1
|
Adzavon YM, Culig Z, Sun Z. Interactions between androgen and IGF1 axes in prostate tumorigenesis. Nat Rev Urol 2025; 22:268-275. [PMID: 39375467 DOI: 10.1038/s41585-024-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/09/2024]
Abstract
Androgen signalling through the androgen receptor (AR) is essential for prostate tumorigenesis. However, androgen signalling pathways also interact with other growth factor-mediated signalling pathways to regulate the prostatic cell cycle, differentiation, apoptosis and proliferation in the initiation and progression of prostate cancer. Insulin-like growth factor 1 (IGF1) is one of the most prominent growth factors in prostate tumorigenesis. Clinical and experimental evidence has demonstrated that IGF1 signalling supports both androgen-dependent and androgen-independent prostate tumorigenesis, suggesting that improved understanding of the interactions between the IGF1 and androgen axes might aid the development of new therapeutic strategies. Available data have shown a dynamic role of androgen-AR signalling in the activation of IGF1-signalling pathways by augmenting transcription of the IGF1 receptor in prostatic basal epithelial cells and by increasing IGF1 secretion through the suppression of IGF-binding protein 3 expression in prostatic stromal cells. In turn, IGF1 stimulates Wnt-β-catenin signalling in prostatic basal progenitors to promote prostatic oncogenic transformation and prostate cancer development. These findings highlight the cooperative, autocrine and paracrine interactions that underlie the oncogenic effects of androgens and IGF1 and open up new opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Yao Mawulikplimi Adzavon
- Department of Cell Biology, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zijie Sun
- Department of Cell Biology, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Song H, Adu-Amankwaah J, Zhao Q, Yang D, Liu K, Bushi A, Zhao J, Yuan J, Tan R. Decoding long non‑coding RNAs: Friends and foes in cancer development (Review). Int J Oncol 2024; 64:61. [PMID: 38695241 PMCID: PMC11095623 DOI: 10.3892/ijo.2024.5649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer remains a formidable adversary, challenging medical advancements with its dismal prognosis, low cure rates and high mortality rates. Within this intricate landscape, long non‑coding RNAs (lncRNAs) emerge as pivotal players, orchestrating proliferation and migration of cancer cells. Harnessing the potential of lncRNAs as therapeutic targets and prognostic markers holds immense promise. The present comprehensive review delved into the molecular mechanisms underlying the involvement of lncRNAs in the onset and progression of the top five types of cancer. By meticulously examining lncRNAs across diverse types of cancer, it also uncovered their distinctive roles, highlighting their exclusive oncogenic effects or tumor suppressor properties. Notably, certain lncRNAs demonstrate diverse functions across different cancers, confounding the conventional understanding of their roles. Furthermore, the present study identified lncRNAs exhibiting aberrant expression patterns in numerous types of cancer, presenting them as potential indicators for cancer screening and diagnosis. Conversely, a subset of lncRNAs manifests tissue‑specific expression, hinting at their specialized nature and untapped significance in diagnosing and treating specific types of cancer. The present comprehensive review not only shed light on the intricate network of lncRNAs but also paved the way for further research and clinical applications. The unraveled molecular mechanisms offer a promising avenue for targeted therapeutics and personalized medicine, combating cancer proliferation, invasion and metastasis.
Collapse
Affiliation(s)
- Hequn Song
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Qizhong Zhao
- Department of Emergency, The First Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Dongqi Yang
- School of Life Science and Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Kuntao Liu
- School of Life Science and Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
- Department of Pathology, The First Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Jinxiang Yuan
- Lin He Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
3
|
Wissmiller K, Bilekova S, Franko A, Lutz SZ, Katsburg M, Gulde S, Pellegata NS, Stenzl A, Heni M, Berti L, Häring HU, Lickert H. Inceptor correlates with markers of prostate cancer progression and modulates insulin/IGF1 signaling and cancer cell migration. Mol Metab 2023; 71:101706. [PMID: 36931467 PMCID: PMC10074927 DOI: 10.1016/j.molmet.2023.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
OBJECTIVE The insulin/insulin-like growth factor 1 (IGF1) pathway is emerging as a crucial component of prostate cancer progression. Therefore, we investigated the role of the novel insulin/IGF1 signaling modulator inceptor in prostate cancer. METHODS We analyzed the expression of inceptor in human samples of benign prostate epithelium and prostate cancer. Further, we performed signaling and functional assays using prostate cancer cell lines. RESULTS We found that inceptor was expressed in human benign and malignant prostate tissue and its expression positively correlated with various genes of interest, including genes involved in androgen signaling. In vitro, total levels of inceptor were increased upon androgen deprivation and correlated with high levels of androgen receptor in the nucleus. Inceptor overexpression was associated with increased cell migration, altered IGF1R trafficking and higher IGF1R activation. CONCLUSIONS Our in vitro results showed that inceptor expression was associated with androgen status, increased migration, and IGF1R signaling. In human samples, inceptor expression was significantly correlated with markers of prostate cancer progression. Taken together, these data provide a basis for investigation of inceptor in the context of prostate cancer.
Collapse
Affiliation(s)
- Katharina Wissmiller
- Institute of Diabetes and Regeneration Research at the Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sara Bilekova
- Institute of Diabetes and Regeneration Research at the Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andras Franko
- German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany; Institute of Diabetes and Metabolic Disease at the Helmholtz Center Munich, Ottfried-Müller-Str. 10, 72076, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Ottfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Stefan Z Lutz
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Ottfried-Müller-Str. 10, 72076, Tübingen, Germany; Clinic for Geriatric and Orthopedic Rehabilitation Bad Sebastiansweiler, Hechinger Str. 26, 72116, Mössingen, Germany
| | - Miriam Katsburg
- Institute of Diabetes and Regeneration Research at the Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Sebastian Gulde
- Institute of Diabetes and Cancer at the Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Natalia S Pellegata
- Institute of Diabetes and Cancer at the Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany; Institute of Diabetes and Metabolic Disease at the Helmholtz Center Munich, Ottfried-Müller-Str. 10, 72076, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Ottfried-Müller-Str. 10, 72076, Tübingen, Germany; Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Lucia Berti
- German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany; Institute of Diabetes and Metabolic Disease at the Helmholtz Center Munich, Ottfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany; Institute of Diabetes and Metabolic Disease at the Helmholtz Center Munich, Ottfried-Müller-Str. 10, 72076, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Ottfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research at the Helmholtz Center Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
4
|
Targeting the IGF-1R in prostate and colorectal cancer: reasons behind trial failure and future directions. Ther Deliv 2022; 13:167-186. [PMID: 35029130 DOI: 10.4155/tde-2021-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IGF-1Rs enact a significant part in cancer growth and its progress. IGF-1R inhibitors were encouraged in the early trials, but the patients did not benefit due to the unavailability of predictive biomarkers and IGF-1R system complexity. However, the linkage between IGF-1R and cancer was reported three decades ago. This review will shed light on the IGF-1R system, targeting IGF-1R through monoclonal antibodies, reasons behind IGF-1R trial failure and future directions. This study presented that targeting IGF-1R through monoclonal antibodies is still effective in cancer treatment, and there is a need to look for future directions. Cancer patients may benefit from using mAbs that target existing and new cancer targets, evidenced by promising results. It is also essential that the academician, trial experts and pharmaceutical companies play their role in finding a treatment for this deadly disease.
Collapse
|
5
|
Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, Du H, Ren D, Dai Y, Peng X. m 6 A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med 2021; 11:e426. [PMID: 34185427 PMCID: PMC8181202 DOI: 10.1002/ctm2.426] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Bone metastasis is the leading cause of tumor-related death in prostate cancer (PCa) patients. Long noncoding RNAs (lncRNAs) have been well documented to be involved in the progression of multiple cancers. Nevertheless, the role of lncRNAs in PCa bone metastasis remains largely unclear. METHODS The expression of prostate cancer-associated transcripts was analyzed in published datasets and further verified in clinical samples and cell lines by RT-qPCR and in situ hybridization assays. Colony formation assay, MTT assay, cell cycle analysis, EdU assay, Transwell migration and invasion assays, wound healing assay, and in vivo experiments were carried out to investigate the function of prostate cancer-associated transcript 6 (PCAT6) in bone metastasis and tumor growth of PCa. Bioinformatic analysis, RNA pull-down, and RIP assays were conducted to identify the proteins binding to PCAT6 and the potential targets of PCAT6. The therapeutic potential of targeting PCAT6 by antisense oligonucleotides (ASO) was further explored in vivo. RESULTS PCAT6 was upregulated in PCa tissues with bone metastasis and increased PCAT6 expression predicted poor prognosis in PCa patients. Functional experiments found that PCAT6 knockdown significantly inhibited PCa cell invasion, migration, and proliferation in vitro, as well as bone metastasis and tumor growth in vivo. Mechanistically, METTL3-mediated m6 A modification contributed to PCAT6 upregulation in an IGF2BP2-dependent manner. Furthermore, PCAT6 upregulated IGF1R expression by enhancing IGF1R mRNA stability through the PCAT6/IGF2BP2/IGF1R RNA-protein three-dimensional complex. Importantly, PCAT6 inhibition by ASO in vivo showed therapeutic potential against bone metastasis in PCa. Finally, the clinical correlation of METTL3, IGF2BP2, IGF1R, and PCAT6 was further demonstrated in PCa tissues and cells. CONCLUSIONS Our study uncovers a novel molecular mechanism by which the m6 A-induced PCAT6/IGF2BP2/IGF1R axis promotes PCa bone metastasis and tumor growth, suggesting that PCAT6 may serve as a promising prognostic marker and therapeutic target against bone-metastatic PCa.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/chemistry
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/secondary
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prognosis
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA Stability
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chuandong Lang
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Chi Yin
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Kaiyuan Lin
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Yue Li
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Qing Yang
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Zhengquan Wu
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Hong Du
- Department of Pathologythe First People's Hospital of Guangzhou CityGuangzhouChina
| | - Dong Ren
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Yuhu Dai
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Xinsheng Peng
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| |
Collapse
|
6
|
Lima T, Henrique R, Vitorino R, Fardilha M. Bioinformatic analysis of dysregulated proteins in prostate cancer patients reveals putative urinary biomarkers and key biological pathways. Med Oncol 2021; 38:9. [PMID: 33452612 DOI: 10.1007/s12032-021-01461-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancer types among men. The quantification of prostate-specific antigen used for PCa detection has revealed limited applicability. Thus, it is crucial to identify new minimally invasive biomarkers for PCa. It is believed that the integration of proteomics data from different studies is vital for identifying new biomarkers for PCa, but studies carried out in this regard have few converging results. Using a different approach, this study aimed to unveil molecular features consistently dysregulated in PCa and potential urinary biomarkers for PCa. The novelty of this analysis relies on the comparison of urinary and tissue proteomes from PCa patients and consequent exclusion of kidney and bladder cancer interference. The conducted bioinformatic analysis revealed molecular processes dysregulated in urine from PCa patients that mirror the alterations in prostate tumor tissue. To identify putative urinary biomarkers, proteins previously detected in kidney and bladder tissues were eliminated from the final list of potential urinary biomarkers for PCa. After a detailed analysis, MSMB, KLK3, ITIH4, ITIH2, HPX, GP2, APOA2 and AZU1 proteins stood out as candidate urinary biomarkers for PCa.
