1
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Saaoud F, Lu Y, Xu K, Shao Y, Praticò D, Vazquez-Padron RI, Wang H, Yang X. Protein-rich foods, sea foods, and gut microbiota amplify immune responses in chronic diseases and cancers - Targeting PERK as a novel therapeutic strategy for chronic inflammatory diseases, neurodegenerative disorders, and cancer. Pharmacol Ther 2024; 255:108604. [PMID: 38360205 PMCID: PMC10917129 DOI: 10.1016/j.pharmthera.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | | | - Hong Wang
- Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA; Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Zhu P, Li T, Li Q, Gu Y, Shu Y, Hu K, Chen L, Peng X, Peng J, Hao L. Mechanism and Role of Endoplasmic Reticulum Stress in Osteosarcoma. Biomolecules 2022; 12:1882. [PMID: 36551309 PMCID: PMC9775044 DOI: 10.3390/biom12121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor, often occurring in children and adolescents. The etiology of most patients is unclear, and the current conventional treatment methods are chemotherapy, radiotherapy, and surgical resection. However, the sensitivity of osteosarcoma to radiotherapy and chemotherapy is low, and the prognosis is poor. The development of new and useful treatment strategies for improving patient survival is an urgent need. It has been found that endoplasmic reticulum (ER) stress (ERS) affects tumor angiogenesis, invasion, etc. By summarizing the literature related to osteosarcoma and ERS, we found that the unfolded protein response (UPR) pathway activated by ERS has a regulatory role in osteosarcoma proliferation, apoptosis, and chemoresistance. In osteosarcoma, the UPR pathway plays an important role by crosstalk with autophagy, oxidative stress, and other pathways. Overall, this article focuses on the relationship between ERS and osteosarcoma and reviews the potential of drugs or gene targets associated with ERS for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peijun Zhu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qingqing Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yawen Gu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Kaibo Hu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
4
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
5
|
Oshi M, Roy AM, Gandhi S, Tokumaru Y, Yan L, Yamada A, Endo I, Takabe K. The clinical relevance of unfolded protein response signaling in breast cancer. Am J Cancer Res 2022; 12:2627-2640. [PMID: 35812054 PMCID: PMC9251678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023] Open
Abstract
Protein homeostasis regulated by the Endoplasmic Reticulum (ER) is a recognized process involved in cancer progression. ER stress activates the Unfolded Protein Response (UPR) and has been implicated in a variety of cancers. Given the role of the UPR activation in carcinogenesis, we hypothesized that UPR activation could be associated with pathological progression, higher clinical stage, and worse survival in breast cancer. A total of 4,416 breast cancer patients from multiple independent cohorts were analyzed. We defined the UPR pathway score by the degree of enrichment by Gene Set Variant Analysis and median was used to divide high vs. low score groups in each cohort. High UPR breast cancer significantly enriched not only cell proliferation-related but also other pro-cancerous gene sets consistently in both METABIC and GSE96058 cohort. Majority of UPR pathway score high cells in the bulk tumor were tumor cells compared to other cells, including stromal, T-, B-, and myeloid-cells (P<0.001). UPR score was significantly associated with advanced stage, high grade, and triple negative breast cancer (TNBC) (all P<0.001). High UPR breast cancer was associated with worse patient survival in both cohorts (all P<0.001). Among breast cancer subtype, ER-positive/HER2-negative breast cancer with high UPR was significantly associated with worse survival, but neither HER-positive nor TNBC. High UPR ER-positive/HER2-negative breast cancer was infiltrated with high level of Th1 and Th2 cells, M1 macrophage, and plasma cells. On the other hand, they were significantly infiltrated with high level of several types of stromal cells in tumor microenvironment (all P<0.001). Finally, high UPR metastatic breast cancer was also associated with worse patient survival (P=0.041). UPR signaling is associated with cancer aggressiveness, and worse survival, especially ER-positive/HER2-negative breast cancer subtype.
Collapse
Affiliation(s)
- Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Arya Mariam Roy
- Department of Medical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Shipra Gandhi
- Department of Medical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| |
Collapse
|
6
|
The Unfolded Protein Response Is Associated with Cancer Proliferation and Worse Survival in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13174443. [PMID: 34503253 PMCID: PMC8430652 DOI: 10.3390/cancers13174443] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary We studied the association between the unfolded protein response (UPR) and carcinogenesis, cancer progression, and survival in hepatocellular carcinoma (HCC). We studied 655 HCC patients from 4 independent cohorts using an UPR score. The UPR was enhanced as normal liver became cancerous and as HCC advanced in stage. The UPR was correlated with cancer cell proliferation that was confirmed by multiple parameters. Significantly, a high UPR score was associated with worse patient survival. Interestingly, though UPR was associated with a high mutational load, it was not associated with immune response, immune cell infiltration, or angiogenesis. To our knowledge, this is the first study to investigate the clinical relevance of the unfolded protein response in HCC. Abstract Hepatocellular carcinoma is a leading cause of cancer death worldwide. The unfolded protein response (UPR) has been revealed to confer tumorigenic capacity in cancer cells. We hypothesized that a quantifiable score representative of the UPR could be used as a biomarker for cancer progression in HCC. In this study, a total of 655 HCC patients from 4 independent HCC cohorts were studied to examine the relationships between enhancement of the UPR and cancer biology and patient survival in HCC utilizing an UPR score. The UPR correlated with carcinogenic sequence and progression of HCC consistently in two cohorts. Enhanced UPR was associated with the clinical parameters of HCC progression, such as cancer stage and multiple parameters of cell proliferation, including histological grade, mKI67 gene expression, and enrichment of cell proliferation-related gene sets. The UPR was significantly associated with increased mutational load, but not with immune cell infiltration or angiogeneis across independent cohorts. The UPR was consistently associated with worse survival across independent cohorts of HCC. In conclusion, the UPR score may be useful as a biomarker to predict prognosis and to better understand HCC.
Collapse
|
7
|
Abstract
Glucose-regulating protein 78 (GRP78) is a molecular chaperone in the endoplasmic reticulum (ER) that promotes folding and assembly of proteins, controls the quality of proteins, and regulates ER stress signaling through Ca2+ binding to the ER. In tumors, GRP78 is often upregulated, acting as a central stress sensor that senses and adapts to changes in the tumor microenvironment, mediating ER stress of cancer cells under various stimulations of the microenvironment to trigger the folding protein response. Increasing evidence has shown that GRP78 is closely associated with the progression and poor prognosis of lung cancer, and plays an important role in the treatment of lung cancer. Herein, we reviewed for the first time the functions and mechanisms of GRP78 in the pathological processes of lung cancer, including tumorigenesis, apoptosis, autophagy, progression, and drug resistance, giving a comprehensive understanding of the function of GRP78 in lung cancer. In addition, we also discussed the potential role of GRP78 as a prognostic biomarker and therapeutic target for lung cancer, which is conducive to improving the assessment of lung cancer and the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Shengkai Xia
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Wenzhe Duan
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Wenwen Liu
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xinri Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China. .,Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
8
|
Adaptation to Endoplasmic Reticulum Stress Enhances Resistance of Oral Cancer Cells to Cisplatin by Up-Regulating Polymerase η and Increasing DNA Repair Efficiency. Int J Mol Sci 2020; 22:ijms22010355. [PMID: 33396303 PMCID: PMC7794796 DOI: 10.3390/ijms22010355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal-epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.
Collapse
|
9
|
Cai L, Hu C, Yu S, Liu L, Yu X, Chen J, Liu X, Lin F, Zhang C, Li W, Yan X. Identification and validation of a six-gene signature associated with glycolysis to predict the prognosis of patients with cervical cancer. BMC Cancer 2020; 20:1133. [PMID: 33228592 PMCID: PMC7686733 DOI: 10.1186/s12885-020-07598-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is one of the most common gynaecological cancers. The gene signature is believed to be reliable for predicting cancer patient survival. However, there is no relevant study on the relationship between the glycolysis-related gene (GRG) signature and overall survival (OS) of patients with CC. METHODS We extracted the mRNA expression profiles of 306 tumour and 13 normal tissues from the University of California Santa Cruz (UCSC) Database. Then, we screened out differentially expressed glycolysis-related genes (DEGRGs) among these mRNAs. All patients were randomly divided into training cohort and validation cohort according to the ratio of 7: 3. Next, univariate and multivariate Cox regression analyses were carried out to select the GRG with predictive ability for the prognosis of the training cohort. Additionally, risk score model was constructed and validated it in the validation cohort. RESULTS Six mRNAs were obtained that were associated with patient survival. The filtered mRNAs were classified into the protective type (GOT1) and the risk type (HSPA5, ANGPTL4, PFKM, IER3 and PFKFB4). Additionally, by constructing the prognostic risk score model, we found that the OS of the high-risk group was notably poorer, which showed good predictive ability both in training cohort and validation cohort. And the six-gene signature is a prognostic indicator independent of clinicopathological features. Through the verification of PCR, the results showed that compared with the normal cervial tissuses, the expression level of six mRNAs were significantly higher in the CC tissue, which was consistent with our findings. CONCLUSIONS We constructed a glycolysis-related six-gene signature to predict the prognosis of patients with CC using bioinformatics methods. We provide a thorough comprehension of the effect of glycolysis in patients with CC and provide new targets and ideas for individualized treatment.
