3-3 binding sequences, our results suggest that the C-terminal SWTYlike motif may serve as a sensor that can selectively induce the cell surface expression of membrane proteins in response to different extracellular signals.
Collapse
Affiliation(s)
- Jean-Ju Chung
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
24
|
Mato S, Alberdi E, Ledent C, Watanabe M, Matute C. CB1cannabinoid receptor-dependent and -independent inhibition of depolarization-induced calcium influx in oligodendrocytes. Glia 2009; 57:295-306. [DOI: 10.1002/glia.20757] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Mass spectrometric analysis reveals a functionally important PKA phosphorylation site in a Kir3 channel subunit. Pflugers Arch 2009; 458:303-14. [PMID: 19151997 DOI: 10.1007/s00424-008-0628-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Accepted: 12/20/2008] [Indexed: 01/18/2023]
Abstract
Phosphorylation of the Kir3 channel by cAMP-dependent protein kinase (PKA) potentiates activity and strengthens channel-PIP(2) interactions, whereas phosphorylation by protein kinase C (PKC) exerts the opposite effects (Keselman et al., Channels 1:113-123, 2007; Lopes et al., Channels 1:124-134, 2007). Unequivocal identification of phosphorylated residues in ion channel proteins has been difficult, but recent advances in mass spectrometry techniques have allowed precise identification of phosphorylation sites (Park et al., Science 313:976-979, 2006). In this study, we utilized mass spectrometry to identify phosphorylation sites within the Kir3.1 channel subunit. We focused on the Kir3.1 C-terminal cytosolic domain that has been reported to be regulated by several modulators. In vitro phosphorylation by PKA exhibited a convincing signal upon treatment with a phosphoprotein stain. The phosphorylated C terminus was subjected to mass spectrometric analysis using matrix-assisted lased desorption/ionization-time of flight mass spectroscopy (MS). Peptides whose mass underwent a shift corresponding to addition of a phosphate group were then subjected to tandem MS (MS/MS) in order to confirm the modification and determine its precise location. Using this approach, we identified S385 as an in vitro phosphorylation site. Mutation of this residue to alanine resulted in a reduced sensitivity of Kir3.1* currents to H89 and Forskolin, confirming an in vivo role for this novel site of the Kir3.1 channel subunit in its regulation by PKA.
Collapse
|
26
|
Hinard V, Belin D, Konig S, Bader CR, Bernheim L. Initiation of human myoblast differentiation via dephosphorylation of Kir2.1 K+ channels at tyrosine 242. Development 2008; 135:859-67. [PMID: 18216177 DOI: 10.1242/dev.011387] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myoblast differentiation is essential to skeletal muscle formation and repair. The earliest detectable event leading to human myoblast differentiation is an upregulation of Kir2.1 channel activity, which causes a negative shift (hyperpolarization) of the resting potential of myoblasts. After exploring various mechanisms, we found that this upregulation of Kir2.1 was due to dephosphorylation of the channel itself. Application of genistein, a tyrosine kinase inhibitor, increased Kir2.1 activity and triggered the differentiation process, whereas application of bpV(Phen), a tyrosine phosphatase inhibitor, had the opposite effects. We could show that increased Kir2.1 activity requires dephosphorylation of tyrosine 242; replacing this tyrosine in Kir2.1 by a phenylalanine abolished inhibition by bpV(Phen). Finally, we found that the level of tyrosine phosphorylation in endogenous Kir2.1 channels is considerably reduced during differentiation when compared with proliferation. We propose that Kir2.1 channels are already present at the membrane of proliferating, undifferentiated human myoblasts but in a silent state, and that Kir2.1 tyrosine 242 dephosphorylation triggers differentiation.