Collapse
Affiliation(s)
- Tânia Lima
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Bellamri M, Turesky RJ. Dietary Carcinogens and DNA Adducts in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:29-55. [PMID: 31900903 DOI: 10.1007/978-3-030-32656-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PC) is the most commonly diagnosed non-cutaneous cancer and the second leading cause of cancer-related to death in men. The major risk factors for PC are age, family history, and African American ethnicity. Epidemiological studies have reported large geographical variations in PC incidence and mortality, and thus lifestyle and dietary factors influence PC risk. High fat diet, dairy products, alcohol and red meats, are considered as risk factors for PC. This book chapter provides a comprehensive, literature-based review on dietary factors and their molecular mechanisms of prostate carcinogenesis. A large portion of our knowledge is based on epidemiological studies where dietary factors such as cancer promoting agents, including high-fat, dairy products, alcohol, and cancer-initiating genotoxicants formed in cooked meats have been evaluated for PC risk. However, the precise mechanisms in the etiology of PC development remain uncertain. Additional animal and human cell-based studies are required to further our understandings of risk factors involved in PC etiology. Specific biomarkers of chemical exposures and DNA damage in the prostate can provide evidence of cancer-causing agents in the prostate. Collectively, these studies can improve public health research, nutritional education and chemoprevention strategies.
Collapse
Affiliation(s)
- Medjda Bellamri
- Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Turesky
- Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, Minneapolis, MN, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Kawanami T, Tanaka T, Hamaguchi Y, Nomiyama T, Nawata H, Yanase T. Selective Androgen Receptor Modulator S42 Suppresses Prostate Cancer Cell Proliferation. Endocrinology 2018; 159:1774-1792. [PMID: 29444261 DOI: 10.1210/en.2018-00099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 02/06/2023]
Abstract
We previously identified the selective androgen receptor (AR) modulator S42, which does not stimulate prostate growth but has a beneficial effect on lipid metabolism. In the prostate cancer (PC) cell line LNCaP, S42 did not induce AR transactivation but antagonized 5α-dihydrotestosterone (DHT)‒induced AR activation. Next, we investigated whether S42 suppresses the growth of PC cell lines. Basal growth of LNCaP cells was significantly suppressed by treatment with S42 compared with vehicle, as determined by cell counting and 5-bromo-2'-deoxyuridine assays. The suppressive effect of S42 on cell growth was evident in the AR-positive PC cells LNCaP and 22Rv1 and was slightly observed even in the AR-negative PC-3 cells. However, S42 did not induce apoptosis as determined by the terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay. S42 had an even greater suppressive effect on DHT-dependent LNCaP cell proliferation than on basal proliferation (P < 0.05). DHT treatment increased the expression of phosphorylated extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK), a major signaling molecule for PC proliferation, and this was significantly inhibited by S42. DHT also significantly upregulated AR, insulinlike growth factor-1 receptor (IGF-1R), and insulin receptor (IR)-β protein levels, which were similarly reduced by S42 treatment. Importantly, S42 administration to mice attenuated the growth of LNCaP tumors and reduced tumor expression of the prostate-specific antigen, P504S, Ki67, and phosphorylated ERK-MAPK. These data suggest that S42 attenuates LNCaP tumor growth not by inducing apoptosis but by inhibiting the expression of proliferation-related receptors, including IGF-1R, IR, and AR, and by suppressing ERK-MAPK activation. S42 may thus be a feasible candidate for PC treatment.
Collapse
Affiliation(s)
- Takako Kawanami
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Bioregulatory Science of Life-related Diseases, Fukuoka University, Fukuoka, Japan
| | - Yuriko Hamaguchi
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takashi Nomiyama
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Bioregulatory Science of Life-related Diseases, Fukuoka University, Fukuoka, Japan
| | | | - Tosihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Bioregulatory Science of Life-related Diseases, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
9
|
Abstract
Research on cancer prevention and therapy must focus on the refractory disease, the fatal end-stage of cancer that develops in patients with organ-related solid tumors. Refractory cancers develop spontaneously in advanced-stage tumors or in relapsed cases after failed therapy. Because neither prevention nor therapy is currently feasible, refractory cancer is a major impediment to survival. There is a great need for an animal model of prostate cancer (PC), one that develops cancer from initial premalignant to the terminal refractory stages. We describe here a model of hormone-refractory prostate cancer (HRPC) that develops spontaneously through two stages by endogenous mechanisms in the Lobund-Wistar (LW) rat. The early premalignant, testosterone (T)-dependent stage is promoted by high levels of endogenous T, and up to age 12 months is reversible by T deprivation; without this intervention, the tumorigenic process progresses to the refractory stage, which is highly aggressive and does not respond to T deprivation or to a wide range of therapies. Initial refractory tumors are palpable at approximately 18 months of age. As they continue to grow, the tumors express characteristics seen in refractory cancers in humans (i.e., hypoxia, expression of hypoxia-inducible factors, and metastasis). Chemically induced HRPCs in LW rats manifest the same two developmental stages, but with shorter latency periods. A transplantable, metastasizing cell line (PAID) was derived from a germfree LW rat with advanced-stage cancer. Both spontaneous and chemically induced autochthonous HRPC model systems serve as outstanding models for studies on the prevention and therapy of refractory cancer.
Collapse
Affiliation(s)
- Morris Pollard
- Lobund Institute, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
10
|
Hussain M, Rathkopf D, Liu G, Armstrong A, Kelly WK, Ferrari A, Hainsworth J, Joshi A, Hozak RR, Yang L, Schwartz JD, Higano CS. A randomised non-comparative phase II trial of cixutumumab (IMC-A12) or ramucirumab (IMC-1121B) plus mitoxantrone and prednisone in men with metastatic docetaxel-pretreated castration-resistant prostate cancer. Eur J Cancer 2015; 51:1714-24. [PMID: 26082390 PMCID: PMC5024789 DOI: 10.1016/j.ejca.2015.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/27/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cixutumumab, a human monoclonal antibody (HuMAb), targets the insulin-like growth factor receptor. Ramucirumab is a recombinant HuMAb that binds to vascular endothelial growth factor receptor-2. A non-comparative randomised phase II study evaluated cixutumumab or ramucirumab plus mitoxantrone and prednisone (MP) in metastatic castration-resistant prostate cancer (mCRPC). PATIENTS AND METHODS Men with progressive mCRPC during or after docetaxel therapy received mitoxantrone 12 mg/m(2) on day 1 and prednisone 5mg twice daily and were randomised 1:1 to receive either cixutumumab or ramucirumab 6 mg/kg intravenously weekly in a 21-day cycle. Primary end-point was composite progression-free survival (cPFS). Secondary end-points included safety, response, radiographic progression-free survival (PFS) and overall survival (OS). Sample size was based on a 50% increase in median cPFS from 2.6 (MP) to 3.9 months (either combination). RESULTS 132 men were treated (66 per arm). Median cPFS was 4.1 months (95% confidence interval (CI), 2.2-5.6) for cixutumumab and 6.7 months (95% CI, 4.5-8.3) for ramucirumab. Median time to radiographic progression was 7.5 months for cixutumumab and 10.2 months for ramucirumab, with a median OS of 10.8 and 13.0 months, respectively. Fatigue was the most frequent adverse event (AE). Incidence of most non-haematologic grade 3-4 AEs was <10% on both arms. Grade 3 cardiac dysfunction occurred in 7.6% of patients on ramucirumab. CONCLUSION Combinations of cixutumumab or ramucirumab plus MP were feasible and associated with moderate toxicities in docetaxel-pretreated men with mCRPC. Of the two regimens, the ramucirumab regimen is worthy of further testing based on the observed cPFS relative to the historical control.
Collapse
Affiliation(s)
- Maha Hussain
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, United States.
| | - Dana Rathkopf
- Memorial Sloan-Kettering, New York, NY, United States
| | - Glenn Liu
- University of Wisconsin, Carbone Cancer Center, Madison, WI, United States
| | - Andrew Armstrong
- Duke Cancer Institute and Duke Prostate Center, Duke University, Durham, NC, United States
| | - Wm Kevin Kelly
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Anna Ferrari
- New York University Clinical Cancer Center, New York, NY, United States
| | - John Hainsworth
- Sarah Cannon Research Institute, Nashville, TN, United States
| | - Adarsh Joshi
- Eli Lilly and Company, Bridgewater, NJ, United States
| | | | - Ling Yang
- Eli Lilly and Company, Bridgewater, NJ, United States
| | | | - Celestia S Higano
- University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
11
|
Huang Z, Fang Z, Zhen H, Zhou L, Amin HM, Shi P. Inhibition of type I insulin-like growth factor receptor tyrosine kinase by picropodophyllin induces apoptosis and cell cycle arrest in T lymphoblastic leukemia/lymphoma. Leuk Lymphoma 2014; 55:1876-83. [PMID: 24206093 DOI: 10.3109/10428194.2013.862241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been recently shown that the type I insulin-like growth factor receptor (IGF-IR) contributes significantly to the survival of T lymphoblastic leukemia/lymphoma (T-LBL) cells, and it was therefore suggested that IGF-IR could represent a legitimate therapeutic target in this aggressive disease. Picropodophyllin (PPP) is a potent, selective inhibitor of IGF-IR that is currently used with notable success in clinical trials that include patients with aggressive types of epithelial tumors. In the present study, we tested the effects of PPP on Jurkat and Molt-3 cells; two prototype T-LBL cell lines. Our results demonstrate that PPP efficiently induced apoptotic cell death and cell cycle arrest of these two cells. These effects were attributable to alterations of downstream target proteins. By using proteomic analysis, seven different proteins were found to be affected by PPP treatment of Jurkat cells. These proteins are involved in various aspects of cellular metabolism, cytoskeleton organization and signal transduction pathways. The results suggest that PPP affects multiple signaling molecules and inhibits fundamental pathways that control cell growth and survival. Our study also provides novel evidence that PPP could be potentially utilized for the treatment of aggressive T-LBL.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai , China
| | | | | | | | | | | |
Collapse
|
12
|
Chan SC, Dehm SM. Constitutive activity of the androgen receptor. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:327-66. [PMID: 24931201 DOI: 10.1016/b978-0-12-417197-8.00011-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in the United States. The androgen receptor (AR) signaling axis is central to all stages of PCa pathophysiology and serves as the main target for endocrine-based therapy. The most advanced stage of the disease, castration-resistant prostate cancer (CRPC), is presently incurable and accounts for most PCa mortality. In this chapter, we highlight the mechanisms by which the AR signaling axis can bypass endocrine-targeted therapies and drive progression of CRPC. These mechanisms include alterations in growth factor, cytokine, and inflammatory signaling pathways, altered expression or activity of transcriptional coregulators, AR point mutations, and AR gene amplification leading to AR protein overexpression. Additionally, we will discuss the mechanisms underlying the synthesis of constitutively active AR splice variants (AR-Vs) lacking the COOH-terminal ligand-binding domain, as well as the role and regulation of AR-Vs in supporting therapeutic resistance in CRPC. Finally, we summarize the ongoing development of inhibitors targeting discrete AR functional domains as well as the status of new biomarkers for monitoring the AR signaling axis in patients.