Collapse
Affiliation(s)
- Luya Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China
| | - Chuan Hu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Shanshan Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China
| | - Xiaobo Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China
| | - Jiahua Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China
| | - Xuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China
| | - Fan Lin
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Cheng Zhang
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xiaojian Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Road, Wenzhou, Zhejiang, 325000, P.R. China.
| |
Collapse
|
10
|
Sadeghian M, Rahmani S, Khalesi S, Hejazi E. A review of fasting effects on the response of cancer to chemotherapy. Clin Nutr 2020; 40:1669-1681. [PMID: 33153820 DOI: 10.1016/j.clnu.2020.10.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/17/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Studies suggest that fasting before or during chemotherapy may induce differential stress resistance, reducing the adverse effects of chemotherapy and enhancing the efficacy of drugs. In this article, we review the effects of fasting, including intermittent, periodic, water-only short-term fasting, and caloric restriction on the responsiveness of tumor cells to cytotoxic drugs, their protective effect on normal cells, and possible mechanisms of action. METHODS We could not perform a systematic review due to the wide variation in the study population, design, dependent measures, and outcomes (eg, type of cancer, treatment variation, experimental setting, etc.). However, a systematic approach to search and review literature was used. The electronic databases PubMed (MEDLINE), Scopus, and Embase were searched up to July 2020. RESULTS Fasting potentially improves the response of tumor cells to chemotherapy by (1) repairing DNA damage in normal tissues (but not tumor cells); (2) upregulating autophagy flux as a protection against damage to organelles and some cancer cells; (3) altering apoptosis and increasing tumor cells' sensitivity to the apoptotic stimuli, and preventing apoptosis-mediated damage to normal cells; (4) depleting regulatory T cells and improving the stimulation of CD8 cells; and (5) accumulating unfolded proteins and protecting cancer cells from immune surveillance. We also discuss how 'fasting-mimicking diet' as a modified form of fasting enables patients to eat a low calorie, low protein, and low sugar diet while achieving similar metabolic outcomes of fasting. CONCLUSION This review suggests the potential benefits of fasting in combination with chemotherapy to reduce tumor progression and increase the effectiveness of chemotherapy. However, with limited human trials, it is not possible to generalize the findings from animal and in vitro studies. More human studies with adequate sample size and follow-ups are required to confirm these findings.
Collapse
Affiliation(s)
- Mehdi Sadeghian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Sepideh Rahmani
- Department of Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saman Khalesi
- Physical Activity Research Group, Appleton Institute & School of Health Medical and Applied Sciences, Central Queensland University, Brisbane, Australia
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
|
12
|
GRP78 and next generation cancer hallmarks: An underexplored molecular target in cancer chemoprevention research. Biochimie 2020; 175:69-76. [PMID: 32422159 DOI: 10.1016/j.biochi.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
Glucose regulated protein 78 (GRP 78), a master regulator of endoplasmic reticulum stress has been reported to be up regulated in various cancers and remains a crucial link between tumor glycolysis and tumor microenvironment. Overexpressed GRP78 has also shown to induce immune suppressive molecules and thereby tumor immune evasion. On the other hand emerging reports indicates that the next generation hallmarks viz., metabolic reprogramming and immune evasion, the two distinct processes are suggested to be fundamentally linked which is yet to be explored. Our concern is, if GRP78 is considered as a connecting link between these two different processes then targeting this triangle would be a promising approach in anticancer drug discovery. Lack of sufficient literature on this aspect represents GRP78 as an under explored target in anti-cancer research. The objective of this review is to provide a concise and integrated information on GRP78 and its association with tumor glycolysis and immune evasion which will revive and draw attention of the researchers to consider GRP78 as a potential drug target for cancer intervention and it also highlights few potential natural products investigated so far as GRP78 inhibitors.
Collapse
|
13
|
Nam SM, Jeon YJ. Proteostasis In The Endoplasmic Reticulum: Road to Cure. Cancers (Basel) 2019; 11:E1793. [PMID: 31739582 PMCID: PMC6895847 DOI: 10.3390/cancers11111793] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that is responsible for the biosynthesis, folding, maturation, stabilization, and trafficking of transmembrane and secretory proteins. Therefore, cells evolve protein quality-control equipment of the ER to ensure protein homeostasis, also termed proteostasis. However, disruption in the folding capacity of the ER caused by a large variety of pathophysiological insults leads to the accumulation of unfolded or misfolded proteins in this organelle, known as ER stress. Upon ER stress, unfolded protein response (UPR) of the ER is activated, integrates ER stress signals, and transduces the integrated signals to relive ER stress, thereby leading to the re-establishment of proteostasis. Intriguingly, severe and persistent ER stress and the subsequently sustained unfolded protein response (UPR) are closely associated with tumor development, angiogenesis, aggressiveness, immunosuppression, and therapeutic response of cancer. Additionally, the UPR interconnects various processes in and around the tumor microenvironment. Therefore, it has begun to be delineated that pharmacologically and genetically manipulating strategies directed to target the UPR of the ER might exhibit positive clinical outcome in cancer. In the present review, we summarize recent advances in our understanding of the UPR of the ER and the UPR of the ER-mitochondria interconnection. We also highlight new insights into how the UPR of the ER in response to pathophysiological perturbations is implicated in the pathogenesis of cancer. We provide the concept to target the UPR of the ER, eventually discussing the potential of therapeutic interventions for targeting the UPR of the ER for cancer treatment.
Collapse
Affiliation(s)
- Su Min Nam
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
14
|
Moore PC, Qi JY, Thamsen M, Ghosh R, Peng J, Gliedt MJ, Meza-Acevedo R, Warren RE, Hiniker A, Kim GE, Maly DJ, Backes BJ, Papa FR, Oakes SA. Parallel Signaling through IRE1α and PERK Regulates Pancreatic Neuroendocrine Tumor Growth and Survival. Cancer Res 2019; 79:6190-6203. [PMID: 31672843 DOI: 10.1158/0008-5472.can-19-1116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/03/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023]
Abstract
Master regulators of the unfolded protein response (UPR), IRE1α and PERK, promote adaptation or apoptosis depending on the level of endoplasmic reticulum (ER) stress. Although the UPR is activated in many cancers, its effects on tumor growth remain unclear. Derived from endocrine cells, pancreatic neuroendocrine tumors (PanNET) universally hypersecrete one or more peptide hormones, likely sensitizing these cells to high ER protein-folding stress. To assess whether targeting the UPR is a viable therapeutic strategy, we analyzed human PanNET samples and found evidence of elevated ER stress and UPR activation. Genetic and pharmacologic modulation of IRE1α and PERK in cultured cells, xenograft, and spontaneous genetic (RIP-Tag2) mouse models of PanNETs revealed that UPR signaling was optimized for adaptation and that inhibiting either IRE1α or PERK led to hyperactivation and apoptotic signaling through the reciprocal arm, thereby halting tumor growth and survival. These results provide a strong rationale for therapeutically targeting the UPR in PanNETs and other cancers with elevated ER stress. SIGNIFICANCE: The UPR is upregulated in pancreatic neuroendocrine tumors and its inhibition significantly reduces tumor growth in preclinical models, providing strong rationale for targeting the UPR in these cancers.
Collapse
Affiliation(s)
- Paul C Moore
- Department of Pathology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Jenny Y Qi
- Department of Pathology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Maike Thamsen
- Department of Pathology, University of California, San Francisco, San Francisco, California.,Department of Medicine, University of California, San Francisco, San Francisco, California.,Lung Biology Center, University of California, San Francisco, San Francisco, California.,California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California
| | - Rajarshi Ghosh
- Department of Pathology, University of California, San Francisco, San Francisco, California.,Department of Medicine, University of California, San Francisco, San Francisco, California.,Lung Biology Center, University of California, San Francisco, San Francisco, California.,California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California
| | - Justin Peng
- Department of Pathology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Micah J Gliedt
- Department of Medicine, University of California, San Francisco, San Francisco, California.,Lung Biology Center, University of California, San Francisco, San Francisco, California
| | - Rosa Meza-Acevedo
- Department of Pathology, University of California, San Francisco, San Francisco, California.,Department of Medicine, University of California, San Francisco, San Francisco, California.,Lung Biology Center, University of California, San Francisco, San Francisco, California.,California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California
| | - Rachel E Warren
- Department of Pathology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Annie Hiniker
- Department of Pathology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Diabetes Center, University of California, San Francisco, San Francisco, California
| | - Grace E Kim
- Department of Pathology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Bradley J Backes
- Department of Medicine, University of California, San Francisco, San Francisco, California.,Lung Biology Center, University of California, San Francisco, San Francisco, California
| | - Feroz R Papa
- Department of Pathology, University of California, San Francisco, San Francisco, California. .,Diabetes Center, University of California, San Francisco, San Francisco, California.,Department of Medicine, University of California, San Francisco, San Francisco, California.,Lung Biology Center, University of California, San Francisco, San Francisco, California.,California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California
| | - Scott A Oakes
- Department of Pathology, University of California, San Francisco, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Diabetes Center, University of California, San Francisco, San Francisco, California.,Department of Pathology, Biological Sciences Division, Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Talaat RM, Abo-Zeid TM, Abo-Elfadl MT, El-Maadawy EA, Hassanin MM. Combined Hyperthermia and Radiation Therapy for Treatment of Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2019; 20:2303-2310. [PMID: 31450899 PMCID: PMC6852830 DOI: 10.31557/apjcp.2019.20.8.2303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 11/27/2022] Open
Abstract
Background: There is no doubt that hyperthermia is one of the powerful radiosensitizers. Finding a proper mechanism working in hyperthermia/radiation combination is still pronounced challenge. Objectives: This study is focusing on the anti-cancer activities (anti-proliferative, anti-angiogenic and antiapoptotic) of thermoradiotherapy. Materials and Methods: Liver cancer cell line (HepG2) was treated by 37oC, 40oC and 43oC hyperthermia degrees combined with three radiation doses (2 Gy, 4 Gy and 8 Gy) for 24, 48 and 72 hrs. Cell viability, apoptotic/necrotic cell screening, apoptotic (BAX and FasL) and antiapoptotic (BCL-2 and GRP78) genes, and pro-angiogenic mediators [vascular endothelial- (VEGF) and Platelet derived-growth factors (PDGF) ware investigated. Results: Our data showed that 40oC temperature combined with 4 Gy radiation gives a significant decrease (p<0.05) in cell viability. Maximum cytotoxicity was reported 48 hr post-treatment followed by slight restoration of cell viability after 72 hr. Compared with untreated cells, only 5% of viable cells with a high percentage of apoptotic (31%) and necrotic (63%) cells were demonstrated in 40oC/4 Gy/48 hr group. Expression of pro-apoptotic genes (BAX and FasL) were increased after hyperthermia with apparent elevation in 40oC/4 Gy/48 hr group coincides with moderate expression of antiapoptotic BCL-2 and GRP78 genes. A significant reduction (p<0.001; p<0.05) in VEGF and PDGF levels; respectively was shown at 40oC/4 Gy/48 hr group. Conclusions: This pilot study proposed 40oC mild temperature hyperthermia as a favorable hyperthermal condition with 4 Gy radiotherapy in HCC treatment. A further research has to be performed considering an application of more than one session of radiothermal therapy at 40oC/4 Gy for total abrogation of cancer cells.
