1
|
Arhab Y, Pestova TV, Hellen CUT. Translation of Overlapping Open Reading Frames Promoted by Type 2 IRESs in Avian Calicivirus Genomes. Viruses 2024; 16:1413. [PMID: 39339889 PMCID: PMC11436067 DOI: 10.3390/v16091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Caliciviruses have positive-sense RNA genomes, typically with short 5'-untranslated regions (5'UTRs) that precede the long open reading frame 1 (ORF1). Exceptionally, some avian caliciviruses have long 5'UTRs containing a picornavirus-like internal ribosomal entry site (IRES), which was likely acquired by horizontal gene transfer. Here, we identified numerous additional avian calicivirus genomes with IRESs, predominantly type 2, and determined that many of these genomes contain a ~200-300 codon-long ORF (designated ORF1*) that overlaps the 5'-terminal region of ORF1. The activity of representative type 2 IRESs from grey teal calicivirus (GTCV) and Caliciviridae sp. isolate yc-13 (RaCV1) was confirmed by in vitro translation. Toeprinting showed that in cell-free extracts and in vitro reconstituted reactions, ribosomal initiation complexes assembled on the ORF1* initiation codon and at one or two AUG codons in ORF1 at the 3'-border and/or downstream of the IRES. Initiation at all three sites required eIF4A and eIF4G, which bound to a conserved region of the IRES; initiation on the ORF1* and principal ORF1 initiation codons involved eIF1/eIF1A-dependent scanning from the IRES's 3'-border. Initiation on these IRESs was enhanced by the IRES trans-acting factors (ITAFs) Ebp1/ITAF45, which bound to the apical subdomain Id of the IRES, and PTB (GTCV) or PCBP2 (RaCV1).
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
2
|
Daniels MG, Werner ME, Li RT, Pascal SM. Exploration of Potential Broad-Spectrum Antiviral Targets in the Enterovirus Replication Element: Identification of Six Distinct 5' Cloverleaves. Viruses 2024; 16:1009. [PMID: 39066172 PMCID: PMC11281424 DOI: 10.3390/v16071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Enterovirus genomic replication initiates at a predicted RNA cloverleaf (5'CL) at the 5' end of the RNA genome. The 5'CL contains one stem (SA) and three stem-loops (SLB, SLC, SLD). Here, we present an analysis of 5'CL conservation and divergence for 209 human health-related serotypes from the enterovirus genus, including enterovirus and rhinovirus species. Phylogenetic analysis indicates six distinct 5'CL serotypes that only partially correlate with the species definition. Additional findings include that 5'CL sequence conservation is higher between the EV species than between the RV species, the 5'CL of EVA and EVB are nearly identical, and RVC has the lowest 5'CL conservation. Regions of high conservation throughout all species include SA and the loop and nearby bases of SLB, which is consistent with known protein interactions at these sites. In addition to the known protein binding site for the Poly-C binding protein in the loop of SLB, other conserved consecutive cytosines in the stems of SLB and SLC provide additional potential interaction sites that have not yet been explored. Other sites of conservation, including the predicted bulge of SLD and other conserved stem, loop, and junction regions, are more difficult to explain and suggest additional interactions or structural requirements that are not yet fully understood. This more intricate understanding of sequence and structure conservation and variability in the 5'CL may assist in the development of broad-spectrum antivirals against a wide range of enteroviruses, while better defining the range of virus isotypes expected to be affected by a particular antiviral.
Collapse
Affiliation(s)
- Morgan G. Daniels
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (M.G.D.); (M.E.W.)
| | - Meagan E. Werner
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (M.G.D.); (M.E.W.)
| | - Rockwell T. Li
- Math and Science Academy, Ocean Lakes High School, Virginia Beach, VA 23454, USA;
| | - Steven M. Pascal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (M.G.D.); (M.E.W.)
| |
Collapse
|
3
|
Nishikawa S, Watanabe H, Terasaka N, Katoh T, Fujishima K. De Novo Single-Stranded RNA-Binding Peptides Discovered by Codon-Restricted mRNA Display. Biomacromolecules 2024; 25:355-365. [PMID: 38051119 PMCID: PMC10777347 DOI: 10.1021/acs.biomac.3c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
RNA-binding proteins participate in diverse cellular processes, including DNA repair, post-transcriptional modification, and cancer progression through their interactions with RNAs, making them attractive for biotechnological applications. While nature provides an array of naturally occurring RNA-binding proteins, developing de novo RNA-binding peptides remains challenging. In particular, tailoring peptides to target single-stranded RNA with low complexity is difficult due to the inherent structural flexibility of RNA molecules. Here, we developed a codon-restricted mRNA display and identified multiple de novo peptides from a peptide library that bind to poly(C) and poly(A) RNA with KDs ranging from micromolar to submicromolar concentrations. One of the newly identified peptides is capable of binding to the cytosine-rich sequences of the oncogenic Cdk6 3'UTR RNA and MYU lncRNA, with affinity comparable to that of the endogenous binding protein. Hence, we present a novel platform for discovering de novo single-stranded RNA-binding peptides that offer promising avenues for regulating RNA functions.
Collapse
Affiliation(s)
- Shota Nishikawa
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School
of Life Science and Technology, Tokyo Institute
of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hidenori Watanabe
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Naohiro Terasaka
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takayuki Katoh
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kosuke Fujishima
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate
School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
4
|
Abedeera SM, Davila-Calderon J, Haddad C, Henry B, King J, Penumutchu S, Tolbert BS. The Repurposing of Cellular Proteins during Enterovirus A71 Infection. Viruses 2023; 16:75. [PMID: 38257775 PMCID: PMC10821071 DOI: 10.3390/v16010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Viruses pose a great threat to people's lives. Enterovirus A71 (EV-A71) infects children and infants all over the world with no FDA-approved treatment to date. Understanding the basic mechanisms of viral processes aids in selecting more efficient drug targets and designing more effective antivirals to thwart this virus. The 5'-untranslated region (5'-UTR) of the viral RNA genome is composed of a cloverleaf structure and an internal ribosome entry site (IRES). Cellular proteins that bind to the cloverleaf structure regulate viral RNA synthesis, while those that bind to the IRES also known as IRES trans-acting factors (ITAFs) regulate viral translation. In this review, we survey the cellular proteins currently known to bind the 5'-UTR and influence viral gene expression with emphasis on comparing proteins' functions and localizations pre- and post-(EV-A71) infection. A comprehensive understanding of how the host cell's machinery is hijacked and reprogrammed by the virus to facilitate its replication is crucial for developing effective antivirals.
Collapse
Affiliation(s)
- Sudeshi M. Abedeera
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Jesse Davila-Calderon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Barrington Henry
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Josephine King
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Srinivasa Penumutchu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Blanton S. Tolbert
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
5
|
Su R, Yin J, Ruan X, Chen Y, Wan P, Luo Z. Featured interactome of homocysteine-inducible endoplasmic reticulum protein uncovers novel binding partners in response to ER stress. Comput Struct Biotechnol J 2023; 21:4478-4487. [PMID: 37736299 PMCID: PMC10510068 DOI: 10.1016/j.csbj.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Homocysteine-inducible endoplasmic reticulum protein (HERP) is an endoplasmic reticulum (ER)-resident protein and important for the adaptation of cellular protein homeostasis by ER-associated degradation (ERAD) system. HERP interactors are critical for cellular viability and the reaction to ER stress. To explore the exact mechanisms by which HERP performed the biological functions, we conducted an interaction analysis of HERP protein in HeLa cells by co-immunoprecipitation (Co-IP) and liquid chromatography-mass spectrometer (LC-MS)/MS coupled with label-free quantification (LFQ). Among the interactome results, 123 proteins significantly interacted with HERP, which leads to numerous biological processes including protein import into nucleus, ubiquitin-dependent ERAD pathway, negative regulation of apoptotic process, and protein transport from ER, along with multiple pathways including several diseases, protein processing in ER, fatty acid metabolism, and steroid biosynthesis. Furthermore, we selected several prey proteins from the interactome data and confirmed that HERP interacted with ancient ubiquitous protein 1 (AUP1), Fas-associated factor family member 2 (FAF2), tripartite motif containing 47 (TRIM47), acyl-CoA synthetase long-chain family member 3 (ACSL3), sequestosome 1 (SQSTM1), and poly(rC) binding protein 2 (PCBP2) by Co-IP and confocal microscopy experiments, respectively. Moreover, the expression and location of several interacted proteins were obviously altered in response to ER stress induced by Thapsigargin stimulation and Enterovirus 71 infection. In conclusion, our findings revealed that the vital proteins interacted with HERP to mediate signaling transduction, thus providing novel clues for the mechanisms of HERP associated with ERAD and metabolism in response to ER stress under physiological and pathological conditions.
Collapse
Affiliation(s)
- Rui Su
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang 453003, China
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Jialing Yin
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Xiaolan Ruan
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Yanxi Chen
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Pin Wan
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430072, China
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Zhen Luo
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
6
|
Eastman C, Tapprich WE. RNA Structure in the 5' Untranslated Region of Enterovirus D68 Strains with Differing Neurovirulence Phenotypes. Viruses 2023; 15:295. [PMID: 36851509 PMCID: PMC9959730 DOI: 10.3390/v15020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Enterovirus-D68 (EV-D68) is a positive-sense single-stranded RNA virus within the family Picornaviridae. EV-D68 was initially considered a respiratory virus that primarily affected children. However, in 2014, EV-D68 outbreaks occurred causing the expected increase in respiratory illness cases, but also an increase in acute flaccid myelitis cases (AFM). Sequencing of 2014 outbreak isolates revealed variations in the 5' UTR of the genome compared to the historical Fermon strain. The structure of the 5' UTR RNA contributes to enterovirus virulence, including neurovirulence in poliovirus, and could contribute to neurovirulence in contemporary EV-D68 strains. In this study, the secondary and tertiary structures of 5' UTR RNA from the Fermon strain and 2014 isolate KT347251.1 are analyzed and compared. Secondary structures were determined using SHAPE-MaP and TurboFold II and tertiary structures were predicted using 3dRNAv2.0. Comparison of RNA structures between the EV-D68 strains shows significant remodeling at the secondary and tertiary levels. Notable secondary structure changes occurred in domains II, IV and V. Shifts in the secondary structure changed the tertiary structure of the individual domains and the orientation of the domains. Our comparative structural models for EV-D68 5' UTR RNA highlight regions of the molecule that could be targeted for treatment of neurotropic enteroviruses.
