1
|
Chen H, Xia L, Li G. Recent progress of chiral metal-organic frameworks in enantioselective separation and detection. Mikrochim Acta 2024; 191:640. [PMID: 39356328 DOI: 10.1007/s00604-024-06729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Chiral compounds are abundantly distributed in both the natural world and biological systems. It is crucial to identify and detect chiral compounds in living systems or to separate and determine them in the natural environment. Many researchers have developed a range of chiral materials with different functionalizations to separate and detect chiral substances. Chiral metal-organic frameworks (CMOFs) have the potential to be used in enantioselective separation and detection due to their large surface areas, regulated framework topologies, particular substrate interactions, and accessible chiral sites. CMOFs contribute significantly to the development of enantiomer separation and detection in medicine, agriculture, food, environment, and other fields. This review focuses on four synthesis methods of CMOFs and their applications in chiral separation and chiral sensing in the past five years, mainly including chromatographic separation, membrane separation, optical sensing, electrochemical sensing, and other sensing methods. Finally, the challenges and potential growth direction of CMOFs in enantiomer separation and detection are discussed and prospected.
Collapse
Affiliation(s)
- Huiting Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
2
|
Gillet J, Geerts Y, Rongy L, De Decker Y. Differences in enantiomeric diffusion can lead to selective chiral amplification. Proc Natl Acad Sci U S A 2024; 121:e2319770121. [PMID: 38635636 PMCID: PMC11046698 DOI: 10.1073/pnas.2319770121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
A fundamental question associated with chirality is how mixtures containing equal amounts of interconverting enantiomers can spontaneously convert to systems enriched in only one of them. Enantiomers typically have similar chemical properties, but can exhibit distinct reactivity under specific conditions, and these differences can be used to bias the system's composition in favor of one enantiomer. Transport properties are also expected to differ for enantiomers in chiral solvents, but the role of such differences in chiral symmetry breaking has not been clarified yet. In this work, we develop a theoretical framework to show that asymmetry in diffusion properties can trigger a spontaneous and selective symmetry breaking in mixtures of enantiomers. We derive a generic evolution equation for the enantiomeric excess in a chiral solvent. This equation shows that the relative stability of homochiral domains is dictated by the difference of diffusion coefficients of the two enantiomers. Consequently, deracemization toward a specific enantiomeric excess can be achieved when this difference is large enough. These results hold significant implications for our understanding of chiral symmetry breaking.
Collapse
Affiliation(s)
- Jean Gillet
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, CP – 231, Université libre de Bruxelles, Bruxelles1050, Belgium
| | - Yves Geerts
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université libre de Bruxelles, Bruxelles1050, Belgium
- International Solvay Institutes of Physics and Chemistry, Université libre de Bruxelles, Bruxelles1050, Belgium
| | - Laurence Rongy
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, CP – 231, Université libre de Bruxelles, Bruxelles1050, Belgium
| | - Yannick De Decker
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, CP – 231, Université libre de Bruxelles, Bruxelles1050, Belgium
| |
Collapse
|
3
|
Chieffo C, Shvetsova A, Skorda F, Lopez A, Fiore M. The Origin and Early Evolution of Life: Homochirality Emergence in Prebiotic Environments. ASTROBIOLOGY 2023; 23:1368-1382. [PMID: 37862227 DOI: 10.1089/ast.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Homochirality is one of the signatures of life. Numerous geological and prebiotic chemistry studies have proved that disordered soups containing small organic molecules, gases, liquids, and minerals (such as those containing phosphorous) yielded racemic mixtures of building blocks for biomolecule assembly. Polymers obtained from these bricks should have been enantiopure with functional properties similar to modern biomolecules or heterochiral with some functions such as catalyzing a chemical transformation unspecifically. Up until now, no clues have been found as to how symmetry breaking occurred. In this review, we highlight the principal achievements regarding the emergence of homochirality during the prebiotic synthesis of building blocks. Furthermore, we tried to focus on approaches based on prebiotic systems chemistry (bottom-up) and laboratory scales to simulate plausible prebiotic messy environments for the emergence of life. We aim with this review to assemble, even partially, the puzzle pieces of the origin of life regarding the relevant phenomenon of homochiral symmetry breaking.
Collapse
Affiliation(s)
- Carolina Chieffo
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Villeurbanne, France
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Anastasiia Shvetsova
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Villeurbanne, France
- Université de Lyon, Claude Bernard Lyon 1, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Villeurbanne, France
| | - Fryni Skorda
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Villeurbanne, France
- Ecole Centrale de Lyon, Ecully, France
| | - Augustin Lopez
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Villeurbanne, France
| | - Michele Fiore
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Villeurbanne, France
| |
Collapse
|
4
|
Konstantinov KK, Konstantinova AF. Evolutionary Approach to Biological Homochirality. ORIGINS LIFE EVOL B 2022; 52:205-232. [DOI: 10.1007/s11084-022-09632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022]
Abstract
AbstractWe study a very simple linear evolutionary model based on distribution of protocells by total enantiomeric excess and without any mutual inhibition and show that such model can produce two species with values of total enantiomeric excess in each of the species approaching $$\pm 1$$
±
1
when there is a global $$L\leftrightarrow D$$
L
↔
D
symmetry. We then consider a scenario when there is a small external global asymmetry factor, like weak interaction, and show that only one of the species remains in such a case, and that is the one, which is more efficient in replication. We perform an estimate of the time necessary to reach homochirality in such a model and show that reasonable assumptions lead to an estimate of around 300 thousand years plus or minus a couple of orders of magnitude. Despite this seemingly large time to reach homochirality, the model is immune to racemization because amino acids in the model follow the lifespan of the protocells rather than the time needed to reach homochirality. We show that not needing mutual inhibition in such evolutionary model is due to the difference in the topology of the spaces in which considered model and many known models of biological homochirality operate. Bifurcation-based models operate in disconnected zero-dimensional space (the space is just two points with enantiomeric excess equal $$-1$$
-
1
and $$1$$
1
), whereas considered evolutionary model (in its continuous representation) operates in one-dimensional connected space, that is the whole interval between $$-1$$
-
1
and $$1$$
1
of total enantiomeric excess. We then proceed with the analysis of the replication process in non-homochiral environment and show that replication errors (the probability to attach an amino acid of wrong chirality) result in a smooth decrease of replication time when total enantiomeric excess of the replicated structure moves away from zero. We show that this decrease in replication time is sufficient for considered model to work.
Collapse
|
5
|
Li C, Sang Y, Jin X, Duan P, Liu M. Homologous and Heterologous Chiral Supramolecular Polymerization from Exclusively Achiral Building Blocks. Angew Chem Int Ed Engl 2022; 61:e202206332. [DOI: 10.1002/anie.202206332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chengxi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yutao Sang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Minghua Liu
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
6
|
Martínez RF, Cuccia LA, Viedma C, Cintas P. On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links-A Review. ORIGINS LIFE EVOL B 2022; 52:21-56. [PMID: 35796896 DOI: 10.1007/s11084-022-09624-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
By paraphrasing one of Kipling's most amazing short stories (How the Leopard Got His Spots), this article could be entitled "How Sugars Became Homochiral". Obviously, we have no answer to this still unsolved mystery, and this perspective simply brings recent models, experiments and hypotheses into the homochiral homogeneity of sugars on earth. We shall revisit the past and current understanding of sugar chirality in the context of prebiotic chemistry, with attention to recent developments and insights. Different scenarios and pathways will be discussed, from the widely known formose-type processes to less familiar ones, often viewed as unorthodox chemical routes. In particular, problems associated with the spontaneous generation of enantiomeric imbalances and the transfer of chirality will be tackled. As carbohydrates are essential components of all cellular systems, astrochemical and terrestrial observations suggest that saccharides originated from environmentally available feedstocks. Such substances would have been capable of sustaining autotrophic and heterotrophic mechanisms integrating nutrients, metabolism and the genome after compartmentalization. Recent findings likewise indicate that sugars' enantiomeric bias may have emerged by a transfer of chirality mechanisms, rather than by deracemization of sugar backbones, yet providing an evolutionary advantage that fueled the cellular machinery.