Collapse
Affiliation(s)
- Roba M Talaat
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt.
| | - Tamer M Abo-Zeid
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt.
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Center of Excellence for Advanced Sciences, National Research Center, Egypt
| | - Eman A El-Maadawy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt.
| | - Mona M Hassanin
- Egyptian Atomic Energy Authority, Department of Radioisotope, Cairo, Egypt
| |
Collapse
|
16
|
HHQ-4, a quinoline derivate, preferentially inhibits proliferation of glucose-deprived breast cancer cells as a GRP78 down-regulator. Toxicol Appl Pharmacol 2019; 373:10-25. [DOI: 10.1016/j.taap.2019.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 01/13/2023]
|
17
|
Cole DW, Svider PF, Shenouda KG, Lee PB, Yoo NG, McLeod TM, Mutchnick SA, Yoo GH, Kaufman RJ, Callaghan MU, Fribley AM. Targeting the unfolded protein response in head and neck and oral cavity cancers. Exp Cell Res 2019; 382:111386. [PMID: 31075256 DOI: 10.1016/j.yexcr.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Many FDA-approved anti-cancer therapies, targeted toward a wide array of molecular targets and signaling networks, have been demonstrated to activate the unfolded protein response (UPR). Despite a critical role for UPR signaling in the apoptotic execution of cancer cells by many of these compounds, the authors are currently unaware of any instance whereby a cancer drug was developed with the UPR as the intended target. With the essential role of the UPR as a driving force in the genesis and maintenance of the malignant phenotype, a great number of pre-clinical studies have surged into the medical literature describing the ability of dozens of compounds to induce UPR signaling in a myriad of cancer models. The focus of the current work is to review the literature and explore the role of the UPR as a mediator of chemotherapy-induced cell death in squamous cell carcinomas of the head and neck (HNSCC) and oral cavity (OCSCC), with an emphasis on preclinical studies.
Collapse
Affiliation(s)
- Daniel W Cole
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter F Svider
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kerolos G Shenouda
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Paul B Lee
- Oakland University William Beaumont School of Medicine, Rochester Hills, Michigan, USA
| | - Nicholas G Yoo
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Thomas M McLeod
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sean A Mutchnick
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - George H Yoo
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael U Callaghan
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA
| | - Andrew M Fribley
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA; Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
18
|
Bahar E, Kim JY, Yoon H. Chemotherapy Resistance Explained through Endoplasmic Reticulum Stress-Dependent Signaling. Cancers (Basel) 2019; 11:cancers11030338. [PMID: 30857233 PMCID: PMC6468910 DOI: 10.3390/cancers11030338] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
Cancers cells have the ability to develop chemotherapy resistance, which is a persistent problem during cancer treatment. Chemotherapy resistance develops through different molecular mechanisms, which lead to modification of the cancer cells signals needed for cellular proliferation or for stimulating an immune response. The endoplasmic reticulum (ER) is an important organelle involved in protein quality control, by promoting the correct folding of protein and ER-mediated degradation of unfolded or misfolded protein, namely, ER-associated degradation. Disturbances of the normal ER functions causes an accumulation of unfolded or misfolded proteins in the ER lumen, resulting in a condition called “ER stress (ERS).” ERS triggers the unfolded protein response (UPR)—also called the ERS response (ERSR)—to restore homeostasis or activate cell death. Although the ERSR is one emerging potential target for chemotherapeutics to treat cancer, it is also critical for chemotherapeutics resistance, as well. However, the detailed molecular mechanism of the relationship between the ERSR and tumor survival or drug resistance remains to be fully understood. In this review, we aim to describe the most vital molecular mechanism of the relationship between the ERSR and chemotherapy resistance. Moreover, the review also discusses the molecular mechanism of ER stress-mediated apoptosis on cancer treatments.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| | - Ji-Ye Kim
- Department of Pathology, College of Medicine, Yonsei University, Seoul 03722, Korea.
- Department of Pathology, Ilsan Paik Hospital, Inje University, Goyang 10381, Gyeonggi-do, Korea.
- Department of Pathology, National Cancer Center, Goyang 10408, Gyeonggi-do, Korea.
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| |
Collapse
|
19
|
Wong MY, DiChiara AS, Suen PH, Chen K, Doan ND, Shoulders MD. Adapting Secretory Proteostasis and Function Through the Unfolded Protein Response. Curr Top Microbiol Immunol 2018; 414:1-25. [PMID: 28929194 DOI: 10.1007/82_2017_56] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cells address challenges to protein folding in the secretory pathway by engaging endoplasmic reticulum (ER)-localized protective mechanisms that are collectively termed the unfolded protein response (UPR). By the action of the transmembrane signal transducers IRE1, PERK, and ATF6, the UPR induces networks of genes whose products alleviate the burden of protein misfolding. The UPR also plays instructive roles in cell differentiation and development, aids in the response to pathogens, and coordinates the output of professional secretory cells. These functions add to and move beyond the UPR's classical role in addressing proteotoxic stress. Thus, the UPR is not just a reaction to protein misfolding, but also a fundamental driving force in physiology and pathology. Recent efforts have yielded a suite of chemical genetic methods and small molecule modulators that now provide researchers with both stress-dependent and -independent control of UPR activity. Such tools provide new opportunities to perturb the UPR and thereby study mechanisms for maintaining proteostasis in the secretory pathway. Numerous observations now hint at the therapeutic potential of UPR modulation for diseases related to the misfolding and aggregation of ER client proteins. Growing evidence also indicates the promise of targeting ER proteostasis nodes downstream of the UPR. Here, we review selected advances in these areas, providing a resource to inform ongoing studies of secretory proteostasis and function as they relate to the UPR.
Collapse
Affiliation(s)
- Madeline Y Wong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Andrew S DiChiara
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Patreece H Suen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Ngoc-Duc Doan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA.
| |
Collapse
|
20
|
Kim C, Kim B. Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review. Nutrients 2018; 10:nu10081021. [PMID: 30081573 PMCID: PMC6115829 DOI: 10.3390/nu10081021] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second biggest cause of death worldwide. Despite a number of studies being conducted, the effective mechanism for treating cancer has not yet been fully understood. The tumor-microenvironment such as hypoxia, low nutrients could disturb function of endoplasmic reticulum (ER) to maintain cellular homeostasis, ultimately leading to the accumulation of unfolded proteins in ER, so-called ER stress. The ER stress has a close relation with cancer. ER stress initiates unfolded protein response (UPR) to re-establish ER homeostasis as an adaptive pathway in cancer. However, persistent ER stress triggers the apoptotic pathway. Therefore, blocking the adaptive pathway of ER stress or facilitating the apoptotic pathway could be an anti-cancer strategy. Recently, natural products and their derivatives have been reported to have anti-cancer effects via ER stress. Here, we address mechanisms of ER stress-mediated apoptosis and highlight strategies for cancer therapy by utilizing ER stress. Furthermore, we summarize anti-cancer activity of the natural products via ER stress in six major types of cancers globally (lung, breast, colorectal, gastric, prostate and liver cancer). This review deepens the understanding of ER stress mechanisms in major cancers as well as the suppressive impact of natural products against cancers via ER stress.
Collapse
Affiliation(s)
- Changmin Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
21
|
Ciavattini A, Delli Carpini G, Serri M, Tozzi A, Leoni F, Di Loreto E, Saccucci F. Unfolded protein response, a link between endometrioid ovarian carcinoma and endometriosis: A pilot study. Oncol Lett 2018; 16:5449-5454. [PMID: 30250617 DOI: 10.3892/ol.2018.9256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/28/2018] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to analyze the expression profile of unfolded protein response (UPR) genes in endometrioid ovarian carcinoma and to evaluate its possible involvement in the neoplastic progression of endometriosis. An experimental retrospective pilot study was conducted on women with a diagnosis of endometrioid ovarian carcinoma at FIGO stage IA, ovarian endometriotic cysts or healthy subjects without a previous diagnosis of endometriosis. The expression profiles of UPR genes (ATF6, GRP78, CHOP and XBP1) were compared among ovaries with endometrioid ovarian cancer, endometriotic ovarian cysts, healthy contralateral ovaries and eutopic and healthy endometrial tissues. A significantly higher expression of ATF6 and GRP78 was detected in the affected ovaries in comparison with the healthy contralateral ovaries, while CHOP and XBP1 exhibited a significantly lower expression. XBP1 was overexpressed in endometrial tissues and its expression gradually decreased in endometriosis cysts and endometrioid ovarian carcinoma. These results support the hypothesis that alterations in the UPR genes CHOP and XBP1 are involved in the neoplastic progression of endometrioid ovarian cancer and are acquired following ovarian localization of ectopic endometrial cells.
Collapse
Affiliation(s)
- Andrea Ciavattini
- Woman's Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Ancona I-60123, Italy
| | - Giovanni Delli Carpini
- Woman's Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Ancona I-60123, Italy
| | - Matteo Serri
- Woman's Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Ancona I-60123, Italy
| | - Alessandra Tozzi
- Woman's Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Ancona I-60123, Italy
| | - Francesca Leoni
- Department of Biochemistry, Biology and Genetics, Polytechnic University of Marche, Ancona I-60121, Italy
| | - Eugenia Di Loreto
- Woman's Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Ancona I-60123, Italy
| | - Franca Saccucci
- Department of Biochemistry, Biology and Genetics, Polytechnic University of Marche, Ancona I-60121, Italy
| |
Collapse
|
22
|
Mahanine drives pancreatic adenocarcinoma cells into endoplasmic reticular stress-mediated apoptosis through modulating sialylation process and Ca 2+-signaling. Sci Rep 2018; 8:3911. [PMID: 29500369 PMCID: PMC5834441 DOI: 10.1038/s41598-018-22143-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/16/2018] [Indexed: 11/19/2022] Open
Abstract
Endoplasmic reticulum (ER) stress results from protein unfolding/misfolding during cellular maturation, which requires a coordinated action of several chaperones and enzymes and Ca2+ signalling. ER-stress possibly has a positive effect on survival of pancreatic cancer cell. Therefore, detailed insights into this complex signaling network are urgently needed. Here, we systematically analyzed the impact of ER stress-mediated unfolded protein response (UPR) and Ca2+-signaling cross-talk for the survival of pancreatic adenocarcinoma (PDAC) cells. We observed enhanced ER activity and initiation of UPR signaling induced by a carbazole alkaloid (mahanine). This event triggers a time-dependent increase of intracellular Ca2+ leakage from ER and subsequently Ca2+ signaling induced by enhanced reactive oxygen species (ROS) produced by this pro-oxidant agent. In addition, we observed an altered glycosylation, in particular with regard to reduced linkage-specific sialic acids possibly due to decreased sialyltransferase activity. Changes in sialylation entailed enhanced expression of the ganglioside GD3 in the treated cells. GD3, an inducer of apoptosis, inhibited pancreatic xenograft tumor. Taken together, our study describes a molecular scenario how PDAC cells are driven into apoptosis by mahanine by UPR-driven ER stress-associated and ROS-mediated calcium signaling and possibly defective sialylation.