Collapse
Affiliation(s)
| | - William E. Tapprich
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
7
|
Andreev DE, Niepmann M, Shatsky IN. Elusive Trans-Acting Factors Which Operate with Type I (Poliovirus-like) IRES Elements. Int J Mol Sci 2022; 23:ijms232415497. [PMID: 36555135 PMCID: PMC9778869 DOI: 10.3390/ijms232415497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of internal initiation of translation was discovered in 1988 on poliovirus mRNA. The prototypic cis-acting element in the 5' untranslated region (5'UTR) of poliovirus mRNA, which is able to direct initiation at an internal start codon without the involvement of a cap structure, has been called an IRES (Internal Ribosome Entry Site or Segment). Despite its early discovery, poliovirus and other related IRES elements of type I are poorly characterized, and it is not yet clear which host proteins (a.k.a. IRES trans-acting factors, ITAFs) are required for their full activity in vivo. Here we discuss recent and old results devoted to type I IRESes and provide evidence that Poly(rC) binding protein 2 (PCBP2), Glycyl-tRNA synthetase (GARS), and Cold Shock Domain Containing E1 (CSDE1, also known as UNR) are major regulators of type I IRES activity.
Collapse
Affiliation(s)
- Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Ivan N. Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Wang J, Sun D, Wang M, Cheng A, Zhu Y, Mao S, Ou X, Zhao X, Huang J, Gao Q, Zhang S, Yang Q, Wu Y, Zhu D, Jia R, Chen S, Liu M. Multiple functions of heterogeneous nuclear ribonucleoproteins in the positive single-stranded RNA virus life cycle. Front Immunol 2022; 13:989298. [PMID: 36119073 PMCID: PMC9478383 DOI: 10.3389/fimmu.2022.989298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that are implicated in RNA metabolism, such as alternative splicing, mRNA stabilization and translational regulation. According to their different cellular localization, hnRNPs display multiple functions. Most hnRNPs were predominantly located in the nucleus, but some of them could redistribute to the cytoplasm during virus infection. HnRNPs consist of different domains and motifs that enable these proteins to recognize predetermined nucleotide sequences. In the virus-host interactions, hnRNPs specifically bind to viral RNA or proteins. And some of the viral protein-hnRNP interactions require the viral RNA or other host factors as the intermediate. Through various mechanisms, hnRNPs could regulate viral translation, viral genome replication, the switch of translation to replication and virion release. This review highlights the common features and the distinguish roles of hnRNPs in the life cycle of positive single-stranded RNA viruses.
Collapse
Affiliation(s)
- Jingming Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- *Correspondence: Anchun Cheng,
| | - Yukun Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
9
|
Dobrikov MI, Dobrikova EY, McKay ZP, Kastan JP, Brown MC, Gromeier M. PKR Binds Enterovirus IRESs, Displaces Host Translation Factors, and Impairs Viral Translation to Enable Innate Antiviral Signaling. mBio 2022; 13:e0085422. [PMID: 35652592 PMCID: PMC9239082 DOI: 10.1128/mbio.00854-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
For RNA virus families except Picornaviridae, viral RNA sensing includes Toll-like receptors and/or RIG-I. Picornavirus RNAs, whose 5' termini are shielded by a genome-linked protein, are predominately recognized by MDA5. This has important ramifications for adaptive immunity, as MDA5-specific patterns of type-I interferon (IFN) release are optimal for CD4+T cell TH1 polarization and CD8+T cell priming. We are exploiting this principle for cancer immunotherapy with recombinant poliovirus (PV), PVSRIPO, the type 1 (Sabin) PV vaccine containing a rhinovirus type 2 internal ribosomal entry site (IRES). Here we show that PVSRIPO-elicited MDA5 signaling is preceded by early sensing of the IRES by the double-stranded (ds)RNA-activated protein kinase (PKR). PKR binding to IRES stem-loop domains 5-6 led to dimerization and autoactivation, displaced host translation initiation factors, and suppressed viral protein synthesis. Early PKR-mediated antiviral responses tempered incipient viral translation and the activity of cytopathogenic viral proteinases, setting up accentuated MDA5 innate inflammation in response to PVSRIPO infection. IMPORTANCE Among the RIG-I-like pattern recognition receptors, MDA5 stands out because it senses long dsRNA duplexes independent of their 5' features (RIG-I recognizes viral [v]RNA 5'-ppp blunt ends). Uniquely among RNA viruses, the innate defense against picornaviruses is controlled by MDA5. We show that prior to engaging MDA5, recombinant PV RNA is sensed upon PKR binding to the viral IRES at a site that overlaps with the footprint for host translation factors mediating 40S subunit recruitment. Our study demonstrates that innate antiviral type-I IFN responses orchestrated by MDA5 involve separate innate modules that recognize distinct vRNA features and interfere with viral functions at multiple levels.
Collapse
Affiliation(s)
- Mikhail I. Dobrikov
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Zachary P. McKay
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Jonathan P. Kastan
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Michael C. Brown
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
10
|
Francisco-Velilla R, Embarc-Buh A, Abellan S, Martinez-Salas E. Picornavirus translation strategies. FEBS Open Bio 2022; 12:1125-1141. [PMID: 35313388 PMCID: PMC9157412 DOI: 10.1002/2211-5463.13400] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The genome of viruses classified as picornaviruses consists of a single monocistronic positive strand RNA. The coding capacity of these RNA viruses is rather limited, and thus, they rely on the cellular machinery for their viral replication cycle. Upon the entry of the virus into susceptible cells, the viral RNA initially competes with cellular mRNAs for access to the protein synthesis machinery. Not surprisingly, picornaviruses have evolved specialized strategies that successfully allow the expression of viral gene products, which we outline in this review. The main feature of all picornavirus genomes is the presence of a heavily structured RNA element on the 5´UTR, referred to as an internal ribosome entry site (IRES) element, which directs viral protein synthesis as well and, consequently, triggers the subsequent steps required for viral replication. Here, we will summarize recent studies showing that picornavirus IRES elements consist of a modular structure, providing sites of interaction for ribosome subunits, eIFs, and a selective group of RNA‐binding proteins.
Collapse
Affiliation(s)
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
11
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
12
|
Janecki DM, Swiatkowska A, Szpotkowska J, Urbanowicz A, Kabacińska M, Szpotkowski K, Ciesiołka J. Poly(C)-binding Protein 2 Regulates the p53 Expression via Interactions with the 5'-Terminal Region of p53 mRNA. Int J Mol Sci 2021; 22:ijms222413306. [PMID: 34948101 PMCID: PMC8708005 DOI: 10.3390/ijms222413306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
The p53 protein is one of the major transcriptional factors which guards cell homeostasis. Here, we showed that poly(C)-binding protein 2 (PCBP2) can bind directly to the 5′ terminus of p53 mRNA by means of electrophoretic mobility shift assay. Binding sites of PCBP2 within this region of p53 mRNA were mapped using Pb2+-induced cleavage and SAXS methods. Strikingly, the downregulation of PCBP2 in HCT116 cells resulted in a lower level of p53 protein under normal and stress conditions. Quantitative analysis of p53 mRNA in PCBP2-downregulated cells revealed a lower level of p53 mRNA under normal conditions suggesting the involvement of PCBP2 in p53 mRNA stabilisation. However, no significant change in p53 mRNA level was observed upon PCBP2 depletion under genotoxic stress. Moreover, a higher level of p53 protein in the presence of rapamycin or doxorubicin and the combination of both antibiotics was noticed in PCBP2-overexpressed cells compared to control cells. These observations indicate the potential involvement of PCBP2 in cap-independent translation of p53 mRNA especially occurring under stress conditions. It has been postulated that the PCBP2 protein is engaged in the enhancement of p53 mRNA stability, probably via interacting with its 3′ end. Our data show that under stress conditions PCBP2 also modulates p53 translation through binding to the 5′ terminus of p53 mRNA. Thus PCBP2 emerges as a double-function factor in the p53 expression.
Collapse
|
13
|
Host restriction factor A3G inhibits the replication of Enterovirus D68 through competitively binding 5' UTR with PCBP1. J Virol 2021; 96:e0170821. [PMID: 34730395 DOI: 10.1128/jvi.01708-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The host restriction factor APOBEC3G (A3G) presents extensively inhibition on a variety of viruses, including retroviruses, DNA and RNA viruses. Our recent study showed that A3G inhibits enterovirus 71 (EV71) and coxsackievirus A16 (CA16) via competitively binding 5'UTR with the host protein poly(C)-binding protein 1 (PCBP1) that is required for multiple EVs replication. However, in addition to EV71 and CA16, whether A3G inhibits other EVs has not been investigated. Here, we demonstrate that A3G could inhibit EVD68 replication, which needs PCBP1 for its replication, but not CA6 that PCBP1 is dispensable for CA6 replication. Further investigation revealed that nucleic acid binding activity of A3G is required for EVD68 restriction, which is similar to the mechanism presented in EV71 restriction. Mechanistically, A3G competitively binds to the cloverleaf (1-123) and the stem-loop IV (234-446) domains of EVD68 5'UTR with PCBP1, thereby inhibiting the 5'UTR activity of EVD68, whereas A3G doesn't interact with CA6 5'UTR results in no effect on CA6 replication. Moreover, non-structural protein 2C encoded by EVD68 overcomes A3G suppression through inducing A3G degradation via the autophagy-lysosome pathway. Our finding revealed that A3G might have broad spectrum antiviral activity against multiple EVs through the general mechanism, which might provide important information for the development of anti-EVs strategy. Importance As the two major pathogens causing hand, food, and mouth disease (HFMD), EV71 and CA16 attract more attention for the discovery of pathogenesis, the involvement of cellular proteins and so on. However, other EVs such as CA6 or EVD68 constantly occurred sporadic or might spread widely in recent years worldwide. Therefore, more information related to these EVs needs to be further investigated so as to develop broad-spectrum anti-EVs inhibitor. In this study, we first reveal that PCBP1 involved in PV and EV71 virus replication, also is required for the replication of EVD68 but not CA6. Then we found that the host restriction factor A3G specifically inhibits the replication of EVD68 but not CA6 via competitively binding to the 5'UTR of EVD68 with PCBP1. Our findings broaden the knowledge related to EVs replication and the interplay between EVs and host factors.