Collapse
Affiliation(s)
- Valérie Hinard
- Département de Neurosciences Fondamentales, University of Geneva, Centre Médical Universitaire, Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Zitron E, Günth M, Scherer D, Kiesecker C, Kulzer M, Bloehs R, Scholz EP, Thomas D, Weidenhammer C, Kathöfer S, Bauer A, Katus HA, Karle CA. Kir2.x inward rectifier potassium channels are differentially regulated by adrenergic α1A receptors. J Mol Cell Cardiol 2008; 44:84-94. [DOI: 10.1016/j.yjmcc.2007.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 09/21/2007] [Accepted: 10/01/2007] [Indexed: 11/30/2022]
|
28
|
Rojas A, Cui N, Su J, Yang L, Muhumuza JP, Jiang C. Protein kinase C dependent inhibition of the heteromeric Kir4.1-Kir5.1 channel. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:2030-42. [PMID: 17585871 PMCID: PMC2228331 DOI: 10.1016/j.bbamem.2007.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 03/22/2007] [Accepted: 04/04/2007] [Indexed: 11/13/2022]
Abstract
Heteromultimerization of Kir4.1 and Kir5.1 leads to a channel with distinct functional properties. The heteromeric Kir4.1-Kir5.1 channel is expressed in the eye, kidney and brainstem and has CO(2)/pH sensitivity in the physiological range, suggesting a candidate molecule for the regulation of K(+) homeostasis and central CO(2) chemoreception. It is known that K(+) transport in renal epithelium and brainstem CO(2) chemosensitivity are subject to modulation by hormones and neurotransmitters that activate distinct intracellular signaling pathways. If the Kir4.1-Kir5.1 channel is involved in pH-dependent regulation of cellular functions, it may also be regulated by some of the intracellular signaling systems. Therefore, we undertook studies to determine whether PKC modulates the heteromeric Kir4.1-Kir5.1 channel. The channel expressed using a Kir4.1-Kir5.1 tandem dimer construct was inhibited by the PKC activator PMA in a dose-dependent manner. The channel inhibition was produced via reduction of the P(open). The effect of PMA was abolished by specific PKC inhibitors. In contrast, exposure of oocytes to forskolin (a PKA activator) had no significant effect on Kir4.1-Kir5.1 currents. The channel inhibition appeared to be independent of PIP(2) depletion and PKC-dependent internalization. Several consensus sequences of potential PKC phosphorylation sites were identified in the Kir4.1 and Kir5.1 subunits by sequence scan. Although the C-terminal peptides of both Kir4.1 and Kir5.1 were phosphorylated in vitro, site-directed mutagenesis of individual residues failed to reveal the PKC phosphorylation sites suggesting that the channel may have multiple phosphorylation sites. Taken together, these results suggest that the Kir4.1-Kir5.1 but not the homomeric Kir4.1 channel is strongly inhibited by PKC activation.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Ningren Cui
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Junda Su
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Liang Yang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Jean-Pierre Muhumuza
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| | - Chun Jiang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue Atlanta, GA 30302-4010
| |
Collapse
|
29
|
Ferraro TN, Golden GT, Dahl JP, Smith GG, Schwebel CL, MacDonald R, Lohoff FW, Berrettini WH, Buono RJ. Analysis of a quantitative trait locus for seizure susceptibility in mice using bacterial artificial chromosome-mediated gene transfer. Epilepsia 2007; 48:1667-1677. [PMID: 17521350 DOI: 10.1111/j.1528-1167.2007.01126.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Previous quantitative trait loci (QTL) mapping studies from our laboratory identified a 6.6 Mb segment of distal chromosome 1 that contains a gene (or genes) having a strong influence on the difference in seizure susceptibility between C57BL/6 (B6) and DBA/2 (D2) mice. A gene transfer strategy involving a bacterial artificial chromosome (BAC) DNA construct that contains several candidate genes from the critical interval was used to test the hypothesis that a strain-specific variation in one (or more) of the genes is responsible for the QTL effect. METHODS Fertilized oocytes from a seizure-sensitive congenic strain (B6.D2-Mtv7a/Ty-27d) were injected with BAC DNA and three independent founder lines of BAC-transgenic mice were generated. Seizure susceptibility was quantified by measuring maximal electroshock seizure threshold (MEST) in transgenic mice and nontransgenic littermates. RESULTS Seizure testing documented significant MEST elevation in all three transgenic lines compared to littermate controls. Allele-specific RT-PCR analysis confirmed gene transcription from genome-integrated BAC DNA and copy-number-dependent phenotypic effects were observed. CONCLUSIONS Results of this study suggest that the gene(s) responsible for the major chromosome 1 seizure QTL is found on BAC RPCI23-157J4 and demonstrate the utility of in vivo gene transfer for studying quantitative trait genes in mice. Further characterization of this transgenic model will provide new insight into mechanisms of seizure susceptibility.
Collapse
Affiliation(s)
- Thomas N Ferraro
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Gregory T Golden
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - John P Dahl
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - George G Smith
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Candice L Schwebel
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Ross MacDonald
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Falk W Lohoff
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Wade H Berrettini
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Russell J Buono
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PennsylvaniaResearch Service, Veteran's Affairs Medical Center, Coatesville, PennsylvaniaDepartment of Neurology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| |
Collapse
|
30
|
Li J, Marionneau C, Zhang R, Shah V, Hell JW, Nerbonne JM, Anderson ME. Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents. Circ Res 2006; 99:1092-9. [PMID: 17038644 DOI: 10.1161/01.res.0000249369.71709.5c] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated by elevated intracellular Ca(2+) (Ca(2+)(i)), and mice with chronic myocardial CaMKII inhibition (Inh) resulting from transgenic expression of a CaMKII inhibitory peptide (AC3-I) unexpectedly showed action potential duration (APD) shortening. Inh mice exhibit increased L-type Ca(2+) current (I(Ca)), because of upregulation of protein kinase A (PKA) activity, and decreased CaMKII-dependent phosphorylation of phospholamban (PLN). We hypothesized that CaMKII is a molecular signal linking Ca(2+)(i) to repolarization. Whole cell voltage-clamp recordings revealed that the fast transient outward current (I(to,f)) and the inward rectifier current (I(K1)) were selectively upregulated in Inh, compared with wild-type (WT) and transgenic control, mice. Breeding Inh mice with mice lacking PLN returned I(to,f) and I(K1) to control levels and equalized the APD and QT intervals in Inh mice to control and WT levels. Dialysis of AC3-I into WT cells did not result in increased I(to,f) or I(K1), suggesting that enhanced cardiac repolarization in Inh mice is an adaptive response to chronic CaMKII inhibition rather than an acute effect of reduced CaMKII activity. Increasing PKA activity, by cell dialysis with cAMP, or inhibition of PKA did not affect I(K1) in WT cells. Dialysis of WT cells with cAMP also reduced I(to,f), suggesting that PKA upregulation does not increase repolarizing K(+) currents in Inh mice. These findings provide novel in vivo and cellular evidence that CaMKII links Ca(2+)(i) to cardiac repolarization and suggest that PLN may be a critical CaMKII target for feedback regulation of APD in ventricular myocytes.
