1
|
Nachtigall EG, de C Myskiw J, Izquierdo I, Furini CRG. Cellular mechanisms of contextual fear memory reconsolidation: Role of hippocampal SFKs, TrkB receptors and GluN2B-containing NMDA receptors. Psychopharmacology (Berl) 2024; 241:61-73. [PMID: 37700085 DOI: 10.1007/s00213-023-06463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Memories are stored into long-term representations through a process that depends on protein synthesis. However, a consolidated memory is not static and inflexible and can be reactivated under certain circumstances, the retrieval is able to reactivate memories and destabilize them engaging a process of restabilization known as reconsolidation. Although the molecular mechanisms that mediate fear memory reconsolidation are not entirely known, so here we investigated the molecular mechanisms in the hippocampus involved in contextual fear conditioning memory (CFC) reconsolidation in male Wistar rats. We demonstrated that the blockade of Src family kinases (SFKs), GluN2B-containing NMDA receptors and TrkB receptors (TrkBR) in the CA1 region of the hippocampus immediately after the reactivation session impaired contextual fear memory reconsolidation. These impairments were blocked by the neurotrophin BDNF and the NMDAR agonist, D-Serine. Considering that the study of the link between synaptic proteins is crucial for understanding memory processes, targeting the reconsolidation process may provide new ways of disrupting maladaptive memories, such as those seen in post-traumatic stress disorder. Here we provide new insights into the cellular mechanisms involved in contextual fear memory reconsolidation, demonstrating that SFKs, GluN2B-containing NMDAR, and TrkBR are necessary for the reconsolidation process. Our findings suggest a link between BDNF and SFKs and GluN2B-containing NMDAR as well as a link between NMDAR and SFKs and TrkBR in fear memory reconsolidation. These preliminary pharmacological findings provide new evidence of the mechanisms involved in the reconsolidation of fear memory and have the potential to contribute to the development of treatments for psychiatric disorders involving maladaptive memories.
Collapse
Affiliation(s)
- Eduarda G Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, Porto Alegre, RS, 90610-000, Brazil
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil
| | - Jociane de C Myskiw
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, Porto Alegre, RS, 90610-000, Brazil.
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
2
|
Samhan-Arias AK, Poejo J, Marques-da-Silva D, Martínez-Costa OH, Gutierrez-Merino C. Hexa-Histidine, a Peptide with Versatile Applications in the Study of Amyloid-β(1-42) Molecular Mechanisms of Action. Molecules 2023; 28:7138. [PMID: 38067638 PMCID: PMC10708093 DOI: 10.3390/molecules28237909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Amyloid β (Aβ) oligomers are the most neurotoxic forms of Aβ, and Aβ(1-42) is the prevalent Aβ peptide found in the amyloid plaques of Alzheimer's disease patients. Aβ(25-35) is the shortest peptide that retains the toxicity of Aβ(1-42). Aβ oligomers bind to calmodulin (CaM) and calbindin-D28k with dissociation constants in the nanomolar Aβ(1-42) concentration range. Aβ and histidine-rich proteins have a high affinity for transition metal ions Cu2+, Fe3+ and Zn2+. In this work, we show that the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 can be used to monitor hexa-histidine peptide (His6) interaction with Aβ(1-42). The formation of His6/Aβ(1-42) complexes is also supported by docking results yielded by the MDockPeP Server. Also, we found that micromolar concentrations of His6 block the increase in the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 produced by its interaction with the proteins CaM and calbindin-D28k. In addition, we found that the His6-tag provides a high-affinity site for the binding of Aβ(1-42) and Aβ(25-35) peptides to the human recombinant cytochrome b5 reductase, and sensitizes this enzyme to inhibition by these peptides. In conclusion, our results suggest that a His6-tag could provide a valuable new tool to experimentally direct the action of neurotoxic Aβ peptides toward selected cellular targets.
Collapse
Affiliation(s)
- Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
3
|
Mahaman YAR, Huang F, Salissou MTM, Yacouba MBM, Wang JZ, Liu R, Zhang B, Li HL, Zhu F, Wang X. Ferulic Acid Improves Synaptic Plasticity and Cognitive Impairments by Alleviating the PP2B/DARPP-32/PP1 Axis-Mediated STEP Increase and Aβ Burden in Alzheimer's Disease. Neurotherapeutics 2023; 20:1081-1108. [PMID: 37079191 PMCID: PMC10457275 DOI: 10.1007/s13311-023-01356-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 04/21/2023] Open
Abstract
The burden of Alzheimer's disease, the most prevalent neurodegenerative disease, is increasing exponentially due to the increase in the elderly population worldwide. Synaptic plasticity is the basis of learning and memory, but it is impaired in AD. Uncovering the disease's underlying molecular pathogenic mechanisms involving synaptic plasticity could lead to the identification of targets for better disease management. Using primary neurons treated with Aβ and APP/PS1 animal models, we evaluated the effect of the phenolic compound ferulic acid (FA) on synaptic dysregulations. Aβ led to synaptic plasticity and cognitive impairments by increasing STEP activity and decreasing the phosphorylation of the GluN2B subunit of NMDA receptors, as well as decreasing other synaptic proteins, including PSD-95 and synapsin1. Interestingly, FA attenuated the Aβ-upregulated intracellular calcium and thus resulted in a decrease in PP2B-induced activation of DARPP-32, inhibiting PP1. This cascade event maintained STEP in its inactive state, thereby preventing the loss of GluN2B phosphorylation. This was accompanied by an increase in PSD-95 and synapsin1, improved LTP, and a decreased Aβ load, together leading to improved behavioral and cognitive functions in APP/PS1 mice treated with FA. This study provides insight into the potential use of FA as a therapeutic strategy in AD.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
- Cognitive Impairment Ward of the Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen, Guangdong Province, 518001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- College of Health, Natural and Agriculture Sciences, Africa University, Mutare, Zimbabwe
| | | | - Jian-Zhi Wang
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of the Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen, Guangdong Province, 518001, China.
| | - Xiaochuan Wang
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Chen H, Dong Y, Wu Y, Yi F. Targeting NMDA receptor signaling for therapeutic intervention in brain disorders. Rev Neurosci 2023:revneuro-2022-0096. [PMID: 36586105 DOI: 10.1515/revneuro-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/03/2022] [Indexed: 01/01/2023]
Abstract
N-Methyl-d-aspartate (NMDA) receptor hyperfunction plays a key role in the pathological processes of depression and neurodegenerative diseases, whereas NMDA receptor hypofunction is implicated in schizophrenia. Considerable efforts have been made to target NMDA receptor function for the therapeutic intervention in those brain disorders. In this mini-review, we first discuss ion flux-dependent NMDA receptor signaling and ion flux-independent NMDA receptor signaling that result from structural rearrangement upon binding of endogenous agonists. Then, we review current strategies for exploring druggable targets of the NMDA receptor signaling and promising future directions, which are poised to result in new therapeutic agents for several brain disorders.
Collapse
Affiliation(s)
- He Chen
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yuanping Dong
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yun Wu
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Feng Yi
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
5
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
6
|
Peng L, Fang X, Xu F, Liu S, Qian Y, Gong X, Zhao X, Ma Z, Xia T, Gu X. Amelioration of Hippocampal Insulin Resistance Reduces Tau Hyperphosphorylation and Cognitive Decline Induced by Isoflurane in Mice. Front Aging Neurosci 2021; 13:686506. [PMID: 34512303 PMCID: PMC8425557 DOI: 10.3389/fnagi.2021.686506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023] Open
Abstract
General anesthetics can induce cognitive impairments and increase the risk of Alzheimer’s disease (AD). However, the underlying mechanisms are still unknown. Our previous studies shown that long-term isoflurane exposure induced peripheral and central insulin resistance (IR) in adult mice and aggravated IR in type 2 diabetes mellitus (T2DM) mice. Clinical and preclinical studies revealed an association between impaired insulin signaling and tau pathology in AD and other tauopathies. We investigated if alleviation of hippocampal IR by the antidiabetic agent metformin could reduce tau hyperphosphorylation and cognitive decline induced by isoflurane in mice. The effects of prolonged (6 h) isoflurane anesthesia on hippocampal IR, hippocampal tau hyperphosphorylation, and hippocampus-dependent cognitive function were evaluated in wild type (WT) adult mice and the high-fat diet plus streptozotocin (HFD/STZ) mouse model of T2DM. Here we shown that isoflurane and HFD/STZ dramatically and synergistically induced hippocampal IR and fear memory impairment. Metformin pretreatment strongly ameliorated hippocampal IR and cognitive dysfunction caused by isoflurane in WT mice, but was less effective in T2DM mice. Isoflurane also induced hippocampal tau hyperphosphorylation and metformin reversed this effect. In addition, isoflurane significantly increased blood glucose levels in both adult and T2DM mice, and metformin reversed this effect as well. Administration of 25% glucose to metformin-pretreated mice induced hyperglycemia, but surprisingly did not reverse the benefits of metformin on hippocampal insulin signaling and fear memory following isoflurane anesthesia. Our findings show hippocampal IR and tau hyperphosphorylation contribute to acute isoflurane-induced cognitive dysfunction. Brief metformin treatment can mitigate these effects through a mechanism independent of glycemic control. Future studies are needed to investigate whether long-term metformin treatment can also prevent T2DM-induced hippocampal IR and cognitive decline.