Collapse
|
14
|
ANXA2 Facilitates Enterovirus 71 Infection by Interacting with 3D Polymerase and PI4KB to Assist the Assembly of Replication Organelles. Virol Sin 2021; 36:1387-1399. [PMID: 34196914 DOI: 10.1007/s12250-021-00417-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022] Open
Abstract
Similar to that of other enteroviruses, the replication of enterovirus 71 (EV71) occurs on rearranged membranous structures called replication organelles (ROs). Phosphatidylinositol 4-kinase III (PI4KB), which is required by enteroviruses for RO formation, yields phosphatidylinositol-4-phosphate (PI4P) on ROs. PI4P then binds and induces conformational changes in the RNA-dependent RNA polymerase (RdRp) to modulate RdRp activity. Here, we targeted 3D polymerase, the core enzyme of EV71 ROs, and found that the host factor Annexin A2 (ANXA2) can interact with 3D polymerase and promote the replication of EV71. Then, an experiment showed that the annexin domain of ANXA2, which possesses membrane-binding capacity, mediates the interaction of ANXA2 with EV71 3D polymerase. Further research showed that ANXA2 is localized on ROs and interacts with PI4KB. Overexpression of ANXA2 stimulated the formation of PI4P, and the level of PI4P was decreased in ANXA2-knockout cells. Furthermore, ANXA2, PI4KB, and 3D were shown to be localized to the viral RNA replication site, where they form a higher-order protein complex, and the presence of ANXA2 promoted the PI4KB-3D interaction. Altogether, our data provide new insight into the role of ANXA2 in facilitating formation of the EV71 RNA replication complex.
Collapse
|
15
|
Ishii T, Igawa T, Hayakawa H, Fujita T, Sekiguchi M, Nakabeppu Y. PCBP1 and PCBP2 both bind heavily oxidized RNA but cause opposing outcomes, suppressing or increasing apoptosis under oxidative conditions. J Biol Chem 2020; 295:12247-12261. [PMID: 32647012 PMCID: PMC7443489 DOI: 10.1074/jbc.ra119.011870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
PCBP1, a member of the poly(C)-binding protein (PCBP) family, has the capability of binding heavily oxidized RNA and therefore participates in the cellular response to oxidative conditions, helping to induce apoptosis. There are four other members of this family, PCBP2, PCBP3, PCBP4, and hnRNPK, but it is not known whether they play similar roles. To learn more, we first tested their affinity for an RNA strand carrying two 8-oxoguanine (8-oxoG) residues at sites located in close proximity to each other, representative of a heavily oxidized strand or RNA with one 8-oxoG or none. Among them, only PCBP2 exhibited highly selective binding to RNA carrying two 8-oxoG residues similar to that observed with PCBP1. In contrast, PCBP3, PCBP4, and hnRNPK bound RNA with or without 8-oxoG modifications and exhibited slightly increased binding to the former. Mutations in conserved RNA-binding domains of PCBP2 disrupted the specific interaction with heavily oxidized RNA. We next tested PCBP2 activity in cells. Compared with WT HeLa S3 cells, PCBP2-KO cells established by gene editing exhibited increased apoptosis with increased caspase-3 activity and PARP1 cleavage under oxidative conditions, which were suppressed by the expression of WT PCBP2 but not one of the mutants lacking binding activity. In contrast, PCBP1-KO cells exhibited reduced apoptosis with much less caspase-3 activity and PARP cleavage than WT cells. Our results indicate that PCBP2 as well as PCBP1 bind heavily oxidized RNA; however, the former may counteract PCBP1 to suppress apoptosis under oxidative conditions.
Collapse
Affiliation(s)
- Takashi Ishii
- Department of Biochemistry, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Tatsuhiro Igawa
- Frontier Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Hayakawa
- Department of Biochemistry, Fukuoka Dental College, Fukuoka, Japan
| | - Tsugumi Fujita
- Department of Biochemistry, Fukuoka Dental College, Fukuoka, Japan
| | - Mutsuo Sekiguchi
- Frontier Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
16
|
Beckham SA, Matak MY, Belousoff MJ, Venugopal H, Shah N, Vankadari N, Elmlund H, Nguyen JHC, Semler BL, Wilce MCJ, Wilce JA. Structure of the PCBP2/stem-loop IV complex underlying translation initiation mediated by the poliovirus type I IRES. Nucleic Acids Res 2020; 48:8006-8021. [PMID: 32556302 PMCID: PMC7641305 DOI: 10.1093/nar/gkaa519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/15/2020] [Accepted: 06/06/2020] [Indexed: 02/02/2023] Open
Abstract
The poliovirus type I IRES is able to recruit ribosomal machinery only in the presence of host factor PCBP2 that binds to stem-loop IV of the IRES. When PCBP2 is cleaved in its linker region by viral proteinase 3CD, translation initiation ceases allowing the next stage of replication to commence. Here, we investigate the interaction of PCBP2 with the apical region of stem-loop IV (SLIVm) of poliovirus RNA in its full-length and truncated form. CryoEM structure reconstruction of the full-length PCBP2 in complex with SLIVm solved to 6.1 Å resolution reveals a compact globular complex of PCBP2 interacting with the cruciform RNA via KH domains and featuring a prominent GNRA tetraloop. SEC-SAXS, SHAPE and hydroxyl-radical cleavage establish that PCBP2 stabilizes the SLIVm structure, but upon cleavage in the linker domain the complex becomes more flexible and base accessible. Limited proteolysis and REMSA demonstrate the accessibility of the linker region in the PCBP2/SLIVm complex and consequent loss of affinity of PCBP2 for the SLIVm upon cleavage. Together this study sheds light on the structural features of the PCBP2/SLIV complex vital for ribosomal docking, and the way in which this key functional interaction is regulated following translation of the poliovirus genome.
Collapse
Affiliation(s)
- Simone A Beckham
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Mehdi Y Matak
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Matthew J Belousoff
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Hariprasad Venugopal
- The Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Victoria 3800, Australia
| | - Neelam Shah
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Naveen Vankadari
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Hans Elmlund
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Joseph H C Nguyen
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4025, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4025, USA
| | - Matthew C J Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Jacqueline A Wilce
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
17
|
Lai MC, Chen HH, Xu P, Wang RYL. Translation control of Enterovirus A71 gene expression. J Biomed Sci 2020; 27:22. [PMID: 31910851 PMCID: PMC6947814 DOI: 10.1186/s12929-019-0607-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Upon EV-A71 infection of a host cell, EV-A71 RNA is translated into a viral polyprotein. Although EV-A71 can use the cellular translation machinery to produce viral proteins, unlike cellular translation, which is cap-dependent, the viral RNA genome of EV-A71 does not contain a 5′ cap and the translation of EV-A71 protein is cap-independent, which is mediated by the internal ribosomal entry site (IRES) located in the 5′ UTR of EV-A71 mRNA. Like many other eukaryotic viruses, EV-A71 manipulates the host cell translation devices, using an elegant RNA-centric strategy in infected cells. During viral translation, viral RNA plays an important role in controlling the stage of protein synthesis. In addition, due to the cellular defense mechanism, viral replication is limited by down-regulating translation. EV-A71 also utilizes protein factors in the host to overcome antiviral responses or even use them to promote viral translation rather than host cell translation. In this review, we provide an introduction to the known strategies for EV-A71 to exploit cellular translation mechanisms.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Department of Colorectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Han-Hsiang Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Peng Xu
- Xiangyang No.1 People's Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.
| | - Robert Y L Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan. .,Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan.
| |
Collapse
|
18
|
Holmes AC, Semler BL. Picornaviruses and RNA Metabolism: Local and Global Effects of Infection. J Virol 2019; 93:e02088-17. [PMID: 31413128 PMCID: PMC6803262 DOI: 10.1128/jvi.02088-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Due to the limiting coding capacity for members of the Picornaviridae family of positive-strand RNA viruses, their successful replication cycles require complex interactions with host cell functions. These interactions span from the down-modulation of many aspects of cellular metabolism to the hijacking of specific host functions used during viral translation, RNA replication, and other steps of infection by picornaviruses, such as human rhinovirus, coxsackievirus, poliovirus, foot-and-mouth disease virus, enterovirus D-68, and a wide range of other human and nonhuman viruses. Although picornaviruses replicate exclusively in the cytoplasm of infected cells, they have extensive interactions with host cell nuclei and the proteins and RNAs that normally reside in this compartment of the cell. This review will highlight some of the more recent studies that have revealed how picornavirus infections impact the RNA metabolism of the host cell posttranscriptionally and how they usurp and modify host RNA binding proteins as well as microRNAs to potentiate viral replication.