Collapse
Affiliation(s)
- Jingdong Li
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Rossignol TM, Jones SVP. Regulation of a family of inwardly rectifying potassium channels (Kir2) by the m1 muscarinic receptor and the small GTPase Rho. Pflugers Arch 2005; 452:164-74. [PMID: 16328454 DOI: 10.1007/s00424-005-0014-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 10/18/2005] [Indexed: 11/26/2022]
Abstract
Inwardly rectifying potassium channels Kir2.1-Kir2.3 are important regulators of membrane potential and, thus, control cellular excitability. However, little is known about the regulation of these channels. Therefore, we studied the mechanisms mediating the regulation of Kir2.1-Kir2.3 by the G-protein-coupled m1 muscarinic receptor using the whole-cell patch-clamp technique and recombinant expression in the tsA201 mammalian cell line. Stimulation of the m1 muscarinic receptor inhibited all subtypes of inward rectifier tested, Kir2.1-Kir2.3. The inhibition of each channel subtype was reversible and was attenuated by the muscarinic receptor antagonist, atropine. The protein kinase C activator phorbol 12-myristate 13-acetate (PMA) mimicked the effects of m1 receptor activation by inhibiting Kir2.1 currents. However, PMA had no effect on Kir2.2 or Kir2.3. Inclusion of 200-microM guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS) in the patch pipette solution prevented the effects of m1 muscarinic receptor stimulation on all three of the channel subtypes tested, confirming the mediation of the responses by G-proteins. Cotransfection with the activated mutant of the small GTPase Rho reduced current density, while C3 exoenzyme, a selective inhibitor of Rho, attenuated the m1 muscarinic receptor-induced inhibition of Kir2.1-Kir2.3. Also, buffering the intracellular calcium concentration with a high concentration of EGTA abolished the m1 receptor-induced inhibition of Kir2.1-Kir2.3, implicating a role for calcium in these responses. These results indicate that all three of the Kir2 channels are similarly inhibited by m1 muscarinic receptor stimulation through calcium-dependent activation of the small GTPase Rho.
Collapse
Affiliation(s)
- Todd M Rossignol
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
32
|
Ugarte G, Delgado R, O'Day PM, Farjah F, Cid LP, Vergara C, Bacigalupo J. Putative ClC-2 Chloride Channel Mediates Inward Rectification in Drosophila Retinal Photoreceptors. J Membr Biol 2005; 207:151-60. [PMID: 16550486 DOI: 10.1007/s00232-005-0810-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 10/06/2005] [Indexed: 10/24/2022]
Abstract
We report that Drosophila retinal photoreceptors express inwardly rectifying chloride channels that seem to be orthologous to mammalian ClC-2 inward rectifier channels. We measured inwardly rectifying Cl(-) currents in photoreceptor plasma membranes: Hyperpolarization under whole-cell tight-seal voltage clamp induced inward Cl(-) currents; and hyperpolarization of voltage-clamped inside-out patches excised from plasma membrane induced Cl(-) currents that have a unitary channel conductance of approximately 3.7 pS. The channel was inhibited by 1 mM: Zn(2+) and by 1 mM: 9-anthracene, but was insensitive to DIDS. Its anion permeability sequence is Cl(-) = SCN(-)> Br(-)>> I(-), characteristic of ClC-2 channels. Exogenous polyunsaturated fatty acid, linolenic acid, enhanced or activated the inward rectifier Cl(-) currents in both whole-cell and excised patch-clamp recordings. Using RT-PCR, we found expression in Drosophila retina of a ClC-2 gene orthologous to mammalian ClC-2 channels. Antibodies to rat ClC-2 channels labeled Drosophila photoreceptor plasma membranes and synaptic regions. Our results provide evidence that the inward rectification in Drosophila retinal photoreceptors is mediated by ClC-2-like channels in the non-transducing (extra-rhabdomeral) plasma membrane, and that this inward rectification can be modulated by polyunsaturated fatty acid.
Collapse
Affiliation(s)
- G Ugarte
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
33
|
Lotrich FE, Pollock BG. Candidate genes for antidepressant response to selective serotonin reuptake inhibitors. Neuropsychiatr Dis Treat 2005; 1:17-35. [PMID: 18568127 PMCID: PMC2426818 DOI: 10.2147/nedt.1.1.17.52301] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) can safely and successfully treat major depression, although a substantial number of patients benefit only partially or not at all from treatment. Genetic polymorphisms may play a major role in determining the response to SSRI treatment. Nonetheless, it is likely that efficacy is determined by multiple genes, with individual genetic polymorphisms having a limited effect size. Initial studies have identified the promoter polymorphism in the gene coding for the serotonin reuptake transporter as moderating efficacy for several SSRIs. The goal of this review is to suggest additional plausible polymorphisms that may be involved in antidepressant efficacy. These include genes affecting intracellular transductional cascades; neuronal growth factors; stress-related hormones, such as corticotropin-releasing hormone and glucocorticoid receptors; ion channels and synaptic efficacy; and adaptations of monoaminergic pathways. Association analyses to examine these candidate genes may facilitate identification of patients for targeted alternative therapies. Determining which genes are involved may also assist in identifying future, novel treatments.