Collapse
Affiliation(s)
- Liangyu Peng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xin Fang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Fangxia Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yue Qian
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xiangdan Gong
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xin Zhao
- Medical School of Nanjing University, Nanjing, China.,Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Tianjiao Xia
- Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Zhang L, Qin Z, Sharmin F, Lin W, Ricke KM, Zasloff MA, Stewart AFR, Chen HH. Tyrosine phosphatase PTP1B impairs presynaptic NMDA receptor-mediated plasticity in a mouse model of Alzheimer's disease. Neurobiol Dis 2021; 156:105402. [PMID: 34044147 DOI: 10.1016/j.nbd.2021.105402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in the beta-amyloid protein (APP) cause familial Alzheimer's disease. In hAPP-J20 mice expressing mutant APP, pharmacological inhibition or genetic ablation of the tyrosine phosphatase PTP1B prevents CA3 hippocampus neuron loss and cognitive decline. However, how targeting PTP1B affects the cellular mechanisms underlying these cognitive deficits remains unknown. Changes in synaptic strength at the hippocampus can affect information processing for learning and memory. While prior studies have focused on post-synaptic mechanisms to account for synaptic deficits in Alzheimer's disease models, presynaptic mechanisms may also be affected. Here, using whole cell patch-clamp recording, coefficient of variation (CV) analysis suggested a profound presynaptic deficit in long-term potentiation (LTP) of CA3:CA1 synapses in hAPP-J20 mice. While the membrane-impermeable ionotropic NMDA receptor (NMDAR) blocker norketamine in the post-synaptic recording electrode had no effect on LTP, additional bath application of the ionotropic NMDAR blockers MK801 could replicate the deficit in LTP in wild type mice. In contrast to LTP, the paired-pulse ratio and short-term facilitation (STF) were aberrantly increased in hAPP-J20 mice. These synaptic deficits in hAPP-J20 mice were associated with reduced phosphorylation of NMDAR GluN2B and the synaptic vesicle recycling protein NSF (N-ethylmaleimide sensitive factor). Phosphorylation of both proteins, together with synaptic plasticity and cognitive function, were restored by PTP1B ablation or inhibition by the PTP1B-selective inhibitor Trodusquemine. Taken together, our results indicate that PTP1B impairs presynaptic NMDAR-mediated synaptic plasticity required for spatial learning in a mouse model of Alzheimer's disease. Since Trodusquemine has undergone phase 1/2 clinical trials to treat obesity, it could be repurposed to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Li Zhang
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada
| | - Zhaohong Qin
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada
| | - Fariba Sharmin
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wei Lin
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada
| | - Konrad M Ricke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada
| | - Michael A Zasloff
- Georgetown University School of Medicine, MedStar Georgetown Transplant Institute, Washington, DC, 2007, USA
| | - Alexandre F R Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada.
| | - Hsiao-Huei Chen
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
8
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
9
|
Kim B, Jha S, Seo JH, Jeong CH, Lee S, Lee S, Seo YH, Park B. MeBib Suppressed Methamphetamine Self-Administration Response via Inhibition of BDNF/ERK/CREB Signal Pathway in the Hippocampus. Biomol Ther (Seoul) 2020; 28:519-526. [PMID: 32466633 PMCID: PMC7585641 DOI: 10.4062/biomolther.2020.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/23/2020] [Accepted: 05/09/2020] [Indexed: 02/01/2023] Open
Abstract
Methamphetamine (MA) is one of the most commonly abused drugs in the world by illegal drug users. Addiction to MA is a serious public health problem and effective therapies do not exist to date. It has also been reported that behavior induced by psychostimulants such as MA is related to histone deacetylase (HDAC). MeBib is an HDAC6 inhibitor derived from a benzimidazole scaffold. Many benzimidazole-containing compounds exhibit a wide range of pharmacological activity. In this study, we investigated whether HDAC6 inhibitor MeBib modulates the behavioral response in MA self-administered rats. Our results demonstrated that the number of active lever presses in MA self-administered rats was reduced by pretreatment with MeBib. In the hippocampus of rats, we also found MA administration promotes GluN2B, an NMDA receptor subunit, expression, which results in sequential activation of ERK/CREB/BDNF pathway, however, MeBib abrogated it. Collectively, we suggest that MeBib prevents the MA seeking response induced by MA administration and therefore, represents a potent candidate as an MA addiction inhibitor.
Collapse
Affiliation(s)
- Buyun Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sonam Jha
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
10
|
EphrinB/EphB Signaling Contributes to the Synaptic Plasticity of Chronic Migraine Through NR2B Phosphorylation. Neuroscience 2020; 428:178-191. [DOI: 10.1016/j.neuroscience.2019.12.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
|
11
|
More JY, Bruna BA, Lobos PE, Galaz JL, Figueroa PL, Namias S, Sánchez GL, Barrientos GC, Valdés JL, Paula-Lima AC, Hidalgo C, Adasme T. Calcium Release Mediated by Redox-Sensitive RyR2 Channels Has a Central Role in Hippocampal Structural Plasticity and Spatial Memory. Antioxid Redox Signal 2018; 29:1125-1146. [PMID: 29357673 DOI: 10.1089/ars.2017.7277] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Previous studies indicate that hippocampal synaptic plasticity and spatial memory processes entail calcium release from intracellular stores mediated by ryanodine receptor (RyR) channels. In particular, RyR-mediated Ca2+ release is central for the dendritic spine remodeling induced by brain-derived neurotrophic factor (BDNF), a neurotrophin that stimulates complex signaling pathways leading to memory-associated protein synthesis and structural plasticity. To examine if upregulation of ryanodine receptor type-2 (RyR2) channels and the spine remodeling induced by BDNF entail reactive oxygen species (ROS) generation, and to test if RyR2 downregulation affects BDNF-induced spine remodeling and spatial memory. RESULTS Downregulation of RyR2 expression (short hairpin RNA [shRNA]) in primary hippocampal neurons, or inhibition of nitric oxide synthase (NOS) or NADPH oxidase, prevented agonist-mediated RyR-mediated Ca2+ release, whereas BDNF promoted cytoplasmic ROS generation. RyR2 downregulation or inhibitors of N-methyl-d-aspartate (NMDA) receptors, or NOS or of NADPH oxidase type-2 (NOX2) prevented RyR2 upregulation and the spine remodeling induced by BDNF, as did incubation with the antioxidant agent N-acetyl l-cysteine. In addition, intrahippocampal injection of RyR2-directed antisense oligodeoxynucleotides, which caused significant RyR2 downregulation, caused conspicuous defects in a memorized spatial memory task. INNOVATION The present novel results emphasize the key role of redox-sensitive Ca2+ release mediated by RyR2 channels for hippocampal structural plasticity and spatial memory. CONCLUSION Based on these combined results, we propose (i) that BDNF-induced RyR2-mediated Ca2+ release and ROS generation via NOS/NOX2 are strictly required for the dendritic spine remodeling and the RyR2 upregulation induced by BDNF, and (ii) that RyR2 channel expression is crucial for spatial memory processes. Antioxid. Redox Signal. 29, 1125-1146.
Collapse
Affiliation(s)
- Jamileth Y More
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Barbara A Bruna
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pedro E Lobos
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Galaz
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula L Figueroa
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Silvia Namias
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina L Sánchez
- 2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Genaro C Barrientos
- 2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Valdés
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,3 Department of Neuroscience, Faculty of Medicine, Universidad de Chile , Santiago, Chile
| | - Andrea C Paula-Lima
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,4 Institute for Research in Dental Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile .,3 Department of Neuroscience, Faculty of Medicine, Universidad de Chile , Santiago, Chile .,5 Center for Exercise , Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,6 Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins , Santiago, Chile
| |
Collapse
|
12
|
Miranda M, Kent BA, Morici JF, Gallo F, Saksida LM, Bussey TJ, Weisstaub N, Bekinschtein P. NMDA receptors and BDNF are necessary for discrimination of overlapping spatial and non-spatial memories in perirhinal cortex and hippocampus. Neurobiol Learn Mem 2018; 155:337-343. [PMID: 30172952 DOI: 10.1016/j.nlm.2018.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/03/2018] [Accepted: 08/29/2018] [Indexed: 01/06/2023]
Abstract
Successful memory involves not only remembering information over time but also keeping memories distinct and less confusable. Discrimination of overlapping representations has been investigated in the dentate gyrus (DG) of the hippocampus and largely in the perirhinal cortex (Prh). In particular, the DG was shown to be important for discrimination of overlapping spatial memories and Prh was shown to be important for discrimination of overlapping object memories. In the present study, we used both a DG-dependent and a Prh-dependent task and manipulated the load of similarity between either spatial or object stimuli during information encoding. We showed that N-methyl-D-aspartate-type glutamate receptors (NMDAr) and BDNF participate of the same cellular network during consolidation of both overlapping object and spatial memories in the Prh and DG, respectively. This argues in favor of conserved cellular mechanisms across regions despite anatomical differences.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratory of Memory Research and Molecular Cognition, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación INECO - Universidad Favaloro, Buenos Aires, Argentina
| | - Brianne A Kent
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Juan Facundo Morici
- Laboratory of Memory Research and Molecular Cognition, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación INECO - Universidad Favaloro, Buenos Aires, Argentina
| | - Francisco Gallo
- Laboratory of Memory Research and Molecular Cognition, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación INECO - Universidad Favaloro, Buenos Aires, Argentina
| | - Lisa M Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK; Molecular Medicine Research Laboratories, Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; The Brain and Mind Institute, Western University, London, ON, Canada
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK; Molecular Medicine Research Laboratories, Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; The Brain and Mind Institute, Western University, London, ON, Canada
| | - Noelia Weisstaub
- Laboratory of Memory Research and Molecular Cognition, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación INECO - Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory Research and Molecular Cognition, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación INECO - Universidad Favaloro, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Ding S, Zhuge W, Yang J, Wen F, Xu Z, Wang X, Zhuge Q. Insulin Resistance Disrupts the Interaction Between AKT and the NMDA Receptor and the Inactivation of the CaMKIV/CREB Pathway in Minimal Hepatic Encephalopathy. Toxicol Sci 2017; 159:290-306. [PMID: 28505381 DOI: 10.1093/toxsci/kfx093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Hepatic cirrhosis-induced Minimal hepatic encephalopathy (MHE) has been characterized for cognitive dysfunction and central nervous system (CNS) insulin resistance (IR) has been acknowledged to be closely correlated with cognitive impairment while hepatic cirrhosis has been recognized to induce IR. Thus, this study aimed to investigate whether CNS IR occurred in MHE and induced MHE, as well as the underlying mechanism. We found IR in the MHE rats, an especially decreased level of the insulin receptor (InsR), and an increased serine phosphorylation of IRS1 in CNS. PI3K/AKT pathway signaling to the phosphorylation of N-Methyl-d-Aspartate receptors (NMDA receptors, NRs, NR1/NR2B) and downstream activation of the CaMKIV/CREB pathway and final production of neurotrophic factors were triggered by insulin, but impaired in the MHE rats. Additionally, CNS IR, memory impairment, the desensitization of the PI3K/AKT/NMDA receptor (NR)/CaMKIV/CREB pathway and decreased production of BDNF/NT3 in MHE rats were improved by rosiglitazone (RSG). These results suggested that IR, which induces the deficits in the insulin-mediated PI3K/AKT/NR/CaMKIV/CREB/neurotrophin pathway and subsequent memory decline, contributes to the pathogenesis of MHE.