Collapse
|
23
|
Chiu WT, Chang HA, Lin YH, Lin YS, Chang HT, Lin HH, Huang SC, Tang MJ, Shen MR. Bcl -2 regulates store-operated Ca 2+ entry to modulate ER stress-induced apoptosis. Cell Death Discov 2018. [PMID: 29531834 PMCID: PMC5841437 DOI: 10.1038/s41420-018-0039-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ca2+ plays a significant role in linking the induction of apoptosis. The key anti-apoptotic protein, Bcl-2, has been reported to regulate the movement of Ca2+ across the ER membrane, but the exact effect of Bcl-2 on Ca2+ levels remains controversial. Store-operated Ca2+ entry (SOCE), a major mode of Ca2+ uptake in non-excitable cells, is activated by depletion of Ca2+ in the ER. Depletion of Ca2+ in the ER causes translocation of the SOC channel activator, STIM1, to the plasma membrane. Thereafter, STIM1 binds to Orai1 or/and TRPC1 channels, forcing them to open and thereby allow Ca2+ entry. In addition, several anti-cancer drugs have been reported to induce apoptosis of cancer cells via the SOCE pathway. However, the detailed mechanism underlying the regulation of SOCE by Bcl-2 is not well understood. In this study, a three-amino acid mutation within the Bcl-2 BH1 domain was generated to verify the role of Bcl-2 in Ca2+ handling during ER stress. The subcellular localization of the Bcl-2 mutant (mt) is similar to that in the wild-type Bcl-2 (WT) in the ER and mitochondria. We found that mt enhanced thapsigargin and tunicamycin-induced apoptosis through ER stress-mediated apoptosis but not through the death receptor- and mitochondria-dependent apoptosis, while WT prevented thapsigargin- and tunicamycin-induced apoptosis. In addition, mt depleted Ca2+ in the ER lumen and also increased the expression of SOCE-related molecules. Therefore, a massive Ca2+ influx via SOCE contributed to caspase activation and apoptosis. Furthermore, inhibiting SOCE or chelating either extracellular or intracellular Ca2+ inhibited mt-mediated apoptosis. In brief, our results explored the critical role of Bcl-2 in Ca2+ homeostasis and the modulation of ER stress.
Collapse
Affiliation(s)
- Wen-Tai Chiu
- 1Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701 Taiwan.,2Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Heng-Ai Chang
- 2Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Yi-Hsin Lin
- 1Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
| | - Yu-Shan Lin
- 2Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Hsiao-Tzu Chang
- 3Department of Pharmacology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Hsi-Hui Lin
- 4Department of Physiology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Soon-Cen Huang
- 5Department of Obstetrics and Gynecology, Chi Mei Medical Center, Liouying Campus, Tainan, 736 Taiwan
| | - Ming-Jer Tang
- 2Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701 Taiwan.,4Department of Physiology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Meng-Ru Shen
- 2Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701 Taiwan.,3Department of Pharmacology, National Cheng Kung University, Tainan, 701 Taiwan
| |
Collapse
|
24
|
Jain BP. An Overview of Unfolded Protein Response Signaling and Its Role in Cancer. Cancer Biother Radiopharm 2017; 32:275-281. [PMID: 29053418 DOI: 10.1089/cbr.2017.2309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Secretory and transmembrane proteins undergo post-translational modifications and folding in the subcellular organelle, that is, endoplasmic reticulum (ER) to become functionally active. Various factors such as high oxidative stress, low glucose, calcium imbalance, and viral infections interfere with the ER protein folding functions, leading to accumulation of unfolded and misfolded proteins that activate downstream signal transduction pathways, termed as unfolded protein response (UPR). This UPR signaling is adaptive and restored the normal function of cells by decreasing protein synthesis, increasing the folding capacity of ER and degradation of misfolded proteins. If the stress condition is overwhelmed, then UPR signaling shifts to apoptotic pathways. However, cancer cells utilized these UPR signaling for their survival and progression as an adaptive mechanism. In this review, the authors discuss about the overview of ER stress and subsequent UPR signaling and various aspects of cancer as survival, proliferation, and angiogenesis in relation to UPR. Understanding the UPR signaling in relation to cancer will be further helpful in designing therapeutics against cancer.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar , Motihari, India
| |
Collapse
|
25
|
Lewy TG, Grabowski JM, Bloom ME. BiP: Master Regulator of the Unfolded Protein Response and Crucial Factor in Flavivirus Biology
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:291-300. [PMID: 28656015 PMCID: PMC5482305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flaviviruses have an intimate relationship with their host cells, utilizing host proteins during replication. Much of viral genome replication and virion assembly occurs on and within the endoplasmic reticulum (ER). As a cellular protein folding hub, the ER provides an ideal environment for flaviviruses to replicate. Flaviviruses can interact with several ER processes, including the unfolded protein response (UPR), a cellular stress mechanism responsible for managing unfolded protein accumulation and ER stress. The UPR can alter the ER environment in several ways, including increasing ER volume and quantity of available chaperones, both of which can favor viral replication. BiP, a chaperone and master regulator of the UPR, has been demonstrated to play a key role in several flavivirus infections. Here we describe what is known in regard to BiP, its implicated role with flavivirus infection, and what remains to be discovered.
Collapse
Affiliation(s)
| | | | - Marshall E. Bloom
- To whom all correspondence should be addressed: Marshall E. Bloom, 903 S. 4th St, Hamilton, MT 59840, Tel: (406) 375-9707, Fax: (406) 375-9640, .
| |
Collapse
|
26
|
Rodvold JJ, Chiu KT, Hiramatsu N, Nussbacher JK, Galimberti V, Mahadevan NR, Willert K, Lin JH, Zanetti M. Intercellular transmission of the unfolded protein response promotes survival and drug resistance in cancer cells. Sci Signal 2017; 10:10/482/eaah7177. [PMID: 28588081 DOI: 10.1126/scisignal.aah7177] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased protein translation in cells and various factors in the tumor microenvironment can induce endoplasmic reticulum (ER) stress, which initiates the unfolded protein response (UPR). We have previously reported that factors released from cancer cells mounting a UPR induce a de novo UPR in bone marrow-derived myeloid cells, macrophages, and dendritic cells that facilitates protumorigenic characteristics in culture and tumor growth in vivo. We investigated whether this intercellular signaling, which we have termed transmissible ER stress (TERS), also operates between cancer cells and what its functional consequences were within the tumor. We found that TERS signaling induced a UPR in recipient human prostate cancer cells that included the cell surface expression of the chaperone GRP78. TERS also activated Wnt signaling in recipient cancer cells and enhanced resistance to nutrient starvation and common chemotherapies such as the proteasome inhibitor bortezomib and the microtubule inhibitor paclitaxel. TERS-induced activation of Wnt signaling required the UPR kinase and endonuclease IRE1. However, TERS-induced enhancement of cell survival was predominantly mediated by the UPR kinase PERK and a reduction in the abundance of the transcription factor ATF4, which prevented the activation of the transcription factor CHOP and, consequently, the induction of apoptosis. When implanted in mice, TERS-primed cancer cells gave rise to faster growing tumors than did vehicle-primed cancer cells. Collectively, our data demonstrate that TERS is a mechanism of intercellular communication through which tumor cells can adapt to stressful environments.
Collapse
Affiliation(s)
- Jeffrey J Rodvold
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Kevin T Chiu
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Nobuhiko Hiramatsu
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Julia K Nussbacher
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Valentina Galimberti
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Navin R Mahadevan
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | - Karl Willert
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jonathan H Lin
- Department of Pathology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Miura Y, Kaira K, Sakurai R, Imai H, Tomizawa Y, Sunaga N, Minato K, Hisada T, Oyama T, Yamada M. High expression of GRP78/BiP as a novel predictor of favorable outcomes in patients with advanced thymic carcinoma. Int J Clin Oncol 2017; 22:872-879. [DOI: 10.1007/s10147-017-1142-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/14/2017] [Indexed: 01/04/2023]
|
28
|
Corazzari M, Gagliardi M, Fimia GM, Piacentini M. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. Front Oncol 2017; 7:78. [PMID: 28491820 PMCID: PMC5405076 DOI: 10.3389/fonc.2017.00078] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
Perturbation of endoplasmic reticulum (ER) homeostasis results in a stress condition termed "ER stress" determining the activation of a finely regulated program defined as unfolded protein response (UPR) and whose primary aim is to restore this organelle's physiological activity. Several physiological and pathological stimuli deregulate normal ER activity causing UPR activation, such as hypoxia, glucose shortage, genome instability, and cytotoxic compounds administration. Some of these stimuli are frequently observed during uncontrolled proliferation of transformed cells, resulting in tumor core formation and stage progression. Therefore, it is not surprising that ER stress is usually induced during solid tumor development and stage progression, becoming an hallmark of such malignancies. Several UPR components are in fact deregulated in different tumor types, and accumulating data indicate their active involvement in tumor development/progression. However, although the UPR program is primarily a pro-survival process, sustained and/or prolonged stress may result in cell death induction. Therefore, understanding the mechanism(s) regulating the cell survival/death decision under ER stress condition may be crucial in order to specifically target tumor cells and possibly circumvent or overcome tumor resistance to therapies. In this review, we discuss the role played by the UPR program in tumor initiation, progression and resistance to therapy, highlighting the recent advances that have improved our understanding of the molecular mechanisms that regulate the survival/death switch.