Collapse
Affiliation(s)
- R Fernando Martínez
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, Quebec Centre for Advanced Materials (QCAM/CQMF), FRQNT, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Cristóbal Viedma
- Department of Crystallography and Mineralogy, University Complutense, 28040, Madrid, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
7
|
Li C, Sang Y, Jin X, Duan P, Liu M. Homologous and Heterologous Chiral Supramolecular Polymerization from Exclusively Achiral Building Blocks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chengxi Li
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication Beijing CHINA
| | - Yutao Sang
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Beijing CHINA
| | - Xue Jin
- National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication Beijing CHINA
| | - Pengfei Duan
- National Center for Nanoscience and Technology Key Laboratory of Nanosystem and Hierarchical Fabrication No.11 ZhongGuanCunBeiYiTiao 100190 Beijing CHINA
| | - Minghua Liu
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Beijing CHINA
| |
Collapse
|
8
|
Bourdon-García RD, Ágreda J, Burgos-Salcedo J, Hochberg D, Ribó JM, Bargueño P, Estupiñan Salamanca A. Stoichiometric network analysis in reaction networks yielding spontaneous mirror symmetry breaking in a prebiotic atmosphere. Phys Chem Chem Phys 2022; 24:20788-20802. [PMID: 35667251 DOI: 10.1039/d2cp00538g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generation of amino acid homochirality under prebiotic atmosphere conditions is a relevant issue in the study of the origin of life. This research is based on the production of amino acids via Strecker synthesis and how it is adjusted to the Kondepudi-Nelson autocatalytic model. The spontaneous mirror symmetry breaking (SMSB) of the new Kondepudi-Nelson-Strecker model, subject to two modifications (with Limited Enantioselective and Cross Inhibition), and also their combination were studied using the stoichiometric network analysis (SNA). In the calculations, the values obtained from the literature for alanine were considered. A total production of alanine of 7.56 × 109 mol year-1 was determined under prebiotic atmosphere conditions and starting from that value, the reaction rates for the models studied were estimated. Only the model with cross inhibition or achiral dimer formation is driven by stochastic fluctuations during SMSB. The stochastic fluctuation was estimated for a value of 2.619 × 10-15 mol L-1. This perturbation was sufficient to trigger SMSB. Finally, the results of SMSB were used to calculate the entropy production for the cross inhibition model.
Collapse
Affiliation(s)
- Rubén Danilo Bourdon-García
- Departamento de Química, Universidad Nacional de Colombia, Av. 30 45 - 03, 111321 Bogotá, DC, Colombia. .,Facultad de Ingeniería Civil, Fundación Universitaria Agraria de Colombia, Av. 170 54A - 10, 111166 Bogotá, DC, Colombia
| | - Jesús Ágreda
- Departamento de Química, Universidad Nacional de Colombia, Av. 30 45 - 03, 111321 Bogotá, DC, Colombia.
| | - Javier Burgos-Salcedo
- Dirección de Investigación, Fundación Universitaria San Mateo, Transv. 17 25 - 25, 111411 Bogotá, DC, Colombia
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir Kilometro 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | - Josep M Ribó
- Department of Organic Chemistry, Institute of Cosmos Science (IEEC-UB), University of Barcelona, Barcelona, Catalonia, Spain
| | - Pedro Bargueño
- Departamento de Física Aplicada, Universidad de Alicante, Campus de San Vicente del Raspeig, E-03690 Alicante, Spain.
| | | |
Collapse
|
9
|
Sallembien Q, Bouteiller L, Crassous J, Raynal M. Possible chemical and physical scenarios towards biological homochirality. Chem Soc Rev 2022; 51:3436-3476. [PMID: 35377372 DOI: 10.1039/d1cs01179k] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The single chirality of biological molecules in terrestrial biology raises more questions than certitudes about its origin. The emergence of biological homochirality (BH) and its connection with the appearance of life have elicited a large number of theories related to the generation, amplification and preservation of a chiral bias in molecules of life under prebiotically relevant conditions. However, a global scenario is still lacking. Here, the possibility of inducing a significant chiral bias "from scratch", i.e. in the absence of pre-existing enantiomerically-enriched chemical species, will be considered first. It includes phenomena that are inherent to the nature of matter itself, such as the infinitesimal energy difference between enantiomers as a result of violation of parity in certain fundamental interactions, and physicochemical processes related to interactions between chiral organic molecules and physical fields, polarized particles, polarized spins and chiral surfaces. The spontaneous emergence of chirality in the absence of detectable chiral physical and chemical sources has recently undergone significant advances thanks to the deracemization of conglomerates through Viedma ripening and asymmetric auto-catalysis with the Soai reaction. All these phenomena are commonly discussed as plausible sources of asymmetry under prebiotic conditions and are potentially accountable for the primeval chiral bias in molecules of life. Then, several scenarios will be discussed that are aimed to reflect the different debates about the emergence of BH: extra-terrestrial or terrestrial origin (where?), nature of the mechanisms leading to the propagation and enhancement of the primeval chiral bias (how?) and temporal sequence between chemical homochirality, BH and life emergence (when?). Intense and ongoing theories regarding the emergence of optically pure molecules at different moments of the evolution process towards life, i.e. at the levels of building blocks of Life, of the instructed or functional polymers, or even later at the stage of more elaborated chemical systems, will be critically discussed. The underlying principles and the experimental evidence will be commented for each scenario with particular attention on those leading to the induction and enhancement of enantiomeric excesses in proteinogenic amino acids, natural sugars, and their intermediates or derivatives. The aim of this review is to propose an updated and timely synopsis in order to stimulate new efforts in this interdisciplinary field.
Collapse
Affiliation(s)
- Quentin Sallembien
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Jeanne Crassous
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
10
|
Abstract
Many structures in nature look symmetric, but this is not completely accurate, because absolute symmetry is close to death. Chirality (handedness) is one form of living asymmetry. Chirality has been extensively investigated at different levels. Many rules were coined in attempts made for many decades to have control over the selection of handedness that seems to easily occur in nature. It is certain that if good control is realized on chirality, the roads will be ultimately open towards numerous developments in pharmaceutical, technological, and industrial applications. This tutorial review presents a report on chirality from single molecules to supramolecular assemblies. The realized functions are still in their infancy and have been scarcely converted into actual applications. This review provides an overview for starters in the chirality field of research on concepts, common methodologies, and outstanding accomplishments. It starts with an introductory section on the definitions and classifications of chirality at the different levels of molecular complexity, followed by highlighting the importance of chirality in biological systems and the different means of realizing chirality and its inversion in solid and solution-based systems at molecular and supramolecular levels. Chirality-relevant important findings and (bio-)technological applications are also reported accordingly.