Collapse
Affiliation(s)
- Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory
| | | | - Jianjing Yang
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Fangfang Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory
| | - Zhu Xu
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xuebao Wang
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Qichuan Zhuge
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| |
Collapse
|
14
|
Tsai KJ, Sze CI, Lin YC, Lin YJ, Hsieh TH, Lin CH. A Single Postnatal Dose of Dexamethasone Enhances Memory of Rat Pups Later in Life. PLoS One 2016; 11:e0165752. [PMID: 27798707 PMCID: PMC5087852 DOI: 10.1371/journal.pone.0165752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/09/2016] [Indexed: 11/22/2022] Open
Abstract
Postnatal dexamethasone (Dex) therapy is associated with adverse neurodevelopmental outcomes, which might be related to its timing of administration. We used time-dated pregnant Wistar albino rats, whose litters were divided into experimental (Dex) and control groups intraperitoneally administered one dose of Dex (0.5 mg/kg) or normal saline (NS), respectively, at either day 1 (P1) or 7 (P7). The magnitude of the contextual freezing response and performance on the Morris water maze were significantly higher in the Dex-P7 group than in those of the other groups at P56. Dendritic spine density, membranous expression of the N-methyl-d-aspartate receptor (NMDAR) subunit NR2A/2B, and postsynaptic density-95 (PSD-95) were significantly higher in the Dex-P7 group than in the other groups. Furthermore, cytosolic expression of nuclear factor kappa B (NF-κB) and phosphatidylinositol 3-kinase (PI3K) was significantly higher in the Dex group than in NS group. Moreover, Dex administration at P7 increased cell proliferation, neuronal differentiation, and the survival of newly born neurons in the dentate gyrus. These results suggest Dex at P7 enhances the acquisition of contextual fear and spatial memory later in life due to the modulation of the newly born neurons, increase in dendritic spine number, and NMDAR expression.
Collapse
Affiliation(s)
- Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-I Sze
- Department of Pathology and Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chieh Lin
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Jyh Lin
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Hui Hsieh
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chyi-Her Lin
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Won S, Incontro S, Nicoll RA, Roche KW. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61. Proc Natl Acad Sci U S A 2016; 113:E4736-44. [PMID: 27457929 PMCID: PMC4987792 DOI: 10.1073/pnas.1609702113] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation regulates surface and synaptic expression of NMDA receptors (NMDARs). Both the tyrosine kinase Fyn and the tyrosine phosphatase striatal-enriched protein tyrosine phosphatase (STEP) are known to target the NMDA receptor subunit GluN2B on tyrosine 1472, which is a critical residue that mediates NMDAR endocytosis. STEP reduces the surface expression of NMDARs by promoting dephosphorylation of GluN2B Y1472, whereas the synaptic scaffolding protein postsynaptic density protein 95 (PSD-95) stabilizes the surface expression of NMDARs. However, nothing is known about a potential functional interaction between STEP and PSD-95. We now report that STEP61 binds to PSD-95 but not to other PSD-95 family members. We find that PSD-95 expression destabilizes STEP61 via ubiquitination and degradation by the proteasome. Using subcellular fractionation, we detect low amounts of STEP61 in the PSD fraction. However, STEP61 expression in the PSD is increased upon knockdown of PSD-95 or in vivo as detected in PSD-95-KO mice, demonstrating that PSD-95 excludes STEP61 from the PSD. Importantly, only extrasynaptic NMDAR expression and currents were increased upon STEP knockdown, as is consistent with low STEP61 localization in the PSD. Our findings support a dual role for PSD-95 in stabilizing synaptic NMDARs by binding directly to GluN2B but also by promoting synaptic exclusion and degradation of the negative regulator STEP61.
Collapse
Affiliation(s)
- Sehoon Won
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Salvatore Incontro
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158; Department of Physiology, University of California, San Francisco, CA, 94158
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
16
|
Chen T, Zhang B, Li G, Chen L, Chen L. Simvastatin enhances NMDA receptor GluN2B expression and phosphorylation of GluN2B and GluN2A through increased histone acetylation and Src signaling in hippocampal CA1 neurons. Neuropharmacology 2016; 107:411-421. [PMID: 27016018 DOI: 10.1016/j.neuropharm.2016.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/25/2022]
Abstract
Simvastatin (SV) can improve cognitive deficits in Alzheimer's disease patients and mice. Herein, we report that the administration of SV (20 mg/kg) for 5 days in mice (SV-mice) or the treatment of slices with SV (10 μM) for 4 h (SV-slices) could increase the density of NMDA-evoked inward currents (INMDA) in hippocampal CA1 pyramidal cells, which were blocked by farnesol (FOH) that converts farnesyl pyrophosphate (FPP), but not geranylgeraniol (GGOH) that increases geranylgeranylpyrophosphate (GGPP). Sensitivity of INMDA to ifenprodil in SV-mice or SV-slices was significantly increased. The levels of hippocampal GluN2B and GluN2A or Src phosphorylation in SV-mice or SV-slices were higher than controls, which were sensitive to FOH. The Src inhibitor PP2 could inhibit the SV-enhanced phosphorylation of GluN2B and GluN2A and SV-augmented INMDA, but PI3K inhibitor LY294002 did not. The levels of GluN2B mRNA and protein were elevated in SV-mice, which was abolished by FOH, but not by GGOH or PP2. Furthermore, the histone H3K9 and H3K27 acetylation of GluN2B promoter was increased in SV-mice, which was suppressed by FOH rather than GGOH or PP2. In control mice and slices, the reduction of FPP by farnesyl transferase inhibitor could increase the levels of GluN2B expression, the histone H3K9 and H3K27 acetylation and enhance the phosphorylation of GluN2B, GluN2A and Src. The findings indicate that the administration of SV can enhance GluN2B expression and GluN2B and GluN2A phosphorylation leading to augmentation of NMDAR activity through reducing FPP to increase histone acetylation of GluN2B and Src signaling.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Reproductive Medicine, China; Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Baofeng Zhang
- State Key Laboratory of Reproductive Medicine, China; Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Guoxi Li
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, China; Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
17
|
Scholz-Starke J, Cesca F. Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS. Front Cell Neurosci 2016; 10:68. [PMID: 27013979 PMCID: PMC4789535 DOI: 10.3389/fncel.2016.00068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
The correct functioning of the nervous system depends on the exquisitely fine control of neuronal excitability and synaptic plasticity, which relies on an intricate network of protein-protein interactions and signaling that shapes neuronal homeostasis during development and in adulthood. In this complex scenario, Kinase D interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning (Kidins220/ARMS) acts as a multi-functional scaffold protein with preferential expression in the nervous system. Engaged in a plethora of interactions with membrane receptors, cytosolic signaling components and cytoskeletal proteins, Kidins220/ARMS is implicated in numerous cellular functions including neuronal survival, neurite outgrowth and maturation and neuronal activity, often in the context of neurotrophin (NT) signaling pathways. Recent studies have highlighted a number of cell- and context-specific roles for this protein in the control of synaptic transmission and neuronal excitability, which are at present far from being completely understood. In addition, some evidence has began to emerge, linking alterations of Kidins220 expression to the onset of various neurodegenerative diseases and neuropsychiatric disorders. In this review, we present a concise summary of our fragmentary knowledge of Kidins220/ARMS biological functions, focusing on the mechanism(s) by which it controls various aspects of neuronal activity. We have tried, where possible, to discuss the available evidence in the wider context of NT-mediated regulation, and to outline emerging roles of Kidins220/ARMS in human pathologies.
Collapse
Affiliation(s)
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
18
|
Efficacy of Continuous S(+)-Ketamine Infusion for Postoperative Pain Control: A Randomized Placebo-Controlled Trial. Anesthesiol Res Pract 2016; 2016:6918327. [PMID: 26949390 PMCID: PMC4755104 DOI: 10.1155/2016/6918327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/10/2016] [Indexed: 11/23/2022] Open
Abstract
Aim. A double-blind, randomized, placebo-controlled trial was designed to evaluate the efficacy of continuous intraoperative infusion of S(+)-ketamine under intravenous anesthesia with target-controlled infusion of remifentanil and propofol for postoperative pain control. Methods. Forty-eight patients undergoing laparoscopic cholecystectomy were assigned to receive continuous S(+)-ketamine infusion at a rate of 0.3 mg·kg−1·h−1 (n = 24, intervention group) or an equivalent volume of saline at the same rate (n = 24, placebo group). The same target-controlled intravenous anesthesia was induced in both groups. Pain was assessed using a 0 to 10 verbal numeric rating scale during the first 12 postoperative hours. Pain scores and morphine consumption were recorded in the postanesthesia care unit (PACU) and at 4 and 12 hours after surgery. Results. Pain scores were lower in the intervention group at all time points. Morphine consumption did not differ significantly between groups during PACU stay, but it was significantly lower in the intervention group at each time point after PACU discharge (P = 0.0061). At 12 hours after surgery, cumulative morphine consumption was also lower in the intervention group (5.200 ± 2.707) than in the placebo group (7.525 ± 1.872). Conclusions. Continuous S(+)-ketamine infusion during laparoscopic cholecystectomy under target-controlled intravenous anesthesia provided better postoperative pain control than placebo, reducing morphine requirement. Trial Registration. This trial is registered with ClinicalTrials.gov NCT02421913.