Collapse
Affiliation(s)
- Marco Corazzari
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara, Italy.,Department Clinical Epidemiology and Translational Research, INMI-IRCCS "L. Spallanzani", Rome, Italy
| | - Mara Gagliardi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Gian Maria Fimia
- Department Clinical Epidemiology and Translational Research, INMI-IRCCS "L. Spallanzani", Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Mauro Piacentini
- Department Clinical Epidemiology and Translational Research, INMI-IRCCS "L. Spallanzani", Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
29
|
Abstract
A broad definition of preconditioning is "the preparation for a subsequent action." Mounting evidence demonstrates that novel remote preconditioning paradigms, in which protective stimuli experienced locally can capacitate systemic tolerance and enhanced cell viability upon exposure to ensuing cellular insults, have been largely successful in the field of cardiovascular ischemia/reperfusion injury. To ensure successful protective preconditioning, some models (including the uterus) have been demonstrated to activate the unfolded protein response (UPR), which is a cellular stress response controlled at the level of the endoplasmic reticulum. However, in the context of remote preconditioning, activation of these intracellular molecular pathways must result in the extracellular transmission of adaptive signals to remote targets. In our recently published manuscript, we have described the activation of the UPR in the pregnant uterine myocyte to be associated with increased uterine myocyte quiescence and normal gestational length. We hypothesize that ubiquitous uterine gestational stresses experienced in every pregnancy, which have been demonstrated in other systems to activate the UPR, may induce a robust paracrine dissemination of a uterine secretome, for example, glucose-regulated protein 78, with preconditioning-like properties. Furthermore, we speculate that the gestational stress-induced uterine secretome acts to promote both local and systemic tolerance to the ensuing gestational insults, allowing for the maintenance of uterine quiescence. In this context, preterm labor may be the result of a pregnant uterus experiencing a stress it cannot accommodate or when it is unable to host an appropriate UPR resulting in insufficient preconditioning and a diminished local and systemic capacity to tolerate pregnancy-dependent increases in normal gestational stress. This is highly attractive from a clinical viewpoint as we ultimately aim to identify local and systemic adaptations that may serve as preconditioning stimuli for use as a strategy to restore appropriate preconditioning profiles to prolong uterine quiescence in pregnancy.
Collapse
Affiliation(s)
- Judith Ingles
- 1 Department of Physiology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,2 Department of Obstetrics and Gynecology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Chandrashekara N Kyathanahalli
- 1 Department of Physiology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,2 Department of Obstetrics and Gynecology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Pancharatnam Jeyasuria
- 1 Department of Physiology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,2 Department of Obstetrics and Gynecology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,3 Perinatal Research Initiative Wayne State University School of Medicine, Wane State University, Detroit, MI, USA
| | - Jennifer C Condon
- 1 Department of Physiology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,2 Department of Obstetrics and Gynecology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA.,3 Perinatal Research Initiative Wayne State University School of Medicine, Wane State University, Detroit, MI, USA
| |
Collapse
|
30
|
Sun X, Wei Q, Cheng J, Bian Y, Tian C, Hu Y, Li H. Enhanced Stim1 expression is associated with acquired chemo-resistance of cisplatin in osteosarcoma cells. Hum Cell 2017; 30:216-225. [PMID: 28326487 PMCID: PMC5486860 DOI: 10.1007/s13577-017-0167-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor. Although cisplatin is the primary chemotherapy used in osteosarcoma treatment, the cisplatin resistance remains a big challenge for improving overall survival. The store-operated calcium (Ca2+) entry (SOCE) and its major mediator Stim1 have been shown to be implicated in a number of pathological processes typical for cancer. In this study, we showed that Stim1 expression was significantly increased in chemo-resistant osteosarcoma tissues compared with chemo-sensitivity tissues. Patients with Sitm1 expression exhibited poorer overall survival than Stim1-negative patients. Moreover, un-regulation of Stim1 expression and SOCE were also observed in cisplatin-resistant MG63/CDDP cells compared with their parental cells. Cisplatin treatment obviously reduced Stim1 expression and SOCE in cisplatin-sensitivity MG63 cells, but had no effects on MG63/CDDP cells. In addition, cisplatin resulted in a more pronounced increase of endoplasmic reticulum (ER) stress in MG63 cells than in their resistant variants, which was evidenced by the activation of molecular markers of ER stress, GRP78, CHOP and ATF4. Knockdown of Stim1 using siRNA remarkably enhanced cisplatin-induced apoptosis and ER stress in MG63/CDDP cells, thereby sensitizing cancer cells to cisplatin. On the other hand, overexpression of Stim1 markedly reversed apoptosis and ER stress following cisplatin treatment. Taken together, these results demonstrate that Stim1 as well as Ca2+ entry contributes cisplatin resistance via inhibition of ER stress-mediated apoptosis, and provide important clues to the mechanisms involved in cisplatin resistance for osteosarcoma treatment. Stim1 represents as a target of cisplatin and blockade of Stim1-mediated Ca2+ entry may be a useful strategy to improve the efficacy of cisplatin to treat osteosarcoma.
Collapse
Affiliation(s)
- Xilong Sun
- Department of Orthopaedics, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Qiang Wei
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Jie Cheng
- Department of Stomatology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Yanzhu Bian
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Congna Tian
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Yujing Hu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Huijie Li
- Department of Orthopedics, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Qiaoxi District, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
31
|
Cubillos-Ruiz JR, Mohamed E, Rodriguez PC. Unfolding anti-tumor immunity: ER stress responses sculpt tolerogenic myeloid cells in cancer. J Immunother Cancer 2017; 5:5. [PMID: 28105371 PMCID: PMC5240216 DOI: 10.1186/s40425-016-0203-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
Abstract
Established tumors build a stressful and hostile microenvironment that blocks the development of protective innate and adaptive immune responses. Different subsets of immunoregulatory myeloid populations, including dendritic cells, myeloid-derived suppressor cells (MDSCs) and macrophages, accumulate in the stressed tumor milieu and represent a major impediment to the success of various forms of cancer immunotherapy. Specific conditions and factors within tumor masses, including hypoxia, nutrient starvation, low pH, and increased levels of free radicals, provoke a state of “endoplasmic reticulum (ER) stress” in both malignant cells and infiltrating myeloid cells. In order to cope with ER stress, cancer cells and tumor-associated myeloid cells activate an integrated signaling pathway known as the Unfolded Protein Response (UPR), which promotes cell survival and adaptation under adverse environmental conditions. However, the UPR can also induce cell death under unresolved levels of ER stress. Three branches of the UPR have been described, including the activation of the inositol-requiring enzyme 1 (IRE1), the pancreatic ER kinase (PKR)-like ER kinase (PERK), and the activating transcription factor 6 (ATF6). In this minireview, we briefly discuss the role of ER stress and specific UPR mediators in tumor development, growth and metastasis. In addition, we describe how sustained ER stress responses operate as key mediators of chronic inflammation and immune suppression within tumors. Finally, we discuss multiple pharmacological approaches that overcome the immunosuppressive effect of the UPR in tumors, and that could potentially enhance the efficacy of cancer immunotherapies by reprogramming the function of tumor-infiltrating myeloid cells.
Collapse
Affiliation(s)
- Juan R Cubillos-Ruiz
- Weill Cornell Medicine, Department of Obstetrics & Gynecology, Sandra and Edward Meyer Cancer Center, 1300 York Ave, E-907, New York, NY 10065 USA
| | - Eslam Mohamed
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Room CN-4125A, Augusta, GA 30912 USA
| | - Paulo C Rodriguez
- Department of Medicine, Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Room CN-4114, Augusta, GA 30912 USA
| |
Collapse
|
32
|
Hussmann M, Janke K, Kranz P, Neumann F, Mersch E, Baumann M, Goepelt K, Brockmeier U, Metzen E. Depletion of the thiol oxidoreductase ERp57 in tumor cells inhibits proliferation and increases sensitivity to ionizing radiation and chemotherapeutics. Oncotarget 2016; 6:39247-61. [PMID: 26513173 PMCID: PMC4770770 DOI: 10.18632/oncotarget.5746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/08/2015] [Indexed: 12/21/2022] Open
Abstract
Rapidly growing tumor cells must synthesize proteins at a high rate and therefore depend on an efficient folding and quality control system for nascent secretory proteins in the endoplasmic reticulum (ER). The ER resident thiol oxidoreductase ERp57 plays an important role in disulfide bond formation. Lentiviral, doxycycline-inducible ERp57 knockdown was combined with irradiation and treatment with chemotherapeutic agents. The knockdown of ERp57 significantly enhanced the apoptotic response to anticancer treatment in HCT116 colon cancer cells via a p53-dependent mechanism. Instead of a direct interaction with p53, depletion of ERp57 induced cell death via a selective activation of the PERK branch of the Unfolded Protein Response (UPR). In contrast, apoptosis was reduced in MDA-MB-231 breast cancer cells harboring mutant p53. Nevertheless, we observed a strong reduction of proliferation in response to ERp57 knockdown in both cell lines regardless of the p53 status. Depletion of ERp57 reduced the phosphorylation activity of the mTOR-complex1 (mTORC1) as demonstrated by reduction of p70S6K phosphorylation. Our data demonstrate that ERp57 is a promising target for anticancer therapy due to synergistic p53-dependent induction of apoptosis and p53-independent inhibition of proliferation.