Collapse
Affiliation(s)
- Autumn C Holmes
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| | - Bert L Semler
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| |
Collapse
|
19
|
Smirnova VV, Shestakova ED, Bikmetov DV, Chugunova AA, Osterman IA, Serebryakova MV, Sergeeva OV, Zatsepin TS, Shatsky IN, Terenin IM. eIF4G2 balances its own mRNA translation via a PCBP2-based feedback loop. RNA (NEW YORK, N.Y.) 2019; 25:757-767. [PMID: 31010886 PMCID: PMC6573783 DOI: 10.1261/rna.065623.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Poly(rC)-binding protein 2 (PCBP2, hnRNP E2) is one of the most abundant RNA-binding proteins in mammalian cells. In humans, it exists in seven isoforms, which are assumed to play similar roles in cells. The protein is shown to bind 3'-untranslated regions (3'-UTRs) of many mRNAs and regulate their translation and/or stability, but nothing is known about the functional consequences of PCBP2 binding to 5'-UTRs. Here we show that the PCBP2 isoform f interacts with the 5'-UTRs of mRNAs encoding eIF4G2 (a translation initiation factor with a yet unknown mechanism of action, also known as DAP5) and Cyclin I, and inhibits their translation in vitro and in cultured cells, while the PCBP2 isoform e only affects Cyclin I translation. Furthermore, eIF4G2 participates in a cap-dependent translation of the PCBP2 mRNA. Thus, PCBP2 and eIF4G2 seem to regulate one another's expression via a novel type of feedback loop formed by the translation initiation factor and the RNA-binding protein.
Collapse
Affiliation(s)
- Victoria V Smirnova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - Ekaterina D Shestakova
- Department of Biochemistry, School of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russian Federation
| | - Dmitry V Bikmetov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Anastasia A Chugunova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Ilya A Osterman
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - Olga V Sergeeva
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Timofey S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143026, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991, Moscow, Russian Federation
| |
Collapse
|
20
|
Dave P, George B, Balakrishnan S, Sharma DK, Raheja H, Dixit NM, Das S. Strand-specific affinity of host factor hnRNP C1/C2 guides positive to negative-strand ratio in Coxsackievirus B3 infection. RNA Biol 2019; 16:1286-1299. [PMID: 31234696 DOI: 10.1080/15476286.2019.1629208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Coxsackievirus B3 is an enterovirus, with positive-sense single-stranded RNA genome containing 'Internal Ribosome Entry Site' (IRES) in the 5'UTR. Once sufficient viral proteins are synthesized in the cell from the input RNA, viral template switches from translation to replication to synthesize negative-strand RNA. Inhibition of translation is a key step in regulating this switch as the positive-strand RNA template should be free of ribosomes to enable polymerase movement. In this study, we show how a host protein hnRNP C1/C2 inhibits viral RNA translation. hnRNP C1/C2 interacts with stem-loop V in the IRES and displaces poly-pyrimidine tract binding protein, a positive regulator of translation. We further demonstrate that hnRNP C1/C2 induces translation to replication switch, independently from the already known role of the ternary complex (PCBP2-3CD-cloverleaf RNA). These results suggest a novel function of hnRNP C1/C2 in template switching of positive-strand from translation to replication by a new mechanism. Using mathematical modelling, we show that the differential affinity of hnRNP C1/C2 for positive and negative-strand RNAs guides the final ± RNA ratio, providing first insight in the regulation of the positive to negative-strand RNA ratio in enteroviruses.
Collapse
Affiliation(s)
- Pratik Dave
- a Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore , Karnataka , India
| | - Biju George
- a Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore , Karnataka , India
| | - Sreenath Balakrishnan
- b Center for BioSystems Science and Engineering, Indian Institute of Science , Bangalore , Karnataka , India
| | - Divya Khandige Sharma
- a Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore , Karnataka , India
| | - Harsha Raheja
- a Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore , Karnataka , India
| | - Narendra M Dixit
- b Center for BioSystems Science and Engineering, Indian Institute of Science , Bangalore , Karnataka , India.,c Department of Chemical Engineering, Indian Institute of Science , Bangalore , Karnataka , India
| | - Saumitra Das
- a Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore , Karnataka , India.,b Center for BioSystems Science and Engineering, Indian Institute of Science , Bangalore , Karnataka , India.,d Centre for Infectious Disease Research, Indian Institute of Science , Bangalore , Karnataka , India.,e Infectious Disease Research, National Institute of Biomedical Genomics , Kalyani , West Bengal , India
| |
Collapse
|
21
|
Warden MS, Cai K, Cornilescu G, Burke JE, Ponniah K, Butcher SE, Pascal SM. Conformational flexibility in the enterovirus RNA replication platform. RNA (NEW YORK, N.Y.) 2019; 25:376-387. [PMID: 30578285 PMCID: PMC6380274 DOI: 10.1261/rna.069476.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/19/2018] [Indexed: 05/06/2023]
Abstract
A presumed RNA cloverleaf (5'CL), located at the 5'-most end of the noncoding region of the enterovirus genome, is the primary established site for initiation of genomic replication. Stem-loop B (SLB) and stem-loop D (SLD), the two largest stem-loops within the 5'CL, serve as recognition sites for protein interactions that are essential for replication. Here we present the solution structure of rhinovirus serotype 14 5'CL using a combination of nuclear magnetic resonance spectroscopy and small-angle X-ray scattering. In the absence of magnesium, the structure adopts an open, somewhat extended conformation. In the presence of magnesium, the structure compacts, bringing SLB and SLD into close contact, a geometry that creates an extensive accessible major groove surface, and permits interaction between the proteins that target each stem-loop.
Collapse
Affiliation(s)
- Meghan S Warden
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Kai Cai
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jordan E Burke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Komala Ponniah
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Steven M Pascal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
| |
Collapse
|
22
|
Staufen1 Protein Participates Positively in the Viral RNA Replication of Enterovirus 71. Viruses 2019; 11:v11020142. [PMID: 30744035 PMCID: PMC6409738 DOI: 10.3390/v11020142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
The double-stranded RNA-binding protein Staufen1 (Stau1) has multiple functions during RNA virus infection. In this study, we investigated the role of Stau1 in viral translation by using a combination of enterovirus 71 (EV-A71) infection, RNA reporter transfection, and in vitro functional and biochemical assays. We demonstrated that Stau1 specifically binds to the 5′-untranslated region of EV-A71 viral RNA. The RNA-binding domain 2-3 of Stau1 is responsible for this binding ability. Subsequently, we created a Stau1 knockout cell line using the CRISPR/Cas9 approach to further characterize the functional role of Stau1’s interaction with viral RNA in the EV-A71-infected cells. Both the viral RNA accumulation and viral protein expression were downregulated in the Stau1 knockout cells compared with the wild-type naïve cells. Moreover, dysregulation of viral RNA translation was observed in the Stau1 knockout cells using ribosome fractionation assay, and a reduced RNA stability of 5′-UTR of the EV-A71 was also identified using an RNA stability assay, which indicated that Stau1 has a role in facilitating viral translation during EV-A71 infection. In conclusion, we determined the functional relevance of Stau1 in the EV-A71 infection cycle and herein describe the mechanism of Stau1 participation in viral RNA translation through its interaction with viral RNA. Our results suggest that Stau1 is an important host factor involved in viral translation and influential early in the EV-A71 replication cycle.
Collapse
|
23
|
Flather D, Nguyen JHC, Semler BL, Gershon PD. Exploitation of nuclear functions by human rhinovirus, a cytoplasmic RNA virus. PLoS Pathog 2018; 14:e1007277. [PMID: 30142213 PMCID: PMC6126879 DOI: 10.1371/journal.ppat.1007277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/06/2018] [Accepted: 08/11/2018] [Indexed: 12/17/2022] Open
Abstract
Protein production, genomic RNA replication, and virion assembly during infection by picornaviruses like human rhinovirus and poliovirus take place in the cytoplasm of infected human cells, making them the quintessential cytoplasmic pathogens. However, a growing body of evidence suggests that picornavirus replication is promoted by a number of host proteins localized normally within the host cell nucleus. To systematically identify such nuclear proteins, we focused on those that appear to re-equilibrate from the nucleus to the cytoplasm during infection of HeLa cells with human rhinovirus via quantitative protein mass spectrometry. Our analysis revealed a highly selective re-equilibration of proteins with known mRNA splicing and transport-related functions over nuclear proteins of all other functional classes. The multifunctional splicing factor proline and glutamine rich (SFPQ) was identified as one such protein. We found that SFPQ is targeted for proteolysis within the nucleus by viral proteinase 3CD/3C, and a fragment of SFPQ was shown to migrate to the cytoplasm at mid-to-late times of infection. Cells knocked down for SFPQ expression showed significantly reduced rhinovirus titers, viral protein production, and viral RNA accumulation, consistent with SFPQ being a pro-viral factor. The SFPQ fragment that moved into the cytoplasm was able to bind rhinovirus RNA either directly or indirectly. We propose that the truncated form of SFPQ promotes viral RNA stability or replication, or virion morphogenesis. More broadly, our findings reveal dramatic changes in protein compartmentalization during human rhinovirus infection, allowing the virus to systematically hijack the functions of proteins not normally found at its cytoplasmic site of replication. We explored the dynamics of host cell protein relocalization from the nucleus to the cytoplasm during an infection by human rhinovirus using quantitative mass spectrometry, confocal imaging, and Western blot analysis. We discovered a highly selective re-equilibration of proteins with known mRNA splicing and transport-related functions, including splicing factor proline and glutamine rich (SFPQ). Using RNAi experiments and viral replication assays, we demonstrated that SFPQ is a pro-viral factor required for rhinovirus growth. Our studies provide new insights into how this cytoplasmic RNA virus is able to alter and hijack the functions of host proteins that normally reside in the nucleus.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
| | - Joseph H. C. Nguyen
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
| | - Bert L. Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, United States of America
- Center for Virus Research, University of California, Irvine, California, United States of America
- * E-mail: (BLS); (PDG)
| | - Paul D. Gershon
- Center for Virus Research, University of California, Irvine, California, United States of America
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
- * E-mail: (BLS); (PDG)
| |
Collapse
|
24
|
Su YS, Tsai AH, Ho YF, Huang SY, Liu YC, Hwang LH. Stimulation of the Internal Ribosome Entry Site (IRES)-Dependent Translation of Enterovirus 71 by DDX3X RNA Helicase and Viral 2A and 3C Proteases. Front Microbiol 2018; 9:1324. [PMID: 29971060 PMCID: PMC6018165 DOI: 10.3389/fmicb.2018.01324] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/30/2018] [Indexed: 12/16/2022] Open
Abstract
The translation of enterovirus 71 (EV71) is mediated by an internal ribosome entry site (IRES)-dependent manner. EV71 IRES comprises five highly structured domains (domains II-VI) in the 5′-untranslated region of the viral mRNA. A conserved AUG triplet residing in domain VI is proposed to be the ribosome entry site. It is thus envisaged that the highly structured conformation of domain VI may actually reduce the accessibility of the AUG triplet to the ribosome. This study identified a DEAD-box family RNA helicase, DDX3X, that positively regulated the EV71 IRES-dependent translation. The helicase activity of DDX3X was required for the stimulation of EV71 IRES activity; however, DDX3X was no longer important for the IRES activity when the secondary structure of domain VI was destabilized. DDX3X interacted with the truncated eIF4G which bound specifically to domain V. Thus, we proposed that DDX3X might bind to domain VI or a region nearby via the interaction with the truncated eIF4G, and subsequently unwound the secondary structure of domain VI to facilitate ribosome entry. Additionally, we demonstrated that the viral 2Apro and 3Cpro enhanced the IRES-dependent translation via their protease activities. Together, these results indicate that DDX3X is an important RNA helicase involved in EV71 IRES-dependent translation and that IRES translation is enhanced by viral infection, partly mediated by viral protease activity.