Collapse
|
19
|
Xia T, Cui Y, Chu S, Song J, Qian Y, Ma Z, Gu X. Melatonin pretreatment prevents isoflurane-induced cognitive dysfunction by modulating sleep-wake rhythm in mice. Brain Res 2015; 1634:12-20. [PMID: 26519752 DOI: 10.1016/j.brainres.2015.10.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/20/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Sleep plays an important role in memory processing. However, its role in anesthesia-induced cognitive dysfunction was not revealed. Our study sought to investigate the connection between the cognition decline and sleep-wake rhythm disorders after long-term isoflurane anesthesia in mice. Also, we examined the effect of exogenous melatonin pretreatment on both cognitive function and circadian rhythm. Furthermore, we discussed whether NR2B (N-methyl-D-aspartate receptor 2B subunit)-CREB (cAMP-response element binding protein) signaling pathway was involved in this course. METHODS 2-month-old male C57/BL-6J mice were submitted to long-term anesthesia using 1% isoflurane from CT (Circadian Time) 14 to CT20. Melatonin pretreatment were conducted before anesthesia for 7 Days. Intellicage for mice and Mini-Mitter were applied to monitor spatial memory and gross motor activity which can reflect cognition and sleep-wake rhythm. Messenger RNA and protein expression of right hippocampus NR2B and CREB were examined by RT-PCR and Western blot. RESULTS 6h isoflurane anesthesia led to impaired spatial memory from Day 3 to Day 10 in mice accompanied by the disruption of sleep-wake rhythm. Meanwhile, the hippocampus CREB and NR2B expression declined in step. Melatonin pretreatment ameliorated disturbed sleep-wake cycle, improved isoflurane-induced cognitive dysfunction, and reversed the down-regulation of CREB and NR2B expression. CONCLUSIONS Our data demonstrate that sleep-wake rhythm is involved in the isoflurane-induced cognition impairment and pretreatment of melatonin has a positive effect on circadian normalization and cognition reversal. Also, NR2B-CREB signaling pathway has a critical role in this process. This study provides us a new strategy for anesthesia-induced cognitive dysfunction therapy.
Collapse
Affiliation(s)
- Tianjiao Xia
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China.
| | - Yin Cui
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China.
| | - Shuaishuai Chu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China.
| | - Jia Song
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China.
| | - Yue Qian
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China.
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China.
| |
Collapse
|
20
|
Girdin phosphorylation is crucial for synaptic plasticity and memory: a potential role in the interaction of BDNF/TrkB/Akt signaling with NMDA receptor. J Neurosci 2015; 34:14995-5008. [PMID: 25378165 DOI: 10.1523/jneurosci.2228-14.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Synaptic plasticity in hippocampal neurons has been thought to represent a variety of memories. Although accumulating evidence indicates a crucial role of BDNF/TrkB/Akt signaling in the synaptic plasticity of the hippocampus, the mechanism by which Akt, a serine/threonine kinase, controls activity-dependent neuronal plasticity remains unclear. Girdin (also known as APE, GIV, and HkRP1), an actin-binding protein involved both in the remodeling of the actin cytoskeleton and in cell migration, has been identified as a substrate of Akt. Previous studies have demonstrated that deficit of neuronal migration in the hippocampus of Girdin-deficient (Girdin(-/-)) mice is independent on serine phosphorylation of Girdin at S1416 (Girdin S1416) by Akt. In the present study, we focused on the role of Girdin S1416 phosphorylation in BDNF/TrkB/Akt signaling associated with synaptic plasticity. We found that Girdin in the hippocampus was phosphorylated at S1416 in an activity-dependent manner. Phosphorylation-deficient knock-in mice (Girdin(SA/SA) mice), in which S1416 is replaced with alanine, exhibited shrinkage of spines, deficit of hippocampal long-term potentiation, and memory impairment. These phenotypes of Girdin(SA/SA) mice resembled those of Girdin(+/-) mice, which have 50% loss of Girdin expression. Furthermore, Girdin interacted with Src kinase and NR2B subunit of NMDA receptor, leading to phosphorylation of the NR2B subunit and NMDA receptor activation. Our findings suggest that Girdin has two different functions in the hippocampus: Akt-independent neuronal migration and Akt-dependent NR2B phosphorylation through the interaction with Src, which is associated with synaptic plasticity in the hippocampus underlying memory formation.
Collapse
|
21
|
Regulation of synaptic plasticity and cognition by SUMO in normal physiology and Alzheimer's disease. Sci Rep 2014; 4:7190. [PMID: 25448527 PMCID: PMC4250909 DOI: 10.1038/srep07190] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/31/2014] [Indexed: 11/15/2022] Open
Abstract
Learning and memory and the underlying cellular correlate, long-term synaptic plasticity, involve regulation by posttranslational modifications (PTMs). Here we demonstrate that conjugation with the small ubiquitin-like modifier (SUMO) is a novel PTM required for normal synaptic and cognitive functioning. Acute inhibition of SUMOylation impairs long-term potentiation (LTP) and hippocampal-dependent learning. Since Alzheimer's disease (AD) prominently features both synaptic and PTM dysregulation, we investigated SUMOylation under pathology induced by amyloid-β (Aβ), a primary neurotoxic molecule implicated in AD. We observed that SUMOylation is dysregulated in both human AD brain tissue and the Tg2576 transgenic AD mouse model. While neuronal activation normally induced upregulation of SUMOylation, this effect was impaired by Aβ42 oligomers. However, supplementing SUMOylation via transduction of its conjugating enzyme, Ubc9, rescued Aβ-induced deficits in LTP and hippocampal-dependent learning and memory. Our data establish SUMO as a novel regulator of LTP and hippocampal-dependent cognition and additionally implicate SUMOylation impairments in AD pathogenesis.
Collapse
|
22
|
Galinato MH, Orio L, Mandyam CD. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus. Neuroscience 2014; 286:97-108. [PMID: 25463524 DOI: 10.1016/j.neuroscience.2014.11.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/25/2014] [Accepted: 11/08/2014] [Indexed: 01/05/2023]
Abstract
Methamphetamine exposure reduces hippocampal long-term potentiation (LTP) and neurogenesis and these alterations partially contribute to hippocampal maladaptive plasticity. The potential mechanisms underlying methamphetamine-induced maladaptive plasticity were identified in the present study. Expression of brain-derived neurotrophic factor (BDNF; a regulator of LTP and neurogenesis), and its receptor tropomyosin-related kinase B (TrkB) were studied in the dorsal and ventral hippocampal tissue lysates in rats that intravenously self-administered methamphetamine in a limited access (1h/day) or extended access (6h/day) paradigm for 17days post baseline sessions. Extended access methamphetamine enhanced expression of BDNF with significant effects observed in the dorsal and ventral hippocampus. Methamphetamine-induced enhancements in BDNF expression were not associated with TrkB receptor activation as indicated by phospho (p)-TrkB-706 levels. Conversely, methamphetamine produced hypophosphorylation of N-methyl-d-aspartate (NMDA) receptor subunit 2B (GluN2B) at Tyr-1472 in the ventral hippocampus, indicating reduced receptor activation. In addition, methamphetamine enhanced expression of anti-apoptotic protein Bcl-2 and reduced pro-apoptotic protein Bax levels in the ventral hippocampus, suggesting a mechanism for reducing cell death. Analysis of Akt, a pro-survival kinase that suppresses apoptotic pathways and pAkt at Ser-473 demonstrated that extended access methamphetamine reduces Akt expression in the ventral hippocampus. These data reveal that alterations in Bcl-2 and Bax levels by methamphetamine were not associated with enhanced Akt expression. Given that hippocampal function and neurogenesis vary in a subregion-specific fashion, where dorsal hippocampus regulates spatial processing and has higher levels of neurogenesis, whereas ventral hippocampus regulates anxiety-related behaviors, these data suggest that methamphetamine self-administration initiates distinct allostatic changes in hippocampal subregions that may contribute to the altered synaptic activity in the hippocampus, which may underlie enhanced negative affective symptoms and perpetuation of the addiction cycle.
Collapse
Affiliation(s)
- M H Galinato
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92037, USA
| | - L Orio
- Departamento de Psicobiología, Facultad Psicología, Universidad Complutense de Madrid, Campus Somosaguas, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - C D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Knox R, Brennan-Minnella AM, Lu F, Yang D, Nakazawa T, Yamamoto T, Swanson RA, Ferriero DM, Jiang X. NR2B phosphorylation at tyrosine 1472 contributes to brain injury in a rodent model of neonatal hypoxia-ischemia. Stroke 2014; 45:3040-7. [PMID: 25158771 DOI: 10.1161/strokeaha.114.006170] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE The NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor is phosphorylated by the Src family kinase Fyn in brain, with tyrosine (Y) 1472 as the major phosphorylation site. Although Y1472 phosphorylation is important for synaptic plasticity, it is unknown whether it is involved in NMDA receptor-mediated excitotoxicity in neonatal brain hypoxia-ischemia (HI). This study was designed to elucidate the specific role of Y1472 phosphorylation of NR2B in neonatal HI in vivo and in NMDA-mediated neuronal death in vitro. METHODS Neonatal mice with a knockin mutation of Y1472 to phenylalanine (YF-KI) and their wild-type littermates were subjected to HI using the Vannucci model. Brains were scored 5 days later for damage using cresyl violet and iron staining. Western blotting and immunoprecipitation were performed to determine NR2B tyrosine phosphorylation. Expression of NADPH oxidase subunits and superoxide production were measured in vivo. NMDA-induced calcium response, superoxide formation, and cell death were evaluated in primary cortical neurons. RESULTS After neonatal HI, YF-KI mice have reduced expression of NADPH oxidase subunit gp91phox and p47phox and superoxide production, lower activity of proteases implicated in necrotic and apoptotic cell death, and less brain damage when compared with the wild-type mice. In vitro, YF-KI mutation diminishes superoxide generation in response to NMDA without effect on calcium accumulation and inhibits NMDA and glutamate-induced cell death. CONCLUSIONS Upregulation of NR2B phosphorylation at Y1472 after neonatal HI is involved in superoxide-mediated oxidative stress and contributes to brain injury.