Collapse
Affiliation(s)
- Melanie Hussmann
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Kirsten Janke
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Philip Kranz
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Fabian Neumann
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Evgenija Mersch
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Melanie Baumann
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Kirsten Goepelt
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Ulf Brockmeier
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Eric Metzen
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| |
Collapse
|
33
|
Dadey DYA, Kapoor V, Khudanyan A, Urano F, Kim AH, Thotala D, Hallahan DE. The ATF6 pathway of the ER stress response contributes to enhanced viability in glioblastoma. Oncotarget 2016; 7:2080-92. [PMID: 26716508 PMCID: PMC4811517 DOI: 10.18632/oncotarget.6712] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
Therapeutic resistance is a major barrier to improvement of outcomes for patients with glioblastoma. The endoplasmic reticulum stress response (ERSR) has been identified as a contributor to chemoresistance in glioblastoma; however the contributions of the ERSR to radioresistance have not been characterized. In this study we found that radiation can induce ER stress and downstream signaling associated with the ERSR. Induction of ER stress appears to be linked to changes in ROS balance secondary to irradiation. Furthermore, we observed global induction of genes downstream of the ERSR in irradiated glioblastoma. Knockdown of ATF6, a regulator of the ERSR, was sufficient to enhance radiation induced cell death. Also, we found that activation of ATF6 contributes to the radiation-induced upregulation of glucose regulated protein 78 (GRP78) and NOTCH1. Our results reveal ATF6 as a potential therapeutic target to enhance the efficacy of radiation therapy.
Collapse
Affiliation(s)
- David Y A Dadey
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arpine Khudanyan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fumihiko Urano
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
34
|
Fu WM, Lu YF, Hu BG, Liang WC, Zhu X, Yang HD, Li G, Zhang JF. Long noncoding RNA Hotair mediated angiogenesis in nasopharyngeal carcinoma by direct and indirect signaling pathways. Oncotarget 2016; 7:4712-23. [PMID: 26717040 PMCID: PMC4826237 DOI: 10.18632/oncotarget.6731] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC), as a unique head and neck cancer type, is particularly prevalent in certain geographic areas such as eastern Asia. Until now, the therapeutic options have been restricted mainly to radiotherapy or chemotherapy. However, the clinical treatment effect remains unsatisfactory even if the combined radio-chemotherapies. Therefore, it is urgently needed to develop effective novel therapies against NPC. In this study, we discovered that lncRNA Hotair was extremely abundant in NPC cells and clinical NPC samples. Further studies showed that Hotair knockdown significantly attenuated both in vitro and in vivo tumor cell growth and angiogenesis. Our study also demonstrated that Hotair promoted angiogenesis through directly activating the transcription of angiogenic factor VEGFA as well as through GRP78-mediated upregulation of VEGFA and Ang2 expression. Therefore, Hotair may serve as a promising diagnostic marker and therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Wei-Ming Fu
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, P.R. China
| | - Ying-Fei Lu
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou 511458, P.R. China.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China
| | - Bao-Guang Hu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, P.R. China
| | - Wei-Cheng Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Xiao Zhu
- Guangdong Province Key Laboratory of Medical Molecular Diagnosis, Guangdong Medical College, Dong guan, 523808, P.R. China
| | - Hai-di Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Gang Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, P.R. China
| | - Jin-Fang Zhang
- School of Medicine, South China University of Technology, Guangzhou 511458, P.R. China.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, P.R. China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, P.R. China
| |
Collapse
|
35
|
NFκB activation demarcates a subset of hepatocellular carcinoma patients for targeted therapy. Cell Oncol (Dordr) 2016; 39:523-536. [DOI: 10.1007/s13402-016-0294-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2016] [Indexed: 12/16/2022] Open
|
36
|
Yang Y, Cheung HH, Tu J, Miu KK, Chan WY. New insights into the unfolded protein response in stem cells. Oncotarget 2016; 7:54010-54027. [PMID: 27304053 PMCID: PMC5288239 DOI: 10.18632/oncotarget.9833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/29/2016] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive mechanism to increase cell survival under endoplasmic reticulum (ER) stress conditions. The UPR is critical for maintaining cell homeostasis under physiological and pathological conditions. The vital functions of the UPR in development, metabolism and immunity have been demonstrated in several cell types. UPR dysfunction activates a variety of pathologies, including cancer, inflammation, neurodegenerative disease, metabolic disease and immune disease. Stem cells with the special ability to self-renew and differentiate into various somatic cells have been demonstrated to be present in multiple tissues. These cells are involved in development, tissue renewal and certain disease processes. Although the role and regulation of the UPR in somatic cells has been widely reported, the function of the UPR in stem cells is not fully known, and the roles and functions of the UPR are dependent on the stem cell type. Therefore, in this article, the potential significances of the UPR in stem cells, including embryonic stem cells, tissue stem cells, cancer stem cells and induced pluripotent cells, are comprehensively reviewed. This review aims to provide novel insights regarding the mechanisms associated with stem cell differentiation and cancer pathology.
Collapse
Affiliation(s)
- Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- The Chinese University of Hong Kong–Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - Hoi Hung Cheung
- The Chinese University of Hong Kong–Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - JiaJie Tu
- The Chinese University of Hong Kong–Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - Kai Kei Miu
- The Chinese University of Hong Kong–Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| | - Wai Yee Chan
- The Chinese University of Hong Kong–Shandong University Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, HKSAR, China
| |
Collapse
|
37
|
Maheshwari R, Pushpa K, Subramaniam K. A role for post-transcriptional control of endoplasmic reticulum dynamics and function in C. elegans germline stem cell maintenance. Development 2016; 143:3097-108. [PMID: 27510976 DOI: 10.1242/dev.134056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/21/2016] [Indexed: 01/02/2023]
Abstract
Membrane-bound receptors, which are crucial for mediating several key developmental signals, are synthesized on endoplasmic reticulum (ER). The functional integrity of ER must therefore be important for the regulation of at least some developmental programs. However, the developmental control of ER function is not well understood. Here, we identify the C. elegans protein FARL-11, an ortholog of the mammalian STRIPAK complex component STRIP1/2 (FAM40A/B), as an ER protein. In the C. elegans embryo, we find that FARL-11 is essential for the cell cycle-dependent morphological changes of ER and for embryonic viability. In the germline, FARL-11 is required for normal ER morphology and for membrane localization of the GLP-1/Notch receptor involved in germline stem cell (GSC) maintenance. Furthermore, we provide evidence that PUF-8, a key translational regulator in the germline, promotes the translation of farl-11 mRNA. These findings reveal that ER form and function in the C. elegans germline are post-transcriptionally regulated and essential for the niche-GSC signaling mediated by GLP-1.
Collapse
Affiliation(s)
- Richa Maheshwari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kumari Pushpa
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kuppuswamy Subramaniam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India Department of Biotechnology, Indian Institute of Technology - Madras, Chennai 600036, India
| |
Collapse
|
38
|
Ryan D, Carberry S, Murphy ÁC, Lindner AU, Fay J, Hector S, McCawley N, Bacon O, Concannon CG, Kay EW, McNamara DA, Prehn JHM. Calnexin, an ER stress-induced protein, is a prognostic marker and potential therapeutic target in colorectal cancer. J Transl Med 2016; 14:196. [PMID: 27369741 PMCID: PMC4930591 DOI: 10.1186/s12967-016-0948-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 06/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer mortality in the Western world and commonly treated with genotoxic chemotherapy. Stress in the endoplasmic reticulum (ER) was implicated to contribute to chemotherapeutic resistance. Hence, ER stress related protein may be of prognostic or therapeutic significance. METHODS The expression levels of ER stress proteins calnexin, calreticulin, GRP78 and GRP94 were determined in n = 23 Stage II and III colon cancer fresh frozen tumour and matched normal tissue samples. Data were validated in a cohort of n = 11 rectal cancer patients treated with radiochemotherapy in the neoadjuvant setting. The calnexin gene was silenced using siRNA in HCT116 cells. RESULTS There were no increased levels of ER stress proteins in tumour compared to matched normal tissue samples in Stage II or III CRC. However, increased calnexin protein levels were predictive of poor clinical outcome in the patient cohort. Data were validated in the rectal cancer cohort treated in the neoadjuvant setting. Calnexin gene-silencing significantly reduced cell survival and increased cancer cell susceptibility to 5FU chemotherapy. CONCLUSION Increased tumour protein levels of calnexin may be of prognostic significance in CRC, and calnexin may represent a potential target for future therapies.
Collapse
Affiliation(s)
- Deborah Ryan
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.,Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
| | - Steven Carberry
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Áine C Murphy
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Andreas U Lindner
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Joanna Fay
- Department of Pathology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Suzanne Hector
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Niamh McCawley
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.,Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
| | - Orna Bacon
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.,Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
| | - Caoimhin G Concannon
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.,Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | | | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
39
|
Millen R, Malaterre J, Cross RS, Carpinteri S, Desai J, Tran B, Darcy P, Gibbs P, Sieber O, Zeps N, Waring P, Fox S, Pereira L, Ramsay RG. Immunomodulation by MYB is associated with tumor relapse in patients with early stage colorectal cancer. Oncoimmunology 2016; 5:e1149667. [PMID: 27622014 PMCID: PMC5006930 DOI: 10.1080/2162402x.2016.1149667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 01/26/2023] Open
Abstract
The presence of tumor immune infiltrating cells (TILs), particularly CD8+ T-cells, is a robust predictor of outcome in patients with colorectal cancer (CRC). We revisited TIL abundance specifically in patients with microsatellite stable (MSS) CRC without evidence of lymph node or metastatic spread. Examination of the density of CD8+ T-cells in primary tumors in the context of other pro-oncogenic markers was performed to investigate potential regulators of TILs. Two independent cohorts of patients with MSS T2-4N0M0 CRC, enriched for cases with atypical relapse, were investigated. We quantified CD8+ and CD45RO+ -TILs, inflammatory markers, NFkBp65, pStat3, Cyclo-oxygenase-2 (COX2) and GRP78 as well as transcription factors (TF), β-catenin and MYB. High CD8+ TILs correlated with a better relapse-free survival in both cohorts (p = 0.002) with MYB and its target gene, GRP78 being higher in the relapse group (p = 0.001); no difference in pSTAT3 and p65 was observed. A mouse CRC (CT26) model was employed to evaluate the effect of MYB on GRP78 expression as well as T-cell infiltration. MYB over-expressing in CT26 cells increased GRP78 expression and the analysis of tumor-draining lymph nodes adjacent to tumors showed reduced T-cell activation. Furthermore, MYB over-expression reduced the efficacy of anti-PD-1 to modulate CT26 tumor growth. This high MYB and GRP78 show a reciprocal relationship with CD8+ TILs which may be useful refining the prediction of patient outcome. These data reveal a new immunomodulatory function for MYB suggesting a basis for further development of anti-GRP78 and/or anti-MYB therapies.