Collapse
Affiliation(s)
- Francis E Lotrich
- University of Pittsburgh Medical Center, Western Psychiatric Institute and Clinic, Department of Psychiatry Pittsburgh, PA, USA.
| | | |
Collapse
|
34
|
|
35
|
Romanenko VG, Fang Y, Byfield F, Travis AJ, Vandenberg CA, Rothblat GH, Levitan I. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J 2004; 87:3850-61. [PMID: 15465867 PMCID: PMC1304896 DOI: 10.1529/biophysj.104.043273] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigates how changes in the level of cellular cholesterol affect inwardly rectifying K+ channels belonging to a family of strong rectifiers (Kir2). In an earlier study we showed that an increase in cellular cholesterol suppresses endogenous K+ current in vascular endothelial cells, presumably due to effects on underlying Kir2.1 channels. Here we show that, indeed, cholesterol increase strongly suppressed whole-cell Kir2.1 current when the channels were expressed in a null cell line. However, cholesterol level had no effect on the unitary conductance and only little effect on the open probability of the channels. Moreover, no cholesterol effect was observed either on the total level of Kir2.1 protein or on its surface expression. We suggest, therefore, that cholesterol modulates not the total number of Kir2.1 channels in the plasma membrane but rather the transition of the channels between active and silent states. Comparing the effects of cholesterol on members of the Kir2.x family shows that Kir2.1 and Kir2.2 have similar high sensitivity to cholesterol, Kir2.3 is much less sensitive, and Kir2.4 has an intermediate sensitivity. Finally, we show that Kir2.x channels partition virtually exclusively into Triton-insoluble membrane fractions indicating that the channels are targeted into cholesterol-rich lipid rafts.
Collapse
Affiliation(s)
- Victor G Romanenko
- Institute for Medicine and Engineering, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Dong Y, Cooper D, Nasif F, Hu XT, White FJ. Dopamine modulates inwardly rectifying potassium currents in medial prefrontal cortex pyramidal neurons. J Neurosci 2004; 24:3077-85. [PMID: 15044547 PMCID: PMC6729848 DOI: 10.1523/jneurosci.4715-03.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine (DA) modulation of excitability in medial prefrontal cortex (mPFC) pyramidal neurons has attracted considerable attention because of the involvement of mPFC DA in several neuronal disorders. Here, we focused on DA modulation of inwardly rectifying K(+) current (IRKC) in pyramidal neurons acutely dissociated from rat mPFC. A Cs(+)-sensitive whole-cell IRKC was elicited by hyperpolarizing voltage steps from a holding potential of -50 mV. DA (20 microm) reduced IRKC amplitude, as did selective stimulation of DA D(1) or D(2) class receptors (D(1)Rs and D(2)Rs). D(1)Rs activate, whereas D(2)Rs inhibit, the adenylyl cyclase-cAMP-protein kinase A (PKA) signaling pathway. Suppression of IRKC by D(2)R stimulation was attributable to decreased PKA activity because similar inhibition was observed with PKA inhibitors, whereas enhancing PKA activity increased IRKC. This suggests that the DA D(1)R suppression of IRKC occurred through a PKA phosphorylation-independent process. Using outside-out patches of mPFC pyramidal neurons, which preclude involvement of cytosolic signaling molecules, we observed a Cs(+)-sensitive macroscopic IRKC that was suppressed by the membrane-permeable cyclic nucleotide Sp-cAMP but was unaffected by non-nucleotide modulators of PKA, suggesting direct interactions of the cyclic nucleotides with IRK channels. Our results indicate that DA suppresses IRKC through two mechanisms: D(1)R activation of cAMP and direct interactions of the nucleotide with IRK channels and D(2)R-mediated dephosphorylation of IRK channels. The DA modulation of IRKC indicates that ambient DA would tend to increase responsiveness to excitatory inputs when PFC neurons are near the resting membrane potential and may provide a mechanism by which DA impacts higher cognitive function.