Collapse
Affiliation(s)
- Renatta Knox
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Angela M Brennan-Minnella
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Fuxin Lu
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Diana Yang
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Takanobu Nakazawa
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Tadashi Yamamoto
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Raymond A Swanson
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Donna M Ferriero
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Xiangning Jiang
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.).
| |
Collapse
|
24
|
Hippocampal NR2B-containing NMDA receptors enhance long-term potentiation in rats with chronic visceral pain. Brain Res 2014; 1570:43-53. [DOI: 10.1016/j.brainres.2014.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/13/2014] [Accepted: 05/02/2014] [Indexed: 02/06/2023]
|
25
|
Liu X, Liu Y, Zhang J, Zhang W, Sun YE, Gu X, Ma Z. Intrathecal administration of roscovitine prevents remifentanil-induced postoperative hyperalgesia and decreases the phosphorylation of N-methyl-D-aspartate receptor and metabotropic glutamate receptor 5 in spinal cord. Brain Res Bull 2014; 106:9-16. [PMID: 24769228 DOI: 10.1016/j.brainresbull.2014.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022]
Abstract
N-methyl-D-aspartate receptor (NMDAR) and metabotropic glutamate receptor 5 (mGluR5) play an important role in nociceptive processing and central sensitization. Our previous study showed that tyrosine phosphorylation of NMDAR subunit 2B (NR2B) at Tyr1472 in spinal dorsal horn contributes to the postoperative hyperalgesia induced by remifentanil. Cyclin-dependent kinase 5 (Cdk5) has been implicated in synaptic plasticity, learning, memory and pain signaling via regulating the phosphorylation of NMDAR and mGluR5. In the present study, a rat model of postoperative pain was used to investigate the role of Cdk5 in spinal dorsal horn in remifentanil-induced hyperalgesia and the intervention of pretreatment with Cdk5 inhibitor roscovitine. Intraoperative infusion of remifentanil (0.04 mg/kg, subcutaneous) significantly enhanced mechanical allodynia and thermal hyperalgesia induced by plantar incision during the postoperative period (each lasting between 2 h and 48 h), which were attenuated by pretreatment with roscovitine. Correlated with the pain behavior changes, Western blotting revealed that there was a significant increase in the expression of Cdk5 and its activator p35/p25, and further the kinase activity of Cdk5 in spinal dorsal horn after intraoperative infusion of remifentanil. The phosphorylation of NR2A at Ser1232, the phosphorylation of NR2B at Tyr1472 and the phosphorylation of mGluR5 at Ser1167 were also significantly up-regulated. Furthermore, these increases were attenuated by pretreatment with roscovitine. These results suggested that Cdk5 may contribute to remifentanil-induced postoperative hyperalgesia via regulating the phosphorylation of NMDAR and mGluR5 in spinal dorsal horn. These findings provide experimental evidence for the further application of Cdk5 inhibitor in preventing remifentanil-induced hyperalgesia.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Juan Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yu-E Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
26
|
Takagi N, Besshoh S, Marunouchi T, Takeo S, Tanonaka K. Metabotropic glutamate receptor 5 activation enhances tyrosine phosphorylation of the N-methyl-D-aspartate (NMDA) receptor and NMDA-induced cell death in hippocampal cultured neurons. Biol Pharm Bull 2013. [PMID: 23207774 DOI: 10.1248/bpb.b12-00691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of group I metabotropic glutamate receptors (mGluRs), which are coupled with Gq-protein, initiates a variety physiological responses in different types of cells. While Gq-protein-coupled receptors can upregulate N-methyl-D-aspartate (NMDA) receptor function, group I mGluR-mediated regulations of NMDA receptor function are not fully understood. To determine biochemical roles of group I mGluRs in the regulation of the NMDA receptor, we have investigated changes in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B induced by a selective mGluR5 agonist, (RS)-chloro-5-hydroxyphenylglycine (CHPG) in hippocampal neuronal cultures. Activation of mGluR5 by CHPG increased active-forms of Src. CHPG also enhanced tyrosine phosphorylation of NR2A and NR2B in hippocampal neuronal cultures. In addition, NMDA-induced cell death was enhanced by CHPG-induced mGluR5 stimulation at the concentration, which increased tyrosine phosphorylation of Src and NR2A/2B but did not induce cell death. This effect was inhibited by selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). The results suggest that in hippocampal neurons, mGluR5 may regulate NMDA receptor activity, involving tyrosine phosphorylation of NR2A and NR2B and may be involved in NMDA receptor-mediated cell injury.
Collapse
Affiliation(s)
- Norio Takagi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo 192–0392, Japan.
| | | | | | | | | |
Collapse
|
27
|
Snyder MA, Gao WJ. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci 2013; 7:31. [PMID: 23543703 PMCID: PMC3608949 DOI: 10.3389/fncel.2013.00031] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/11/2013] [Indexed: 01/05/2023] Open
Abstract
Schizophrenia is a disabling mental illness that is now recognized as a neurodevelopmental disorder. It is likely that genetic risk factors interact with environmental perturbations to affect normal brain development and that this altered trajectory results in a combination of positive, negative, and cognitive symptoms. Although the exact pathophysiology of schizophrenia is unknown, the N-methyl-D-aspartate receptor (NMDAR), a major glutamate receptor subtype, has received great attention. Proper expression and regulation of NMDARs in the brain is critical for learning and memory processes as well as cortical plasticity and maturation. Evidence from both animal models and human studies implicates a dysfunction of NMDARs both in disease progression and symptoms of schizophrenia. Furthermore, mutations in many of the known genetic risk factors for schizophrenia suggest that NMDAR hypofunction is a convergence point for schizophrenia. In this review, we discuss how disrupted NMDAR function leads to altered neurodevelopment that may contribute to the progression and development of symptoms for schizophrenia, particularly cognitive deficits. We review the shared signaling pathways among the schizophrenia susceptibility genes DISC1, neuregulin1, and dysbindin, focusing on the AKT/GSK3β pathway, and how their mutations and interactions can lead to NMDAR dysfunction during development. Additionally, we explore what open questions remain and suggest where schizophrenia research needs to move in order to provide mechanistic insight into the cause of NMDAR dysfunction, as well as generate possible new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa A Snyder
- Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA
| | | |
Collapse
|
28
|
Xu L, Pan Y, Zhu Q, Gong S, Tao J, Xu GY, Jiang X. Arcuate Src activation-induced phosphorylation of NR2B NMDA subunit contributes to inflammatory pain in rats. J Neurophysiol 2012; 108:3024-33. [DOI: 10.1152/jn.01047.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The tyrosine kinases of Src family play an important role in the central sensitization following peripheral inflammation. However, whether the Src family in the arcuate nucleus (ARC) of mediobasal hypothalamus is involved in central sensitization remains unknown. The aim of this study was to investigate the role and mechanisms of tyrosine kinases of Src family in N-methyl-d-aspartate (NMDA) receptor activity in the ARC following peripheral inflammation. Peripheral inflammation was induced by unilateral injection of complete Freund's adjuvant (CFA) into rat hindpaw. The neuronal activities of the ARC were recorded using electrophysiological field recording from the in vitro mediobasal hypothalamic slices from control and CFA rats. Expression of total and phosphorylated Src and NR2B subunit protein was analyzed by Western blot and immuoprecipitation. Our results showed that CFA injection resulted in an increase in mechanical and thermal sensitivity, which was partially blocked by neonatal monosodium glutamate treatment. CFA injection also enhanced spontaneous firings of ARC neurons, which were reversed by the NMDA receptor NR2B subunit specific antagonist Ro25–6981 and by PP2, an Src family tyrosine kinase inhibitor. In addition, peripheral inflammation enhanced Src phosphorylation and NMDA receptor NR2B subunit phosphorylation without alteration of total NR2B subunit expression in the ARC. Peripheral inflammation also increased the association of NR2B protein with p-Src protein in the ARC. Administration of PP2 blocked the upregulation of NR2B phosphorylation induced by CFA injection. Taken together, our present results suggest that the arcuate Src activation-induced tyrosine phosphorylation of NR2B NMDA subunit may contribute to inflammatory pain.
Collapse
Affiliation(s)
- Longsheng Xu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
- First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Yanyan Pan
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Qi Zhu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Shan Gong
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Jin Tao
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China; and
| | - Xinghong Jiang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Neurobiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
29
|
Nebieridze N, Zhang XL, Chachua T, Velíšek L, Stanton PK, Velíšková J. β-Estradiol unmasks metabotropic receptor-mediated metaplasticity of NMDA receptor transmission in the female rat dentate gyrus. Psychoneuroendocrinology 2012; 37:1845-54. [PMID: 22541715 PMCID: PMC3432293 DOI: 10.1016/j.psyneuen.2012.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/13/2012] [Accepted: 03/26/2012] [Indexed: 02/08/2023]
Abstract
Loss of estrogen in women following menopause is associated with increased risk for cognitive decline, dementia and depression, all of which can be prevented by estradiol replacement. The dentate gyrus plays an important role in cognition, learning and memory. The gatekeeping function of the dentate gyrus to filter incoming activity into the hippocampus is modulated by estradiol in a frequency-dependent manner and involves activation of metabotropic glutamate receptors (mGluR). In the present study, we investigated whether estradiol (EB) modulates the metaplastic effect of inducing synaptic long-term potentiation (LTP) on subsequent propensity for expression of LTP in the dentate gyrus. At medial perforant path-dentate granule cell synapses in hippocampal slices of ovariectomized female rats, EB replacement was critical for an initial induction of LTP to enhance the magnitude of subsequent LTP elicited by a second high-frequency stimulation, metaplasticity, which was not present in slices from oil-treated control animals. EB enhanced expression of group I mGluRs, and the metaplastic effect of EB on LTP required activation of group I mGluRs that led to Src-family tyrosine kinase-mediated phosphorylation of NR2B subunits of N-methyl-d-aspartate receptors (NMDAR) that enhanced the magnitude of NMDAR-dependent LTP. Our data show that EB effects on LTP in the hippocampal dentate gyrus require activation of group I mGluRs, which in turn leads to functional metaplastic regulation of NR2B subunit-containing NMDARs, as opposed to direct effects of EB on NMDARs.