Collapse
|
11
|
Quack M, Seyfang G, Wichmann G. Perspectives on parity violation in chiral molecules: theory, spectroscopic experiment and biomolecular homochirality. Chem Sci 2022; 13:10598-10643. [PMID: 36320700 PMCID: PMC9491092 DOI: 10.1039/d2sc01323a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
The reflection (or ‘mirror’) symmetry of space is among the fundamental symmetries of physics. It is connected to the conservation law for the quantum number parity and a fundamental ‘non-observable’ property of space (as defined by an absolute ‘left-handed’ or ‘right-handed’ coordinate system). The discovery of the violation of this symmetry – the non-conservation of parity or ‘parity violation’ – in 1956/1957 had an important influence on the further development of physics. In chemistry the mirror symmetry of space is connected to the existence of enantiomers as isomers of chiral (‘handed’) molecules. These isomers would relate to each other as idealized left or right hand or as image and mirror image and would be energetically exactly equivalent with perfect space inversion symmetry. Parity violation results in an extremely small ‘parity violating’ energy difference between the ground states of the enantiomers which can be theoretically calculated to be about 100 aeV to 1 feV (equivalent to 10−11 to 10−10 J mol−1), depending on the molecule, but which has not yet been detected experimentally. Its detection remains one of the great challenges of current physical–chemical stereochemistry, with implications also for fundamental problems in physics. In biochemistry and molecular biology one finds a related fundamental question unanswered for more than 100 years: the evolution of ‘homochirality’, which is the practically exclusive preference of one chiral, enantiomeric form as building blocks in the biopolymers of all known forms of life (the l-amino acids in proteins and d-sugars in DNA, not the reverse d-amino acids or l-sugars). In astrobiology the spectroscopic detection of homochirality could be used as strong evidence for the existence of extraterrestrial life, if any. After a brief conceptual and historical introduction we review the development, current status, and progress along these three lines of research: theory, spectroscopic experiment and the outlook towards an understanding of the evolution of biomolecular homochirality. The reflection (or ‘mirror’) symmetry of space is among the fundamental symmetries of physics. It is connected to the conservation law for the quantum number purity and its violation and has a fundamental relation to stereochemistry and molecular chirality.![]()
Collapse
Affiliation(s)
- Martin Quack
- Physical Chemistry, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Georg Seyfang
- Physical Chemistry, ETH Zürich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
12
|
Abstract
The origin of life, based on the homochirality of biomolecules, is a persistent mystery. Did life begin by using both forms of chirality, and then one of the forms disappeared? Or did the choice of homochirality precede the formation of biomolecules that could ensure replication and information transfer? Is the natural choice of L-amino acids and D-sugars on which life is based deterministic or random? Is the handedness present in/of the Universe from its beginning? The whole biosystem on the Earth, all living creatures are chiral. Many theories try to explain the origin of life and chirality on the Earth: e.g., the panspermia hypothesis, the primordial soup hypothesis, theory of parity violation in weak interactions. Additionally, heavy neutrinos and the impact of the fact that only left-handed particles decay, and even dark matter, all have to be considered.
Collapse
|
13
|
|
14
|
Abstract
AbstractThe generally accepted hypothesis to explain the origin of biological homochirality (that is to say, the fact that proteinogenic amino acids are left-handed, and carbohydrates right-handed, in all living beings) is to assume, in the course of prebiotic chemical evolution, the appearance of an initial enantiomeric excess in a set of chiral molecular entities by spontaneous mirror-symmetry breaking (SMSB), together with suitable amplification and replication mechanisms that overcome the thermodynamic drive to racemization. However, the achievement of SMSB in chemical reactions taking place in solution requires highly specific reaction networks showing nonlinear dynamics based on enantioselective autocatalysis, and examples of its experimental realization are very rare. On the other hand, emergence of net supramolecular chirality by SMSB in the self-assembly of achiral molecules has been seen to occur in several instances, and the chirality sign of the resulting supramolecular system can be controlled by the action of macroscopic chiral forces. These considerations led us to propose a new mechanism for the generation of net chirality in molecular systems, in which the SMSB takes place in the formation of chiral supramolecular dissipative structures from achiral monomers, leading to asymmetric imbalances in their composition that are subsequently transferred to a standard enantioselective catalytic reaction, dodging in this way the highly limiting requirement of finding suitable reactions in solution that show enantioselective autocatalysis. We propose the name ‘absolute asymmetric catalysis’ for this approach, in which an achiral monomer is converted into a nonracemic chiral aggregate that is generated with SMSB and that is catalytically active.Our aim in this Account is to present a step-by-step narrative of the conceptual and experimental development of this hitherto unregarded, but prebiotically plausible, mechanism for the emergence of net chirality in molecular reactions.1 Introduction: The Origin of Biological Homochirality and Spontaneous Mirror-Symmetry Breaking2 Experimental Chemical Models for Spontaneous Mirror-Symmetry Breaking: The Soai Reaction and Beyond3 Spontaneous Mirror-Symmetry Breaking in Supramolecular Chemistry: Plenty of Room at the Top4 Absolute Asymmetric Catalysis: An Alternative Mechanism for the Emergence of Net Chirality in Molecular Systems
5 Experimental Realization of Top-Down Chirality Transfer to the Molecular Level6 Conclusions and Outlook
Collapse
Affiliation(s)
- Joaquim Crusats
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, University of Barcelona, Faculty of Chemistry
- Institute of Cosmos Science (IEE-ICC), Universitat de Barcelona
| | - Albert Moyano
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, University of Barcelona, Faculty of Chemistry
| |
Collapse
|
15
|
Yang B, Zou G, Zhang S, Ni H, Wang H, Xu W, Yang C, Zhang H, Yu W, Luo K. Biased Symmetry Breaking and Chiral Control by Self-Replicating in Achiral Tetradentate Platinum (II) Complexes. Angew Chem Int Ed Engl 2021; 60:10531-10536. [PMID: 33682280 DOI: 10.1002/anie.202101709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Indexed: 01/03/2023]
Abstract
Obtaining homochirality from biased symmetry-breaking of self-assembly in achiral molecules remains a great challenge due to the lack of ingenious strategies and controlling their handedness. Here, we report the first case of biased symmetry breaking from achiral platinum (II) liquid crystals which self-organize into an enantiomerically enriched single domain without selection of handedness in twist grain boundary TGB [ *] phase. Most importantly, the chiral control of self-organization can be achieved by using above the homochiral liquid crystal films with determined handedness (P or M) as a template. Moreover, benefiting from self-assembled superhelix, these complexes exhibit prominent circularly polarized luminescence with high |glum | up to 3.4×10-3 in the TGB [ *] mesophase. This work paves a neoteric avenue for the development of chiral self-assemblies from achiral molecules.
Collapse
Affiliation(s)
- Bo Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Guo Zou
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Shilin Zhang
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Hailiang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Haifeng Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Wei Xu
- College of Chemistry and State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610000, P. R. China
| | - Cheng Yang
- College of Chemistry and State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610000, P. R. China
| | - Hui Zhang
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Wenhao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Kaijun Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| |
Collapse
|
16
|
Chen HJ, Xu L, Chen MT, Lin LR, Zhuang GL, Long LS, Zheng LS. Role of the Auxiliary Ligand in the Spontaneous Resolution of Enantiomers in Three-Dimensional Coordination Polymers. Inorg Chem 2021; 60:6981-6985. [PMID: 33913721 DOI: 10.1021/acs.inorgchem.1c00608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four pairs of chiral 3D coordination polymers (CPs), [Zn2(BDC)(lac)(DMF)]·guest (2) (H2BDC = benzene dicarboxylic acid; H2lac = lactic acid; guest = 1.5DMF + i-PrOH), [Co2(BDC)(lac)(DMF)]·guest (3) (guest = DMF + 2H2O), [Fe4(BDC)3(lac)2(DMF)2](CO3)·guest (4) (guest = DMF + 2H2O), and {Zn11(BPDC)6(lac)6[NH2(CH3)2]2}·guest (H2BPDC = 3,3'-biphenyldicarboxylic acid; guest = 6DMF + 18H2O) (5), are prepared through the reactions of racemic lactic acid (rac-H2lac) with different metal ions and auxiliary ligands. Structural analyses and DFT calculations reveal that forming more and stronger coordination bonds between the auxiliary ligand and metal ions is more conducive to the spontaneous resolution of enantiomers in 3D CPs than simply increasing the entropy of the auxiliary ligand itself.