Collapse
Affiliation(s)
- Yu-Siang Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ai-Hsuan Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yueh-Feng Ho
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shin-Yi Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Chun Liu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Lih-Hwa Hwang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
25
|
Kumar R, Khandelwal N, Thachamvally R, Tripathi BN, Barua S, Kashyap SK, Maherchandani S, Kumar N. Role of MAPK/MNK1 signaling in virus replication. Virus Res 2018; 253:48-61. [PMID: 29864503 PMCID: PMC7114592 DOI: 10.1016/j.virusres.2018.05.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/16/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Viruses are known to exploit cellular signaling pathways. MAPK is a major cell signaling pathway activated by diverse group of viruses. MNK1 regulates both cap-dependent and IRES-mediated mRNA translation. This review discuss the role of MAPK, particularly the role of MNK1 in virus replication.
Viruses are obligate intracellular parasites; they heavily depend on the host cell machinery to effectively replicate and produce new progeny virus particles. Following viral infection, diverse cell signaling pathways are initiated by the cells, with the major goal of establishing an antiviral state. However, viruses have been shown to exploit cellular signaling pathways for their own effective replication. Genome-wide siRNA screens have also identified numerous host factors that either support (proviral) or inhibit (antiviral) virus replication. Some of the host factors might be dispensable for the host but may be critical for virus replication; therefore such cellular factors may serve as targets for development of antiviral therapeutics. Mitogen activated protein kinase (MAPK) is a major cell signaling pathway that is known to be activated by diverse group of viruses. MAPK interacting kinase 1 (MNK1) has been shown to regulate both cap-dependent and internal ribosomal entry sites (IRES)-mediated mRNA translation. In this review we have discuss the role of MAPK in virus replication, particularly the role of MNK1 in replication and translation of viral genome.
Collapse
Affiliation(s)
- Ram Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India; Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Nitin Khandelwal
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Riyesh Thachamvally
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Bhupendra Nath Tripathi
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sanjay Barua
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India
| | - Naveen Kumar
- Virology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001, India.
| |
Collapse
|
26
|
Shin H, Lee J, Kim Y, Jang S, Ohn T, Lee Y. Identifying the cellular location of brain cytoplasmic 200 RNA using an RNA-recognizing antibody. BMB Rep 2018; 50:318-322. [PMID: 28042783 PMCID: PMC5498142 DOI: 10.5483/bmbrep.2017.50.6.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 11/20/2022] Open
Abstract
Brain cytoplasmic 200 RNA (BC200 RNA) is a neuron-specific non-coding RNA, implicated in the inhibition of local synaptodendritic protein synthesis, and is highly expressed in some cancer cells. Although BC200 RNA has been shown to inhibit translation in vitro, the cellular location of this inhibition is unknown. In this study, we used a BC200 RNA-recognizing antibody to identify the cellular locations of BC200 RNA in HeLa cervical carcinoma cells. We observed punctate signals in both the cytoplasm and nucleus, and further discovered that BC200 RNA co-localized with the p-body decapping enzyme, DCP1A, and the heterogeneous nuclear ribonucleoprotein E2 (hnRNP E2). The latter is a known BC200 RNA-binding partner protein and a constituent of p-bodies. This suggests that BC200 RNA is localized to p-bodies via hnRNP E2. [BMB Reports 2017; 50(6): 318-322].
Collapse
Affiliation(s)
- Heegwon Shin
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Jungmin Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Youngmi Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Seonghui Jang
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Takbum Ohn
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju 61452, Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
27
|
Warden MS, Tonelli M, Cornilescu G, Liu D, Hopersberger LJ, Ponniah K, Pascal SM. Structure of RNA Stem Loop B from the Picornavirus Replication Platform. Biochemistry 2017; 56:2549-2557. [PMID: 28459542 DOI: 10.1021/acs.biochem.7b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The presumptive RNA cloverleaf at the start of the 5'-untranslated region of the picornavirus genome is an essential element in replication. Stem loop B (SLB) of the cloverleaf is a recognition site for the host polyC-binding protein, which initiates a switch from translation to replication. Here we present the solution structure of human rhinovirus isotype 14 SLB using nuclear magnetic resonance spectroscopy. SLB adopts a predominantly A-form helical structure. The stem contains five Watson-Crick base pairs and one wobble base pair and is capped by an eight-nucleotide loop. The wobble base pair introduces perturbations into the helical parameters but does not appear to introduce flexibility. However, the helix major groove appears to be accessible. Flexibility is seen throughout the loop and in the terminal nucleotides. The pyrimidine-rich region of the loop, the apparent recognition site for the polyC-binding protein, is the most disordered region of the structure.
Collapse
Affiliation(s)
- Meghan S Warden
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Dong Liu
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Lorelei J Hopersberger
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Komala Ponniah
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Steven M Pascal
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| |
Collapse
|
28
|
Jang S, Shin H, Lee J, Kim Y, Bak G, Lee Y. Regulation of BC200 RNA-mediated translation inhibition by hnRNP E1 and E2. FEBS Lett 2017; 591:393-405. [PMID: 28027391 DOI: 10.1002/1873-3468.12544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022]
Abstract
The long noncoding RNA BC200 (brain cytoplasmic RNA, 200 nucleotides) acts as a translational modulator of local protein synthesis at dendrites. BC200 RNA has been shown to inhibit translation in vitro, but it remains unknown how this translation inhibition might be controlled in a cell. Here, we performed yeast three-hybrid screening and identified hnRNP E1 and hnRNP E2 as BC200 RNA-interacting proteins. We found that: these hnRNA proteins could restore BC200 RNA-inhibited translation; BC200 RNA interacts with hnRNP E1 and E2 mainly through its unique 3' C-rich domain; and the RNA binding specificities and modes of the two proteins differed somewhat. Our results offer new insights into the regulation of BC200 RNA-mediated translation inhibition.
Collapse
Affiliation(s)
| | | | - Jungmin Lee
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Youngmi Kim
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Geunu Bak
- Department of Chemistry, KAIST, Daejeon, Korea
| | | |
Collapse
|
29
|
Kung YA, Hung CT, Chien KY, Shih SR. Control of the negative IRES trans-acting factor KHSRP by ubiquitination. Nucleic Acids Res 2017; 45:271-287. [PMID: 27899653 PMCID: PMC5224474 DOI: 10.1093/nar/gkw1042] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/14/2016] [Accepted: 11/01/2016] [Indexed: 01/25/2023] Open
Abstract
Cells and viruses can utilize internal ribosome entry sites (IRES) to drive translation when cap-dependent translation is inhibited by stress or viral factors. IRES trans-acting factors (ITAFs) are known to participate in such cap-independent translation, but there are gaps in the understanding as to how ITAFs, particularly negative ITAFs, regulate IRES-driven translation. This study found that Lys109, Lys121 and Lys122 represent critical ubiquitination sites for far upstream element-binding protein 2 (KHSRP, also known as KH-type splicing regulatory protein or FBP2), a negative ITAF. Mutations at these sites subsequently reduced KHSRP ubiquitination and abolished its inhibitory effect on IRES-driven translation. We further found that interaction between the Kelch domain of Kelch-like protein 12 (KLHL12) and the C-terminal domain of KHSRP contributed to KHSRP ubiquitination, leading to downregulation of enterovirus IRES-mediated translation in infected cells and increased competition against other positive ITAFs. Together, these results show that ubiquitination can exert control over IRES-driven translation via modification of ITAFs, and to the best of our knowledge, this is the first description of such a regulatory mechanism for IRES-dependent translation.
Collapse
Affiliation(s)
- Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chuan-Tien Hung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Proteomics Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Virology Laboratory, Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| |
Collapse
|
30
|
Diverse Strategies Used by Picornaviruses to Escape Host RNA Decay Pathways. Viruses 2016; 8:v8120335. [PMID: 27999393 PMCID: PMC5192396 DOI: 10.3390/v8120335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022] Open
Abstract
To successfully replicate, viruses protect their genomic material from degradation by the host cell. RNA viruses must contend with numerous destabilizing host cell processes including mRNA decay pathways and viral RNA (vRNA) degradation resulting from the antiviral response. Members of the Picornaviridae family of small RNA viruses have evolved numerous diverse strategies to evade RNA decay, including incorporation of stabilizing elements into vRNA and re-purposing host stability factors. Viral proteins are deployed to disrupt and inhibit components of the decay machinery and to redirect decay machinery to the advantage of the virus. This review summarizes documented interactions of picornaviruses with cellular RNA decay pathways and processes.