Collapse
Affiliation(s)
- Siu Chiu Chan
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
13
|
NOTARANGELO ANGELANTONIO, TROMBETTA DOMENICO, D’ANGELO VINCENZO, PARRELLA PAOLA, PALUMBO ORAZIO, STORLAZZI CLELIATIZIANA, IMPERA LUCIANA, MUSCARELLA LUCIAANNA, LA TORRE ANTONELLA, AFFUSO ANDREA, FAZIO VITOMICHELE, CARELLA MASSIMO, ZELANTE LEOPOLDO. Establishment and genetic characterization of ANGM-CSS, a novel, immortal cell line derived from a human glioblastoma multiforme. Int J Oncol 2013; 44:717-24. [DOI: 10.3892/ijo.2013.2224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/15/2013] [Indexed: 11/06/2022] Open
|
14
|
Huang WJ, Bi LY, Li ZZ, Zhang X, Ye Y. Formononetin induces the mitochondrial apoptosis pathway in prostate cancer cells via downregulation of the IGF-1/IGF-1R signaling pathway. PHARMACEUTICAL BIOLOGY 2013; 52:466-470. [PMID: 24359236 DOI: 10.3109/13880209.2013.842600] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Abstract Context: Formononetin, an isoflavone, can inhibit the proliferation of cancer cells, including those of the prostate. However, its antitumor mechanism remains unclear. Aim: To investigate whether the insulin-like growth factor 1 (IGF-1)/insulin-like growth factor 1 receptor (IGF-1 R) signaling pathway mediates the formononetin antitumor effect on prostate cancer cells. Materials and methods: The viability of PC-3 cells was measured by MTT assay 48 h after formononetin treatment (25, 50 and 100 μM). Formononetin-induced cell apoptosis was measured by Hoechst 33258 staining and flow cytometry. Expression of Bax mRNA was detected by real-time PCR, and the expression levels of Bax and IGF-1 R proteins were detected by western blots. Results: At concentrations >12.5 μM, formononetin significantly inhibited the proliferation of human prostate cancer cells. Formononetin increased Bax mRNA and protein expression levels and decreased the expression levels of pIGF-1 R protein in a dose-dependent manner. Conclusion: High concentrations of formononetin-induced apoptosis in androgen-independent prostate cancer cells through inhibition of the IGF-1/IGF-1 R pathway.
Collapse
Affiliation(s)
- Wen-Jun Huang
- Department of Emergency, First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | | | | | | | | |
Collapse
|
15
|
Tsai HL, Yang IP, Huang CW, Ma CJ, Kuo CH, Lu CY, Juo SH, Wang JY. Clinical significance of microRNA-148a in patients with early relapse of stage II stage and III colorectal cancer after curative resection. Transl Res 2013; 162:258-268. [PMID: 23933284 DOI: 10.1016/j.trsl.2013.07.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/03/2013] [Accepted: 07/14/2013] [Indexed: 12/16/2022]
Abstract
Development of robust prognostic/predictive biomarkers in patients with colorectal cancer (CRC) is imperative for advancing treatment strategies for this disease. We aimed to determine whether expression status of microRNAs might be a simple and reliable biomarker to detect postoperative early relapse in patients with CRC after radical resection. We used microRNA arrays and identified that microRNA-148a (miRNA-148a) had substantially different expression levels in early and nonearly relapsed stage II and III CRC tissues. The validation study, which included 55 early relapsed patients and 55 nonearly relapsed patients, further confirmed overexpression of miRNA-148a in nonearly relapsed samples. Subsequently, we explored whether the serum level of miRNA-148a can be used to predict early CRC recurrence. The in vitro and in vivo effects of miRNA-148a were examined by cell proliferation, migration, and invasion, as well as cell cycles, and xenograft in null mice. Last, miRNA-148a was investigated as a potential biomarker for identifying early relapse. Cellular studies demonstrated that the overexpression of miRNA-148a inhibited colon cancer cell proliferation and migration but not invasion. The cell cycle studies also revealed that miRNA-148a caused an accumulation of the G2 population. Moreover, lower levels of miRNA-148a expression were associated with significantly shorter disease-free survival rates and poorer overall survival rates. This study showed that miRNA-148a can inhibit tumorigenesis and reduce the early recurrence of CRC. These findings suggest that miRNA-148a may have potential clinical applications for predicting the early relapse of patients with CRC after radical resection.
Collapse
Affiliation(s)
- Hsiang-Lin Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of General Surgery Medicine, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Program of Bachelor of Health Beauty, School of Medical and Health Sciences, Fooyin University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Agarwal N, Hussain M. Management of hormone-sensitive metastatic prostate cancer. Hematol Oncol Clin North Am 2013; 27:1221-41, viii. [PMID: 24188260 DOI: 10.1016/j.hoc.2013.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Targeting gonadal androgen synthesis (often in conjunction with blockade of androgen receptor) is the cornerstone of treatment of hormone-sensitive metastatic prostate cancer (HSPC). Despite the failure of androgen deprivation therapy, most tumors maintain some dependence on androgen or androgen receptor signaling for proliferation. This article reviews the current standard of care for metastatic HSPC, mechanisms of treatment resistance, novel drugs targeting the androgen signaling pathway, biomarkers predicting response to treatment and survival, future directions, and ongoing clinical trials in HSPC.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Suite 2123, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
17
|
Yang IP, Tsai HL, Huang CW, Huang MY, Hou MF, Juo SHH, Wang JY. The functional significance of microRNA-29c in patients with colorectal cancer: a potential circulating biomarker for predicting early relapse. PLoS One 2013; 8:e66842. [PMID: 23840538 PMCID: PMC3696003 DOI: 10.1371/journal.pone.0066842] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/10/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The recurrence of colorectal cancer (CRC) is frequent within the first year of curative resection surgery and may be unavoidable. microRNAs have been suggested to play roles in carcinogenesis and cancer recurrence. We recently identified microRNA-29c (miRNA-29c) as a predictor of early recurrence in CRC. In the present study, we further investigated the functions and serum level of miRNA-29c in relation to early recurrence of CRC. METHODS First we further confirmed overexpression of miRNA-29c in non-early relapse subjects. Gain-of-function in vitro studies were used to evaluate the effect of miRNA-29c on cell proliferation, migration, invasion, and cell cycle progression. The colon cancer cell line Caco2 and a stable clone overexpressing miRNA-29c were xenografted to evaluate the in vivo effect of miRNA-29c in null mice. Finally, circulating miRNA-29c was investigated as a potential biomarker for identifying early relapse. RESULTS miRNA-29c expression significantly decreased during early relapse compared to non-early relapse in UICC stage II and III CRC patients (P = 0.021). In vitro studies showed that overexpression of miRNA-29c inhibited cell proliferation and migration. The cell cycle studies also revealed that miRNA-29c caused an accumulation of the G1 and G2 population. In vivo, miRNA-29c suppressed tumor growth in null mice. The serum miRNA-29c increased significantly in early relapsed patients compared to non-early elapsed patients (P = 0.012). CONCLUSIONS miRNA-29c shows anti-tumorigenesis activity, and preoperative circulating miRNA-29c levels can be used to predict postoperative early relapse of CRC.
Collapse
Affiliation(s)
- I-Ping Yang
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Division of General Surgery Medicine, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Suh-Hang Hank Juo
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 2013; 32:5501-11. [PMID: 23752182 DOI: 10.1038/onc.2013.206] [Citation(s) in RCA: 609] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022]
Abstract
Prostate cancer is the second-leading cause of cancer-related mortality in men in Western societies. Androgen receptor (AR) signaling is a critical survival pathway for prostate cancer cells, and androgen-deprivation therapy (ADT) remains the principal treatment for patients with locally advanced and metastatic disease. Although a majority of patients initially respond to ADT, most will eventually develop castrate resistance, defined as disease progression despite serum testosterone levels of <20 ng/dl. The recent discovery that AR signaling persists during systemic castration via intratumoral production of androgens led to the development of novel anti-androgen therapies including abiraterone acetate and enzalutamide. Although these agents effectively palliate symptoms and prolong life, metastatic castration-resistant prostate cancer remains incurable. An increased understanding of the mechanisms that underlie the pathogenesis of castrate resistance is therefore needed to develop novel therapeutic approaches for this disease. The aim of this review is to summarize the current literature on the biology and treatment of castrate-resistant prostate cancer.
Collapse
|
19
|
DaSilva JO, Amorino GP, Casarez EV, Pemberton B, Parsons SJ. Neuroendocrine-derived peptides promote prostate cancer cell survival through activation of IGF-1R signaling. Prostate 2013; 73. [PMID: 23192379 PMCID: PMC4085781 DOI: 10.1002/pros.22624] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Neuroendocrine (NE) cells promote the progression of prostate cancer to a castration-resistant state through the production of paracrine growth factors. We have demonstrated this principle using in vitro and in vivo proliferative endpoints; however, the contributions of NE-derived pro-survival factors and anti-apoptosis to this phenomenon have not been thoroughly investigated. METHODS Here, we utilized conditioned-medium (CM) from LNCaP cells, engineered to undergo NE differentiation, and examined its effects on PC3 and LNCaP cell survival. RESULTS Statistically significant changes in clonogenic survival, Annexin V staining, PARP cleavage and trypan blue positivity of approximately twofold were observed in the presence of NE-derived CM relative to control-CM for both LNCaP and PC3 cells. These changes were partially abrogated by antagonists of the neuropeptides neurotensin, bombesin, and PTHrP. Selective inhibitors of IGF-1R, EGFR or Src caused significant and nearly complete blockade of prostate cancer cell survival due to NE secretions. Similar increases in cell survival were observed for LNCaP or PC3 cells treated with NE-derived medium in the presence of docetaxel. Increased phosphorylation of IGF-1R, following treatment with NE-derived medium, was accompanied by decreased protein tyrosine phosphatase, receptor type F (PTPRF) mRNA, and protein levels. Overexpression of PTPRF decreased cell survival, the amplitude and duration of IGF-1R phosphorylation, and enhanced PARP cleavage in the presence of NE-derived medium. CONCLUSIONS These data support the hypothesis that NE-derived factors act upon prostate cancer cells to stimulate pro-survival signaling and describe a novel mechanism of cross-talk between NE-derived factors and IGF-1R, mediated in part by PTPRF.