Collapse
Affiliation(s)
- Hui-Jun Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lu Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Man-Ting Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Li-Rong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - La-Sheng Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
17
|
Yang B, Zou G, Zhang S, Ni H, Wang H, Xu W, Yang C, Zhang H, Yu W, Luo K. Biased Symmetry Breaking and Chiral Control by Self‐Replicating in Achiral Tetradentate Platinum (II) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bo Yang
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Guo Zou
- Department of Chemistry Xiamen University Xiamen 361000 P. R. China
| | - Shilin Zhang
- Department of Chemistry Xiamen University Xiamen 361000 P. R. China
| | - Hailiang Ni
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Haifeng Wang
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Wei Xu
- College of Chemistry and State Key Laboratory of Biotherapy Healthy Food Evaluation Research Center Sichuan University Chengdu 610000 P. R. China
| | - Cheng Yang
- College of Chemistry and State Key Laboratory of Biotherapy Healthy Food Evaluation Research Center Sichuan University Chengdu 610000 P. R. China
| | - Hui Zhang
- Department of Chemistry Xiamen University Xiamen 361000 P. R. China
| | - Wenhao Yu
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Kaijun Luo
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| |
Collapse
|
18
|
Handed Mirror Symmetry Breaking at the Photo-Excited State of π-Conjugated Rotamers in Solutions. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The quest to decode the evolution of homochirality of life on earth has stimulated research at the molecular level. In this study, handed mirror symmetry breaking, and molecular parity violation hypotheses of systematically designed π-conjugated rotamers possessing anthracene and bianthracene core were evinced via circularly polarized luminescence (CPL) and circular dichroism (CD). The CPL signals were found to exhibit a (−)-sign, and a handed dissymmetry ratio, which increased with viscosity of achiral solvents depending on the rotation barrier of rotamers. The time-resolved photoluminescence spectroscopy and quantum efficiency measurement of these luminophores in selected solvents reinforced the hypothesis of a viscosity-induced consistent increase of the (−)-sign handed CPL signals.
Collapse
|
19
|
Resonance in Chirogenesis and Photochirogenesis: Colloidal Polymers Meet Chiral Optofluidics. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metastable colloids made of crystalline and/or non-crystalline matters render abilities of photonic resonators susceptible to chiral chemical and circularly polarized light sources. By assuming that μm-size colloids and co-colloids consisting of π- and/or σ-conjugated polymers dispersed into an optofluidic medium are artificial models of open-flow, non-equilibrium coacervates, we showcase experimentally resonance effects in chirogenesis and photochirogenesis, revealed by gigantic boosted chiroptical signals as circular dichroism (CD), optical rotation dispersion, circularly polarized luminescence (CPL), and CPL excitation (CPLE) spectral datasets. The resonance in chirogenesis occurs at very specific refractive indices (RIs) of the surrounding medium. The chirogenesis is susceptible to the nature of the optically active optofluidic medium. Moreover, upon an excitation-wavelength-dependent circularly polarized (CP) light source, a fully controlled absolute photochirogenesis, which includes all chiroptical generation, inversion, erase, switching, and short-/long-lived memories, is possible when the colloidal non-photochromic and photochromic polymers are dispersed in an achiral optofluidic medium with a tuned RI. The hand of the CP light source is not a determining factor for the product chirality. These results are associated with my experience concerning amphiphilic polymerizable colloids, in which, four decades ago, allowed proposing a perspective that colloids are connectable to light, polymers, helix, coacervates, and panspermia hypotheses, nuclear physics, biology, radioisotopes, homochirality question, first life, and cosmology.
Collapse
|
20
|
Buhse T, Cruz JM, Noble-Terán ME, Hochberg D, Ribó JM, Crusats J, Micheau JC. Spontaneous Deracemizations. Chem Rev 2021; 121:2147-2229. [DOI: 10.1021/acs.chemrev.0c00819] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Buhse
- Centro de Investigaciones Químicas−IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos Mexico
| | - José-Manuel Cruz
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas 29050, Mexico
| | - María E. Noble-Terán
- Centro de Investigaciones Químicas−IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos Mexico
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir, Km. 4, 28850 Torrejón de Ardoz, Madrid Spain
| | - Josep M. Ribó
- Institut de Ciències del Cosmos (IEEC-ICC) and Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalunya Spain
| | - Joaquim Crusats
- Institut de Ciències del Cosmos (IEEC-ICC) and Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalunya Spain
| | - Jean-Claude Micheau
- Laboratoire des IMRCP, UMR au CNRS No. 5623, Université Paul Sabatier, F-31062 Toulouse Cedex, France
| |
Collapse
|
21
|
Abstract
Chemistry as a natural science occupies the length and temporal scales ranging between the formation of atoms and molecules as quasi-classical objects, and the formation of proto-life systems showing catalytic synthesis, replication, and the capacity for Darwinian evolution. The role of chiral dissymmetry in the chemical evolution toward life is manifested in how the increase of chemical complexity, from atoms and molecules to complex open systems, accompanies the emergence of biological homochirality toward life. Chemistry should express chirality not only as molecular structural dissymmetry that at the present is described in chemical curricula by quite effective pedagogical arguments, but also as a cosmological phenomenon. This relates to a necessarily better understanding of the boundaries of chemistry with physics and biology.
Collapse
|
22
|
Kostetsky EY, Uversky VN. On the origin of matrix mechanism in protocells and key problems of molecular biology. J Biomol Struct Dyn 2020; 40:572-583. [PMID: 32820704 DOI: 10.1080/07391102.2020.1809523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The theory of the emergence of the matrix mechanism in protocells on complexes of minerals (apatite, carbonate-apatite, calcite, and quartz) with the reciprocal proportions and with the participation of the gas phase radicals (NH3, CH4, and CO) is considered. The structure of apatite and carbonate-apatite predetermined the formation of a double helix of DNA with the complementary pairs of purine-pyrimidine bases, as well as RNA strands complementary to DNA, and helical protein chains combined into supramolecular structures with RNA. It is proposed that during the Archean Eon, a gradual replacement of the mineral matrix with organic matter took place. The site of the origin of the matrix mechanism is the defect-free and growing defective zone of apatite and carbonate-apatite. The size and specificity of DNA, complementary-bound RNA and protein molecules in supramolecular protein-RNA complexes increased as defects accumulated in the structure of minerals. An increase in the size of RNA transcripts was accompanied by an increase in the number of protein molecules in supramolecular protein-RNA complexes. At the first, anhydrous, stage, the formation of a transcriptional-translational apparatus in the form of a crystalline organic-mineral complex -DNA, RNA and protein, based on the "spiral into spiral" principle of gas phase elements. The appearance of water determined the launch of the transcriptional-translational apparatus and the transformation of the organo-mineral crystalline complex into a liquid-crystalline state. A detailed description of the preparation and launch of the matrix mechanism is given. The following problems are discussed: the origin of ribosomal proteins and the role of super-specific aminoacyl-tRNA synthetase as a true carrier of genetic information; properties of the genetic code and synthesis of protocells without violating the second law of thermodynamics; the origin of biological asymmetry; the appearance of nanobacteria and dark genetic matter of eukaryotic systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eduard Y Kostetsky
- Department of Biochemistry, Microbiology and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| |
Collapse
|
23
|
Ribó JM, Hochberg D. Spontaneous mirror symmetry breaking: an entropy production survey of the racemate instability and the emergence of stable scalemic stationary states. Phys Chem Chem Phys 2020; 22:14013-14025. [DOI: 10.1039/d0cp02280b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stability of non-equilibrium stationary states and spontaneous mirror symmetry breaking, provoked by the destabilization of the racemic thermodynamic branch, is studied for enantioselective autocatalysis in an open flow system, and for a continuous range n of autocatalytic orders.