Collapse
Affiliation(s)
- Rosemary Millen
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne ,Victoria, Australia; St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Jordane Malaterre
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne ,Victoria, Australia
| | - Ryan S Cross
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne ,Victoria, Australia; The Department of Pathology, University of Melbourne, Melbourne Victoria, Australia
| | - Sandra Carpinteri
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne ,Victoria, Australia
| | - Jayesh Desai
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne ,Victoria, Australia; Royal Melbourne Hospital and Systems Biology and Personalised Medicine Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Ben Tran
- Royal Melbourne Hospital and Systems Biology and Personalised Medicine Division, Walter and Eliza Hall Institute , Parkville, Victoria, Australia
| | - Phillip Darcy
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne ,Victoria, Australia
| | - Peter Gibbs
- Royal Melbourne Hospital and Systems Biology and Personalised Medicine Division, Walter and Eliza Hall Institute , Parkville, Victoria, Australia
| | - Oliver Sieber
- Royal Melbourne Hospital and Systems Biology and Personalised Medicine Division, Walter and Eliza Hall Institute , Parkville, Victoria, Australia
| | - Nikolajs Zeps
- St John of God Subiaco Hospital, Subiaco, Western Australia, Australia; The School of Surgery, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Paul Waring
- The Department of Pathology, University of Melbourne , Melbourne Victoria, Australia
| | - Stephen Fox
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne ,Victoria, Australia
| | - Lloyd Pereira
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne ,Victoria, Australia
| | - Robert G Ramsay
- Peter MacCallum Cancer Center and The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne ,Victoria, Australia; The Department of Pathology, University of Melbourne, Melbourne Victoria, Australia
| |
Collapse
|
40
|
Melanoma and the Unfolded Protein Response. Cancers (Basel) 2016; 8:cancers8030030. [PMID: 26927180 PMCID: PMC4810114 DOI: 10.3390/cancers8030030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
The UPR (unfolded protein response) has been identified as a key factor in the progression and metastasis of cancers, notably melanoma. Several mediators of the UPR are upregulated in cancers, e.g., high levels of GRP78 (glucose-regulator protein 78 kDa) correlate with progression and poor outcome in melanoma patients. The proliferative burden of cancer induces stress and activates several cellular stress responses. The UPR is a tightly orchestrated stress response that is activated upon the accumulation of unfolded proteins within the ER (endoplasmic reticulum). The UPR is designed to mediate two conflicting outcomtes, recovery and apoptosis. As a result, the UPR initiates a widespread signaling cascade to return the cell to homeostasis and failing to achieve cellular recovery, initiates UPR-induced apoptosis. There is evidence that ER stress and subsequently the UPR promote tumourigenesis and metastasis. The complete role of the UPR has yet to be defined. Understanding how the UPR allows for adaption to stress and thereby assists in cancer progression is important in defining an archetype of melanoma pathology. In addition, elucidation of the mechanisms of the UPR may lead to development of effective treatments of metastatic melanoma.
Collapse
|
41
|
Ward AK, Mellor P, Smith SE, Kendall S, Just NA, Vizeacoumar FS, Sarker S, Phillips Z, Alvi R, Saxena A, Vizeacoumar FJ, Carlsen SA, Anderson DH. Epigenetic silencing of CREB3L1 by DNA methylation is associated with high-grade metastatic breast cancers with poor prognosis and is prevalent in triple negative breast cancers. Breast Cancer Res 2016; 18:12. [PMID: 26810754 PMCID: PMC4727399 DOI: 10.1186/s13058-016-0672-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background CREB3L1 (cAMP-responsive element-binding protein 3-like protein 1), a member of the unfolded protein response, has recently been identified as a metastasis suppressor in both breast and bladder cancer. Methods Quantitative real time PCR (qPCR) and immunoblotting were used to determine the impact of histone deacetylation and DNA methylation inhibitors on CREB3L1 expression in breast cancer cell lines. Breast cancer cell lines and tumor samples were analyzed similarly, and CREB3L1 gene methylation was determined using sodium bisulfite conversion and DNA sequencing. Immunohistochemistry was used to determine nuclear versus cytoplasmic CREB3L1 protein. Large breast cancer database analyses were carried out to examine relationships between CREB3L1 gene methylation and mRNA expression in addition to CREB3L1 mRNA expression and prognosis. Results This study demonstrates that the low CREB3L1 expression previously seen in highly metastatic breast cancer cell lines is caused in part by epigenetic silencing. Treatment of several highly metastatic breast cancer cell lines that had low CREB3L1 expression with DNA methyltransferase and histone deacetylase inhibitors induced expression of CREB3L1, both mRNA and protein. In human breast tumors, CREB3L1 mRNA expression was upregulated in low and medium-grade tumors, most frequently of the luminal and HER2 amplified subtypes. In contrast, CREB3L1 expression was repressed in high-grade tumors, and its loss was most frequently associated with triple negative breast cancers (TNBCs). Importantly, bioinformatics analyses of tumor databases support these findings, with methylation of the CREB3L1 gene associated with TNBCs, and strongly negatively correlated with CREB3L1 mRNA expression. Decreased CREB3L1 mRNA expression was associated with increased tumor grade and reduced progression-free survival. An immunohistochemistry analysis revealed that low-grade breast tumors frequently had nuclear CREB3L1 protein, in contrast to the high-grade breast tumors in which CREB3L1 was cytoplasmic, suggesting that differential localization may also regulate CREB3L1 effectiveness in metastasis suppression. Conclusions Our data further strengthens the role for CREB3L1 as a metastasis suppressor in breast cancer and demonstrates that epigenetic silencing is a major regulator of the loss of CREB3L1 expression. We also highlight that CREB3L1 expression is frequently altered in many cancer types suggesting that it could have a broader role in cancer progression and metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0672-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alison K Ward
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| | - Paul Mellor
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| | - Shari E Smith
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| | - Stephanie Kendall
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| | - Natasha A Just
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| | - Frederick S Vizeacoumar
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| | - Sabuj Sarker
- Epidemiology and Performance Measurement, Saskatchewan Cancer Agency, 4-2105 8th Street, Saskatoon, SK, S7H 0T8, Canada.
| | - Zoe Phillips
- Epidemiology and Performance Measurement, Saskatchewan Cancer Agency, 4-2105 8th Street, Saskatoon, SK, S7H 0T8, Canada.
| | - Riaz Alvi
- Epidemiology and Performance Measurement, Saskatchewan Cancer Agency, 4-2105 8th Street, Saskatoon, SK, S7H 0T8, Canada.
| | - Anurag Saxena
- Department of Pathology and Lab Medicine, Royal University Hospital, 2841 - 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada.
| | - Franco J Vizeacoumar
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada. .,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| | - Svein A Carlsen
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| | - Deborah H Anderson
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada. .,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
42
|
Feng J, Gong D, Fu X, Wu TT, Wang J, Chang J, Zhou J, Lu G, Wang Y, Sun R. M1 of Murine Gamma-Herpesvirus 68 Induces Endoplasmic Reticulum Chaperone Production. Sci Rep 2015; 5:17228. [PMID: 26615759 PMCID: PMC4663489 DOI: 10.1038/srep17228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
Viruses rely on host chaperone network to support their infection. In particular, the endoplasmic reticulum (ER) resident chaperones play key roles in synthesizing and processing viral proteins. Influx of a large amount of foreign proteins exhausts the folding capacity in ER and triggers the unfolded protein response (UPR). A fully-executed UPR comprises signaling pathways that induce ER folding chaperones, increase protein degradation, block new protein synthesis and may eventually activate apoptosis, presenting both opportunities and threats to the virus. Here, we define a role of the MHV-68M1 gene in differential modulation of UPR pathways to enhance ER chaperone production. Ectopic expression of M1 markedly induces ER chaperone genes and expansion of ER. The M1 protein accumulates in ER during infection and this localization is indispensable for its function, suggesting M1 acts from the ER. We found that M1 protein selectively induces the chaperon-producing pathways (IRE1, ATF6) while, interestingly, sparing the translation-blocking arm (PERK). We identified, for the first time, a viral factor capable of selectively intervening the initiation of ER stress signaling to induce chaperon production. This finding provides a unique opportunity of using viral protein as a tool to define the activation mechanisms of individual UPR pathways.
Collapse
Affiliation(s)
- Jiaying Feng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095.,Zhejiang University, Hangzhou, People's Republic of China
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095
| | - Xudong Fu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095.,Zhejiang University, Hangzhou, People's Republic of China
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095
| | - Jane Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095
| | - Jennifer Chang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095
| | - Jingting Zhou
- Zhejiang University, Hangzhou, People's Republic of China.,Department of Anesthesiology, University of California, Los Angeles, California 90095
| | - Gang Lu
- Department of Anesthesiology, University of California, Los Angeles, California 90095
| | - Yibin Wang
- Department of Anesthesiology, University of California, Los Angeles, California 90095
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095.,Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
43
|
Rodvold JJ, Mahadevan NR, Zanetti M. Immune modulation by ER stress and inflammation in the tumor microenvironment. Cancer Lett 2015; 380:227-36. [PMID: 26525580 DOI: 10.1016/j.canlet.2015.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 12/18/2022]
Abstract
It is now increasingly evident that the immune system represents a barrier to tumor emergence, growth, and recurrence. Although this idea was originally proposed almost 50 years ago as the "immune surveillance hypothesis", it is commonly recognized that, with few rare exceptions, tumor cells always prevail. Thus, one of the central unsolved paradoxes of tumor immunology is how a tumor escapes immune control, which is reflected in the lack of effective autochthonous or vaccine-induced anti-tumor T cell responses. In this review, we discuss the role of the endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) in the immunomodulation of myeloid cells and T cells. Specifically, we will discuss how the tumor cell UPR polarizes myeloid cells in a cell-extrinsic manner, and how in turn, thus polarized myeloid cells negatively affect T cell activation and clonal expansion.