Collapse
MESH Headings
- Blotting, Western
- Cell Line, Tumor
- Cell Survival/physiology
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Neoplasms, Hormone-Dependent/enzymology
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neurosecretory Systems/metabolism
- Parathyroid Hormone-Related Protein/antagonists & inhibitors
- Parathyroid Hormone-Related Protein/metabolism
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- John O. DaSilva
- Departments of Microbiology, Cancer Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - George P. Amorino
- Radiation Oncology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Eli V. Casarez
- Departments of Microbiology, Cancer Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Bradley Pemberton
- Radiation Oncology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| | - Sarah J. Parsons
- Departments of Microbiology, Cancer Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908
| |
Collapse
|
20
|
The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. Br J Cancer 2013; 108:2573-81. [PMID: 23703249 PMCID: PMC3694240 DOI: 10.1038/bjc.2013.250] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is characterised by great heterogeneity of the disease progression rate. Tumours range from insignificant and not life threatening to high risk for relapse ones. Consequently, a large number of patients undergo unnecessary treatment. miR-145 is a well-documented tumour suppressor and its expression, which is regulated by the p53 pathway, has been found to be decreased in the majority of human malignancies. The aim of our study was to evaluate the clinical utility of miR-145 for the prognostication of PCa. METHODS Total RNA was isolated from 137 prostate tissue specimens obtained from 73 radical prostatectomy-treated PCa patients and 64 transurethral- or open prostatectomy-treated benign prostate hyperplasia (BPH) patients. Following polyadenylation and reverse transcription, miR-145 levels were determined by quantitative real-time PCR assay, using SNORD48 (RNU48) for normalisation purposes. RESULTS Downregulated miR-145 expression was found in PCa compared with BPH patients. The reduction of miR-145 expression in PCa was correlated with higher Gleason score, advanced clinical stage, larger tumour diameter and higher prostate-specific antigen (PSA) and follow-up PSA levels. In addition, higher risk for biochemical recurrence and significantly shorter disease-free survival (DFS) was found for the PCa patients expressing lower miR-145. Focusing on 'low- and intermediate-recurrence risk' PCa patients, miR-145 loss was revealed to be a reliable predictor of biochemical relapse and poor DFS independent from Gleason score, clinical stage, PSA and patients' age. CONCLUSION The loss of the tumour-suppressor miR-145 increases the risk for disease progression and predicts the poor survival of PCa patients.
Collapse
|
21
|
Philippou A, Armakolas A, Koutsilieris M. Evidence for the Possible Biological Significance of the igf-1 Gene Alternative Splicing in Prostate Cancer. Front Endocrinol (Lausanne) 2013; 4:31. [PMID: 23519101 PMCID: PMC3602724 DOI: 10.3389/fendo.2013.00031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 03/03/2013] [Indexed: 11/13/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) has been implicated in the pathogenesis of prostate cancer (PCa), since it plays a key role in cell proliferation, differentiation, and apoptosis. The IGF-I actions are mediated mainly via its binding to the type I IGF receptor (IGF-IR), however IGF-I signaling via insulin receptor (IR) and hybrid IGF-I/IR is also evident. Different IGF-I mRNA splice variants, namely IGF-IEa, IGF-IEb, and IGF-IEc, are expressed in human cells and tissues. These transcripts encode several IGF-I precursor proteins which contain the same bioactive product (mature IGF-I), however, they differ by the length of their signal peptides on the amino-terminal end and the structure of the extension peptides (E-peptides) on the carboxy-terminal end. There is an increasing interest in the possible different role of the IGF-I transcripts and their respective non-(mature)IGF-I products in the regulation of distinct biological activities. Moreover, there is strong evidence of a differential expression profile of the IGF-I splice variants in normal versus PCa tissues and PCa cells, implying that the expression pattern of the various IGF-I transcripts and their respective protein products may possess different functions in cancer biology. Herein, the evidence that the IGF-IEc transcript regulates PCa growth via Ec peptide specific and IGF-IR/IR-independent signaling is discussed.
Collapse
Affiliation(s)
- Anastassios Philippou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of AthensAthens, Greece
- *Correspondence: Anastassios Philippou and Michael Koutsilieris, Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, Goudi, Athens 115 27, Greece. e-mail: ;
| | - Athanasios Armakolas
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of AthensAthens, Greece
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of AthensAthens, Greece
- *Correspondence: Anastassios Philippou and Michael Koutsilieris, Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, Goudi, Athens 115 27, Greece. e-mail: ;
| |
Collapse
|
22
|
Kishida S, Mu P, Miyakawa S, Fujiwara M, Abe T, Sakamoto K, Onishi A, Nakamura Y, Kadomatsu K. Midkine promotes neuroblastoma through Notch2 signaling. Cancer Res 2012; 73:1318-27. [PMID: 23243020 DOI: 10.1158/0008-5472.can-12-3070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Midkine is a heparin-binding growth factor highly expressed in various cancers, including neuroblastoma, the most common extracranial pediatric solid tumor. Prognosis of patients with neuroblastoma in which MYCN is amplified remains particularly poor. In this study, we used a MYCN transgenic model for neuroblastoma in which midkine is highly expressed in precancerous lesions of sympathetic ganglia. Genetic ablation of midkine in this model delayed tumor formation and reduced tumor incidence. Furthermore, an RNA aptamer that specifically bound midkine suppressed the growth of neuroblastoma cells in vitro and in vivo in tumor xenografts. In precancerous lesions, midkine-deficient MYCN transgenic mice exhibited defects in activation of Notch2, a candidate midkine receptor, and expression of the Notch target gene HES1. Similarly, RNA aptamer-treated tumor xenografts also showed attenuation of Notch2-HES1 signaling. Our findings establish a critical role for the midkine-Notch2 signaling axis in neuroblastoma tumorigenesis, which implicates new strategies to treat neuroblastoma.
Collapse
Affiliation(s)
- Satoshi Kishida
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Evans CP, Elfman F, Cunha G, Shuman MA. Decreased prostate cancer cell migration by inhibition of the insulin-like growth factor II/Mannose-6-Phosphate receptor. Urol Oncol 2012; 3:166-70. [PMID: 21227140 DOI: 10.1016/s1078-1439(98)00020-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The 270-kDa insulin-like growth factor II (IGF-II)/cation-independent mannose-6-phosphate receptor (MPR) is a multifunctional receptor protein. Endocytoses and intracellular transport of soluble enzymes bearing mannose6-phosphate (M-6-P) residues to lysosomes is mediated by the IGF-II/MPR. We examined human prostate cancer cells for IGF-II/MPR expression to determine whether this receptor mediates cell migration. PC3 human prostate cancer cells were studied for intracellular IGF-II/MPR by immunoblotting. PC3 cell surface IGF-II/MPR expression was assessed by flow cytometric analysis. Cell motility was quantitated by a scratch migration assay, and IGF-II/MPR blockade was achieved using M-6-P or affinity-purified rabbit anti-bovine cation-independent IGF-II/MPR immunoglobulin. IGF-II/MPR is expressed in the cytoplasm and on the surface of PC3 prostate cancer cells. The mean number of PC3 cells migrating per high powered field in medium containing polyclonal anti-IGF-II/MPR immunoglobulin or M-6-P decreased significantly (5 ± 4 cells and 34 ± 5 cells, respectively) compared with control medium containing mouse immunoglobulin G (70 ± 12 cells) or mannose-1-phosphate (67 ± 7 cells). This decreased PC3 cell migration following cell surface IGF-II/MPR blockade suggests that the IGF-II/MPR may play an important role in prostate cancer cell motility.
Collapse
Affiliation(s)
- C P Evans
- Department of Urology, University of California, Davis School of Medicine, Sacramento, CA USA
| | | | | | | |
Collapse
|
24
|
Yang IP, Tsai HL, Hou MF, Chen KC, Tsai PC, Huang SW, Chou WW, Wang JY, Juo SHH. MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle. Carcinogenesis 2012; 33:1522-1530. [PMID: 22581829 DOI: 10.1093/carcin/bgs166] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Colorectal cancer (CRC) is associated with high recurrence and mortality. Because deregulation of microRNAs is associated with CRC development and recurrence, the expression levels of microRNAs can be a simple and reliable biomarker to detect postoperative early relapse, thereby helping physicians to treat high-risk patients more efficiently. EXPERIMENTAL DESIGN We used microRNA arrays and observed that microRNA-93 had substantially different expression levels in early (recurrence within 12 months after surgery) and non-early relapse CRC patients. The replication study, which included 35 early relapse and 42 non-early relapse subjects, further confirmed overexpression of microRNA-93 in non-early relapse samples. The in vitro and in vivo effects of microRNA-93 were investigated by examining cell proliferation, migration and invasion, as well as cell cycles, target-gene expression and xenograft in null mice. RESULTS Cellular studies showed that the overexpression of microRNA-93 inhibited colon cancer cell proliferation and migration but not invasion. The cell cycle studies also revealed that microRNA-93 caused an accumulation of the G2 population. However, microRNA-93 could not induce cell apoptosis or necrosis. Functional studies showed that microRNA-93 could suppress CCNB1 protein expression leading to cell cycle arrest in the G2 phase. Moreover, microRNA-93 repressed expression of ERBB2, p21 and VEGF, all of which are involved in cell proliferation. MicroRNA-93 also suppressed tumor growth in null mice. CONCLUSIONS This study showed that microRNA-93 can inhibit tumorigenesis and reduce the recurrence of CRC; these findings may have potential clinical applications for predicting the recurrence of CRC.