Collapse
Affiliation(s)
- Josep M. Ribó
- Department of Organic Chemistry
- University of Barcelona
- E-08028 Barcelona
- Spain
- Institute of Cosmos Science (IEEC-UB)
| | - David Hochberg
- Department of Molecular Evolution
- Centro de Astrobiology (CSIC-INTA)
- E-28850 Torrejón de Ardoz
- Spain
| |
Collapse
|
24
|
Chemical Basis of Biological Homochirality during the Abiotic Evolution Stages on Earth. Symmetry (Basel) 2019. [DOI: 10.3390/sym11060814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Spontaneous mirror symmetry breaking (SMSB), a phenomenon leading to non-equilibrium stationary states (NESS) that exhibits biases away from the racemic composition is discussed here in the framework of dissipative reaction networks. Such networks may lead to a metastable racemic non-equilibrium stationary state that transforms into one of two degenerate but stable enantiomeric NESSs. In such a bifurcation scenario, the type of the reaction network, as well the boundary conditions, are similar to those characterizing the currently accepted stages of emergence of replicators and autocatalytic systems. Simple asymmetric inductions by physical chiral forces during previous stages of chemical evolution, for example in astrophysical scenarios, must involve unavoidable racemization processes during the time scales associated with the different stages of chemical evolution. However, residual enantiomeric excesses of such asymmetric inductions suffice to drive the SMSB stochastic distribution of chiral signs into a deterministic distribution. According to these features, we propose that a basic model of the chiral machinery of proto-life would emerge during the formation of proto-cell systems by the convergence of the former enantioselective scenarios.
Collapse
|
25
|
Questions of Mirror Symmetry at the Photoexcited and Ground States of Non-Rigid Luminophores Raised by Circularly Polarized Luminescence and Circular Dichroism Spectroscopy. Part 2: Perylenes, BODIPYs, Molecular Scintillators, Coumarins, Rhodamine B, and DCM. Symmetry (Basel) 2019. [DOI: 10.3390/sym11030363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated whether semi-rigid and non-rigid π-conjugated fluorophores in the photoexcited (S1) and ground (S0) states exhibited mirror symmetry by circularly polarized luminescence (CPL) and circular dichroism (CD) spectroscopy using a range of compounds dissolved in achiral liquids. The fluorophores tested were six perylenes, six scintillators, 11 coumarins, two pyrromethene difluoroborates (BODIPYs), rhodamine B (RhB), and 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM). All the fluorophores showed negative-sign CPL signals in the ultraviolet (UV)–visible region, suggesting energetically non-equivalent and non-mirror image structures in the S1 state. The dissymmetry ratio of the CPL (glum) increased discontinuously from approximately −0.2 × 10−3 to −2.0 × 10−3, as the viscosity of the liquids increased. Among these liquids, C2-symmetrical stilbene 420 showed glum ≈ −0.5 × 10−3 at 408 nm in H2O and D2O, while, in a viscous alkanediol, the signal was amplified to glum ≈ −2.0 × 10−3. Moreover, BODIPYs, RhB, and DCM in the S0 states revealed weak (−)-sign CD signals with dissymmetry ratios (gabs) ≈ −1.4 × 10−5 at λmax/λext. The origin of the (−)-sign CPL and the (−)-sign CD signals may arise from an electroweak charge at the polyatomic level. Our CPL and CD spectral analysis could be a possible answer to the molecular parity violation hypothesis based on a weak neutral current of Z0 boson origin that could connect to the origin of biomolecular handedness.
Collapse
|
26
|
Fujiki M, Koe JR, Mori T, Kimura Y. Questions of Mirror Symmetry at the Photoexcited and Ground States of Non-Rigid Luminophores Raised by Circularly Polarized Luminescence and Circular Dichroism Spectroscopy: Part 1. Oligofluorenes, Oligophenylenes, Binaphthyls and Fused Aromatics. Molecules 2018; 23:E2606. [PMID: 30314330 PMCID: PMC6222818 DOI: 10.3390/molecules23102606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 11/17/2022] Open
Abstract
We report experimental tests of whether non-rigid, π-conjugated luminophores in the photoexcited (S₁) and ground (S₀) states dissolved in achiral liquids are mirror symmetrical by means of circularly polarized luminescence (CPL) and circular dichroism (CD) spectroscopy. Herein, we chose ten oligofluorenes, eleven linear/cyclic oligo-p-arylenes, three binaphthyls and five fused aromatics, substituted with alkyl, alkoxy, phenyl and phenylethynyl groups and also with no substituents. Without exception, all these non-rigid luminophores showed negative-sign CPL signals in the UV-visible region, suggesting temporal generation of energetically non-equivalent non-mirror image structures as far-from equilibrium open-flow systems at the S₁ state. For comparison, unsubstituted naphthalene, anthracene, tetracene and pyrene, which are achiral, rigid, planar luminophores, did not obviously show CPL/CD signals. However, camphor, which is a rigid chiral luminophore, showed mirror-image CPL/CD signals. The dissymmetry ratio of CPL (glum) for the oligofluorenes increased discontinuously, ranging from ≈ -(0.2 to 2.0) × 10-3, when the viscosity of the liquids increased. When the fluorene ring number increased, the glum value extrapolated at [η] = 0 reached -0.8 × 10-3 at 420 nm, leading to (⁻)-CPL signals predicted in the vacuum state. Our comprehensive CPL and CD study should provide a possible answer to the molecular parity violation hypothesis arising due to the weak neutral current mediated by the Z⁰-boson.
Collapse
Affiliation(s)
- Michiya Fujiki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0036, Japan.
| | - Julian R Koe
- Department of Natural Sciences, International Christian University (ICU), 3-10-2 Mitaka, Tokyo, 181-8585, Japan.
| | - Takashi Mori
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0036, Japan.
| | - Yoshihiro Kimura
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0036, Japan.
| |
Collapse
|
27
|
Control over the emerging chirality in supramolecular gels and solutions by chiral microvortices in milliseconds. Nat Commun 2018; 9:2599. [PMID: 29968753 PMCID: PMC6030102 DOI: 10.1038/s41467-018-05017-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022] Open
Abstract
The origin of homochirality in life is a fundamental mystery. Symmetry breaking and subsequent amplification of chiral bias are regarded as one of the underlying mechanisms. However, the selection and control of initial chiral bias in a spontaneous mirror symmetry breaking process remains a great challenge. Here we show experimental evidences that laminar chiral microvortices generated within asymmetric microchambers can lead to a hydrodynamic selection of initial chiral bias of supramolecular systems composed of exclusively achiral molecules within milliseconds. The self-assembled nuclei with the chirality sign affected by the shear force of enantiomorphic microvortices are subsequently amplified into almost absolutely chirality-controlled supramolecular gels or nanotubes. In contrast, turbulent vortices in stirring cuvettes fail to select the chirality of supramolecular gels. This study reveals that a laminar chiral microflow can induce enantioselection far from equilibrium, and provides an insight on the origin of natural homochirality. Symmetry breaking and chiral amplification are fundamental principles in chemistry and biology but the control of initial chiral bias remains a great challenge. Here the authors show that chiral microvortices can lead to a selection of initial chiral bias of supramolecular systems composed of achiral molecules.