Collapse
Affiliation(s)
- Jeffrey J Rodvold
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0815
| | - Navin R Mahadevan
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0815
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0815.
| |
Collapse
|
44
|
Mahdi AA, Rizvi SHM, Parveen A. Role of Endoplasmic Reticulum Stress and Unfolded Protein Responses in Health and Diseases. Indian J Clin Biochem 2015; 31:127-37. [PMID: 27069320 DOI: 10.1007/s12291-015-0502-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/12/2015] [Indexed: 12/24/2022]
Abstract
Endoplasmic reticulum (ER) is the site of protein synthesis, protein folding, maintainance of calcium homeostasis, synthesis of lipids and sterols. Genetic or environmental insults can alter its function generating ER stress. ER senses stress mainly by three stress sensor pathways, namely protein kinase R-like endoplasmic reticulum kinase-eukaryotic translation-initiation factor 2α, inositol-requiring enzyme 1α-X-box-binding protein 1 and activating transcription factor 6-CREBH, which induce unfolded protein responses (UPR) after the recognition of stress. Recent studies have demonstrated that ER stress and UPR signaling are involved in cancer, metabolic disorders, inflammatory diseases, osteoporosis and neurodegenerative diseases. However, the precise knowledge regarding involvement of ER stress in different disease processes is still debatable. Here we discuss the possible role of ER stress in various disorders on the basis of existing literature. An attempt has also been made to highlight the present knowledge of this field which may help to elucidate and conjure basic mechanisms and novel insights into disease processes which could assist in devising better future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, 226003 Uttar Pradesh India
| | | | - Arshiya Parveen
- Department of Biochemistry, King George's Medical University, Lucknow, 226003 Uttar Pradesh India
| |
Collapse
|
45
|
Tameire F, Verginadis II, Koumenis C. Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: Mechanisms and targets for therapy. Semin Cancer Biol 2015; 33:3-15. [PMID: 25920797 DOI: 10.1016/j.semcancer.2015.04.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
Abstract
A variety of cell intrinsic or extrinsic stresses evoke perturbations in the folding environment of the endoplasmic reticulum (ER), collectively known as ER stress. Adaptation to stress and re-establishment of ER homeostasis is achieved by activation of an integrated signal transduction pathway called the unfolded protein response (UPR). Both ER stress and UPR activation have been implicated in a variety of human cancers. Although at early stages or physiological conditions of ER stress, the UPR generally promotes survival, when the stress becomes more stringent or prolonged, its role can switch to a pro-cell death one. Here, we discuss historical and recent evidence supporting an involvement of the UPR in malignancy, describe the main mechanisms by which tumor cells overcome ER stress to promote their survival, tumor progression and metastasis and discuss the current state of efforts to develop therapeutic approaches of targeting the UPR.
Collapse
Affiliation(s)
- Feven Tameire
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Program in Cell and Molecular Biology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman University School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Kato H, Nishitoh H. Stress responses from the endoplasmic reticulum in cancer. Front Oncol 2015; 5:93. [PMID: 25941664 PMCID: PMC4403295 DOI: 10.3389/fonc.2015.00093] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/31/2015] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR). The UPR also contributes to the regulation of various intracellular signaling pathways such as calcium signaling and lipid signaling. More recently, the mitochondria-associated ER membrane (MAM), which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signaling, inflammatory signaling, the autophagic response, and the UPR. Interestingly, in cancer, these signaling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signaling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM.
Collapse
Affiliation(s)
- Hironori Kato
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki , Miyazaki , Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki , Miyazaki , Japan
| |
Collapse
|
47
|
The evolving paradigm of cell-nonautonomous UPR-based regulation of immunity by cancer cells. Oncogene 2015; 35:269-78. [PMID: 25893303 DOI: 10.1038/onc.2015.108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) has been thought to influence tumorigenesis mainly through cell-intrinsic, pro-survival effects. In recent years, however, new evidence has emerged showing that the UPR is also the source of cell-extrinsic effects, particularly directed at those immune cells within the tumor microenvironment. Here we will review and discuss this new body of information with focus on the role of cell-extrinsic effects on innate and adaptive immunity, suggesting that the transmission of ER stress from cancer cells to myeloid cells in particular is an expedient used by cancer cells to control the immune microenvironment, which acquires pro-inflammatory as well as immune-suppressive characteristics. These new findings can now be seen in the broader context of similar phenomena described in Caenorhabditis elegans, and an analogy with quorum sensing and 'community effects' in prokaryotes and eukaryotes can be drawn, arguing that a cell-nonautonomous UPR-based regulation of heterologous cells may be phylogenetically conserved. Finally, we will discuss the role of aneuploidy as an inducer of proteotoxic stress and potential initiator of cell-nonautonomous UPR-based regulation. In presenting these new views, we wish to bring attention to the cell-extrinsic regulation of tumor growth, including tumor UPR-based cell-nonautonomous signaling as a mechanism of maintaining tumor heterogeneity and resistance to therapy, and suggest therapeutically targeting such mechanisms within the tumor microenvironment.
Collapse
|
48
|
Rausch MP, Sertil AR. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity. Int Rev Immunol 2015; 34:104-22. [PMID: 25774773 DOI: 10.3109/08830185.2015.1018415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent clinical success of immunotherapy in the treatment of certain types of cancer has demonstrated the powerful ability of the immune system to control tumor growth, leading to significantly improved patient survival. However, despite these promising results current immunotherapeutic strategies are still limited and have not yet achieved broad acceptance outside the context of metastatic melanoma. The limitations of current immunotherapeutic approaches can be attributed in part to suppressive mechanisms present in the tumor microenvironment that hamper the generation of robust antitumor immune responses thus allowing tumor cells to escape immune-mediated destruction. The endoplasmic reticulum (ER) stress response has recently emerged as a potent regulator of tumor immunity. The ER stress response is an adaptive mechanism that allows tumor cells to survive in the harsh growth conditions inherent to the tumor milieu such as low oxygen (hypoxia), low pH and low levels of glucose. Activation of ER stress can also alter the cancer cell response to therapies. In addition, the ER stress response promotes tumor immune evasion by inducing the production of protumorigenic inflammatory cytokines and impairing tumor antigen presentation. However, the ER stress response can boost antitumor immunity in some situations by enhancing the processing and presentation of tumor antigens and by inducing the release of immunogenic factors from stressed tumor cells. Here, we discuss the dualistic role of the ER stress response in the modulation of tumor immunity and highlight how strategies to either induce or block ER stress can be employed to improve the clinical efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Matthew P Rausch
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona , Phoenix, AZ , USA
| | | |
Collapse
|
49
|
Glucose-regulated protein 78 mediates the therapeutic efficacy of 17-DMAG in colon cancer cells. Tumour Biol 2015; 36:4367-76. [PMID: 25618598 DOI: 10.1007/s13277-015-3076-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/08/2015] [Indexed: 02/02/2023] Open
Abstract
Glucose-regulated protein 78 (GRP78) is expressed as part of the molecular response to endoplasmic reticulum (ER) stress and mediates protein folding within the cell. GRP78 is also an important biomarker of cancer progression and the therapeutic response of patients with different cancer types. However, the role of GRP78 in the cytotoxic effect of 17-DMAG in colon cancer cells remains unclear. GRP78 expression was knocked down by small interfering RNA (siRNA). The anticancer effects of 17-DMAG were assessed by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a flow cytometric cell-cycle analysis, and an Annexin V-propidium iodide (PI) apoptotic assay. We found that HT-29 cells expressed a lower level of GRP78 compared with DLD-1 cells. The MTT assay revealed that HT-29 cells were more sensitive to 17-DMAG treatment than DLD-1 cells. GRP78 knock down (GRP78KD) cells demonstrated an increased sensitivity to 17-DMAG treatment compared with the scrambled control cells. Based on the cell-cycle analysis and Annexin V-PI apoptotic assay, apoptosis dramatically increased in GRP78KD cells compared with scrambled control DLD-1 cells after these cells were treated with 17-DMAG. Finally, we observed a decrease in the level of Bcl-2 and an increase in the levels of Bad and Bax in GRP78KD cells treated with 17-DMAG. These results are consistent with an increased sensitivity to 17-DMAG after knock down of GRP78. The level of GRP78 expression may determine the therapeutic efficacy of 17-DMAG against colon cancer cells.
Collapse
|
50
|
Wang H, Pezeshki AM, Yu X, Guo C, Subjeck JR, Wang XY. The Endoplasmic Reticulum Chaperone GRP170: From Immunobiology to Cancer Therapeutics. Front Oncol 2015; 4:377. [PMID: 25629003 PMCID: PMC4290550 DOI: 10.3389/fonc.2014.00377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/16/2014] [Indexed: 01/09/2023] Open
Abstract
Glucose-regulated protein 170 (GRP170) is the largest member of glucose-regulated protein family that resides in the endoplasmic reticulum (ER). As a component of the ER chaperone network, GRP170 assists in protein folding, assembly, and transportation of secretory or transmembrane proteins. The well documented cytoprotective activity of intracellular GRP170 due to its intrinsic chaperoning property has been shown to provide a survival benefit in cancer cells during tumor progression or metastasis. Accumulating evidence shows that extracellular GRP170 displays a superior capacity in delivering tumor antigens to specialized antigen-presenting cells for cross-presentation, resulting in generation of an anti-tumor immune response dependent on cytotoxic CD8+ T cells. This unique feature of GRP170 provides a molecular basis for using GRP170 as an immunostimulatory adjuvant to develop a recombinant vaccine for therapeutic immunization against cancers. This review summarizes the latest findings in understanding the biological effects of GRP170 on cell functions and tumor progression. The immunomodulating activities of GRP170 during interactions with the innate and adaptive arms of the immune system as well as its therapeutic applications in cancer immunotherapy will be discussed.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University , Richmond, VA , USA
| | - Abdul Mohammad Pezeshki
- Department of Human Molecular Genetics, Virginia Commonwealth University , Richmond, VA , USA
| | - Xiaofei Yu
- Department of Human Molecular Genetics, Virginia Commonwealth University , Richmond, VA , USA
| | - Chunqing Guo
- Department of Human Molecular Genetics, Virginia Commonwealth University , Richmond, VA , USA
| | - John R Subjeck
- Department of Cell Stress Biology, Roswell Park Cancer Institute , Buffalo, NY , USA
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University , Richmond, VA , USA ; Massey Cancer Center, Virginia Commonwealth University , Richmond, VA , USA ; Institute of Molecular Medicine, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|