Collapse
Affiliation(s)
- Yan Dong
- Departments of Cellular and Molecular Pharmacology and Neuroscience, Finch University of Health Sciences/The Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | | | | | | | |
Collapse
|
37
|
Schubert R, Krien U, Wulfsen I, Schiemann D, Lehmann G, Ulfig N, Veh RW, Schwarz JR, Gago H. Nitric oxide donor sodium nitroprusside dilates rat small arteries by activation of inward rectifier potassium channels. Hypertension 2004; 43:891-6. [PMID: 14993195 DOI: 10.1161/01.hyp.0000121882.42731.6b] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of vascular smooth muscle inward rectifier K+ (K(IR)) channels in the mechanisms underlying vasodilation is still unclear. The hypothesis that K(IR) channels are involved in sodium nitroprusside (SNP)-induced dilation of rat-tail small arteries was tested. SNP relaxed tail small arteries with an EC50 of 2.6x10(-8) mol/L. Endothelium removal did not attenuate this effect. Vessel pretreatment with hydroxocobalamin, a nitric oxide (NO) scavenger, but not with rhodanese and sodium thiosulfate, inactivators of cyanide (CN), abolished the SNP effect. Vessel pretreatment with 10(-5) mol/L Ba2+, a specific blocker of K(IR) channels at micromolar concentrations, reduced the SNP effect. Low concentrations of K+ dilated the vessels; this effect was attenuated largely after pretreatment with 3x10(-5) mol/L Ba2+. In freshly isolated smooth muscle cells, a barium-sensitive current was observed at potentials negative to the potassium equilibrium potential. Application of 10(-4) mol/L SNP increased the barium-sensitive current 1.79+/-0.23-fold at -100 mV and hyperpolarized the membrane potential by 8.6+/-0.5 mV. In tissue from freshly dissected vessels, transcripts for K(IR) 2.1 and 2.2, but not for K(IR) 2.3 and 2.4, were found. However, only K(IR) 2.1 antibodies immunostained the tunica media of the vessel. These data suggest that vascular smooth muscle K(IR) 2.1 channels are involved in the SNP-induced dilation of rat-tail small arteries.
Collapse
Affiliation(s)
- Rudolf Schubert
- Institute of Physiology, University Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Malinowska DH, Sherry AM, Tewari KP, Cuppoletti J. Gastric parietal cell secretory membrane contains PKA- and acid-activated Kir2.1 K+ channels. Am J Physiol Cell Physiol 2003; 286:C495-506. [PMID: 14602583 DOI: 10.1152/ajpcell.00386.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our objective was to identify and localize a K+ channel involved in gastric HCl secretion at the parietal cell secretory membrane and to characterize and compare the functional properties of native and recombinant gastric K+ channels. RT-PCR showed that mRNA for Kir2.1 was abundant in rabbit gastric mucosa with lesser amounts of Kir4.1 and Kir7.1, relative to beta-actin. Kir2.1 mRNA was localized to parietal cells of rabbit gastric glands by in situ RT-PCR. Resting and stimulated gastric vesicles contained Kir2.1 by Western blot analysis at approximately 50 kDa as observed with in vitro translation. Immunoconfocal microscopy showed that Kir2.1 was present in parietal cells, where it colocalized with H+ -K+ -ATPase and ClC-2 Cl- channels. Function of native K+ channels in rabbit resting and stimulated gastric mucosal vesicles was studied by reconstitution into planar lipid bilayers. Native gastric K+ channels exhibited a linear current-voltage relationship and a single-channel slope conductance of approximately 11 pS in 400 mM K2SO4. Channel open probability (Po) in stimulated vesicles was high, and that of resting vesicles was low. Reduction of extracellular pH plus PKA treatment increased resting channel Po to approximately 0.5 as measured in stimulated vesicles. Full-length rabbit Kir2.1 was cloned. When stably expressed in Chinese hamster ovary (CHO) cells, it was activated by reduced extracellular pH and forskolin/IBMX with no effects observed in nontransfected CHO cells. Cation selectivity was K+ = Rb+ >> Na+ = Cs+ = Li+ = NMDG+. These findings strongly suggest that the Kir2.1 K+ channel may be involved in regulated gastric acid secretion at the parietal cell secretory membrane.
Collapse
Affiliation(s)
- Danuta H Malinowska
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0576, USA.
| | | | | | | |
Collapse
|
39
|
Jones SVP. Role of the small GTPase Rho in modulation of the inwardly rectifying potassium channel Kir2.1. Mol Pharmacol 2003; 64:987-93. [PMID: 14500755 DOI: 10.1124/mol.64.4.987] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inwardly rectifying potassium channel Kir2.1 is inhibited by a variety of G-protein-coupled receptors (GPCRs). However, the mechanisms underlying the inhibition have not been fully elucidated. In this study the role of the small GTPase, Rho, in mediating this inhibition was determined. Stimulation of the m1 muscarinic receptor inhibited Kir2.1, when both receptor and channel were coexpressed in tsA201 cells. The inhibition of Kir2.1 by carbachol was reversible and atropine-sensitive. Cotransfection with a dominant-negative mutant of the small GTPase Rho abolished the inhibition of Kir2.1 with current amplitudes remaining at control levels in the presence of carbachol. Conversely, cotransfection with the constitutively activated mutant of Rho resulted in a reduction in basal Kir2.1 current amplitudes, suggesting that Rho inhibits Kir2.1. To further confirm the involvement of Rho in the signal transduction pathway, cotransfection with C3 transferase (EFC3), a selective inhibitor of Rho, abolished the reduction in Kir2.1 currents noted upon application of carbachol under control conditions. Preincubation with the phosphatidylinositol 3-kinase inhibitor wortmannin or the Rho kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2 HCl (Y-27632) had no effect on agonist-induced inhibition of Kir2.1, precluding these kinases as downstream effectors of Rho in mediation of the signal. In addition, 2'-amino-3'-methoxyflavone (PD98059), an inhibitor of mitogen-activated protein (MAP) kinase kinase (MEK), had no effect on the m1 receptor-induced inhibition of Kir2.1, suggesting that MAP kinases are not involved in the signaling pathway. In conclusion, these data indicate that the small GTPase, Rho, transduces the m1 muscarinic receptor-induced inhibition of Kir2.1 via an unidentified mechanism.