Collapse
Affiliation(s)
- I-Ping Yang
- Department of Medical Genetics College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Effect of the somatostatin analog octreotide acetate on circulating insulin-like growth factor-1 and related peptides in patients with non-metastatic castration-resistant prostate cancer: Results of a phase II study. Urol Oncol 2012; 30:408-14. [DOI: 10.1016/j.urolonc.2010.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 11/22/2022]
|
26
|
Ojima Y, Hongo A, Liu Y, Zhu L, Kusumoto T, Nakamura K, Seki N, Hiramatsu Y. Antitumor effects of novel shorter truncated insulin-like growth factor I receptors. Cancer Biol Ther 2012; 13:559-66. [PMID: 22406993 DOI: 10.4161/cbt.19609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We generated novel truncated insulin-like growth factor I receptors (IGF-IRs) designated as 126/STOP, 223/STOP and 325/STOP in order to establish shorter soluble IGF-IRs than previously reported 486/STOP without abrogating the same antitumor effects. Stable transfection of 223/STOP and 325/STOP, but not 126/STOP caused inhibition of anchorage-independent growth of CaOV-3 ovarian cancer cells in vitro. This antitumor effect was reproduced when we used recombinant proteins of these constructs, suggesting a bystander effect of these shorter truncated IGF-IRs. Tumorigenesis in vivo of CaOV-3 cells tranfected with 223/STOP or 325/STOP was strictly inhibited, and inoculation of these cells in nude mice caused massive apoptosis exclusively in vivo. Phosphorylations of IGF-IR and Akt, but not Erk were attenuated in 223/STOP- or 325/STOP-transfected CaOV-3 cells, and downregulations of IGF-IR and Akt phosphorylation seemed to play at least a partial role in the anti-tumor effect of these novel truncated IGF-IRs. Since 223/STOP and 325/STOP are smaller in size than previously reported 486/STOP, and they retain the same antitumor effects, they could be good candidates for clinical application in the future.
Collapse
Affiliation(s)
- Yojiro Ojima
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dasgupta S, Srinidhi S, Vishwanatha JK. Oncogenic activation in prostate cancer progression and metastasis: Molecular insights and future challenges. J Carcinog 2012; 11:4. [PMID: 22438770 PMCID: PMC3307249 DOI: 10.4103/1477-3163.93001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/01/2011] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is a leading cause of death among men in the United States, and currently early diagnosis and appropriate treatment remain key approaches for patient care. Molecularly prostate cancer cells carry multiple perturbations that generate malignant phenotype capable of uncontrolled growth, survival, and invasion-metastasis to other organs. These alterations are acquired both by genetic and epigenetic changes in tumor cells resulting in the activation of growth factor receptors, signaling proteins, kinases, transcription factors and coregulators, and multiple proteases required for the progression of the disease. Recent advances provide novel insights into the molecular functions of these oncogenic activators, implicating potential therapeutic targeting opportunities for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Subhamoy Dasgupta
- Department of Molecular Biology and Immunology, and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | |
Collapse
|
28
|
Durfort T, Tkach M, Meschaninova MI, Rivas MA, Elizalde PV, Venyaminova AG, Schillaci R, François JC. Small interfering RNA targeted to IGF-IR delays tumor growth and induces proinflammatory cytokines in a mouse breast cancer model. PLoS One 2012; 7:e29213. [PMID: 22235273 PMCID: PMC3250415 DOI: 10.1371/journal.pone.0029213] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/22/2011] [Indexed: 12/30/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) and its type I receptor (IGF-IR) play significant roles in tumorigenesis and in immune response. Here, we wanted to know whether an RNA interference approach targeted to IGF-IR could be used for specific antitumor immunostimulation in a breast cancer model. For that, we evaluated short interfering RNA (siRNAs) for inhibition of in vivo tumor growth and immunological stimulation in immunocompetent mice. We designed 2′-O-methyl-modified siRNAs to inhibit expression of IGF-IR in two murine breast cancer cell lines (EMT6, C4HD). Cell transfection of IGF-IR siRNAs decreased proliferation, diminished phosphorylation of downstream signaling pathway proteins, AKT and ERK, and caused a G0/G1 cell cycle block. The IGF-IR silencing also induced secretion of two proinflammatory cytokines, TNF- α and IFN-γ. When we transfected C4HD cells with siRNAs targeting IGF-IR, mammary tumor growth was strongly delayed in syngenic mice. Histology of developing tumors in mice grafted with IGF-IR siRNA treated C4HD cells revealed a low mitotic index, and infiltration of lymphocytes and polymorphonuclear neutrophils, suggesting activation of an antitumor immune response. When we used C4HD cells treated with siRNA as an immunogen, we observed an increase in delayed-type hypersensitivity and the presence of cytotoxic splenocytes against wild-type C4HD cells, indicative of evolving immune response. Our findings show that silencing IGF-IR using synthetic siRNA bearing 2′-O-methyl nucleotides may offer a new clinical approach for treatment of mammary tumors expressing IGF-IR. Interestingly, our work also suggests that crosstalk between IGF-I axis and antitumor immune response can mobilize proinflammatory cytokines.
Collapse
Affiliation(s)
- Tiphanie Durfort
- Institut National de la Santé et de la Recherche Médicale (INSERM) U565, Paris, France
- Centre National de la Recherche, Scientifique, UMR 7196; Muséum National d'Histoire Naturelle, Paris, France
| | - Mercedes Tkach
- Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariya I. Meschaninova
- Institute of Chemical Biology and Fundamental Medicine - Siberian Division of Russian Academy of Sciences (SB-RAS), Novosibirsk, Russia
| | - Martín A. Rivas
- Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia V. Elizalde
- Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine - Siberian Division of Russian Academy of Sciences (SB-RAS), Novosibirsk, Russia
| | - Roxana Schillaci
- Instituto de Biología y Medicina Experimental (IBYME), Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jean-Christophe François
- Institut National de la Santé et de la Recherche Médicale (INSERM) U565, Paris, France
- Centre National de la Recherche, Scientifique, UMR 7196; Muséum National d'Histoire Naturelle, Paris, France
- * E-mail:
| |
Collapse
|
29
|
The inhibitory effects of NKX3.1 on IGF-1R expression and its signalling pathway in human prostatic carcinoma PC3 cells. Asian J Androl 2011; 14:493-8. [PMID: 22179513 DOI: 10.1038/aja.2011.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NKX3.1, which is a prostate-specific homeobox gene, plays an important role in prostate cancer and usually functions as a tumour suppressor gene. In this study, we investigated the inhibitory effect of NKX3.1 on insulin-like growth factor (IGF)-1R expression and its downstream signalling pathway in PC3 cells. PC3 cells were stably transfected with NKX3.1 expression plasmid (pcDNA3.1-NKX3.1) or vector plasmid (pcDNA3.1+). The IGF-IR mRNA and protein expression levels were assessed in PC3-NKX3.1 transfectants by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. The expression and activation of IGF-1/IGF-1R downstream signalling targets were examined by Western blotting and luciferase reporter assay. The cells were subsequently treated with relevant concentrations of IGF-1. The effect of IGF-1 on cell growth was examined by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide (MTT) assay and flow cytometry analysis. A significant suppression of IGF-1R mRNA and protein expression was observed after forced expression of NKX3.1 in PC3 cells. Correspondingly, the forced expression of NKX3.1 decreased IGF-1-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (AKT) and activation of the Elk-1 transcription factor and downregulated the expression of the downstream target genes c-fos and cyclin D1. Furthermore, the forced expression of NKX3.1 inhibited IGF-1-induced cell growth. In conclusion, NKX3.1 could downregulate IGF-1R expression and could inhibit IGF-1R-mediated mitogen-activated protein kinase (MAPK)/ERK and AKT signalling pathways, which might partially leads to the inhibition of IGF-1-induced cell growth. This study provides new insights into the molecular mechanisms that NKX3.1 exerts against prostate cancer and ultimately expands the scope of alternative approaches in advanced prostate cancer therapy.
Collapse
|
30
|
Radpour R, Barekati Z, Kohler C, Schumacher MM, Grussenmeyer T, Jenoe P, Hartmann N, Moes S, Letzkus M, Bitzer J, Lefkovits I, Staedtler F, Zhong XY. Integrated epigenetics of human breast cancer: synoptic investigation of targeted genes, microRNAs and proteins upon demethylation treatment. PLoS One 2011; 6:e27355. [PMID: 22076154 PMCID: PMC3208622 DOI: 10.1371/journal.pone.0027355] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 10/14/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The contribution of aberrant DNA methylation in silencing of tumor suppressor genes (TSGs) and microRNAs has been investigated. Since these epigenetic alterations are reversible, it became of interest to determine the effects of the 5-aza-2'-deoxycytidine (DAC) demethylation therapy in breast cancer at different molecular levels. METHODS AND FINDINGS Here we investigate a synoptic model to predict complete DAC treatment effects at the level of genes, microRNAs and proteins for several human breast cancer lines. The present study assessed an effective treatment dosage based on the cell viability, cytotoxicity, apoptosis and methylation assays for the investigated cell lines. A highly aggressive and a non-aggressive cell line were investigated using omics approaches such as MALDI-TOF MS, mRNA- and microRNA expression arrays, 2-D gel electrophoresis and LC-MS-MS. Complete molecular profiles including the biological interaction and possible early and late systematic stable or transient effects of the methylation inhibition were determined. Beside the activation of several epigenetically suppressed TSGs, we also showed significant dysregulation of some important oncogenes, oncomiRs and oncosuppressors miRNAs as well as drug tolerance genes/miRNAs/proteins. CONCLUSIONS In the present study, the results denote some new molecular DAC targets and pathways based on the chemical modification of DNA methylation in breast cancer. The outlined approach might prove to be useful as an epigenetic treatment model also for other human solid tumors in the management of cancer patients.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Cell Proliferation
- DNA Methylation
- Decitabine
- Electrophoresis, Gel, Two-Dimensional
- Epigenesis, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- MicroRNAs/physiology
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Ramin Radpour
- Laboratory for Gynecological Oncology, Department of Biomedicine/Women's Hospital, University of Basel, Basel, Switzerland
| | - Zeinab Barekati
- Laboratory for Gynecological Oncology, Department of Biomedicine/Women's Hospital, University of Basel, Basel, Switzerland
| | - Corina Kohler
- Laboratory for Gynecological Oncology, Department of Biomedicine/Women's Hospital, University of Basel, Basel, Switzerland
| | - Martin M. Schumacher
- Biomarker Development, Novartis Institutes of BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Thomas Grussenmeyer
- Department of Biomedicine and Department of Cardiac Surgery, University Hospital Basel, Basel, Switzerland
| | - Paul Jenoe
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nicole Hartmann
- Biomarker Development, Novartis Institutes of BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Suzette Moes
- Biozentrum, University of Basel, Basel, Switzerland
| | - Martin Letzkus
- Biomarker Development, Novartis Institutes of BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Johannes Bitzer
- Department of Obstetrics and Gynecology, Women's Hospital, University of Basel, Basel, Switzerland
| | - Ivan Lefkovits
- Department of Biomedicine and Department of Cardiac Surgery, University Hospital Basel, Basel, Switzerland
- * E-mail: ) (IL); (FS); (XYZ)
| | - Frank Staedtler
- Biomarker Development, Novartis Institutes of BioMedical Research, Novartis Pharma AG, Basel, Switzerland
- * E-mail: ) (IL); (FS); (XYZ)
| | - Xiao Yan Zhong
- Laboratory for Gynecological Oncology, Department of Biomedicine/Women's Hospital, University of Basel, Basel, Switzerland
- * E-mail: ) (IL); (FS); (XYZ)
| |
Collapse
|
31
|
Cai LQ, Cai J, Wu W, Zhu YS. 17α-Estradiol and genistein inhibit high fat diet induced prostate gene expression and prostate growth in the rat. J Urol 2011; 186:1489-1496. [PMID: 21855913 DOI: 10.1016/j.juro.2011.05.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Indexed: 01/27/2023]
Abstract
PURPOSE High dietary fat and low phytoestrogen intake are associated with prostate cancer development and progression. Our previous study showed that exposure to a high fat diet significantly increased prostate 5α-reductase-2 mRNA and prostate growth in the rat. In the current experiments we determined the effects of genistein and 17α-estradiol on the modulation of dietary fat induced prostate 5α-reductase-2 and insulin-like growth factor-1 gene expression, and prostate growth. MATERIALS AND METHODS At weaning male ACI/Seg rats (Harlan® Sprague-Dawley®) were fed a low or a high fat diet, with or without genistein or 17α-estradiol for 2, 4 or 10 weeks. The prostate was dissected and weighed. We determined the levels of prostate 5α-reductase-2 mRNA, insulin-like growth factor-1 mRNA, dihydrotestosterone, and plasma insulin-like growth factor-1, dihydrotestosterone and testosterone. RESULTS Two-week exposure to a high fat diet significantly increased prostate insulin-like growth factor-1 mRNA without significant changes in plasma insulin-like growth factor-1, which was blocked by genistein and 17α-estradiol. Genistein but not 17α-estradiol also inhibited prostate 5α-reductase-2 mRNA and intraprostatic dihydrotestosterone induced by the high fat diet at 2 weeks. Genistein and 17α-estradiol completely blocked high fat diet induced prostate growth at 10 weeks of dietary treatment. However, neither genistein nor 17α-estradiol had any significant effect when co-administered with the low fat diet. CONCLUSIONS Results indicate that genistein and 17α-estradiol can inhibit dietary fat induced changes in prostate 5α-reductase-2 and insulin-like growth factor-1 gene expression, and prostate growth in the rat. This may be beneficial to prevent dietary fat associated prostate diseases such as prostate cancer.