Collapse
|
28
|
Homochirality through Photon-Induced Denaturing of RNA/DNA at the Origin of Life. Life (Basel) 2018; 8:life8020021. [PMID: 29882802 PMCID: PMC6027432 DOI: 10.3390/life8020021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
Since a racemic mixture of chiral nucleotides frustrates the enzymeless extension of RNA and DNA, the origin of homochirality must be intimately connected with the origin of life. Homochirality theories have elected to presume abiotic mechanisms for prebiotic enantiomer enrichment and post amplification, but none, so far, has been generally accepted. Here I present a novel hypothesis for the procurement of homochirality from an asymmetry in right- over left-circularly polarized photon-induced denaturing of RNA and DNA at the Archean ocean surface as temperatures descended below that of RNA and DNA melting. This asymmetry is attributed to the small excess of right-handed circularly polarized submarine light during the afternoon, when surface water temperatures were highest and thus most conducive to photon-induced denaturing, and to a negative circular dichroism band extending from 230 to 270 nm for small oligos of RNA and DNA. Because D-nucleic acids have greater affinity for L-tryptophan due to stereochemistry, and because D-RNA/DNA+L-tryptophan complexes have an increased negative circular dichroism band between 230 and 270 nm, the homochirality of tryptophan can also be explained by this hypothesis. A numerical model is presented, demonstrating the efficacy of such a mechanism in procuring homochirality of RNA or DNA from an original racemic solution in as little as 270 Archean years.
Collapse
|
29
|
Ishikawa H, Uemura N, Yagishita F, Baba N, Yoshida Y, Mino T, Kasashima Y, Sakamoto M. Asymmetric Synthesis Involving Reversible Photodimerization of a Prochiral Flavonoid Followed by Crystallization. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroki Ishikawa
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering, and Molecular Chirality Research Center; Chiba University; Yayoi-cho, Inage-ku 263-8522 Chiba Japan
| | - Naohiro Uemura
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering, and Molecular Chirality Research Center; Chiba University; Yayoi-cho, Inage-ku 263-8522 Chiba Japan
| | - Fumitoshi Yagishita
- Department of Applied Chemistry; Graduate school of Science and Technology; Tokushima University; Minami-josanjima-cho 770-8506 Tokushima Japan
| | - Nozomi Baba
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering, and Molecular Chirality Research Center; Chiba University; Yayoi-cho, Inage-ku 263-8522 Chiba Japan
| | - Yasushi Yoshida
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering, and Molecular Chirality Research Center; Chiba University; Yayoi-cho, Inage-ku 263-8522 Chiba Japan
| | - Takashi Mino
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering, and Molecular Chirality Research Center; Chiba University; Yayoi-cho, Inage-ku 263-8522 Chiba Japan
| | - Yoshio Kasashima
- Education Center; Faculty of Creative Engineering; Chiba Institute of Technology; Shibazono 275-0023 Narashino, Chiba Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology; Graduate School of Engineering, and Molecular Chirality Research Center; Chiba University; Yayoi-cho, Inage-ku 263-8522 Chiba Japan
| |
Collapse
|
30
|
Ribó JM, Hochberg D, Crusats J, El-Hachemi Z, Moyano A. Spontaneous mirror symmetry breaking and origin of biological homochirality. J R Soc Interface 2017; 14:20170699. [PMID: 29237824 PMCID: PMC5746574 DOI: 10.1098/rsif.2017.0699] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/22/2017] [Indexed: 11/12/2022] Open
Abstract
Recent reports on both theoretical simulations and on the physical chemistry basis of spontaneous mirror symmetry breaking (SMSB), that is, asymmetric synthesis in the absence of any chiral polarizations other than those arising from the chiral recognition between enantiomers, strongly suggest that the same nonlinear dynamics acting during the crucial stages of abiotic chemical evolution leading to the formation and selection of instructed polymers and replicators, would have led to the homochirality of instructed polymers. We review, in the first instance, which reaction networks lead to the nonlinear kinetics necessary for SMSB, and the thermodynamic features of the systems where this potentiality may be realized. This could aid not only in the understanding of SMSB, but also the design of reliable scenarios in abiotic evolution where biological homochirality could have taken place. Furthermore, when the emergence of biological chirality is assumed to occur during the stages of chemical evolution leading to the selection of polymeric species, one may hypothesize on a tandem track of the decrease of symmetry order towards biological homochirality, and the transition from the simple chemistry of astrophysical scenarios to the complexity of systems chemistry yielding Darwinian evolution.
Collapse
Affiliation(s)
- Josep M Ribó
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
- Institute of Cosmos Science (IEEC-UB), c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Joaquim Crusats
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
- Institute of Cosmos Science (IEEC-UB), c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Zoubir El-Hachemi
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
- Institute of Cosmos Science (IEEC-UB), c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Albert Moyano
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
31
|
Testa B. Emergent chemodiversity: The case of stereoisomerism in acyclic alkanes. Chirality 2017; 29:415-421. [PMID: 28675534 DOI: 10.1002/chir.22718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 11/07/2022]
Abstract
The objective of this pen-and-paper study is to witness the emergence of stereoisomeric properties when comparing lower to higher families of homologs. Specifically, the study compares all acyclic hexanes (five constitutional isomers, a.k.a. regioisomers), all nine heptanes, all 18 octanes, all 35 nonanes, and all 75 decanes. The first part of the work examines the nature and number of stereoisomeric properties seen to emerge in chemical structures featuring one chiral center (i.e., enantiomerism) or two such centers, in which case more complex stereoisomeric features emerge (enantiomerism, diastereoisomerism, pseudoasymmetry, and meso-isomers). The first emergence of chirality (i.e., enantiomerism) occurred in some heptanes. Diastereoisomerism and meso-isomers appear with some octanes, while a pseudoasymmetric center exists in a decane regioisomer. The second part of the work is an attempt to rationalize the numbers of regioisomers, chiral centers, and stereoisomers as these numbers grow from one family of regioisomers to the higher ones. Far from being random, such increases prove regular and ordered.
Collapse
Affiliation(s)
- Bernard Testa
- Department of Pharmacy, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
32
|
Mimura Y, Nishikawa T, Fuchino R, Nakai S, Tajima N, Kitamatsu M, Fujiki M, Imai Y. Circularly polarised luminescence of pyrenyl di- and tri-peptides with mixed d- and l-amino acid residues. Org Biomol Chem 2017; 15:4548-4553. [DOI: 10.1039/c7ob00503b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple pyrenes as pendants of enantioimpure di-/tripeptides showed pyrene-origin CPL and CD signals, which were associated with conflicting CPL-/CD-signs.
Collapse
Affiliation(s)
- Yuki Mimura
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kindai University
- Higashi-Osaka
- Japan
| | - Tomoki Nishikawa
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kindai University
- Higashi-Osaka
- Japan
| | - Ryo Fuchino
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kindai University
- Higashi-Osaka
- Japan
| | - Shiho Nakai
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kindai University
- Higashi-Osaka
- Japan
| | - Nobuo Tajima
- Computational Materials Science Center
- National Institute for Materials Science 1-2-1 Sengen
- Tsukuba
- Japan
| | - Mizuki Kitamatsu
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kindai University
- Higashi-Osaka
- Japan
| | - Michiya Fujiki
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Ikoma
- Japan
| | - Yoshitane Imai
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kindai University
- Higashi-Osaka
- Japan
| |
Collapse
|
33
|
Litvin YA, Skoblin AA, Stovbun SV. Physicochemical modeling of the main stages of formation of a chirally pure prebiotic world. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2017. [DOI: 10.1134/s1990793117010079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Hochberg D, Bourdon García RD, Ágreda Bastidas JA, Ribó JM. Stoichiometric network analysis of spontaneous mirror symmetry breaking in chemical reactions. Phys Chem Chem Phys 2017; 19:17618-17636. [DOI: 10.1039/c7cp02159c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stoichiometric network analysis (SNA) is used to study spontaneous mirror symmetry breaking in chemical reaction schemes.