Collapse
Affiliation(s)
- S V Penelope Jones
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA.
| |
Collapse
|
40
|
Bendahhou S, Donaldson MR, Plaster NM, Tristani-Firouzi M, Fu YH, Ptácek LJ. Defective potassium channel Kir2.1 trafficking underlies Andersen-Tawil syndrome. J Biol Chem 2003; 278:51779-85. [PMID: 14522976 DOI: 10.1074/jbc.m310278200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Andersen-Tawil syndrome is a skeletal and cardiac muscle disease with developmental features caused by mutations in the inward rectifier K+ channel gene KCNJ2. Patients harboring these mutations exhibit extremely variable expressivities. To explore whether these mutations can be correlated with a specific patient phenotype, we expressed both wild-type (WT) and mutant genes cloned into a bi-cistronic vector. Functional expression in human embryonic kidney 293 cells showed that none of the mutant channels express current when present alone. When co-expressed with WT channels, only construct V302M-WT yields inward current. Confocal microscopy fluorescence revealed three patterns of channel expression in the cell: 1) mutations D71V, N216H, R218Q, and pore mutations co-assemble and co-localize to the membrane with the WT and exert a dominant-negative effect on the WT channels; 2) mutation V302M leads to channels that lose their ability to co-assemble with WT and traffic to the cell surface; 3) deletions Delta 95-98 and Delta 314-315 lead to channels that do not traffic to the membrane but retain their ability to co-assemble with WT channels. These data show that the Andersen-Tawil syndrome phenotype may occur through a dominant-negative effect as well as through haplo-insufficiency and reveal amino acids critical in trafficking and conductance of the inward rectifier K+ channels.
Collapse
Affiliation(s)
- Saïd Bendahhou
- Department of Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Alvarez LJ, Turner HC, Candia OA, Polikoff LA. Beta-adrenergic inhibition of rabbit lens anterior-surface K(+) conductance. Curr Eye Res 2003; 26:95-105. [PMID: 12815528 DOI: 10.1076/ceyr.26.2.95.14512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To characterize the effects of cAMP-elevating stimuli on the rabbit translens electrical parameters and examine the distribution of beta adrenoceptors about the epithelial surface. METHODS The electrophysiological experiments encompassed the isolation of lenses within a vertically arranged, Ussing-type chamber under short-circuit conditions, an approach that allowed for measurements of short-circuit current (I(sc)) across, in separate experiments, discrete surface regions. Epithelial beta receptors were localized by immunofluorescent labeling of lens cryosections primarily exposed to a polyclonal antibody against human beta( 2)-adrenoceptors. Reverse transcription - polymerase chain reaction (RT-PCR) was used to generate cDNA (using specific primers based upon the sequence of the previously cloned human beta(2) receptor) from rabbit lens RNA extracted from mechanically sequestered anterior and equatorial epithelial cells. RESULTS Asymmetrical I(sc) reductions with increases in translens resistance were elicited with epinephrine, isoproterenol, terbutaline, forskolin, and a lipid-permeable cAMP analogue. Electrical changes were recorded across the anterior aspect and not observed when the above compounds were applied to solutions bathing the equatorial and posterior surfaces. Immunohistochemical observations indicated the expression of beta receptors from the anterior epithelium to the equatorial region. RT-PCR yielded cDNA of expected basepair length for the apparent fragment of the beta(2)-adrenoceptor, which exhibited a sequence homology 90% identical with its human equivalent in both the anterior and equatorial epithelia. CONCLUSIONS The cAMP-sensitive conductance(s) appear limited to the anterior epithelium and undetectable equatorially. The asymmetrical I(sc) responses do not seem to arise from a spatial heterogeneity in epithelial receptor expression.