Collapse
|
31
|
Hung CT, Kung YA, Li ML, Brewer G, Lee KM, Liu ST, Shih SR. Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product. PLoS Pathog 2016; 12:e1005959. [PMID: 27780225 PMCID: PMC5079569 DOI: 10.1371/journal.ppat.1005959] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
The 5' untranslated region (5' UTR) of the enterovirus 71 (EV71) RNA genome contains an internal ribosome entry site (IRES) that is indispensable for viral protein translation. Due to the limited coding capacity of their RNA genomes, EV71 and other picornaviruses typically recruit host factors, known as IRES trans-acting factors (ITAFs), to mediate IRES-dependent translation. Here, we show that EV71 viral proteinase 2A is capable of cleaving far upstream element-binding protein 1 (FBP1), a positive ITAF that directly binds to the EV71 5' UTR linker region to promote viral IRES-driven translation. The cleavage occurs at the Gly-371 residue of FBP1 during the EV71 infection process, and this generates a functional cleavage product, FBP11-371. Interestingly, the cleavage product acts to promote viral IRES activity. Footprinting analysis and gel mobility shift assay results showed that FBP11-371 similarly binds to the EV71 5' UTR linker region, but at a different site from full-length FBP1; moreover, FBP1 and FBP11-371 were found to act additively to promote IRES-mediated translation and virus yield. Our findings expand the current understanding of virus-host interactions with regard to viral recruitment and modulation of ITAFs, and provide new insights into translational control during viral infection. Many RNA viruses utilize internal ribosome entry sites (IRES) located in the 5’ untranslated region of genomic RNA to translate viral proteins in a cap-independent manner. Host proteins that are recruited to assist in viral IRES-driven translation are known as ITAFs (IRES trans-acting factors), of which far upstream element-binding protein 1 (FBP1) is an example. In this study, we describe a novel regulatory mechanism involving ITAF cleavage, in which FBP1 is cleaved by EV71 viral proteinase 2A to yield a cleavage product, FBP11-371, which in turn acts additively with full-length FBP1 to enhance viral IRES-mediated translation and virus yield. Footprinting and gel mobility shift analyses reveal that both full-length FBP1 and its cleavage product bind to the linker region of EV71 5′ UTR, but at different sites. To the best of our understanding, these results shed light on a novel interaction between host ITAFs and picornaviruses, and provide important implications for other virus-host interactions.
Collapse
Affiliation(s)
- Chuan-Tien Hung
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yu-An Kung
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Jersey, United States Of America
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Jersey, United States Of America
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Shih-Tung Liu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- * E-mail: (STL); (SRS)
| | - Shin-Ru Shih
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Clinical Virology Laboratory, Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- * E-mail: (STL); (SRS)
| |
Collapse
|
32
|
Prostova MA, Gmyl AP, Bakhmutov DV, Shishova AA, Khitrina EV, Kolesnikova MS, Serebryakova MV, Isaeva OV, Agol VI. Mutational robustness and resilience of a replicative cis-element of RNA virus: Promiscuity, limitations, relevance. RNA Biol 2016; 12:1338-54. [PMID: 26488412 DOI: 10.1080/15476286.2015.1100794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Since replication of RNA-viruses is generally a low-fidelity process, it would be advantageous, if specific interactions of their genomic cis-elements with dedicated ligands are relatively tolerant to mutations. The specificity/promiscuity trade-off of such interactions was addressed here by investigating structural requirements of the oriL (also known as the clover leaf-like element), of poliovirus RNA, a replicative cis-element containing a conserved essential tetraloop functionally interacting with the viral protein 3CD. The sequence of this tetraloop and 2 adjacent base-pairs was randomized in the viral genome, and viable viruses were selected in susceptible cells. Strikingly, each position of this octanucleotide in 62 investigated viable viruses could be occupied by any nucleotide (with the exception of one position, which lacked U), though with certain sequence preferences, confirmed by engineering mutant viral genomes whose phenotypic properties were found to correlate with the strength of the cis-element/ligand interaction. The results were compatible with a hypothesis that functional recognition by 3CD requires that this tetraloop should stably or temporarily adopt a YNMG-like (Y=U/C, N=any nucleotide, M=A/C) fold. The fitness of "weak" viruses could be increased by compensatory mutations "improving" the tetraloops. Otherwise, the recognition of "bad" tetraloops might be facilitated by alterations in the 3CD protein. The virus appeared to tolerate mutations in its cis-element relaying on either robustness (spatial structure degeneracy) or resilience (a combination of dynamic RNA folding, low-fidelity replication modifying the cis-element or its ligand, and negative selection). These mechanisms (especially resilience involving metastable low-fit intermediates) can also contribute to the viral evolvability.
Collapse
Affiliation(s)
- Maria A Prostova
- a M P Chumakov Institute of Poliomyelitis and Viral Encephalitides ; Moscow Russia
| | - Anatoly P Gmyl
- a M P Chumakov Institute of Poliomyelitis and Viral Encephalitides ; Moscow Russia.,b M V Lomonosov Moscow State University ; Moscow Russia
| | - Denis V Bakhmutov
- a M P Chumakov Institute of Poliomyelitis and Viral Encephalitides ; Moscow Russia.,c Deceased
| | - Anna A Shishova
- a M P Chumakov Institute of Poliomyelitis and Viral Encephalitides ; Moscow Russia
| | - Elena V Khitrina
- a M P Chumakov Institute of Poliomyelitis and Viral Encephalitides ; Moscow Russia
| | - Marina S Kolesnikova
- a M P Chumakov Institute of Poliomyelitis and Viral Encephalitides ; Moscow Russia
| | | | - Olga V Isaeva
- a M P Chumakov Institute of Poliomyelitis and Viral Encephalitides ; Moscow Russia
| | - Vadim I Agol
- a M P Chumakov Institute of Poliomyelitis and Viral Encephalitides ; Moscow Russia.,b M V Lomonosov Moscow State University ; Moscow Russia
| |
Collapse
|
33
|
Lloyd RE. Enterovirus Control of Translation and RNA Granule Stress Responses. Viruses 2016; 8:93. [PMID: 27043612 PMCID: PMC4848588 DOI: 10.3390/v8040093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 12/24/2022] Open
Abstract
Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Maciejewski S, Nguyen JHC, Gómez-Herreros F, Cortés-Ledesma F, Caldecott KW, Semler BL. Divergent Requirement for a DNA Repair Enzyme during Enterovirus Infections. mBio 2015; 7:e01931-15. [PMID: 26715620 PMCID: PMC4725011 DOI: 10.1128/mbio.01931-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Viruses of the Enterovirus genus of picornaviruses, including poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus, commandeer the functions of host cell proteins to aid in the replication of their small viral genomic RNAs during infection. One of these host proteins is a cellular DNA repair enzyme known as 5' tyrosyl-DNA phosphodiesterase 2 (TDP2). TDP2 was previously demonstrated to mediate the cleavage of a unique covalent linkage between a viral protein (VPg) and the 5' end of picornavirus RNAs. Although VPg is absent from actively translating poliovirus mRNAs, the removal of VPg is not required for the in vitro translation and replication of the RNA. However, TDP2 appears to be excluded from replication and encapsidation sites during peak times of poliovirus infection of HeLa cells, suggesting a role for TDP2 during the viral replication cycle. Using a mouse embryonic fibroblast cell line lacking TDP2, we found that TDP2 is differentially required among enteroviruses. Our single-cycle viral growth analysis shows that CVB3 replication has a greater dependency on TDP2 than does poliovirus or human rhinovirus replication. During infection, CVB3 protein accumulation is undetectable (by Western blot analysis) in the absence of TDP2, whereas poliovirus protein accumulation is reduced but still detectable. Using an infectious CVB3 RNA with a reporter, CVB3 RNA could still be replicated in the absence of TDP2 following transfection, albeit at reduced levels. Overall, these results indicate that TDP2 potentiates viral replication during enterovirus infections of cultured cells, making TDP2 a potential target for antiviral development for picornavirus infections. IMPORTANCE Picornaviruses are one of the most prevalent groups of viruses that infect humans and livestock worldwide. These viruses include the human pathogens belonging to the Enterovirus genus, such as poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus. Diseases caused by enteroviruses pose a major problem for public health and have significant economic impact. Poliovirus can cause paralytic poliomyelitis. CVB3 can cause hand, foot, and mouth disease and myocarditis. Human rhinovirus is the causative agent of the common cold, which has a severe economic impact due to lost productivity and severe health consequences in individuals with respiratory dysfunction, such as asthma. By gaining a better understanding of the enterovirus replication cycle, antiviral drugs against enteroviruses may be developed. Here, we report that the absence of the cellular enzyme TDP2 can significantly decrease viral yields of poliovirus, CVB3, and human rhinovirus, making TDP2 a potential target for an antiviral against enterovirus infections.
Collapse
Affiliation(s)
- Sonia Maciejewski
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | - Joseph H C Nguyen
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | - Fernando Gómez-Herreros
- School of Life Sciences, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Felipe Cortés-Ledesma
- School of Life Sciences, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Keith W Caldecott
- School of Life Sciences, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
35
|
Cui Y, Rao S, Chang B, Wang X, Zhang K, Hou X, Zhu X, Wu H, Tian Z, Zhao Z, Yang C, Huang T. AtLa1 protein initiates IRES-dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards. PLANT, CELL & ENVIRONMENT 2015; 38:2098-2114. [PMID: 25764476 DOI: 10.1111/pce.12535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Plant stem cells are hypersensitive to environmental hazards throughout their life cycle, but the mechanism by which plants safeguard stem cell homeostasis in response to environmental hazards is largely unknown. The homeodomain transcription factor WUSCHEL (WUS) protein maintains the stem cell pool in the shoot apical meristem of Arabidopsis. Here, we demonstrate that the translation of WUS mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region. The AtLa1 protein, an RNA-binding factor, binds to the 5'-untranslated region and initiates the IRES-dependent translation of WUS mRNA. Knockdown of AtLa1 expression represses the WUS IRES-dependent translation and leads to the arrest of growth and development. The AtLa1 protein is mainly located in the nucleoplasm. However, environmental hazards promote the nuclear-to-cytoplasmic translocation of the AtLa1 protein, which further enhances the IRES-dependent translation of WUS mRNA. Genetic evidence indicates that the WUS protein increases the tolerance of the shoot apical meristem to environmental hazards. Based on these results, we conclude that the stem cell niche in Arabidopsis copes with environmental hazards by enhancing the IRES-dependent translation of WUS mRNA under the control of the AtLa1 protein.