Collapse
Affiliation(s)
- David Hochberg
- Department of Molecular Evolution
- Centro de Astrobiología (CSIC-INTA)
- 28850 Torrejón de Ardoz
- Spain
| | | | | | - Josep M. Ribó
- Department of Organic Chemistry
- Institute of Cosmos Science (IEEC-UB)
- University of Barcelona
- Barcelona
- Spain
| |
Collapse
|
35
|
Borchers AT, Davis PA, Gershwin ME. The Asymmetry of Existence: Do We Owe Our Existence to Cold Dark Matter and the Weak Force? Exp Biol Med (Maywood) 2016; 229:21-32. [PMID: 14709773 DOI: 10.1177/153537020422900103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A common theme throughout biology is homochirality, including its origin and especially implications. Homochirality has also intrigued scientists because of the hypothesis that life, as it currently exists, could not have occurred without it. In this review, we discuss several hypotheses regarding homochirality and their linkage to processes that range from subatomic in scale to processes that help define the structure of the universe. More importantly, this exploration begins with the knowledge that humans inhabit the universe in which there is an excess of normal matter over antimatter. It is a universe characterized by homochirality but is nonetheless contained in what is most easily described as a 3+1 dimensional spacetime wherein most laws of physics are invariant under spacetime transformations. This restriction on spacetime poses significant constraints on the processes that can be invoked to explain homochirality. However, in dealing with such restraints, including the total mass contained in the universe, the concepts of cold dark matter and dark energy can be incorporated into cosmological models with resultant behaviors and predictions very much in accord with the findings of the cosmic background surveys. Indeed, the introduction of cold dark matter and dark energy to solve problems relating to the mass found in the universe may provide a means for generating the needed asymmetry to allow homochirality to arise.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis School of Medicine, Davis, California 95616, USA
| | | | | |
Collapse
|
36
|
Managadze GG, Engel MH, Getty S, Wurz P, Brinckerhoff WB, Shokolov AG, Sholin GV, Terent’ev SA, Chumikov AE, Skalkin AS, Blank VD, Prokhorov VM, Managadze NG, Luchnikov KA. Excess of L-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the Laboratory. PLANETARY AND SPACE SCIENCE 2016; 131:70-78. [PMID: 32818000 PMCID: PMC7430501 DOI: 10.1016/j.pss.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.
Collapse
Affiliation(s)
| | - Michael H. Engel
- School of Geology and Geophysics, The University of Oklahoma, Norman, OK 73019, USA
| | | | - Peter Wurz
- Physics Institute, University of Bern, 3012 Bern, Switzerland
| | | | | | | | - Sergey A. Terent’ev
- Technological Institute for Super hard and Novel Carbon Materials, Moscow, Russia
| | | | | | - Vladimir D. Blank
- Technological Institute for Super hard and Novel Carbon Materials, Moscow, Russia
| | | | - Nina G. Managadze
- Space Research Institute, Profsoyuznaya, st. 84/32, Moscow 117997, Russia
| | | |
Collapse
|
37
|
Mandle RJ. The dependency of twist-bend nematic liquid crystals on molecular structure: a progression from dimers to trimers, oligomers and polymers. SOFT MATTER 2016; 12:7883-7901. [PMID: 27722733 DOI: 10.1039/c6sm01772j] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This article gives an overview on recent developments concerning the twist-bend nematic phase. The twist-bend nematic phase has been discussed as the missing link between the uniaxial nematic mesophase (N) and the helical chiral nematic phase (N*). After an introduction discussing the key physical properties of the NTB phase and the methods used to identify the twist-bend nematic mesophase this review focuses on structure property relationships and molecular features that govern the incidence of this phase.
Collapse
Affiliation(s)
- Richard J Mandle
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
38
|
Ribó JM, Crusats J, El-Hachemi Z, Moyano A, Hochberg D. Spontaneous mirror symmetry breaking in heterocatalytically coupled enantioselective replicators. Chem Sci 2016; 8:763-769. [PMID: 28451224 PMCID: PMC5299794 DOI: 10.1039/c6sc02446g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/12/2016] [Indexed: 11/21/2022] Open
Abstract
Chiral hypercycle replicators (first-order autocatalysis together with mutual cross-catalysis) formed from achiral or racemizing resources may lead to spontaneous mirror symmetry breaking (SMSB) without the need for additional heterochiral inhibition reactions, such as those of the Frank-like models, which are an obstacle for the emergence of evolutionary selection properties. The results indicate that the chemical models for the emergence of primordial autocatalytic self-reproducing systems, of and by themselves, can also explain naturally the emergence of biological homochirality.
Collapse
Affiliation(s)
- Josep M Ribó
- Department of Organic Chemistry , University of Barcelona , E-08028 Barcelona , Catalonia , Spain . .,Institute of Cosmos Science (IEEC-UB) , University of Barcelona , E-08028 Barcelona , Catalonia , Spain
| | - Joaquim Crusats
- Department of Organic Chemistry , University of Barcelona , E-08028 Barcelona , Catalonia , Spain . .,Institute of Cosmos Science (IEEC-UB) , University of Barcelona , E-08028 Barcelona , Catalonia , Spain
| | - Zoubir El-Hachemi
- Department of Organic Chemistry , University of Barcelona , E-08028 Barcelona , Catalonia , Spain . .,Institute of Cosmos Science (IEEC-UB) , University of Barcelona , E-08028 Barcelona , Catalonia , Spain
| | - Albert Moyano
- Department of Organic Chemistry , University of Barcelona , E-08028 Barcelona , Catalonia , Spain .
| | - David Hochberg
- Department of Molecular Evolution , Centro de Astrobiología (CSIC-INTA) , E-28850 Torrejòn de Ardoz , Madrid , Spain .
| |
Collapse
|
39
|
Stich M, Ribó JM, Blackmond DG, Hochberg D. Necessary conditions for the emergence of homochirality via autocatalytic self-replication. J Chem Phys 2016; 145:074111. [DOI: 10.1063/1.4961021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Stich
- Non-linearity and Complexity Research Group, System Analytics Research Institute, School of Engineering and Applied Science, Aston University, B4 7ET Birmingham, United Kingdom
| | - Josep M. Ribó
- Department of Organic Chemistry, Institute of Cosmos Science (IEEC-UB), University of Barcelona, Barcelona, Spain
| | - Donna G. Blackmond
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 93207, USA
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir Kilómetro 4, 28850 Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
40
|
Kirov MV. Hydrogen-bond-reversal symmetry and its violation in ice nanotubes. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES 2016; 72:395-405. [PMID: 27126117 DOI: 10.1107/s2053273316004368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/14/2016] [Indexed: 11/10/2022]
Abstract
Recently, a new type of generalized symmetry of ice structures was introduced which takes into account the change of direction of all hydrogen bonds. The energy nonequivalence of pairs of configurations with opposite direction of all hydrogen bonds was established in the course of computer simulation of bilayer ice and other four-coordinated structures without `dangling' hydrogen atoms. In this article, the results of detailed investigations of the violation of the hydrogen-bond-reversal symmetry in ice nanotubes consisting of stacked n-membered rings are presented. A comprehensive classification of all possible hydrogen-bonding configurations and their division into two classes (antisymmetrical and non-antisymmetrical) are given. Attention is focused on the most stable configurations that have no longitudinally arranged water molecules. This restriction made the asymmetry very difficult to find. For example, it was established that the asymmetry (non-antisymmetrical configurations) in ice nanotubes with square, pentagonal and hexagonal cross sections appears only when the number of transverse rings in the unit cell is more than six. It is shown that this is related to the well known combinatorial problem of enumerating the symmetry-distinct necklaces of black and white beads. It was found that, among the ice nanotubes that had been considered, hydrogen-bond-reversal asymmetry is most conspicuous in wide nanotubes such as heptagonal and octagonal. In this case the asymmetry is observed for unit cells of any length. In order to verify the results of the symmetry analysis and to confirm the energy nonequivalence of some (non-antisymmetrical) configurations, approximate calculations of the binding energy have been performed using the package TINKER.