Collapse
Affiliation(s)
- Lawrence J Alvarez
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
42
|
Xu R, Zhao Y, Chen C. Growth hormone-releasing peptide-2 reduces inward rectifying K+ currents via a PKA-cAMP-mediated signalling pathway in ovine somatotropes. J Physiol 2002; 545:421-33. [PMID: 12456822 PMCID: PMC2290704 DOI: 10.1113/jphysiol.2002.030916] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inward-rectifying potassium (Kir) channels are essential for maintaining the resting membrane potential near the K(+) equilibrium and they are responsible for hyperpolarisation-induced K(+) influx. We characterised the Kir current in primary cultured ovine somatotropes and examined the effect of growth hormone-releasing peptide-2 (GHRP-2) on this current and its related intracellular signalling pathways. The Kir current was, in most cases, isolated using nystatin-perforated patch-clamp techniques. In bath solution containing 5 mM K(+), the Kir current was composed of both transient (fast activated) and delayed (slowly activated) components. An increase in the external K(+) concentration from 5 to 25 mM induced an augmentation of approximately 4-fold in the delayed part of the Kir current and both BaCl(2) and CsCl dose-dependently inhibited this current, confirming the presence of the Kir current in ovine somatotropes. Moreover, this specific effect of high K(+) on the Kir current was only observed in the cells that showed positive staining with anti-growth hormone (GH) antibodies, or in GC cells that belong to a rat somatotrope cell line. Application of GHRP-2 (100 nM) reversibly and significantly reduced the Kir current in bath solutions with 5 or 25 mM K(+) in ovine somatotropes. In addition, we found that the reduction in the Kir current mediated by GHRP-2 was totally abolished by the pretreatments with H89 (1 microM) or Rp-cAMP (100 microM) or by intracellular dialysis of a specific protein kinase A (PKA) inhibitory peptide PKI (10 microM). The specific PKC blocker chelerythrine (1 microM) or inhibitory peptide PKC(19-36) (10 microM) did not show any effects on the GHRP-2-induced decrease in the Kir current. These results suggest that the inhibition of Kir current through PKA-cAMP pathways may play an integral role in GHRP-2-induced depolarisation and GH release in ovine somatotropes.
Collapse
Affiliation(s)
- Ruwei Xu
- Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | | |
Collapse
|
43
|
Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 2002; 145:47-179. [PMID: 12224528 DOI: 10.1007/bfb0116431] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter R Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
44
|
Hoger JH, Ilyin VI, Forsyth S, Hoger A. Shear stress regulates the endothelial Kir2.1 ion channel. Proc Natl Acad Sci U S A 2002; 99:7780-5. [PMID: 12032360 PMCID: PMC124350 DOI: 10.1073/pnas.102184999] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2001] [Accepted: 03/29/2002] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells (ECs) line the mammalian vascular system and respond to the hemodynamic stimulus of fluid shear stress, the frictional force produced by blood flow. When ECs are exposed to shear stress, one of the fastest responses is an increase of K(+) conductance, which suggests that ion channels are involved in the early shear stress response. Here we show that an applied shear stress induces a K(+) ion current in cells expressing the endothelial Kir2.1 channel. This ion current shares the properties of the shear-induced current found in ECs. In addition, the shear current induction can be specifically prevented by tyrosine kinase inhibition. Our findings identify the Kir2.1 channel as an early component of the endothelial shear response mechanism.
Collapse
Affiliation(s)
- Jeff H Hoger
- Hitachi Chemical Research Center, Irvine, CA 92612, USA.
| | | | | | | |
Collapse
|
45
|
Tanemoto M, Fujita A, Higashi K, Kurachi Y. PSD-95 mediates formation of a functional homomeric Kir5.1 channel in the brain. Neuron 2002; 34:387-97. [PMID: 11988170 DOI: 10.1016/s0896-6273(02)00675-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Homomeric assembly of Kir5.1, an inward-rectifying K+ channel subunit, is believed to be nonfunctional, although the subunit exists abundantly in the brain. We show that HEK293T cells cotransfected with Kir5.1 and PSD-95 exhibit a Ba(2+)-sensitive inward-rectifying K+ current. Kir5.1 coexpressed with PSD-95 located on the plasma membrane in a clustered manner, while the Kir5.1 subunit expressed alone distributed mostly in cytoplasm, probably due to rapid internalization. The binding of Kir5.1 with PSD-95 was prevented by protein kinase A (PKA)-mediated phosphorylation of its carboxyl terminus. The currents flowing through Kir5.1/PSD-95 were suppressed promptly and reversibly by PKA activation. Because the Kir5.1/PSD-95 complex was detected in the brain, this functional brain K+ channel is potentially a novel physiological target of PKA-mediated signaling.
Collapse
Affiliation(s)
- Masayuki Tanemoto
- Department of Pharmacology II, Graduate School of Medicine A7, Osaka University, Yamada-oka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
46
|
Giovannardi S, Forlani G, Balestrini M, Bossi E, Tonini R, Sturani E, Peres A, Zippel R. Modulation of the inward rectifier potassium channel IRK1 by the Ras signaling pathway. J Biol Chem 2002; 277:12158-63. [PMID: 11809752 DOI: 10.1074/jbc.m110466200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we investigated the role of Ras and the mitogen-activated protein kinase (MAPK) pathway in the modulation of the inward rectifier potassium channel IRK1. We show that although expression of IRK1 in HEK 293 cells leads to the appearance of a potassium current with strong inward rectifying properties, coexpression of the constitutively active form of Ras (Ras-L61) results in a significant reduction of the mean current density without altering the biophysical properties of the channel. The inhibitory effect of Ras-L61 is not due to a decreased expression of IRK1 since Northern analysis indicates that IRK1 mRNA level is not affected by Ras-L61 co-expression. Moreover, the inhibition can be relieved by treatment with the mitogen-activated protein kinase/ERK kinase (MEK) inhibitor PD98059. Confocal microscopy analysis of cells transfected with the fusion construct green fluorescent protein-IRK1 shows that the channel is mainly localized at the plasma membrane. Coexpression of Ras-L61 delocalizes fluorescence to the cytoplasm, whereas treatment with PD98059 partially restores the membrane localization. In conclusion, our data indicate that the Ras-MAPK pathway modulates IRK1 current by affecting the subcellular localization of the channel. This suggests a role for Ras signaling in regulating the intracellular trafficking of this channel.