Collapse
Affiliation(s)
- Li-Qun Cai
- Department of Medicine/Endocrinology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | |
Collapse
|
32
|
Ozkan EE. Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: a review. Mol Cell Endocrinol 2011; 344:1-24. [PMID: 21782884 DOI: 10.1016/j.mce.2011.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 07/01/2011] [Indexed: 12/13/2022]
Abstract
Cancer database analysis indicates that prostate cancer is one of the most seen cancers in men meanwhile composing the leading cause of morbidity and mortality among developed countries. Current available therapies are surgery, radiotherapy and androgene ablation for prostate carcinoma. The response rate is as high nearly 90% however, most of these recur or become refractory and androgene independent (AI). Therefore recent studies intensified on molecular factors playing role on development of prostate carcinoma and novel treatment strategies targetting these factors and their receptors. Insulin-like growth factor-I (IGF-I) and its primary receptor insulin-like growth factor receptor-I (IGF-IR) are among these factors. Biologic functions and role in malign progression are primarily achieved via IGF-IR which is a type 2 tyrosine kinase receptor. IGF-IR plays an important role in mitogenesis, angiogenesis, transformation, apoptosis and cell motility. It also generates intensive proliferative signals leading to carcinogenesis in prostate tissue. So IGF-IR and its associated signalling system have provoked considerable interest over recent years as a novel therapeutic target in cancer. In this paper it is aimed to sum up the lately published literature searching the relation of IGF-IR and prostate cancer in terms of incidence, pathologic features, and prognosis. This is followed by a discussion of the different possible targets within the IGF-1R system, and drugs developed to interact at each target. A systems-based approach is then used to review the in vitro and in vivo data in the published literature of the following compounds targeting IGF-1R components using specific examples: growth hormone releasing hormone antagonists (e.g. JV-1-38), growth hormone receptor antagonists (e.g. pegvisomant), IGF-1R antibodies (e.g. CP-751,871, AVE1642/EM164, IMC-A12, SCH-717454, BIIB022, AMG 479, MK-0646/h7C10), and IGF-1R tyrosine kinase inhibitors (e.g. BMS-536942, BMS-554417, NVP-AEW541, NVP-ADW742, AG1024, potent quinolinyl-derived imidazo (1,5-a)pyrazine PQIP, picropodophyllin PPP, nordihydroguaiaretic acid Insm-18/NDGA). And the other end point is to yield an overview on the recent progress about usage of this receptor as a novel anticancer agent of targeted therapies in treatment of prostate carcinoma.
Collapse
Affiliation(s)
- Emine Elif Ozkan
- OSM Middle East Health Center, Department of Radiation Oncology, Sanliurfa 63000, Turkey.
| |
Collapse
|
33
|
Kawamura S, Sato I, Wada T, Yamaguchi K, Li Y, Li D, Zhao X, Ueno S, Aoki H, Tochigi T, Kuwahara M, Kitamura T, Takahashi K, Moriya S, Miyagi T. Plasma membrane-associated sialidase (NEU3) regulates progression of prostate cancer to androgen-independent growth through modulation of androgen receptor signaling. Cell Death Differ 2011; 19:170-9. [PMID: 21681193 DOI: 10.1038/cdd.2011.83] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Prostate cancers generally become androgen-independent and resistant to hormone therapy with progression. To understand the underlying mechanisms and facilitate the development of novel treatments for androgen-independent prostate cancer, we have investigated plasma membrane-associated sialidase (NEU3), the key enzyme for ganglioside hydrolysis participating in transmembrane signaling. We have discovered NEU3 to be upregulated in human prostate cancer compared with non-cancerous tissue, correlating with the Gleason score. NEU3 silencing with siRNA in prostate cancer PC-3 and LNCaP cells resulted in increased expression of differentiation markers and in cell apoptosis, but decrease in Bcl-2 as well as a progression-related transcription factor, early growth response gene (EGR-1). In androgen-sensitive LNCaP cells, forced overexpression of NEU3 significantly induced expression of EGR-1, androgen receptor (AR) and PSA both with and without androgen, the cells becoming sensitive to androgen. The NEU3-mediated induction was abrogated by inhibitors for PI-3 kinase and MAP kinase and more specifically by their silencing in the absence of androgen, being confirmed by increased phosphorylation of AKT and ERK1/2 in NEU3 overexpressing cells. NEU3 siRNA introduction caused reduction of cell growth of an androgen-independent PC-3 cells in culture and of transplanted tumors in nude mice. These data suggest that NEU3 regulates tumor progression through AR signaling, and thus be a potential tool for diagnosis and therapy of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- S Kawamura
- Department of Urology, Miyagi Cancer Center, Natori, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Aggarwal RR, Ryan CJ, Chan JM. Insulin-like growth factor pathway: a link between androgen deprivation therapy (ADT), insulin resistance, and disease progression in patients with prostate cancer? Urol Oncol 2011; 31:522-30. [PMID: 21658978 DOI: 10.1016/j.urolonc.2011.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 04/28/2011] [Accepted: 05/01/2011] [Indexed: 01/12/2023]
Abstract
Androgen deprivation therapy (ADT) is standard of care for patients with metastatic hormone-sensitive prostate cancer (HSPC), yet through its induction of a hypogonadal state leads to metabolic perturbations, including insulin resistance (IR) and obesity. IR and obesity have been associated with an increased risk of progression to castrate-resistant prostate cancer (CRPC) and ultimately increased prostate cancer-specific mortality. On a molecular level, this association between obesity/IR and prostate cancer progression may be mediated by alterations in the insulin-like growth factor (IGF) axis, which has been shown to be up-regulated upon disease progression to CRPC. Targeting the IGF axis, either by anti-IGF therapy or via enhancement of peripheral insulin sensitivity, represents a viable therapeutic target in patients with prostate cancer. Using the development of IR and/or obesity may represent a clinically available biomarker that may predict those patients most likely to respond to such therapy, and warrants testing in future prospective clinical trials.
Collapse
Affiliation(s)
- Rahul R Aggarwal
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
35
|
Liu X, Choi RY, Jawad SM, Arnold JT. Androgen-induced PSA expression requires not only activation of AR but also endogenous IGF-I or IGF-I/PI3K/Akt signaling in human prostate cancer epithelial cells. Prostate 2011; 71:766-77. [PMID: 21031436 PMCID: PMC3125406 DOI: 10.1002/pros.21293] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 09/26/2010] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer (PrCa) risk is positively associated with levels of insulin-like growth factor I (IGF-I) and prostate specific antigen (PSA), both androgen receptor (AR) signaling target genes in PrCa cells. Although activated AR is required for androgen-induction of expression of both genes, effects of the IGF-I signaling pathways on the androgen-induction of PSA have not been studied. METHODS Human prostate stromal and epithelial cancer cells were treated alone or in coculture with steroid hormone and/or inhibitors. Gene or protein expression was analyzed by real time RT-PCR or Western blotting of lysates, nuclear extracts, or immunoprecipitated products. RESULTS In PrCa epithelial cells, endogenous IGF-I, significantly induced by R1881, was required for R1881-induction of PSA. Increased IGF-I correlated with accumulation of cytoplasmic dephospho β-catenin (CPDP β-catenin), a co-activator of AR signaling. Exogenous IGF-I enhanced R1881-induced PSA and accumulation of CPDP β-catenin in LAPC-4 cells. Functional depletion of IGF-I or IGF-I receptor diminished PSA induction. Induction of IGF-I reached a plateau while PSA consecutively increased. Inhibiting PI3K abolished R1881-induced Akt phosphorylation, CPDP and nuclear β-catenin and nuclear association of AR/β-catenin, consequently abrogating R1881-induced expression of IGF-I and/or PSA. CONCLUSIONS By integrating androgen, IGF-I and β-catenin signaling pathways, these data reveal that androgen-induced PSA expression requires activation of AR and endogenous IGF-I or IGF-I/PI3K/Akt signaling, suggesting a positive feedback cycle for increased production of PSA associated with PrCa.