Collapse
Affiliation(s)
- Mikhail V Kirov
- Institute of the Earth Cryosphere SB RAS, Tyumen, 625000, Russian Federation
| |
Collapse
|
41
|
Katsuno H, Uwaha M. Mechanism of chirality conversion by periodic change of temperature: Role of chiral clusters. Phys Rev E 2016; 93:013002. [PMID: 26871147 DOI: 10.1103/physreve.93.013002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Indexed: 11/07/2022]
Abstract
By grinding crystals in a solution, the chirality of crystal structure (and the molecular chirality for the case of chiral molecules as well) can be converted, and the cause of the phenomenon is attributed to crystal growth with chiral clusters. We show that the recently found chirality conversion with a periodic change of temperature can also be explained by crystal growth with chiral clusters. With the use of a generalized Becker-Döring model, which includes enantio-selective incorporation of small chiral clusters to large solid clusters, the change of cluster distribution and the mass flow between clusters are studied. The chiral clusters act as a reservoir to pump out the minority species to the majority, and the exponential amplification of the enantiomeric excess found in the experiment is reproduced in the numerical calculation.
Collapse
Affiliation(s)
- Hiroyasu Katsuno
- Department of Physical Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Japan
| | - Makio Uwaha
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
42
|
Mandle RJ, Goodby JW. A Liquid Crystalline Oligomer Exhibiting Nematic and Twist-Bend Nematic Mesophases. Chemphyschem 2016; 17:967-70. [PMID: 26777310 DOI: 10.1002/cphc.201600038] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 11/12/2022]
Abstract
The twist-bend nematic phase (NTB ) has been described as the structural link between the untilted uniaxial nematic phase (N) and the helical chiral nematic phase (N*). The NTB phase exhibits phenomena of fundamental importance to science, that is, 1) the spontaneous formation of a helical pitch on the nanometer scale in a fluid and 2) the spontaneous breaking of mirror symmetry, leading to the emergence of chiral domains in an achiral system. In this Communication, we present a study on T49 [bis(4-(9-(4-((4-cyanobenzoyl)oxy)phenyl)nonyl)phenyl) 4,4'-(nonane-1,9-diyl)dibenzoate], a liquid-crystalline oligomer exhibiting the twist-bend nematic phase, which has a molecular length that is of comparable dimensions to the sub-10 nm pitch determined for CB9CB, and provide new insights into the differentiation between the nano- and macro-science for self-assembling supermolecular systems.
Collapse
Affiliation(s)
- Richard J Mandle
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom.
| | - John W Goodby
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
43
|
Mandle RJ, Goodby JW. Intercalated soft-crystalline mesophase exhibited by an unsymmetrical twist-bend nematogen. CrystEngComm 2016. [DOI: 10.1039/c6ce02123a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Ribó JM, Hochberg D. Competitive Exclusion Principle in Ecology and Absolute Asymmetric Synthesis in Chemistry. Chirality 2015; 27:722-7. [PMID: 26301597 DOI: 10.1002/chir.22490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/13/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Josep M. Ribó
- Department of Organic Chemistry, Institute of Cosmos Science (IEEC-UB); University of Barcelona; Barcelona Spain
| | - David Hochberg
- Department of Molecular Evolution; Centro de Astrobiología (CSIC-INTA); Madrid Spain
| |
Collapse
|
45
|
Avetisov VA, Ivanov VA, Meshkov DA, Nechaev SK. Fractal globules: a new approach to artificial molecular machines. Biophys J 2015; 107:2361-8. [PMID: 25418305 DOI: 10.1016/j.bpj.2014.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/22/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023] Open
Abstract
The over-damped relaxation of elastic networks constructed by contact maps of hierarchically folded fractal (crumpled) polymer globules was investigated in detail. It was found that the relaxation dynamics of an anisotropic fractal globule is very similar to the behavior of biological molecular machines like motor proteins. When it is perturbed, the system quickly relaxes to a low-dimensional manifold, M, with a large basin of attraction and then slowly approaches equilibrium, not escaping M. Taking these properties into account, it is suggested that fractal globules, even those made by synthetic polymers, are artificial molecular machines that can transform perturbations into directed quasimechanical motion along a defined path.
Collapse
Affiliation(s)
- Vladik A Avetisov
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Department of Applied Mathematics, National Research University Higher School of Economics, Moscow, Russia.
| | - Viktor A Ivanov
- Faculty of Physics of the M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Meshkov
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei K Nechaev
- Université Paris-Sud/Centre National de la Recherche Scientifique, Laboratoire de Physique Theorique et Modèles Statistiques, Orsay, France; P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia; Department of Applied Mathematics, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
46
|
Blanco C, Ribó JM, Hochberg D. Modeling spontaneous chiral symmetry breaking and deracemization phenomena: discrete versus continuum approaches. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022801. [PMID: 25768546 DOI: 10.1103/physreve.91.022801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 06/04/2023]
Abstract
We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.
Collapse
Affiliation(s)
- Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | - Josep M Ribó
- Department of Organic Chemistry, and Institute of Cosmos Science (IEEC-UB), University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - David Hochberg
- Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir Kilómetro 4, 28850 Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
47
|
Fujiki M, Donguri Y, Zhao Y, Nakao A, Suzuki N, Yoshida K, Zhang W. Photon magic: chiroptical polarisation, depolarisation, inversion, retention and switching of non-photochromic light-emitting polymers in optofluidic medium. Polym Chem 2015. [DOI: 10.1039/c4py01337a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A circularly polarised photon hand, l- and r-, was not a deterministic factor for the induced chiroptical sign of π-conjugated polymer aggregates. This anomaly originates from circular dichroism inversion characteristics between shorter and longer π–π* bands.
Collapse
Affiliation(s)
- Michiya Fujiki
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Ikoma
- Japan
| | - Yuri Donguri
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Ikoma
- Japan
| | - Yin Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Ayako Nakao
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Ikoma
- Japan
| | - Nozomu Suzuki
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Ikoma
- Japan
| | - Kana Yoshida
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Ikoma
- Japan
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
48
|
Abstract
Ice is a very complex and fundamentally important solid. In the present article, we review a new property of the hydrogen-bonded network in ice structures: an explicit nonequivalence of some antipodal configurations with the opposite direction of all hydrogen bonds (H-bonds). This asymmetry is most pronounced for the structures with considerable deviation of the H-bond network from the tetrahedral coordination. That is why we have investigated in detail four-coordinated ice nanostructures with no outer "dangling" hydrogen atoms, namely, ice bilayers and ice nanotubes consisting of stacked n-membered rings. The reason for this H-bonding asymmetry is a fundamental nonequivalence of the arrangements of water molecules in some antipodal configurations with the opposite direction of all H-bonds. For these configurations, the overall pictures of deviations of the hydrogen bonds from linearity are qualitatively different. We consider the reversal of all H-bonds as an additional nongeometric operation of symmetry, more precisely antisymmetry. It is not easy to find the explicit breaking of the symmetry of hydrogen bonding (H-symmetry) in the variety of all configurations. Therefore, this asymmetry may be named hidden.
Collapse
Affiliation(s)
- Mikhail V Kirov
- Institute of the Earth Cryosphere , Siberian Branch RAS, Tyumen 625000, Russia
| |
Collapse
|
49
|
Ribó JM, Blanco C, Crusats J, El-Hachemi Z, Hochberg D, Moyano A. Absolute Asymmetric Synthesis in Enantioselective Autocatalytic Reaction Networks: Theoretical Games, Speculations on Chemical Evolution and Perhaps a Synthetic Option. Chemistry 2014; 20:17250-71. [DOI: 10.1002/chem.201404534] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Indexed: 11/07/2022]
|
50
|
Valero G, Ribó JM, Moyano A. A Closer Look at Spontaneous Mirror Symmetry Breaking in Aldol Reactions. Chemistry 2014; 20:17395-408. [DOI: 10.1002/chem.201404497] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 11/09/2022]
|