Collapse
Affiliation(s)
- Nino Nebieridze
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Xiao-lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Tamar Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA,Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Patric K. Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA,Department of Neurology, New York Medical College, Valhalla, New York, USA
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA,Department of Obstetrics & Gynecology, New York Medical College, Valhalla, New York, USA,Correspondence: Jana Velíšková, MD, PhD, New York Medical College, Department of Cell Biology & Anatomy, Basic Medical Sciences Bldg., Room #A21, Valhalla, NY 10595, USA, , Phone: (914) 594-4840, Fax: (914) 594-4653
| |
Collapse
|
30
|
Takagi N, Besshoh S, Marunouchi T, Takeo S, Tanonaka K. Effects of metabotropic glutamate mGlu5 receptor antagonist on tyrosine phosphorylation of NMDA receptor subunits and cell death in the hippocampus after brain ischemia in rats. Neurosci Lett 2012; 530:91-6. [PMID: 23022504 DOI: 10.1016/j.neulet.2012.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/08/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
Tyrosine phosphorylation of the N-methyl-D-aspartate (NMDA) receptor appears to be associated with the regulation of the receptor's ion channel. This study focused on the effect of a metabotropic glutamate mGlu5 receptor antagonist on tyrosine phosphorylation of NMDA receptor subunits and cell death in the hippocampal CA1 region after transient global ischemia and sought to explore their mechanisms. Pretreatment with the mGlu5 receptor antagonist reduced cell death in the hippocampal CA1 region on day 3 after the transient ischemia. Transient ischemia increased the tyrosine phosphorylation of NMDA receptor subunits, which are a major target of Src family tyrosine kinases. Therefore, we investigated the effect of the antagonist on tyrosine phosphorylation of the NMDA receptor subunits after transient ischemia. Tyrosine phosphorylation of the NR2A subunit, but not that of the NR2B one, was inhibited by the mGlu5 receptor antagonist. The administration of the antagonist also attenuated the increase in the amount of active form of Src after the reperfusion. We further demonstrated that the administration of a Src-family kinase inhibitor prevented cell death in the hippocampal CA1 region and attenuated the increase in the tyrosine phosphorylation of the NMDA receptor subunits after the reperfusion. These findings suggest that mGlu5 receptor in the hippocampal CA1 region after transient ischemia is involved in the activation of Src and subsequent tyrosine phosphorylation of NMDA receptor subunits, which actions may contribute to alterations of properties of the NMDA receptor and may be related to pathogenic events leading to neuronal cell death.
Collapse
Affiliation(s)
- Norio Takagi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | |
Collapse
|
31
|
Sun F, Sun JD, Han N, Li CJ, Yuan YH, Zhang DM, Chen NH. Polygalasaponin F induces long-term potentiation in adult rat hippocampus via NMDA receptor activation. Acta Pharmacol Sin 2012; 33:431-7. [PMID: 22286914 DOI: 10.1038/aps.2011.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM To investigate the effect and underlying mechanisms of polygalasaponin F (PGSF), a triterpenoid saponin isolated from Polygala japonica, on long-term potentiation (LTP) in hippocampus dentate gyrus (DG) of anesthetized rats. METHODS Population spike (PS) of hippocampal DG was recorded in anesthetized male Wistar rats. PGSF, the NMDAR inhibitor MK801 and the CaMKII inhibitor KN93 were intracerebroventricularly administered. Western blotting analysis was used to examine the phosphorylation expressions of NMDA receptor subunit 2B (NR2B), Ca(2+)/calmodulin-dependent kinase II (CaMKII), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB). RESULTS Intracerebroventricular administration of PGSF (1 and 10 μmol/L) produced long-lasting increase of PS amplitude in hippocampal DG in a dose-dependent manner. Pre-injection of MK801 (100 μmol/L) or KN93 (100 μmol/L) completely blocked PGSF-induced LTP. Furthermore, the phosphorylation of NR2B, CaMKII, ERK, and CREB in hippocampus was significantly increased 5-60 min after LTP induction. The up-regulation of p-CaMKII expression could be completely abolished by pre-injection of MK801. The up-regulation of p-ERK and p-CREB expressions could be partially blocked by pre-injection of KN93. CONCLUSION PGSF could induce LTP in hippocampal DG in anesthetized rats via NMDAR activation mediated by CaMKII, ERK and CREB signaling pathway.
Collapse
|
32
|
Zheng Y, Cui S, Liu Y, Zhang J, Zhang W, Zhang J, Gu X, Ma Z. Dexmedetomidine prevents remifentanil-induced postoperative hyperalgesia and decreases spinal tyrosine phosphorylation of N-methyl-d-aspartate receptor 2B subunit. Brain Res Bull 2012; 87:427-31. [DOI: 10.1016/j.brainresbull.2012.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 12/19/2022]
|
33
|
Li Z, Pang L, Fang F, Zhang G, Zhang J, Xie M, Wang L. Resveratrol attenuates brain damage in a rat model of focal cerebral ischemia via up-regulation of hippocampal Bcl-2. Brain Res 2012; 1450:116-24. [PMID: 22410291 DOI: 10.1016/j.brainres.2012.02.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 01/25/2023]
Abstract
A number of studies have demonstrated that resveratrol (Res), a natural polyphenol compound found in plants, shows potent neuroprotective, anti-inflammatory and antioxidant effects; however, its ability to prevent ischemia-induced brain damage remains unclear. Here we tested whether Res played a neuroprotective role in a rat brain ischemia model induced by middle cerebral artery occlusion (MCAO). Adult male rats were randomly assigned into four experimental groups: sham operation (sham), ischemia treatment (MCAO), Res-treated MCAO (Res+MCAO) and Res alone group (Res+sham). The brain damage size and hippocampal apoptotic neurons in each rat were evaluated by triphenyltetrazolium chloride (TTC) staining and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) staining, respectively. Long-term potentiation (LTP) induced by high-frequency stimulation (HFS) in the hippocampus was assessed with extracellular recording. The expression of apoptosis-related proteins, i.e., Bcl-2 and Bax, in the hippocampus was detected by western blot. Our results revealed that Res treatment significantly reduced brain infarct volume of MCAO rats as compared to MCAO rats without Res treatment. A significant increase in TUNEL-positive neurons in the hippocampal CA1 region was visualized in the MCAO rats as compared to that of the sham group, but this increase was attenuated with Res treatment. Functionally, extracellular recordings revealed that MCAO operation impaired LTP in the hippocampal CA1 region and the basal synaptic transmission between the Schaffer collaterals, whereas Res treatment rescued the impaired LTP and facilitated synaptic transmission in the CA1 region of the MCAO rats. Res treatment increased the expression of anti-apoptotic protein Bcl-2 and decreased the expression of pro-apoptotic protein Bax in the MCAO rats. The findings suggest that Res can attenuate the deleterious effects of focal cerebral ischemia/reperfusion-induced brain injury and function as a potential neuroprotective agent. The neuroprotective qualities of Res, based on our data, may be attributable to the up-regulation of Bcl-2 expression and down-regulation of Bax expression.
Collapse
Affiliation(s)
- Zhen Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Effects of Electroacupuncture on N-Methyl-D-aspartate Receptor-Related Signaling Pathway in the Spinal Cord of Normal Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:492471. [PMID: 22454669 PMCID: PMC3290892 DOI: 10.1155/2012/492471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/29/2011] [Accepted: 10/26/2011] [Indexed: 11/27/2022]
Abstract
This study examined the influence of the N-methyl-D-aspartate receptor (NMDAR) on the
modulation of related spinal signaling after electroacupuncture (EA) treatment in normal
rats. Bilateral 2 Hz EA stimulations (1-2-3.0 mA) were delivered at acupoints corresponding to Zusanli (ST36) and Sanyinjiao (SP6) in men for 30 min. Thermal sensitization was strongly inhibited by EA, but this analgesia was reduced by preintrathecal injection of the NMDAR antagonist, MK801. Phosphorylation of the NMDAR NR2B subunit, cAMP response element-binding protein (CREB), and especially phosphatidylinositol 3-kinase (PI3K) were significantly induced by EA. However, these marked phosphorylations were not observed in MK801-pretreated rats. EA analgesia was reduced by preintrathecal injection with the calcium chelators Quin2 and TMB8, similar to the results evident using MK801. Phosphorylation of PI3K and CREB induced by EA was also inhibited by TMB8. Calcium influx by NMDAR activation may play an important role in EA analgesia of normal rats through the modulation of the phosphorylation of spinal PI3K and CREB.
Collapse
|
35
|
Salter MW, Pitcher GM. Dysregulated Src upregulation of NMDA receptor activity: a common link in chronic pain and schizophrenia. FEBS J 2011; 279:2-11. [PMID: 21985289 DOI: 10.1111/j.1742-4658.2011.08390.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Upregulation of N-methyl-D-aspartate (NMDA) receptor function by the nonreceptor protein tyrosine kinase Src has been implicated in physiological plasticity at glutamatergic synapses. Here, we highlight recent findings suggesting that aberrant Src upregulation of NMDA receptors may also be key in pathophysiological conditions. Within the nociceptive processing network in the dorsal horn of the spinal cord, pathologically increased Src upregulation of NMDA receptors is critical for pain hypersensitivity in models of chronic inflammatory and neuropathic pain. On the other hand, in the hippocampus and prefrontal cortex, the physiological upregulation of NMDA receptors by Src is blocked by neuregulin 1-ErbB4 signaling, a pathway that is genetically implicated in the positive symptoms of schizophrenia. Thus, either over-upregulation or under-upregulation of NMDA receptors by Src may lead to pathological conditions in the central nervous system. Therefore, normalizing Src upregulation of NMDA receptors may be a novel therapeutic approach for central nervous system disorders, without the deleterious consequences of directly blocking NMDA receptors.
Collapse
Affiliation(s)
- Michael W Salter
- Program in Neurosciences & Mental Health, the Hospital for Sick Children, Toronto, ON, Canada.
| | | |
Collapse
|
36
|
Snyder MA, Cooke BM, Woolley CS. Estradiol potentiation of NR2B-dependent EPSCs is not due to changes in NR2B protein expression or phosphorylation. Hippocampus 2011; 21:398-408. [PMID: 20082293 DOI: 10.1002/hipo.20756] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hormone, 17β-estradiol (E2), influences the structure and function of synapses in the CA1 region of the hippocampus. E2 increases the density of dendritic spines and excitatory synapses on CA1 pyramidal cells, increases CA1 cells' sensitivity to excitatory synaptic input mediated by the NMDA receptor (NMDAR), enhances NMDAR-dependent long-term potentiation, and improves hippocampus-dependent working memory. Smith and McMahon (2006 J Neurosci 26:8517-8522) reported that the larger NMDAR-mediated excitatory postsynaptic currents (EPSCs) recorded after E2 treatment are due primarily to an increased contribution of NR2B-containing NMDARs. We used a combination of electrophysiology, Western blot, and immunofluorescence to investigate two potential mechanisms by which E2 could enhance NR2B-dependent EPSCs: An increase in NMDAR subunit protein levels and/or a change(s) in NR2B phosphorylation. Our studies confirmed the E2-induced increase in NR2B-dependent EPSC amplitude, but we found no evidence that E2 affects protein levels for the NR1, NR2A, or NR2B subunit of the NMDAR, nor that E2 affects phosphorylation of NR2B. Our findings suggest that the effects of E2 on NMDAR-dependent synaptic physiology in the hippocampus likely result from recruitment of NR2B-containing NMDARs to synapses rather than from increased expression of NMDARs or changes in their phosphorylation state.