Collapse
Affiliation(s)
- Yuchao Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Shaofei Rao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Beibei Chang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xiaoshuang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Kaidian Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xueliang Hou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xueyi Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| | - Haijun Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhaoxia Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Chengwei Yang
- Guangdong Key Laboratory of Biotechnology for Plant Development, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Tao Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, China
| |
Collapse
|
36
|
Flather D, Semler BL. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front Microbiol 2015; 6:594. [PMID: 26150805 PMCID: PMC4471892 DOI: 10.3389/fmicb.2015.00594] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review.
Collapse
Affiliation(s)
- Dylan Flather
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, Center for Virus Research, School of Medicine, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
37
|
Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol 2015; 13:81-5. [PMID: 26083317 DOI: 10.1016/j.coviro.2015.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
An oncolytic virus (OV) based on poliovirus (PV), the highly attenuated polio/rhinovirus recombinant PVSRIPO, may deliver targeted inflammatory cancer cell killing; a principle that is showing promise in clinical trials for recurrent glioblastoma (GBM). The two decisive factors in PVSRIPO anti-tumor efficacy are selective cytotoxicity and its in situ immunogenic imprint. While our work is focused on what constitutes PVSRIPO cancer cytotoxicity, we are also studying how this engenders host immune responses that are vital to tumor regression. We hypothesize that PVSRIPO cytotoxicity and immunogenicity are inextricably linked in essential, complimentary roles that define the anti-neoplastic response. Herein we delineate mechanisms we unraveled to decipher the basis for PVSRIPO cytotoxicity and its immunotherapeutic potential.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA; Department of Neurosurgery, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA
| | - Matthias Gromeier
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA; Department of Neurosurgery, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA.
| |
Collapse
|
38
|
Gelfand BD, Wright CB, Kim Y, Yasuma T, Yasuma R, Li S, Fowler BJ, Bastos-Carvalho A, Kerur N, Uittenbogaard A, Han YS, Lou D, Kleinman ME, McDonald WH, Núñez G, Georgel P, Dunaief JL, Ambati J. Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome. Cell Rep 2015; 11:1686-93. [PMID: 26074074 DOI: 10.1016/j.celrep.2015.05.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/23/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022] Open
Abstract
Excess iron induces tissue damage and is implicated in age-related macular degeneration (AMD). Iron toxicity is widely attributed to hydroxyl radical formation through Fenton's reaction. We report that excess iron, but not other Fenton catalytic metals, induces activation of the NLRP3 inflammasome, a pathway also implicated in AMD. Additionally, iron-induced degeneration of the retinal pigmented epithelium (RPE) is suppressed in mice lacking inflammasome components caspase-1/11 or Nlrp3 or by inhibition of caspase-1. Iron overload increases abundance of RNAs transcribed from short interspersed nuclear elements (SINEs): Alu RNAs and the rodent equivalent B1 and B2 RNAs, which are inflammasome agonists. Targeting Alu or B2 RNA prevents iron-induced inflammasome activation and RPE degeneration. Iron-induced SINE RNA accumulation is due to suppression of DICER1 via sequestration of the co-factor poly(C)-binding protein 2 (PCBP2). These findings reveal an unexpected mechanism of iron toxicity, with implications for AMD and neurodegenerative diseases associated with excess iron.
Collapse
Affiliation(s)
- Bradley D Gelfand
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA; Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40536, USA; Department of Microbiology, Immunology, and Human Genetics, University of Kentucky, Lexington, KY 40536, USA.
| | - Charles B Wright
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Younghee Kim
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Tetsuhiro Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Reo Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Shengjian Li
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA; Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ana Bastos-Carvalho
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Nagaraj Kerur
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Annette Uittenbogaard
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Youn Seon Han
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dingyuan Lou
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mark E Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37205, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Philippe Georgel
- INSERM UMR_S 1109, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, Strasbourg 67085, France
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jayakrishna Ambati
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY 40536, USA; Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
39
|
Brown MC, Gromeier M. Oncolytic immunotherapy through tumor-specific translation and cytotoxicity of poliovirus. DISCOVERY MEDICINE 2015; 19:359-365. [PMID: 26105699 PMCID: PMC4780852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Achieving tumor-specific, robust, and durable effector cytotoxic immune responses is key to successful immunotherapy. This has been accomplished with adoptive cell transfer of ex vivo-expanded autologous tumor-infiltrating or engineered T cells, or with immune checkpoint inhibitors, enhancing inherent T cell reactivity. A natural ability to recruit effector responses makes tumor-targeting ('oncolytic') viruses attractive as immunotherapy vehicles. However, most viruses actively block inflammatory and immunogenic events; or, host innate immune responses may prevent immune initiating events in the first place. Moreover, the mechanisms of how virus infection can produce effector responses against host (tumor) neo-antigens are unclear. We are pioneering oncolytic immunotherapy based on poliovirus, which has no specific mechanism to interfere with host immune activation, exhibits lytic cytotoxicity in the presence of an antiviral interferon response and pre-existing immunity, and engages a powerful innate immune sensor implicated in recruiting cytotoxic T cell responses. Central to this approach is a unique confluence of factors that drive tumor-specific viral translation and cytotoxicity.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Surgery Division of Neurosurgery and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthias Gromeier
- Department of Surgery Division of Neurosurgery and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
40
|
Lloyd RE. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses. Virology 2015; 479-480:457-74. [PMID: 25818028 PMCID: PMC4426963 DOI: 10.1016/j.virol.2015.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/12/2015] [Accepted: 03/03/2015] [Indexed: 01/18/2023]
Abstract
Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
41
|
Leong SY, Ong BKT, Chu JJH. The role of Misshapen NCK-related kinase (MINK), a novel Ste20 family kinase, in the IRES-mediated protein translation of human enterovirus 71. PLoS Pathog 2015; 11:e1004686. [PMID: 25747578 PMCID: PMC4352056 DOI: 10.1371/journal.ppat.1004686] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 01/16/2015] [Indexed: 11/18/2022] Open
Abstract
Human Enterovirus 71 (EV71) commonly causes Hand, Foot and Mouth Disease in young children, and occasional occurrences of neurological complications can be fatal. In this study, a high-throughput cell-based screening on the serine/threonine kinase siRNA library was performed to identify potential antiviral agents against EV71 replication. Among the hits, Misshapen/NIKs-related kinase (MINK) was selected for detailed analysis due to its strong inhibitory profile and novelty. In the investigation of the stage at which MINK is involved in EV71 replication, virus RNA transfection in MINK siRNA-treated cells continued to cause virus inhibition despite bypassing the normal entry pathway, suggesting its involvement at the post-entry stage. We have also shown that viral RNA and protein expression level was significantly reduced upon MINK silencing, suggesting its involvement in viral protein synthesis which feeds into viral RNA replication process. Through proteomic analysis and infection inhibition assay, we found that the activation of MINK was triggered by early replication events, instead of the binding and entry of the virus. Proteomic analysis on the activation profile of p38 Mitogen-activated Protein Kinase (MAPK) indicated that the phosphorylation of p38 MAPK was stimulated by EV71 infection upon MINK activation. Luciferase reporter assay further revealed that the translation efficiency of the EV71 internal ribosomal entry site (IRES) was reduced after blocking the MINK/p38 MAPK pathway. Further investigation on the effect of MINK silencing on heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) localisation demonstrated that cytoplasmic relocalisation of hnRNP A1 upon EV71 infection may be facilitated via the MINK/p38 MAPK pathway which then positively regulates the translation of viral RNA transcripts. These novel findings hence suggest that MINK plays a functional role in the IRES-mediated translation of EV71 viral RNA and may provide a potential target for the development of specific antiviral strategies against EV71 infection.
Collapse
Affiliation(s)
- Shi Yun Leong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan Kit Teck Ong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
42
|
Paul AV, Wimmer E. Initiation of protein-primed picornavirus RNA synthesis. Virus Res 2015; 206:12-26. [PMID: 25592245 DOI: 10.1016/j.virusres.2014.12.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5'-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis. In the first step of the initiation reaction the RNA polymerase links a UMP to the hydroxyl group of a tyrosine in VPg using as template a cis-replicating element (cre) positioned in different regions of the viral genome. In this review we will summarize what is known about the initiation reaction of protein-primed RNA synthesis by the RNA polymerases of the Picornaviridae. As an example we will use the RNA polymerase of poliovirus, the prototype of Picornaviridae. We will also discuss models of how these nucleotidylylated protein primers might be used, together with viral and cellular replication proteins and other cis-replicating RNA elements, during minus and plus strand RNA synthesis.
Collapse
Affiliation(s)
- Aniko V Paul
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States.
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11790, United States
| |
Collapse
|
43
|
Weng KF, Hung CT, Hsieh PT, Li ML, Chen GW, Kung YA, Huang PN, Kuo RL, Chen LL, Lin JY, Wang RYL, Chen SJ, Tang P, Horng JT, Huang HI, Wang JR, Ojcius DM, Brewer G, Shih SR. A cytoplasmic RNA virus generates functional viral small RNAs and regulates viral IRES activity in mammalian cells. Nucleic Acids Res 2014; 42:12789-805. [PMID: 25352551 PMCID: PMC4227785 DOI: 10.1093/nar/gku952] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The roles of virus-derived small RNAs (vsRNAs) have been studied in plants and insects. However, the generation and function of small RNAs from cytoplasmic RNA viruses in mammalian cells remain unexplored. This study describes four vsRNAs that were detected in enterovirus 71-infected cells using next-generation sequencing and northern blots. Viral infection produced substantial levels (>105 copy numbers per cell) of vsRNA1, one of the four vsRNAs. We also demonstrated that Dicer is involved in vsRNA1 generation in infected cells. vsRNA1 overexpression inhibited viral translation and internal ribosomal entry site (IRES) activity in infected cells. Conversely, blocking vsRNA1 enhanced viral yield and viral protein synthesis. We also present evidence that vsRNA1 targets stem-loop II of the viral 5′ untranslated region and inhibits the activity of the IRES through this sequence-specific targeting. Our study demonstrates the ability of a cytoplasmic RNA virus to generate functional vsRNA in mammalian cells. In addition, we also demonstrate a potential novel mechanism for a positive-stranded RNA virus to regulate viral translation: generating a vsRNA that targets the IRES.