Collapse
Affiliation(s)
- Stefano Giovannardi
- Department of Structural and Functional Biology, Università dell'Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, Grewal JS, Garnovskaya MN. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 2001; 92:179-212. [PMID: 11916537 DOI: 10.1016/s0163-7258(01)00169-3] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) receptors have been divided into 7 subfamilies by convention, 6 of which include 13 different genes for G-protein-coupled receptors. Those subfamilies have been characterized by overlapping pharmacological properties, amino acid sequences, gene organization, and second messenger coupling pathways. Post-genomic modifications, such as alternative mRNA splicing or mRNA editing, creates at least 20 more G-protein-coupled 5-HT receptors, such that there are at least 30 distinct 5-HT receptors that signal through G-proteins. This review will focus on what is known about the signaling linkages of the G-protein-linked 5-HT receptors, and will highlight some fascinating new insights into 5-HT receptor signaling.
Collapse
Affiliation(s)
- J R Raymond
- The Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Okamoto F, Okabe K, Kajiya H. Genistein, a soybean isoflavone, inhibits inward rectifier K(+) channels in rat osteoclasts. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:501-9. [PMID: 11564287 DOI: 10.2170/jjphysiol.51.501] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genistein, a soybean-derived isoflavone with an inhibitory effect on protein tyrosine kinases (PTKs), has been shown to suppress osteoclastic bone resorption. To clarify the mechanisms underlying this action, we investigated the effects of genistein on inward rectifier K(+) current (I(Kir)) in rat osteoclasts by using the whole-cell patch-clamp technique. Extracellularly applied genistein inhibited I(Kir) in a concentration-dependent manner. Physiologically attainable concentrations of genistein inhibited I(Kir). IC(50) values obtained 5 and 10 min after the application of genistein were 54 and 27 microM, respectively. The removal of genistein partially restored the current. Daidzein, an isoflavone without PTK-inhibiting activity, also showed a weak inhibitory effect on I(Kir), but genistin had no effect. Other PTK inhibitors, tyrphostin A25, tyrphostin B42, and tyrphostin B46, inhibited I(Kir), whereas herbimycin A and lavendustin A were without effect. The inactive tyrphostin, A1, showed a similar inhibitory effect as tyrphostin A25. The tyrosine phosphatase inhibitor, orthovanadate, did not affect the inhibitory potency of genistein on I(Kir). The inhibitory action of genistein was unaffected by changing intracellular Ca(2+) concentration ([Ca(2+)]i) or by pretreatment of the cell with GDPbetaS, Rp-cAMPS, okadaic acid, or staurosporine. Therefore the inhibition of I(Kir) by genistein does not depend on PTK inhibition, involvement of changes in [Ca(2+)]i, or secondary interaction with protein kinase A or protein kinase C. Genistein-induced inhibition of I(Kir) would cause membrane depolarization, elevation of [Ca(2+)]i, and inhibition of osteoclastic bone resorption.
Collapse
Affiliation(s)
- F Okamoto
- Department of Oral Physiology, Fukuoka Dental College, Fukuoka, 814-0193, Japan.
| | | | | |
Collapse
|
49
|
Affiliation(s)
- J B Shabb
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037, USA.
| |
Collapse
|
50
|
Dart C, Leyland ML. Targeting of an A kinase-anchoring protein, AKAP79, to an inwardly rectifying potassium channel, Kir2.1. J Biol Chem 2001; 276:20499-505. [PMID: 11287423 DOI: 10.1074/jbc.m101425200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A (PKA) is targeted to discrete subcellular locations close to its intended substrates through interaction with A kinase-anchoring proteins (AKAPs). Ion channels represent a diverse and important group of kinase substrates, and it has been shown that membrane targeting of PKA through association with AKAPs facilitates PKA-mediated phosphorylation and regulation of several classes of ion channel. Here, we investigate the effect of AKAP79, a membrane-associated multivalent-anchoring protein, upon the function and modulation of the strong inwardly rectifying potassium channel, Kir2.1. Functionally, the presence of AKAP79 enhanced the response of Kir2.1 to elevated intracellular cAMP, suggesting a requirement for a pool of PKA anchored close to the channel. Antibodies directed against a hemagglutinin epitope tag on Kir2.1 coimmunoprecipitated AKAP79, indicating that the two proteins exist together in a complex within intact cells. In support of this, glutathione S-transferase fusion proteins of both the intracellular N and C domains of Kir2.1 isolated AKAP79 from cell lysates, while glutathione S-transferase alone failed to interact with AKAP79. Together, these findings suggest that AKAP79 associates directly with the Kir2.1 ion channel and may serve to anchor kinase enzymes in close proximity to key channel phosphorylation sites.
Collapse
Affiliation(s)
- C Dart
- Department of Cell Physiology & Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | |
Collapse
|