Collapse
Affiliation(s)
- Melissa A Snyder
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|
37
|
Martín ED, Sánchez-Perez A, Trejo JL, Martin-Aldana JA, Cano Jaimez M, Pons S, Acosta Umanzor C, Menes L, White MF, Burks DJ. IRS-2 Deficiency impairs NMDA receptor-dependent long-term potentiation. ACTA ACUST UNITED AC 2011; 22:1717-27. [PMID: 21955917 PMCID: PMC3388895 DOI: 10.1093/cercor/bhr216] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The beneficial effects of insulin and insulin-like growth factor I on cognition have been documented in humans and animal models. Conversely, obesity, hyperinsulinemia, and diabetes increase the risk for neurodegenerative disorders including Alzheimer's disease (AD). However, the mechanisms by which insulin regulates synaptic plasticity are not well understood. Here, we report that complete disruption of insulin receptor substrate 2 (Irs2) in mice impairs long-term potentiation (LTP) of synaptic transmission in the hippocampus. Basal synaptic transmission and paired-pulse facilitation were similar between the 2 groups of mice. Induction of LTP by high-frequency conditioning tetanus did not activate postsynaptic N-methyl-D-aspartate (NMDA) receptors in hippocampus slices from Irs2(-/-) mice, although the expression of NR2A, NR2B, and PSD95 was equivalent to wild-type controls. Activation of Fyn, AKT, and MAPK in response to tetanus stimulation was defective in Irs2(-/-) mice. Interestingly, IRS2 was phosphorylated during induction of LTP in control mice, revealing a potential new component of the signaling machinery which modulates synaptic plasticity. Given that IRS2 expression is diminished in Type 2 diabetics as well as in AD patients, these data may reveal an explanation for the prevalence of cognitive decline in humans with metabolic disorders by providing a mechanistic link between insulin resistance and impaired synaptic transmission.
Collapse
Affiliation(s)
- Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park, PCYTA, Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, 02071 Albacete, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fetterolf F, Foster KA. Regulation of long-term plasticity induction by the channel and C-terminal domains of GluN2 subunits. Mol Neurobiol 2011; 44:71-82. [PMID: 21604197 DOI: 10.1007/s12035-011-8190-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/09/2011] [Indexed: 12/30/2022]
Abstract
Conventional long-term potentiation (LTP) and long-term depression (LTD) are induced by different patterns of synaptic stimulation, but both forms of synaptic modification require calcium influx through NMDA receptors (NMDARs). A prevailing model (the "calcium hypothesis") suggests that high postsynaptic calcium elevation results in LTP, whereas moderate elevations give rise to LTD. Recently, additional evidence has come to suggest that differential activation of NMDAR subunits also factors in determining which type of plasticity is induced. While the growing amount of data suggest that activation of NMDARs containing specific GluN2 subunits plays an important role in the induction of plasticity, it remains less clear which subunit is tied to which form of plasticity. Additionally, it remains to be determined which properties of the subunits confer upon them the ability to differentially induce long-term plasticity. This review highlights recent studies suggesting differential roles for the subunits, as well as findings that begin to shed light on how two similar subunits may be linked to the induction of opposing forms of plasticity.
Collapse
Affiliation(s)
- Frank Fetterolf
- Department of Basic Science, The Commonwealth Medical College, 501 Madison Ave., Scranton, PA 18510, USA
| | | |
Collapse
|
39
|
Zhou HY, Chen SR, Pan HL. Targeting N-methyl-D-aspartate receptors for treatment of neuropathic pain. Expert Rev Clin Pharmacol 2011; 4:379-88. [PMID: 21686074 PMCID: PMC3113704 DOI: 10.1586/ecp.11.17] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuropathic pain remains a major clinical problem and a therapeutic challenge because existing analgesics are often ineffective and can cause serious side effects. Increased N-methyl-d-aspartate receptor (NMDAR) activity contributes to central sensitization in certain types of neuropathic pain. NMDAR antagonists can reduce hyperalgesia and allodynia in animal models of neuropathic pain induced by nerve injury and diabetic neuropathy. Clinically used NMDAR antagonists, such as ketamine and dextromethorphan, are generally effective in patients with neuropathic pain, such as complex regional pain syndrome and painful diabetic neuropathy. However, patients with postherpetic neuralgia respond poorly to NMDAR antagonists. Recent studies on identifying NMDAR-interacting proteins and molecular mechanisms of increased NMDAR activity in neuropathic pain could facilitate the development of new drugs to attenuate abnormal NMDAR activity with minimal impairment of the physiological function of NMDARs. Combining NMDAR antagonists with other analgesics could also lead to better management of neuropathic pain without causing serious side effects.
Collapse
Affiliation(s)
- Hong-Yi Zhou
- Department of Anesthesiology and Perioperative Medicine, Unit 110, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, Unit 110, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, Unit 110, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Programs in Neuroscience and Experimental Therapeutics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
40
|
Riaza Bermudo-Soriano C, Perez-Rodriguez MM, Vaquero-Lorenzo C, Baca-Garcia E. New perspectives in glutamate and anxiety. Pharmacol Biochem Behav 2011; 100:752-74. [PMID: 21569789 DOI: 10.1016/j.pbb.2011.04.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/05/2011] [Accepted: 04/15/2011] [Indexed: 02/07/2023]
Abstract
Anxiety and stress-related disorders, namely posttraumatic stress disorder (PTSD), generalized anxiety disorder (GAD), obsessive-compulsive disorder (ODC), social and specific phobias, and panic disorder, are a major public health issue. A growing body of evidence suggests that glutamatergic neurotransmission may be involved in the biological mechanisms underlying stress response and anxiety-related disorders. The glutamatergic system mediates the acquisition and extinction of fear-conditioning. Thus, new drugs targeting glutamatergic neurotransmission may be promising candidates for new pharmacological treatments. In particular, N-methyl-d-aspartate receptors (NMDAR) antagonists (AP5, AP7, CGP37849, CGP39551, LY235959, NPC17742, and MK-801), NMDAR partial agonists (DCS, ACPC), α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) antagonists (topiramate), and several allosteric modulators targeting metabotropic glutamate receptors (mGluRs) mGluR1, mGluR2/3, and mGluR5, have shown anxiolytic-like effects in several animal and human studies. Several studies have suggested that polyamines (agmatine, putrescine, spermidine, and spermine) may be involved in the neurobiological mechanisms underlying stress-response and anxiety-related disorders. This could mainly be attributed to their ability to modulate ionotropic glutamate receptors, especially NR2B subunits. The aim of this review is to establish that glutamate neurotransmission and polyaminergic system play a fundamental role in the onset of anxiety-related disorders. This may open the way for new drugs that may help to treat these conditions.
Collapse
|
41
|
Zhang L, Guo F, Su S, Guo H, Xiong C, Yin J, Li W, Wang Y. Na(+)/K(+)-ATPase inhibition upregulates NMDA-evoked currents in rat hippocampal CA1 pyramidal neurons. Fundam Clin Pharmacol 2011; 26:503-12. [PMID: 21521363 DOI: 10.1111/j.1472-8206.2011.00947.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Na(+)/K(+)-ATPase and N-methyl-D-aspartate (NMDA) receptor in hippocampus play very important roles in the regulation of learning and memory. Here, we showed that dihydroouabain (DHO, 10(-5)-10(-3) M), a Na(+)/K(+)-ATPase inhibitor, significantly potentiated NMDA current in rat hippocampal CA1 pyramidal neurons, which was blocked by PP2 (the selective Src tyrosine kinase inhibitor) and PD-98059 [the selective inhibitor of the mitogen-activated protein kinases (MAPK) cascade]. These findings reported here uncover that Src mediates the cross-talk between Na(+)/K(+)-ATPase and NMDA receptor to transduce the signals from Na(+)/K(+)-ATPase to the MAPK cascade and provide new insights into therapeutic target for deeper understanding of the nature of cognitive disorder.
Collapse
Affiliation(s)
- Linan Zhang
- Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050017, China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Pitcher GM, Kalia LV, Ng D, Goodfellow NM, Yee KT, Lambe EK, Salter MW. Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med 2011; 17:470-8. [PMID: 21441918 PMCID: PMC3264662 DOI: 10.1038/nm.2315] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/31/2011] [Indexed: 01/29/2023]
Abstract
Hypofunction of the N-methyl D-aspartate subtype of glutamate receptor (NMDAR) is hypothesized to be a mechanism underlying cognitive dysfunction in individuals with schizophrenia. For the schizophrenia-linked genes NRG1 and ERBB4, NMDAR hypofunction is thus considered a key detrimental consequence of the excessive NRG1-ErbB4 signaling found in people with schizophrenia. However, we show here that neuregulin 1β-ErbB4 (NRG1β-ErbB4) signaling does not cause general hypofunction of NMDARs. Rather, we find that, in the hippocampus and prefrontal cortex, NRG1β-ErbB4 signaling suppresses the enhancement of synaptic NMDAR currents by the nonreceptor tyrosine kinase Src. NRG1β-ErbB4 signaling prevented induction of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses and suppressed Src-dependent enhancement of NMDAR responses during theta-burst stimulation. Moreover, NRG1β-ErbB4 signaling prevented theta burst-induced phosphorylation of GluN2B by inhibiting Src kinase activity. We propose that NRG1-ErbB4 signaling participates in cognitive dysfunction in schizophrenia by aberrantly suppressing Src-mediated enhancement of synaptic NMDAR function.