Collapse
Affiliation(s)
- Xunxian Liu
- Endocrine Section, Laboratory of Clinical Investigation, Division of Intramural Research, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, Maryland 20892-1547, USA.
| | | | | | | |
Collapse
|
36
|
Lecosnier S, Cordier C, Simon P, François JC, Saison-Behmoaras TE. A steric blocker of translation elongation inhibits IGF-1R expression and cell transformation. FASEB J 2011; 25:2201-10. [PMID: 21402719 DOI: 10.1096/fj.10-169540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is involved in transformation, survival, mitogenesis and differentiation. It is overexpressed in many tumors and a validated target for anticancer therapy. In cell-free systems, polypyrimidic peptide nucleic acids (PNAs) can form triplex-like structures with messenger RNAs and halt the ribosomal machinery during the translation elongation. A 17-mer PNA that formed a PNA(2):mRNA complex with a purine-rich sequence located in the coding region of IGF-1R mRNA induced the synthesis of a truncated IGF-1R in vitro. This PNA down-regulated expression of the receptor by 70-80% in prostate cancer cells without affecting insulin receptor expression that exhibits high homology with IGF-1R. Inhibition occurs at the translational level, since the IGF-1R mRNA level measured by quantitative RT-PCR was not affected by PNA treatment. In addition, IGF-1R knockdown by PNA led to an attenuation of phosphorylation of downstream signaling pathways, PI3K/AKT and MAPK, involved in survival and mitogenesis and also to a decrease in cell transformation. Of the steric blockers tested, which included phosphorodiamidate morpholino oligomers and locked nucleic acids, PNA was unique in its ability to form triplex structures with mRNA and to arrest translation elongation.
Collapse
Affiliation(s)
- Sabine Lecosnier
- Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Unité Mixte de Recherche 7196, Paris, France
| | | | | | | | | |
Collapse
|
37
|
Attenuated Salmonella typhimurium carrying shRNA-expressing vectors elicit RNA interference in murine bladder tumors. Acta Pharmacol Sin 2011; 32:368-74. [PMID: 21372828 DOI: 10.1038/aps.2010.224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM To examine whether attenuated Salmonella typhimurium (S typhimurium) could be used as an anti-cancer agent or a tumor-targeting vehicle for delivering shRNA-expressing pDNA into cancer cells in a mouse tumor model. METHODS Mouse bladder transitional cancer cell line (BTT-T739) expressing GFP was used, in which the GFP expression level served as an indicator of RNA interference (RNAi). BTT-T739-GFP tumor-bearing mice (4-6 weeks) were treated with S typhimurium carrying plasmids encoding shRNA against gfp or scrambled shRNA. The mRNA and protein expression levels of GFP were assessed 5 d after the bacteria administration, and the antitumor effects of S typhimurium were evaluated. RESULTS In BTT-T739-GFP tumor-bearing mice, S typhimurium (1×10(9) cfu, po) preferentially accumulated within tumors for as long as 40 d, and formed a tumor-to-normal tissue ratio that exceeded 1000/1. S typhimurium carrying plasmids encoding shRNA against gfp inhibited the expression of GFP in tumor cells by 73.4%. Orally delivered S typhimurium significantly delayed tumor growth and prolonged the survival of tumor-bearing mice. CONCLUSION This study demonstrates that attenuated S typhimurium can be used for both delivering shRNA-expressing vectors into tumor cells and eliciting RNAi, thus exerting anti-tumor activity, which may represent a new strategy for the treatment of solid tumors.
Collapse
|
38
|
Short hairpin RNA–mediated inhibition of S100A4 promotes apoptosis and suppresses proliferation of BGC823 gastric cancer cells in vitro and in vivo. Cancer Lett 2010; 292:41-7. [DOI: 10.1016/j.canlet.2009.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/14/2009] [Accepted: 11/05/2009] [Indexed: 11/19/2022]
|
39
|
Nagano A, Ohno T, Shimizu K, Hara A, Yamamoto T, Kawai G, Saitou M, Takigami I, Matsuhashi A, Yamada K, Takei Y. EWS/Fli-1 chimeric fusion gene upregulates vascular endothelial growth factor-A. Int J Cancer 2010; 126:2790-8. [PMID: 19642105 DOI: 10.1002/ijc.24781] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular endothelial growth factor (VEGF)-A plays an important role in the pathological angiogenesis that occurs in soft-tissue sarcoma and in about half of Ewing's sarcoma cases, where it is highly overexpressed. EWS/Fli-1 is considered to be a transcriptional activator and to play a significant role in tumorigenesis of Ewing's sarcoma. However, the relationship between EWS/Fli-1 and VEGF-A is still unclear. The aim of this research is to investigate the relationship between EWS/Fli-1 and VEGF-A, and to determine whether small interfering RNA (siRNA)-targeting of VEGF-A can be developed as a novel treatment for Ewing's sarcoma. Knockdown of EWS/Fli-1 using siRNA on a Ewing's sarcoma cell line (A673) suppressed VEGF-A expression, and transfection of EWS/Fli-1 into a human osteosarcoma cell line increased VEGF-A expression. To inhibit VEGF-A secretion from Ewing's sarcoma, we developed a chemically synthesized siRNA that targets VEGF-A. Transfection of the VEGF siRNA into the Ewing's sarcoma cell line significantly suppressed VEGF-A secretion by up to 98% in vitro, compared with a control. In vivo, we established Ewing's sarcoma xenograft models and performed intratumoral injection of the siRNA mixed with atelocollagen. We observed that the inhibition of tumor growth occurs in a dose-dependent manner. Histological examination revealed decreased microvessel density and morphological change around microvessels in the Ewing's sarcoma xenografts treated with the siRNA. It is considered that a combination of chemically synthesized siRNA that targets VEGF-A and atelocollagen might be a novel and effective option for treating Ewing's sarcoma that secretes VEGF-A.
Collapse
Affiliation(s)
- Akihito Nagano
- Department of Orthopedic Surgery, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hopkins A, Crowe PJ, Yang JL. Effect of type 1 insulin-like growth factor receptor targeted therapy on chemotherapy in human cancer and the mechanisms involved. J Cancer Res Clin Oncol 2010; 136:639-50. [PMID: 20140624 DOI: 10.1007/s00432-010-0792-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/14/2010] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Chemotherapy is administered only to patients with advanced cancers, typically to modest avail. Hence, the search for innovative approaches to treat cancer is growing rapidly. One such approach involves targeting molecular pathways identified as encouraging tumor growth and maintenance, particularly the type 1 insulin-like growth factor (IGF-1) and its receptor (IGF-1R) pathway that is important in conferring chemoresistance. MATERIALS AND METHODS This study focuses on IGF-1R targeted therapy, which will enhance chemotherapy efficacy, through reviewing recent literature from PubMed and Medline databases. CONCLUSION This review examines data and strategies addressing an approach conquering chemoresistance through the combination of IGF-1R targeted therapy and chemotherapy in cancer patients, as well as the mechanisms by which IGF-1R acts as a target. This will impact on future research on treatment selection, thereby improving patient prognosis.
Collapse
Affiliation(s)
- Alyse Hopkins
- Oncology Research Centre, Prince of Wales Hospital, University of New South Wales, Randwick, Sydney, Australia
| | | | | |
Collapse
|
41
|
Zhang T, Zhang X, Ding K, Yang K, Zhang Z, Xu Y. PIM-1 gene RNA interference induces growth inhibition and apoptosis of prostate cancer cells and suppresses tumor progression in vivo. J Surg Oncol 2010; 101:513-9. [PMID: 20191609 DOI: 10.1002/jso.21524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The goal of this study was to investigate the roles of PIM-1 in prostate cancer (CaP) cell proliferation and apoptosis, and to assess the potential of PIM-1 as a target for CaP therapy. METHODS Using RNAi technology, we knocked down the expression of PIM-1 in PC-3 cell. After siRNA transfection, cell morphology, cell proliferation, cell cycle, and apoptosis rate were analyzed. PIM-1 siRNA with Lipofectamine were injected into xenograft models to evaluate its therapeutic effect. RESULTS PIM-1 siRNA significantly inhibited PIM-1 expression. In vitro, silencing of the PIM-1 gene resulted in irregular cell morphology, decreased cell proliferation, inhibition of cell-cycle progression, and induction of apoptosis. Compared with control groups, intratumoral injection of PIM-1 siRNA with Lipofectamine in nude mice dramatically suppressed PC-3 tumor progression. CONCLUSIONS PIM-1 could play important roles in the progression of CaP and may be an interesting target for CaP therapy.
Collapse
Affiliation(s)
- Tong Zhang
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
It is becoming increasingly clear that angiogenesis plays a crucial role in prostate cancer (CaP) survival, progression, and metastasis. Tumor angiogenesis is a hallmark of advanced cancers and an attractive treatment target in multiple solid tumors. By understanding the molecular basis of resistance to androgen withdrawal and chemotherapy in CaP, the rational design of targeted therapeutics is possible. This review summarizes the recent advancements that have improved our understanding of the role of angiogenesis in CaP metastasis and the potential therapeutic efficacy of inhibiting angiogenesis in this disease. Current therapeutic options for patients with metastatic hormone-refractory CaP are very limited. Targeting vasculature is a developing area, which shows promise for the control of late stage and recurrent CaP disease and for overcoming drug resistance. We discuss angiogenesis and its postulated mechanisms and focus on the regulation of angiogenesis in CaP progression and the therapeutic beneficial effects associated with targeting of the CaP vasculature to overcome the resistance to current treatments and CaP recurrence.
Collapse
Affiliation(s)
- Yong Li
- Cancer Care Centre, St George Hospital, Sydney, NSW, Australia.
| | | |
Collapse
|
43
|
Zoubeidi A, Zardan A, Wiedmann RM, Locke J, Beraldi E, Fazli L, Gleave ME. Hsp27 promotes insulin-like growth factor-I survival signaling in prostate cancer via p90Rsk-dependent phosphorylation and inactivation of BAD. Cancer Res 2010; 70:2307-17. [PMID: 20197463 DOI: 10.1158/0008-5472.can-09-3252] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hsp27 is highly expressed in castrate-resistant prostate cancer. Although its overexpression confers resistance to androgen ablation and chemotherapy, the mechanisms by which Hsp27 inhibits treatment-induced apoptosis are incompletely defined. Castrate-resistance often correlates with increased activity of autocrine and/or paracrine growth/survival stimulatory loops including the mitogen-activated protein kinase (MAPK) and Akt pathways and insulin-like growth factor (IGF) axis components. Because Hsp27 can be activated by both MAPK and Akt pathways, it is possible that interactions between IGF-I signaling and Hsp27 phosphoactivation function to promote castrate-resistant progression. Here, we report that Hsp27 expression and phosphorylation levels correlate with IGF-I signaling and castrate-resistant progression in human prostate cancer specimens and cell lines. IGF-I induces Hsp27 phosphorylation in a time- and dose-dependent manner via p90Rsk, which interacts directly with and phosphorylates Hsp27 in vitro and in vivo. Conversely, p90Rsk inhibition using short interfering RNA or a dominant negative mutant abolishes IGF-I-induced Hsp27 phosphorylation. Hsp27 overexpression increases IGF-I-induced phosphorylation of Erk, p90Rsk, and Akt. Conversely, Hsp27 knockdown abrogates IGF-I-induced phosphorylation of Erk, p90Rsk, and Akt, thereby destabilizing Bad/14-3-3 complexes and increasing apoptotic rates. These data elucidate the interactions between Hsp27 phosphorylation and the IGF-I receptor signaling pathway and support targeting Hsp27 as a therapeutic strategy for castrate-resistant prostate cancer.