Collapse
Affiliation(s)
- Kuo-Feng Weng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuan-Tien Hung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Ting Hsieh
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Guang-Wu Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Lien Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Yi Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taiwan
| | - Robert Yung-Liang Wang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Jen Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Petrus Tang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jim-Tong Horng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Ren Wang
- Center of Infectious Disease and Signaling Research and Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan Health Sciences Research Institute and School of Natural Sciences, University of California, Merced, CA, USA
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan Clinical Virology Laboratory, Chang Gung Memorial Hospital, Tao-yuan, Taiwan
| |
Collapse
|
44
|
Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase. J Virol 2014; 88:13135-48. [PMID: 25187541 DOI: 10.1128/jvi.01883-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. IMPORTANCE We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells.
Collapse
|
45
|
Mitogen-activated protein kinase-interacting kinase regulates mTOR/AKT signaling and controls the serine/arginine-rich protein kinase-responsive type 1 internal ribosome entry site-mediated translation and viral oncolysis. J Virol 2014; 88:13149-60. [PMID: 25187540 DOI: 10.1128/jvi.01884-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Translation machinery is a major recipient of the principal mitogenic signaling networks involving Raf-ERK1/2 and phosphoinositol 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR). Picornavirus internal ribosomal entry site (IRES)-mediated translation and cytopathogenic effects are susceptible to the status of such signaling cascades in host cells. We determined that tumor-specific cytotoxicity of the poliovirus/rhinovirus chimera PVSRIPO is facilitated by Raf-ERK1/2 signals to the mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) and its effects on the partitioning/activity of the Ser/Arg (SR)-rich protein kinase (SRPK) (M. C. Brown, J. D. Bryant, E. Y. Dobrikova, M. Shveygert, S. S. Bradrick, V. Chandramohan, D. D. Bigner, and M, Gromeier, J. Virol. 22:13135-13148, 2014, doi:http://dx.doi.org/10.1128/JVI.01883-14). Here, we show that MNK regulates SRPK via mTOR and AKT. Our investigations revealed a MNK-controlled mechanism acting on mTORC2-AKT. The resulting suppression of AKT signaling attenuates SRPK activity to enhance picornavirus type 1 IRES translation and favor PVSRIPO tumor cell toxicity and killing. IMPORTANCE Oncolytic immunotherapy with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES, is demonstrating early promise in clinical trials with intratumoral infusion in recurrent glioblastoma (GBM). Our investigations demonstrate that the core mechanistic principle of PVSRIPO, tumor-selective translation and cytotoxicity, relies on constitutive ERK1/2-MNK signals that counteract the deleterious effects of runaway AKT-SRPK activity in malignancy.
Collapse
|
46
|
Chase AJ, Daijogo S, Semler BL. Inhibition of poliovirus-induced cleavage of cellular protein PCBP2 reduces the levels of viral RNA replication. J Virol 2014; 88:3192-201. [PMID: 24371074 PMCID: PMC3957957 DOI: 10.1128/jvi.02503-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/23/2013] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Due to their small genome size, picornaviruses must utilize host proteins to mediate cap-independent translation and viral RNA replication. The host RNA-binding protein poly(rC) binding protein 2 (PCBP2) is involved in both processes in poliovirus infected cells. It has been shown that the viral proteinase 3CD cleaves PCBP2 and contributes to viral translation inhibition. However, cleaved PCBP2 remains active in viral RNA replication. This would suggest that both cleaved and intact forms of PCBP2 have a role in the viral RNA replication cycle. The picornavirus genome must act as a template for both translation and RNA replication. However, a template that is actively being translated cannot function as a template for RNA replication, suggesting that there is a switch in template usage from translation to RNA replication. We demonstrate that the cleavage of PCBP2 by the poliovirus 3CD proteinase is a necessary step for efficient viral RNA replication and, as such, may be important for mediating a switch in template usage from translation to RNA replication. IMPORTANCE Poliovirus, like all positive-strand RNA viruses that replicate in the cytoplasm of eukaryotic cells, uses its genomic RNA as a template for both viral protein synthesis and RNA replication. Given that these processes cannot occur simultaneously on the same template, poliovirus has evolved a mechanism(s) to facilitate the switch from using templates for translation to using them for RNA synthesis. This study explores one possible scenario for how the virus alters the functions of a host cell RNA binding protein to mediate, in part, this important transition.
Collapse
Affiliation(s)
- Amanda J Chase
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, California, USA
| | | | | |
Collapse
|
47
|
Sweeney TR, Abaeva IS, Pestova TV, Hellen CUT. The mechanism of translation initiation on Type 1 picornavirus IRESs. EMBO J 2013; 33:76-92. [PMID: 24357634 DOI: 10.1002/embj.201386124] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Picornavirus Type 1 IRESs comprise five principal domains (dII-dVI). Whereas dV binds eIF4G, a conserved AUG in dVI was suggested to stimulate attachment of 43S ribosomal preinitiation complexes, which then scan to the initiation codon. Initiation on Type 1 IRESs also requires IRES trans-acting factors (ITAFs), and several candidates have been proposed. Here, we report the in vitro reconstitution of initiation on three Type 1 IRESs: poliovirus (PV), enterovirus 71 (EV71), and bovine enterovirus (BEV). All of them require eIF2, eIF3, eIF4A, eIF4G, eIF4B, eIF1A, and a single ITAF, poly(C) binding protein 2 (PCBP2). In each instance, initiation starts with binding of eIF4G/eIF4A. Subsequent recruitment of 43S complexes strictly requires direct interaction of their eIF3 constituent with eIF4G. The following events can differ between IRESs, depending on the stability of dVI. If it is unstructured (BEV), all ribosomes scan through dVI to the initiation codon, requiring eIF1 to bypass its AUG. If it is structured (PV, EV71), most initiation events occur without inspection of dVI, implying that its AUG does not determine ribosomal attachment.
Collapse
Affiliation(s)
- Trevor R Sweeney
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
48
|
Chase AJ, Semler BL. Differential cleavage of IRES trans-acting factors (ITAFs) in cells infected by human rhinovirus. Virology 2013; 449:35-44. [PMID: 24418535 DOI: 10.1016/j.virol.2013.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/14/2013] [Accepted: 10/22/2013] [Indexed: 02/05/2023]
Abstract
Human rhinovirus (HRV) is a major causative agent of the common cold, and thus has several important health implications. As a member of the picornavirus family, HRV has a small genomic RNA that utilizes several host cell proteins for RNA replication. Host proteins poly(rC) binding protein 2 (PCBP2) and polypyrimidine tract binding protein (PTB) are cleaved by a viral proteinase during the course of infection by the related picornavirus, poliovirus. The cleavage of PCBP2 and PTB inhibits poliovirus translation and has been proposed to mediate a switch in poliovirus template usage from translation to RNA replication. HRV RNA replication also requires a switch in template usage from translation to RNA replication; however, the mechanism is not yet known. We demonstrate that PCBP2 and PTB are differentially cleaved during HRV infection in different cell lines, suggesting that HRV utilizes a mechanism distinct from PCBP2 or PTB cleavage to mediate a switch in template usage.
Collapse
Affiliation(s)
- Amanda J Chase
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
49
|
Kang DH, Song KY, Wei LN, Law PY, Loh HH, Choi HS. Novel function of the poly(c)-binding protein α-CP2 as a transcriptional activator that binds to single-stranded DNA sequences. Int J Mol Med 2013; 32:1187-94. [PMID: 24026233 PMCID: PMC4432725 DOI: 10.3892/ijmm.2013.1488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022] Open
Abstract
α-complex protein 2 (α-CP2) is known as an RNA-binding protein that interacts in a sequence-specific manner with single-stranded polycytosine [poly(C)]. This protein is involved in various post-transcriptional regulations, such as mRNA stabilization and translational regulation. In this study, the full-length mouse α-CP2 gene was expressed in an insoluble form with an N-terminal histidine tag in Escherichia coli and purified for homogeneity using affinity column chromatography. Its identity was confirmed using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Recombinant α-CP2 was expressed and refolded. The protein folding conditions for denatured α-CP2 were optimized. DNA and RNA electrophoretic mobility shift assays demonstrated that the recombinant α-CP2 is capable of binding to both single-stranded DNA and RNA poly(C) sequences. Furthermore, plasmids expressing α-CP2 activated the expression of a luciferase reporter when co-transfected with a single-stranded (pGL-SS) construct containing a poly(C) sequence. To our knowledge, this study demonstrates for the first time that α-CP2 functions as a transcriptional activator by binding to a single-stranded poly(C) sequence.
Collapse
Affiliation(s)
- Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Yangcheon‑gu, Seoul 158-710, Republic of Korea
| | | | | | | | | | | |
Collapse
|
50
|
Norovirus genome circularization and efficient replication are facilitated by binding of PCBP2 and hnRNP A1. J Virol 2013; 87:11371-87. [PMID: 23946460 DOI: 10.1128/jvi.03433-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5'-3' interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5'-3' interactions and formed ribonucleoprotein complexes with the 5' and 3' ends of the MNV-1 genomic RNA. Mutations within the 3' complementary sequences (CS) that disrupt the 5'-3'-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3'-end sequence and/or the lack of complementarity with the 5' end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5' and 3' ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle.
Collapse
|