Collapse
Affiliation(s)
- Graham M Pitcher
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Mao LM, Guo ML, Jin DZ, Fibuch EE, Choe ES, Wang JQ. Post-translational modification biology of glutamate receptors and drug addiction. Front Neuroanat 2011; 5:19. [PMID: 21441996 PMCID: PMC3062099 DOI: 10.3389/fnana.2011.00019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/03/2011] [Indexed: 01/26/2023] Open
Abstract
Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | | | | | | | | | | |
Collapse
|
44
|
Proctor DT, Coulson EJ, Dodd PR. Post-synaptic scaffolding protein interactions with glutamate receptors in synaptic dysfunction and Alzheimer's disease. Prog Neurobiol 2011; 93:509-21. [PMID: 21382433 DOI: 10.1016/j.pneurobio.2011.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 02/18/2011] [Accepted: 02/24/2011] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is characterized clinically by an insidious decline in cognition. Much attention has been focused on proposed pathogenic mechanisms that relate Aβ plaque and neurofibrillary tangle pathology to cognitive symptoms, but compelling evidence now identifies early synaptic loss and dysfunction, which precede plaque and tangle formation, as the more probable initiators of cognitive impairment. Glutamate-mediated transmission is severely altered in AD. Glutamate receptor expression is most markedly altered in regions of the AD brain that show the greatest pathological changes. Signaling via glutamate receptors controls synaptic strength and plasticity, and changes in these parameters are likely to contribute to memory and cognitive deficits in AD. Glutamate receptor expression and activity are modulated by interactions with post-synaptic scaffolding proteins that augment the strength and direction of signal cascades initiated by glutamate receptor activity. Scaffold proteins offer promising targets for more focused and effective drug therapy. In consequence, interest is developing into the roles these proteins play in neurological disease. In this review we discuss disruptions to excitatory neurotransmission at the level of glutamate receptor-post-synaptic scaffolding protein interactions that may contribute to synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Dustin T Proctor
- School of Chemistry and Molecular Biosciences, Molecular Biosciences Building #76, Coopers Road, St Lucia campus, University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
45
|
Das P, Zerda R, Alvarez FJ, Tietz EI. Immunogold electron microscopic evidence of differential regulation of GluN1, GluN2A, and GluN2B, NMDA-type glutamate receptor subunits in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J Comp Neurol 2011; 518:4311-28. [PMID: 20853509 DOI: 10.1002/cne.22458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Benzodiazepine withdrawal-anxiety is associated with enhanced α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR)-mediated glutamatergic transmission in rat hippocampal CA1 synapses due to enhanced synaptic insertion and phosphorylation of GluA1 homomers. Interestingly, attenuation of withdrawal-anxiety is associated with a reduction in N-methyl-D-aspartate receptor (NMDAR)-mediated currents and subunit expression, secondary to AMPA receptor potentiation. Therefore, in this study ultrastructural evidence for possible reductions in NMDAR GluN1, GluN2A, and GluN2B subunits was sought at CA1 stratum radiatum synapses in proximal dendrites using postembedding immunogold labeling of tissues from rats withdrawn for 2 days from 1-week daily oral administration of the benzodiazepine, flurazepam (FZP). GluN1-immunogold density and the percentage of immunopositive synapses were significantly decreased in tissues from FZP-withdrawn rats. Similar decreases were observed for GluN2B subunits; however, the relative lateral distribution of GluN2B-immunolabeling within the postsynaptic density did not change after BZ withdrawal. In contrast to the GluN2B subunit, the percentage of synapses labeled with the GluN2A subunit antibody and the density of immunogold labeling for this subunit was unchanged. The spatial localization of immunogold particles associated with each NMDAR subunit was consistent with a predominantly postsynaptic localization. The data therefore provide direct evidence for reduced synaptic GluN1/GluN2B receptors and preservation of GluN1/GluN2A receptors in the CA1 stratum radiatum region during BZ withdrawal. Based on collective findings in this benzodiazepine withdrawal-anxiety model, we propose a functional model illustrating the changes in glutamate receptor populations at excitatory synapses during benzodiazepine withdrawal.
Collapse
Affiliation(s)
- Paromita Das
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The elusiveness of neuropathic pain mechanisms is a major impediment in developing effective clinical treatments. Here we show that peripheral nerve injury decreased agrin expression in the ipsilateral spinal dorsal horn of rats displaying tactile allodynia. SCP1, an acetaminophen analog, suppressed allodynia and promoted agrin upregulation. Preemptive treatment with SCP1 also upregulated agrin, thereby preventing neuropathic pain development. Expression of 50 kDa agrin delivered by adeno-associated virus into the dorsal horn also suppressed allodynia and hyperalgesia. Allodynia suppression was a consequence of serine residue 896/897 phosphorylation of NMDA receptor NR1 subunits in the GABA interneurons of the dorsal horn. Agrin silencing by small interference RNA, administered with either AAV-Ag50 vector or SCP1, blocked allodynia suppression, agrin upregulation, and NR1 phosphorylation. In conclusion, 50 kDa agrin modulates neuropathic pain through NR1 phosphorylation in GABA neurons. This mechanism may open new approaches for treating not only neuropathic pain, but also epilepsy, tremors, and spasticity.
Collapse
|
47
|
The different effects of over-expressing murine NMDA receptor 2B subunit in the forebrain on conditioned taste aversion. Brain Res 2010; 1351:165-171. [PMID: 20537986 DOI: 10.1016/j.brainres.2010.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 11/23/2022]
Abstract
The glutamate transmission system and the N-methyl-D-aspartate receptor (NMDA-R), in particular its 2B subunit (NR2B), have been reported to be possibly related to taste memory as a result of treatment with NMDA antagonists and agonists. In order to further study the role of the NR2B subunit in gustation memory, we applied four different taste aversive tasks to observe the behavior of a transgenic mice model in which the NR2B subunit was specifically over-expressed in the forebrain. We found that in both short- and long-term conditioned taste aversion (CTA) experiments, mice with forebrain expression of the NR2B transgene (Tg) showed significantly enhanced CTA 2 days after training. However, both the Tg and the wild-type (Wt) mice shared the same level of aversive memory on the 30th day after training. In both fast and slow extinction experiments, Tg mice maintained a higher CTA memory than that of control mice in most extinction trials. The third experiment, which involved testing the memory for familiar taste, demonstrated that NR2B augmentation had no benefit on the latent inhibition (LI) of CTA. In addition, the last experiment (two-taste LI) showed a suppression of enhanced CTA in Tg mice when the mice were exposed to both novel and familiar tastes. These data suggested that forebrain NR2B over-expression had different effects on gustatory learning and memory. The transgenic animals were only sensitive to novel but not familiar tastes, and up-regulation of NR2B resulted in enhanced CTA function for only a short period of time.
Collapse
|
48
|
Gu X, Wu X, Liu Y, Cui S, Ma Z. Tyrosine phosphorylation of the N-Methyl-D-Aspartate receptor 2B subunit in spinal cord contributes to remifentanil-induced postoperative hyperalgesia: the preventive effect of ketamine. Mol Pain 2009; 5:76. [PMID: 20042082 PMCID: PMC2809057 DOI: 10.1186/1744-8069-5-76] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 12/30/2009] [Indexed: 11/12/2022] Open
Abstract
Background Experimental and clinical studies showed that intraoperative infusionof remifentanil has been associated with postoperative hyperalgesia. Previous reports suggested that spinal N-methyl-D-aspartate (NMDA) receptors may contribute to the development and maintenance of opioid-induced hyperalgesia. In the present study, we used a rat model of postoperative pain to investigate the role of tyrosine phosphorylation of NMDA receptor 2B (NR2B) subunit in spinal cord in the postoperative hyperalgesia induced by remifentanil and the intervention of pretreatment with ketamine. Results Intraoperative infusion of remifentanil (0.04 mg/kg, subcutaneous) significantly enhanced mechanical allodynia and thermal hyperalgesia induced by the plantar incision during the postoperative period (each lasting between 2 h and 48 h), which was attenuated by pretreatment with ketamine (10 mg/kg, subcutaneous). Correlated with the pain behavior changes, immunocytochemical and western blotting experiments in our study revealed that there was a marked increase in NR2B phosphorylation at Tyr1472 in the superficial dorsal horn after intraoperative infusion of remifentanil, which was attenuated by pretreatment with ketamine. Conclusions This study provides direct evidence that tyrosine phosphorylation of the NR2B at Tyr1472 in spinal dosal horn contributes to postoperative hyperalgesia induced by remifentanil and supports the potential therapeutic value of ketamine for improving postoperative hyperalgesia induced by remifentanil.
Collapse
Affiliation(s)
- Xiaoping Gu
- Department of Anesthesiology, Drum Tower Hospital, Medical Department of Nanjing University, Nanjing 210008, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
49
|
Tyrosine phosphorylation of the 2B subunit of the NMDA receptor is necessary for taste memory formation. J Neurosci 2009; 29:9219-26. [PMID: 19625512 DOI: 10.1523/jneurosci.5667-08.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We aimed to test whether tyrosine phosphorylation of the NMDA receptor (NMDAR) in the insular cortex is necessary for novel taste learning. We found that in rats, novel taste learning leads to elevated phosphorylation of tyrosine 1472 of the NR2B subunit of the NMDAR and increases the interaction of phosphorylated NR2B with the major postsynaptic scaffold protein PSD-95. Injection of the tyrosine kinase inhibitor genistein directly into the insular cortex of rats before novel taste exposure prevented the increase in NR2B tyrosine phosphorylation and behaviorally attenuated taste-memory formation. Functionally, tyrosine phosphorylation of NR2B after learning was found to determine the synaptic distribution of the NMDAR, since microinjection of genistein to the insular cortex altered the distribution pattern of NMDAR caused by novel taste learning.
Collapse
|
50
|
Bennett M. Positive and negative symptoms in schizophrenia: the NMDA receptor hypofunction hypothesis, neuregulin/ErbB4 and synapse regression. Aust N Z J Psychiatry 2009; 43:711-21. [PMID: 19629792 DOI: 10.1080/00048670903001943] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carlsson has put forward the hypothesis that the positive and negative symptoms of schizophrenia are due to failure of mesolimbic and mesocortical projections consequent on hypofunction of the glutamate N-methyl-d-aspartate (NMDA) receptor. The hypothesis has been recently emphasized in this Journal that the loss of synaptic spines with NMDA receptors, which can be precipitated by stress, can explain the emergence of positive symptoms such as hallucinations and that this synapse regression involves molecules such as neuregulin and its receptor ErbB4 that have been implicated in schizophrenia. In this essay these two hypotheses are brought together in a single scheme in which emphasis is placed on the molecular pathways from neuregulin/ErbB4, to modulation of the NMDA receptors, subsequent changes in the synaptic spine's cytoskeletal apparatus and so regression of the spines. It is suggested that identification of the molecular constituents of this pathway will allow synthesis of suitable substances for removing the hypofunction of NMDA receptors and so the phenotypic consequences that flow from this hypofunction.
Collapse
Affiliation(s)
- Maxwell Bennett
- Brain and Mind Research Institute, University of Sydney, NSW, Australia.
| |
Collapse
|