Collapse
Affiliation(s)
- Amina Zoubeidi
- Department of Urologic Sciences, The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Effect of zinc on regulation of insulin-like growth factor signaling in human androgen-independent prostate cancer cells. Clin Chim Acta 2010; 411:172-8. [DOI: 10.1016/j.cca.2009.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/24/2009] [Accepted: 10/26/2009] [Indexed: 12/12/2022]
|
45
|
Furukawa J, Wraight CJ, Freier SM, Peralta E, Atley LM, Monia BP, Gleave ME, Cox ME. Antisense oligonucleotide targeting of insulin-like growth factor-1 receptor (IGF-1R) in prostate cancer. Prostate 2010; 70:206-18. [PMID: 19790231 DOI: 10.1002/pros.21054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Altered expression of insulin-like growth factor receptor (IGF-1R) is associated with castrate-resistant prostate cancer (CRPC) progression. We hypothesize that increased expression and/or responsiveness of IGF-IR may promote disease progression. This study assesses ATL1101, a 2'-MOE-modified antisense oligonucleotide (ASO) targeting human IGF-IR, with regard to potency and anti-cancer activity in androgen-responsive (LNCaP) and -independent (PC3) prostate cancer cells in vitro and in vivo. METHODS IGF-IR mRNA and protein expression was assessed in ATL1101- and control oligonucleotides (ODN)-treated prostate cancer cells by QT-PCR and immunoblotting. The effect of IGF-1R ASO on cell growth and apoptosis in vitro was examined by crystal violet assay, flow cytometry, and expression and activation state of downstream signaling targets was examined by immunoblotting. In vivo growth of subcutaneous xenografts was performed in nude mice treated with intraperitoneally administered ATL1101 or control ODN by measuring tumor volume of PC3 xenografts in intact mice, and tumor volume and serum prostate-specific antigen levels in castrated mice harboring LNCaP xenografts. RESULTS We observed dose- and sequence-specific suppression of IGF-IR mRNA and protein expression in ATL1101-treated cells in vitro. Suppressed IGF-IR expression correlated with decreased proliferation and increased apoptosis of PC3 cells under standard culture conditions and of LNCaP cells under androgen-deprived culture conditions. ATL1101 suppressed PC3 tumor growth as a monotherapy and delayed CRPC progression of LNCaP xenografts. CONCLUSIONS This study reports the first preclinical proof-of-principle data that this novel IGF-IR ASO selectively suppresses IGF-1R expression, suppresses growth of CRPC tumors, and delays CRPC progression in vitro and in vivo.
Collapse
Affiliation(s)
- Junya Furukawa
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Genua M, Pandini G, Sisci D, Castoria G, Maggiolini M, Vigneri R, Belfiore A. Role of cyclic AMP response element-binding protein in insulin-like growth factor-i receptor up-regulation by sex steroids in prostate cancer cells. Cancer Res 2009; 69:7270-7. [PMID: 19738069 DOI: 10.1158/0008-5472.can-09-0088] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insulin-like growth factor-I receptor (IGF-IR) overexpression may play a role in prostate cancer progression. We found previously that, in prostate cancer cells, IGF-IR is up-regulated by both androgens and estrogens via a nongenotropic pathway. We now show that, in prostate cancer cells, stimulation with either androgens or estrogens up-regulates IGF-IR by inducing cyclic AMP response element-binding protein (CREB) activation. Both sex steroids phosphorylated CREB at Ser(133) in a dose-dependent manner in androgen receptor (AR)-positive LNCaP cells, whereas only estrogens phosphorylated CREB in AR-negative PC3 cells. CREB phosphorylation involved c-Src-dependent extracellular signal-regulated kinase 1/2 activation, but not protein kinase A, protein kinase C, or calmodulin-dependent kinase II, and occurred also in cells transfected with AR or estrogen receptor mutants that do not localize into the nucleus. CREB silencing abrogated IGF-IR up-regulation and promoter activation. We also showed that CREB binds to IGF-IR promoter region and identified the relevant CREB-binding site at the 5'-untranslated region fragment of IGF-IR promoter. In conclusion, we describe a novel mechanism of IGF-IR up-regulation and promoter activity by CREB activation, induced by sex steroids, through a nongenotropic signaling.
Collapse
Affiliation(s)
- Marco Genua
- Endocrinology, Department of Internal Medicine and Medical Specialties, University of Catania, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Shi P, Chandra J, Sun X, Gergely M, Cortes JE, Garcia-Manero G, Arlinghaus RB, Lai R, Amin HM. Inhibition of IGF-IR tyrosine kinase induces apoptosis and cell cycle arrest in imatinib-resistant chronic myeloid leukaemia cells. J Cell Mol Med 2009; 14:1777-92. [PMID: 19508387 PMCID: PMC3444523 DOI: 10.1111/j.1582-4934.2009.00795.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although signalling through the type I insulin-like growth factor receptor (IGF-IR) maintains the survival of haematopoietic cells, a specific role of IGF-IR in haematological neoplasms remains largely unknown. Chronic myeloid leukaemia (CML) is the most common subtype of chronic myeloproliferative diseases. Typically, CML evolves as a chronic phase (CP) disease that progresses into accelerated (AP) and blast phase (BP) stages. In this study, we show that IGF-IR is universally expressed in four CML cell lines. IGF-IR was expressed in only 30% and 25% of CP and AP patients, respectively, but its frequency of expression increased to 73% of BP patients. Increased expression levels of IGF-IR with CML progression was supported by quantitative real-time PCR that demonstrated significantly higher levels of IGF-IR mRNA in BP patients. Inhibition of IGF-IR decreased the viability and proliferation of CML cell lines and abrogated their growth in soft agar. Importantly, inhibition of IGF-IR decreased the viability of cells resistant to imatinib mesylate including BaF3 cells transfected with p210 BCR-ABL mutants, CML cell lines and primary neoplastic cells from patients. The negative effects of inhibition of IGF-IR were attributable to apoptosis and cell cycle arrest due to alterations of downstream target proteins. Our findings suggest that IGF-IR could represent a potential molecular target particularly for advanced stage or imatinib-resistant cases.
Collapse
Affiliation(s)
- Ping Shi
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
IGF-IR tyrosine kinase interacts with NPM-ALK oncogene to induce survival of T-cell ALK+ anaplastic large-cell lymphoma cells. Blood 2009; 114:360-70. [PMID: 19423729 DOI: 10.1182/blood-2007-11-125658] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type I insulin-like growth factor receptor (IGF-IR) tyrosine kinase plays important roles in the pathogenesis of several malignancies. Although it promotes the growth of stimulated hematopoietic cells, a direct role of IGF-IR in malignant lymphoma has not been identified. Anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma (ALK(+) ALCL) is a unique type of T-cell lymphoma. Approximately 85% of ALK(+) ALCL cases harbor the translocation t(2;5)(p23;q35), which generates the chimeric oncogene NPM-ALK. In the present study, we explored a possible role of IGF-IR in ALK(+) ALCL. Our results demonstrate that IGF-IR and IGF-I are widely expressed in ALK(+) ALCL cell lines and primary tumors. Importantly, we identified novel reciprocal functional interactions between IGF-IR and NPM-ALK. Antagonism of IGF-IR decreased the viability, induced apoptosis and cell-cycle arrest, and decreased proliferation and colony formation of ALK(+) ALCL cell lines. These effects could be explained by alterations of cell survival regulatory proteins downstream of IGF-IR signaling. Our findings improve current understanding of the biology of IGF-IR and NPM-ALK and have significant therapeutic implications as they identify IGF-IR signaling as a potential therapeutic target in ALK(+) ALCL and possibly other types of malignant lymphoma.
Collapse
|
49
|
Abstract
The type 1 IGF receptor (IGF-IR) is activated by two ligands, IGF-1 and IGF-2, and by insulin at supraphysiological concentrations. It plays a significant role in the growth of normal and abnormal cells, and antibodies against the IGF-IR are now in clinical trials. Targeting of the IGF-IR in cancer cells (by antibodies or other means) can be improved by the appropriate selection of responsive tumors. This review focuses on the optimization of IGF-IR targeting in human cancer.
Collapse
Affiliation(s)
- Renato Baserga
- Thomas Jefferson University, Kimmel Cancer Center, Bluemle Life Sciences Center, Philadelphia, PA 1910, USA.
| |
Collapse
|
50
|
Chen LH, Fang J, Sun Z, Li H, Wu Y, Demark-Wahnefried W, Lin X. Enterolactone inhibits insulin-like growth factor-1 receptor signaling in human prostatic carcinoma PC-3 cells. J Nutr 2009; 139:653-9. [PMID: 19211828 PMCID: PMC2658726 DOI: 10.3945/jn.108.101832] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Enterolactone, a major metabolite of plant-based lignans, has been shown to inhibit prostate cancer growth and development, but the mechanistic basis for its anticancer activity remains largely unknown. Activation of insulin-like growth factor-1 (IGF-1) receptor (IGF-1R) signaling is critical for prostate cancer cell growth and progression. This study examined whether the growth inhibitory effect of enterolactone was related to changes in the IGF-1/IGF-1R system in PC-3 prostate cancer cells. At nutritionally relevant concentrations (20-60 micromol/L), enterolactone inhibited IGF-1-induced activation of IGF-1R and its downstream AKT and mitogen-activated protein kinase/extracellular-signal regulated kinase signaling pathways. Inhibition of AKT by enterolactone resulted in decreased phosphorylation of its downstream targets, including p70S6K1 and glycogen synthase kinase-3 beta. Enterolactone also inhibited cyclin D1 expression. As a result, enterolactone inhibited proliferation and migration of PC-3 cells. Knockdown of IGF-1R by plasmids with siRNA (si) against IGF-1R mRNA resulted in inhibition of proliferation of PC-3 cells and cell numbers did not differ when the si-IGF-1R groups (cells transfected with plasmids containing siRNA against IGF-1R mRNA) were treated or untreated with enterolactone. These results suggest that enterolactone suppresses proliferation and migration of prostate cancer cells, at least partially, through inhibition of IGF-1/IGF-1R signaling. The finding of this study provides new insights into the molecular mechanisms that enterolactone exerts against prostate cancer.
Collapse
Affiliation(s)
- Li-Hua Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China and University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Jing Fang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China and University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Zhijian Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China and University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Huaixing Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China and University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Ying Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China and University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Wendy Demark-Wahnefried
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China and University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Xu Lin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China and University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|